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Big Questions in Chemistry

Opinion

Key Issues Hindering a Practical
Lithium-Metal Anode

Chengcheng Fang,1 Xuefeng Wang,2 and Ying Shirley Meng1,2,*

The sluggish progress of battery technologies has drastically hindered the

rapid development of electric vehicles and next-generation portable electron-

ics. The lithium (Li) metal anode is critical to break the energy-density bottle-

neck of current Li-ion chemistry. After being intensively studied in recent years,

the Li-metal field has developed new understanding and made unprecedented

progress in preventing Li-dendrite growth and improving Coulombic efficiency,

especially through development of advanced electrolytes and novel analytical

tools. In this Opinion, we revisit the controversial issues surrounding Li metal as

an anode based upon recent advances, revealing the underlying cause of Li-

metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal

anodes. Finally, we propose future directions that must be taken in order for

Li-metal batteries to become commercially viable.

Rise of the Lithium-Metal Anode

Rechargeable batteries have markedly reshaped our lives – from electric vehicles to portable

electronic and optoelectronic devices. For a battery anode, lithium (Li) metal is considered the

‘Holy Grail’ because of its extremely low density (0.534 g cm�3), ultra-high theoretical capacity

(3860 mAh g�1), and exceptionally negative electrochemical potential (�3.04 V vs. standard

hydrogen electrode) [1]. The Li-metal anode was first adopted in the TiS2-Li prototype in 1976

[2,3], but was soon replaced by intercalation compounds (see Glossary) like graphite (C)

because of severe capacity fading and potential explosion hazards resulting from dendritic Li

growth [4]. Since C/LiCoO2-based Li-ion batteries delivered an energy density of 120–150 Wh/

kg, twice that of the state-of-the-art Ni–Cd batteries at the time [3], Li-ion batteries rapidly

supplanted Ni–Cd in the battery market, becoming the prevalent technology. Since then, Li-ion

chemistry research has thrived, with significant effort expended toward further increasing

energy and power density. Meanwhile, the use of Li metal as the anode material has also

gradually resuscitated after the 20 years of dormancy since its initial introduction. Around 2010,

prospering electric-vehicle and consumer-electronic markets urgently demanded development

of high-energy-density storage devices, triggering explosive research on Li-metal batteries to

achieve an energy density of 500 Wh/kg or higher in the form of high-Ni NMC-Li or S-Li batteries

[5]. Figure 1 summarizes the number of papers published with a keyword of ‘lithium metal

battery’ over the past 40 years, clearly demonstrating the intense interest in Li-metal batteries.

Current Li-metal-battery research is primarily focused on strategies to alleviate Li-dendrite formation,

improve Coulombic efficiency (CE), and better understand plating/stripping through advanced

characterization methods and theoretical modeling. These efforts have been systematically sum-

marized in the recent reviews [6–11]. Among these achievements, it is important to highlight that

dense Li deposition with a CE of approximately 99% is currently readily obtainable by employing

electrolytes of high salt concentration [12–16] or localized high-concentration electrolytes [17,18].

Highlights

Advanced liquid electrolytes can

achieve dense Li deposition with a

Coulombic efficiency (CE) of approxi-

mately 99%.

New characterization tools, including

cryogenic electron microscopies and

quantitative chemical analytical tools,

have enhanced the current under-

standing of Li failure mechanisms.

Quantification of inactive Li reveals that

the underlying cause of low CE in Li-

metal anodes is the large amount of

unreacted metallic Li.
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Another key achievement of note is the use of cryogenic electron microscopy (cryo-EM) to

visualize the nanostructure of the electrochemically deposited Li metal (EDLi) and mysterious solid

electrolyte interphase (SEI) [19–21], affording a powerful tool to correlate nanostructure with

performanceandoptimizationstrategies.Basedontheseexcitingachievements, it isanoptimal time

to revisit current understanding of the Li-metal anode and review several outstanding challenges. In

this Opinion, we discuss controversial issues associated with Li-metal anodes, evaluate proposed

solution strategies, and propose future directions to realize a practical Li-metal anode.

Main Challenges with Li Metal: Dendrite Formation or Low Coulombic

Efficiency?

