
KEY MINIMAL AUTHENTICATION SYSTEMS 
FOR UNCONDITIONAL SECRECY 

Philippe Godlewskic’) Chris Mitchellc”) 

Abstract 

This paper is concerned with cryptosystems offering unconditional secrecy. For those perfect 
secrecy systems which involve using key just once, the theory is well established since 
Shannon’s works ; however, this is not the case for those systems which involve using a key 
several times. This paper intends to take a rigorous approach to the definition of such systems. 
We use the basic model for a security code developped by Simmons, initially for 
unconditional authentication. We consider the definition of perfect L-fold secrecy given by 
Stinson and used by De Soete and others. We consider other definitions : Ordered Perfect L- 
fold secrety and Massey’s Perfect L-fold secrecy, and attempt to classify them. Lower bounds 
are given for the number of keys in such perfect systems, and characterisation of systems 
meeting these lower bounds are obtained. The last part of the paper is concerned with 
discussing examples of key minimal systems providing unconditional secrecy. 

1. SCOPE AND PURPOSE 

Two of the main applications of cryptography are the provision of secrecy and/or authentication 
for messages. In 1949 Shannon, [Shanl], showed how to construct systems offering 
unconditional secrecy, i.e. theoretically perfect secrecy systems, at the expense of the use of 
very large key spaces. Following this work on secrecy, Simmons, [Simml], and others, 
[Bricl], [Gilbl], have considered systems which offer unconditional authentication, again at 
the expense of requiring very large numbers of keys. 

In fact, most practical security systems are not theoretically secure, and could be broken given 
unlimited computational resources. Such practical security systems are based on reasonable 
assumptions about the difficulty of certain computational problems, and have the advantage of 
using manageable numbers of keys. 

Nevertheless, unconditionally secure systems do find a use in certnin special applic:uions. e-g. 
the Washington-Moscow ‘Hot Line’, [Massl]. It is also interesting to note that, although such 
‘perfectly secure’ systems have been studied for nearly 40 years, the theory is not fully 
developed, at least in the public domain. 
development of this theory. 

It is the purpose of this paper to contribute to the 

In particular, it attempts to classify a number of different definitions of perfect secrecy. 
Developing from this discussion of definitions, lower bounds are given for the number ofkcys 
in such perfect systems, and theorems characterising systems meeting these lower bounds 
(‘key-minimal systems’) are obtained, The last part of the paper is concerned with discussing 
examples of key-minimal systems providing unconditional secrecy. 

2. NOTATION 

We use the basic model for a security code developed by Simmons, [Simml], and used by 
Brickell, [Bricl], De Soete, [DeSol], [DeSo2] and Stinson, [Stinl], [StinZ]. 
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In this model there are three parties: the transmitter, T, the receiver. R, and an 
opponcnt, 0. The transmitteT wishes to send R one or more pieces of information s E s in 
such a way that they cannot be read (secrecy) and/or modifiedhmpersonated (authentication) by 
0. Uscrs T and R achieve this by using a sccrct, prc-agrecd encoding rulc e E E ; his  
encoding rule e may be regarded as the cryptographic transformation corresponding to a secret 
key. It is always assumed that 0 kiiows the system (i.e. the Security Code) coniple~cly, t l~c  
only secret is the encoding rule (i.e. the key) in use. Then T emits m = e(s) which is actually 
transmitted and, perhaps, intercepted by 0. The objective is to design a scheme which protccts 
T and R from 0. 

More formally, a Security Code consists of three sets: a set S of Source States, a set M of 
encoded messages and a set E of encoding rules. Each encoding rule e is an injective function 
from S into M (we do not allow sp[irting here). We write k for ISI, v for IMI and b for IEl 
throughout, and, following De Soete, [DeSol], [DeSo2], write SC(k,v,b) for a Security Code 
with k source states, Y encoded messages and b encoding rules. 

We consider various probabilities. We write p,(s), p,(e), and pM(rn) for the a priori 
probabilities of occurrence of source state, encoding rule and message. We suppose pS(s)>O 

and pE(e)>O for every SE S, and e E E.. We write ps,h,r(slm), pkf,S(rnb), pSIE(sle), ... for 
the conditional probabilities. We also abuse this notation slightly by writing ps(& for L-tuple 
(or ordered set) s = (si, s2, ... S L )  or ps(S') for L-set (unordered) S' = (SI, sz. ... SL) in S. 
We assume that encoding rule e and the different source states SI, 32, ... SL are chosen 
independently. 