It is widely accepted that Li-dendrite formation and low CE are two primary obstacles hindering Li-

metal batteries [22]. In addition, other challenges associated with Li-metal anodes include volume

expansion,poor cycle life, capacity fading, increasedoverpotential, and potential safety hazards. It

iscommonly thought thatLidendritescan mechanically pierce the separator,causing a short in the

cell that potentially results in thermal runaway and explosion [3]. Figure 2A shows an Li-dendrite

model that has been widely spread to illustrate the potential dangers of Li dendrites. This dendritic

morphology was originally observed in a beaker cell via optical microscopy [22–24]. However, in

real coin cells and pouch cells, this morphology has rarely been observed or reported. Instead,

whisker-like Li deposits are commonly observed in commercial carbonate-based electrolytes and

even solid-state batteries (Figure 2B), due to the heterogeneous nature of SEI layers, ion

concentration, and local current density [25]. These Li whiskers interweave parallel to the

separator (rather than perpendicular); only a perpendicular whisker can penetrate the separator

and potentially cause a cell short. Moreover, chunky Li deposits with large granular size (Figure 2C)

have been observed in many recently developed advanced electrolytes. Based on these findings,

Glossary

Coulombic efficiency (CE): also

known as Faraday efficiency; it

describes the efficiency with which

charge is transferred in a system

facilitating an electrochemical

reaction. In a closed secondary

battery system, the CE directly

reflects the battery cyclability.

Cryogenic electron microscopy

(cryo-EM): an electron microscopy

technique applied on samples cooled

down to cryogenic temperatures.

This technique significantly reduces

the electron beam damage on fragile

samples and has been widely

adopted in structure biology field to

obtain atomic-resolution images.

Recently, this technique has been

introduced to the battery field and

serves as a powerful tool to

investigate the nature of extremely

beam–sensitive lithium metal and

SEI.

Intercalation compounds:

compounds with layered structures

that can host the reversible insertion

of molecules or ions into the

material. Common intercalation

electrode compounds include

graphite (anode), TiS2 (cathode),

layered oxides (cathode; e.g., LiCoO2

and LiNi0.8Mn0.1Co0.1O2).

Solid electrolyte interphase (SEI):

the interface between the electrode

and electrolyte. It forms from the

(electro)chemical reaction between

the electrode and electrolyte, and the

electrochemical decomposition of

electrolyte, ensuring the kinetic

stabilization of electrode–electrolyte

interfaces. It remains conductive to

ions but insulates electrons.

Titration gas chromatography

(TGC): a new analytical method used

to quantify trace amount of metals. It

is a combination of protic solvent

titration and quantification of H2

amount by gas chromatography. The

amount of metals can be calculated

from the H2 amount.
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Figure 1. The Number of Papers on Li-Metal Batteries Published Each Year since Its First Introduction in

1976. A total number of 17 376 of papers have been published. Statistics from the Web of Science by searching keywords

‘Lithium Metal Battery’ (as of December 1, 2018).
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it is misleading to continue ascribing the major problem associated with Li-metal anodes to

dendritic growth and its resultant internal short circuit/thermal runaway. Lu and colleagues [26]

have also refuted the dendrite-penetration-related failure mechanism by scanning electron

microscopy analysis of an Li anode cross section after 100 cycles. Undoubtedly, the Li dendrites,

or more precisely Li whiskers, play a critical role in affecting Li-metal battery performance.

However, it is likely via other avenues (i.e., increasing surface area and/or causing large volume

expansion) rather than directly causing a short circuit.

We believe that the primary issue with Li-metal stems from the low CE, which directly reduces

the battery cycle life. As cycling proceeds, both fresh Li metal and electrolyte are consumed

continuously, forming inactive Li (provided that the cycle CE is <100%). Thus, cycle life and

stability in Li-metal cells are directly proportional to the amount of excess Li and electrolyte [27].

However, the CE of Li metal in conventional carbonate electrolytes is less than 90%, indicating

that most Li-metal cells fail via consumption of active Li or depletion of electrolyte (rather than

short circuiting caused by Li whiskers). Even for advanced electrolytes that enable highly

efficient Li plating/stripping with CE of approximately 99%, the 1% inefficiency remains

problematic. To achieve a desired cycle life, excess amounts of fresh Li and electrolyte are

needed, rendering it difficult to further improve the cell-level energy density. Thus, it is becoming

inescapable to improve the CE of Li metal to extend the cycle life of the Li-metal batteries.

Inactive Li Formation Causes Low CE: SEI Li+ or Unreacted Metallic Li?

Low Li-metal CE stems from the loss of active Li as it forms the SEI and unreacted metallic Li,

which together comprise inactive Li (also known as ‘dead’ Li). SEI formation is a result of the

(electro)chemical reaction between highly reactive Li metal and the electrolyte (Box 1), whereas

unreacted metallic Li is isolated from the electronically conductive network during stripping by

the insulating SEI, thus becoming inactive [28–30].

The importance of the SEI has been reviewed exhaustively [11,31,32]; however, quantitative

characterization of SEI properties remains elusive, including chemical composition, nanostruc-

ture, and mechanical properties. This is partly due to the brittle and heterogeneous nature of the

SEI. It is generally believed that dramatic volume changes yield fractures in the SEI during Li

stripping/plating [10]. This fracturing results in continuous SEI formation that consumes both

the active Li and electrolyte. This process is further accelerated by growth of porous Li

whiskers. With this in mind, many researchers attribute the continuous formation of SEI as

the primary reason for capacity loss and low CE, without further quantitative verification [33].

(B) (C)

5 µm 5 µm

(A)

Figure 2. The Morphologies of Electrochemically Deposited Li under Different Conditions. (A) The famous

optical microscope image representing Li dendrites [22]. (B) Whisker-like Li deposited in commercial carbonate electrolyte

[1 M LiPF6 in ethylene carbonate (EC)/ethyl methyl carbonate (EMC), 3:7 with 2% of vinylene carbonate (VC), 0.5 mA/cm2,

1 mAh/cm2]. (C) Chunky Li with a large granular size formed in high-concentration ether-based electrolyte [4 M LiFSI in 1,2-

dimethoxyethane (DME), 0.5 mA/cm2, 1 mAh/cm2].

Trends in Chemistry, Month Year, Vol. xx, No. yy 3
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However, it was recently reported that this picture is not correct following quantification of both

the SEI Li+ and unreacted metallic Li after stripping via the recently developed titration gas

chromatography (TGC) [34]. Importantly, TGC results reveal that the capacity loss of Li-metal

anodes is primarily dominated by unreacted metallic Li that is trapped by the insulating SEI. The

overall SEI Li+ amount in the inactive Li remains almost identical and at a relatively low amount

under different testing conditions. This suggests that the main loss of CE in Li-metal batteries

does not come from SEI formation but rather from the unreacted metallic Li [34]. The capacity

loss from forming SEI has been overblamed for decades. Although the amount is low, we still

want to emphasize that the SEI cannot be overlooked since its chemical and mechanical

properties directly dictate the surface properties of the EDLi, directly affecting the dynamic Li

plating and stripping process. Much work is still needed to correlate the SEI properties with the

electrochemical behavior and performance of Li-metal anodes.

Strategies for Improving Coulombic Efficiency

Many strategies havebeenproposedto improveCE, includingelectrolyteengineering [35–37],useofa

3D host [38,39], separator modification [40,41], and artificial SEI engineering [42,43]. For example,

atomic/molecular layer deposition has been shown to be an effective approach to enhance the CE and

decrease the formation of ‘dead’ Li [44–46]. Among these strategies, the most effective and promising

is developing new electrolytes that enable both high-efficiency Li-metal and stable high-voltage

cathodeoperation.DenseLidepositionwithaCEover99%isreadilyobtained[13,14,16,17];however,

a 99.97% CE is required for a commercially viable Li-metal anode that must undergo 1000 cycles [47].

To close the gap of less than 1% CE loss per cycle further, we must fully understand the growth and

failure mechanism of Li metal in both liquid and solid-state electrolytes by employing state-of-the-art

characterizationtools.Forexample,operandoopticalmicroscopy [48]and insitu transmissionelectron

microscopy (TEM) [49] were combined to probe the dynamic growth of Li dendrites on a wide range of

Box 1. Key Electrochemical Reactions in an Li-Metal Battery

During plating in an Li-metal battery, Li+ deposits on fresh Li. In commercial carbonate-based electrolytes, Li deposits

exhibit whisker-like morphology. During stripping, Li dissolves into the electrolyte and becomes Li+. If the dissolution first

occurs at the base of the Li whiskers, the top part will disconnect from the electronically conductive framework and thus

becomes electrochemically inactive, forming inactive Li (consisting of SEI and unreacted metallic Li wrapped by the

insulating SEI; Figure I).

Inac�ve Li

SEI

Metalli c Li0

Li+ +  e− Li+ +  e−→ Li0 Li0 →

Li pla�ng Li stripping

Li
+

Li
+

Li
+ Li

+ Li
+

Li
+

Li
+

Li
+

Figure I. Schematic of Electrochemical Li Plating/Stripping, Dendrite Formation, and Inactive Li

Formation.
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length and time scales. In particular, cryo-EM eliminates detrimental beam damage on fragile Li metal

and affords nanostructure visualization. Aside from microscopy, other techniques are also needed to

quantitativelyprobethestructureandamountofLimetal/SEI,suchasTGC[34].Significantadvances in

characterization are helping researchers get unprecedentedly close to truly understanding the Li-metal

failure mechanism and rationally overcoming the previously stated obstacles for Li metal.

Recently, Meng and colleagues [34] used cryo-TEM to observe the nanostructure of inactive Li,

revealing that unreacted metallic Li is trapped by the SEI. Further, it was shown that the

unreacted metallic Li amount is closely correlated with the Li-deposit microstructure. A large

quantity of unreacted metallic Li is easily trapped in tortuous matrix of the whisker-like Li,

resulting in a low CE. By contrast, a smaller quantity of unreacted metallic Li is present following

stripping large chunky Li deposits with lower porosity. Consequently, they assert that whisker-

like Li is an undesired microstructure that accelerates formation of inactive metallic Li as well as

infinite volume expansion, thereby yielding low CE (rather than assigning potential safety

concerns to Li-dendrite formation). Therefore, they propose that chunky Li deposits are the

preferred microstructure for maintaining a suitable electronic connection between deposited Li

and the current collector in a limited volume space. In addition, this preferred morphology

implies that significantly less unreacted metallic Li will be trapped in the SEI, thereby affording an

improved CE. Thus, we anticipate that strategies to bias Li deposits to form a columnar chunk

morphology will be effective in further improving CE and confining the volume expansion.

Figure 3 (Key Figure) summarizes the cause and solutions for Li-metal problems.

Key Figure

The Cause and Potential Solution for Li-Metal Issues

Advanced electrolyte 

Ar�ficial SEI

3D current coll ector

Low  CE

Inac�ve Li

Safety hazards

Cell  expans ion

Li  whisker  with large tortuosity 

Heterogeneous SEI

Acc elerate  inac�ve Li form a�on

Li chun k with minimal tortuosity

Homogeneous and stable SEI

Mi�ga te  inac�ve Li  form a�on

Figure 3. The continuous formation of inactive Li is the direct cause of low Coulombic efficiency (CE), safety hazards, and

cell expansion in Li-metal batteries. Li whiskers with large tortuosity and heterogeneous solid electrolyte interphase (SEI)

will facilitate the inactive Li formation and cause the series of problems. Conversely, if the deposited Li possesses a chunky

morphology with minimal tortuosity and homogeneous SEI, inactive Li formation will be significantly reduced resulting in

high CE [34]. To do so, advanced electrolyte engineering will likely be a primary method, with the assistance of artificial SEIs

and 3D current collectors [34].
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Concluding Remarks and Future Perspectives

In this Opinion, we demonstrate that the major problem of Li-metal anodes is low CE rather than

Li-dendrite formation. Most Li-metal cells fail due to the consumption of active Li or depletion of

electrolytes rather than the short circuit caused by Li dendrites/whiskers. The loss of CE is

largely dominated by the formation of unreacted metallic Li rather than the SEI, which is related

to the microstructure of Li deposits [34].

In the future, research effort should be devoted toward reducing the amount of unreacted

metallic Li through tuning the nanostructure and microstructure of deposited Li during both the

plating and stripping processes. An ideal Li deposit should have a columnar morphology [34];

the SEI layer should be homogeneous in components and their distribution with sufficient

mechanical strength and elasticity; the deposited Li volume should be close to the theoretical

value. Advancing electrolytes will undoubtably be the most effective solution to generate these

large Li chunks with minimal tortuosity. A combination of the 3D substrate (helping maintain

suitable electronically conductive pathways) and an artificial SEI with all the desired properties

may also be required to enhance the structural connection for electrons and ion transfer

through the SEI, which all together could potentially realize the CE goal of more than 99.97%.

To carefully carry out these strategies, a thorough understanding of SEI properties is the key.

With advances in cryo-EMs, we are now able to correlate the nanostructure of Li metal with the

electrochemical performance under various conditions. Operando/in situ cryo-EM should be

soon established to probe the dynamic processes of Li metal and SEI during plating and

stripping. Although the SEI amount is low [34], it plays an important role in altering and affecting

the Li behavior. Many interesting questions remain (see Outstanding Questions). Answering

these questions are of vital importance toward rationally eliminating the 1% of CE loss to

ultimately make the Li-metal batteries commercially viable.

Lastly, we advocate the field to follow standardized testing protocols for more effective

knowledge transfer. As mentioned before, the cycle life and cycling stability in an Li-metal

cell are directly proportional to the excess amount of Li and of the electrolyte. Many reported

cycling data are based on a large excess of electrolyte and effectively an infinite excess amount

of Li metal in coin cells; these methodologies do not accurately reflect the true performances of

the reported strategies. Battery R&D has reached a point where scientific research advances

are evaluated and assessed by how rapidly and reproducibly they can be deployed in a

commercially relevant design. This extremely demanding trend itself is a double-edged sword

as it might constrain the creativity of the scientists, but if successful, it will accelerate the

realization of next-generation batteries. When developing strategies to improve the CE in Li-

metal anode, we advocate researchers to rise up to the tough technical challenges, apply and

report strict standards, including high mass loading of active cathode materials (�4 mAh/cm2),

proper current density (>0.5 mA/cm2), lean electrolyte (�3 g/Ah), and a limited excess amount

of Li metal (<50 mm thickness), to truly evaluate if these strategies are actually effective for a

practical rechargeable Li-metal battery.
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