A set M of messages is allowable i f  p~ (M' )>0 .  In other words, M' is allowable iff M' could 
correspond to a set of messages encoded under a single encoding rule. 

3. DEFINITIONS OF 'PERFECT' SECRECY 
The initial problem that needs to be overcome in a formal study of cryptosystems providing 
unconditional or 'perfect' secrecy is the fact that existing definitions vary. Therefore, before 
attempting to study such systems we review the existing definitions, and indicate the 
relationships between them. 

The first definition we give is a slightly modified version of a definition due to Stinson, 
[S tinl], [S tin21. 

Given L 1 1, an SC(k,v,b) is said to provide Unordered Pcrfcct L-fold sccrecp (U(L)- 
secrecy) if for every allowable L-subset Ivl' of M and for every L-subset S' of S: 
PSIM(S"M') = PS(S'). 

The second definition we give is the unmodified form of Stinson's definition, [Stinl], [Stin2]. 

Given L21, an SC(k,v,b) is said to provide Stinson Pcrfcct L-fold sccrccy (S(L)- 
secrecy) if for every allowable L'-subset M '  of h.1 and for every L"-subsei S' of S 
(L"IL'IL) : 
P S I M ( S ' W  = PS(S'), 

The following lemma is immediate from the definitions: 

Lemma 3.1 An SC(k,v,b) provides S(L)-sccrecy if and only i f  i t  provides U(L')-secrecy for 
every L' satisfying 15 L' 2 L. 

However U(L)-secrecy by itself is not sufficient to guarantee S(L)-secrecy. For example, any 
SC(k,v,b) provides U(k)-secrecy, but  will not necessarily provide S(k)-secrecy. Note that 
both these definitions are concerned wirh unordered sets of messagcs. A schcmc providing 
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S(L)-secrecy protects its users against the opponent 0 gaining any information about the 
content of a set of L intercepted-messages. However, such a scheme will not necessarily 
prevent 0 gaining information about the possible orderings of source states corresponding to 
observed messages. To provide this stronger notion of secrecy requires the use of a scheme 
satisfying our third definition, as follows: 

Given L21, an SC(k,v,b) is said to provide Ordered Perfect L-fold secrecy (O(L)- 
secrecy) if for every allowable L-tuple m of distinct messages from M and for every L-tuple s 
of distinct source states from S : p,,&lm> = p 0. 

It is then straightforward to establish: 

Lemma 3.2 If an SC(k,v,b) provides O(L)-secrecy then it also provides O(L)-secrecy for 
every L' satisfying l a <  L. 
We also have: 

Lemma 3.3 If an SC(k,v,b) provides O(L)-secrecy then i t  also provides S(L)-secrecy. 

Before proceeding to our fourth (and final) definition i t  is important to note that all the above 
definitions relate to 'ciphertext-only' attacks. Essentially, they are all concerned with the 
situation where the opponent 0 has intercepted L encoded messages and wishes to deduce 
information about the corresponding set of L source states. We now consider a definition of 
perfect security (due to Massey, [Massl]) based on the concept of a 'known plaintext' attack. 

Massey defines a known plaintext attack of order i to be an attack where the opponent 0 has 
intercepted i valid and distinct plaintextkiphertext pairs (i.e. source state/encoded message 
pairs) all encrypted using the same encoding rule, e say. 0 is also assumed to have a further 
encoded message, produced using e and distinct from the messages in the i pairs, for which he 
wishes to obtain information about the corresponding source state. Then the attack will be said 
to 'succeed' if, for any source states distinct from the states in the i pairs, the probability that s 
corresponds to m given the knowledge of the i pairs is different from the a priori probability of 
s (given that it is known that it differs from the source states contained in the i pairs). 

An SC(k,v,b) is said to provide Massey Perfect L-fold secrecy (M(L)-secrecy) if, for 
any i < L, the scheme is secure against an order i known plaintext attack. 

Note that the above definition is intended to be precisely the same as Massey's except that what 
we call M(L)-secrecy is what Massey calls Perfect (L-1)-fold secrecy. We have modified the 
definition so that it corresponds more closely with the other definitions given here. An 
equivalent definition of M(L)-secrecy, and one that fits more naturally with the other definitions 
is as follows: 

Consider any SC(k,v,b). Lets be any i-tuple of distinct source states and let S' be the unique 
(i-1)-tuple derived from s by deleting its last entry. Let m be any allowable i-tuple compatible 
with s' for some encoding rule e E E. Then, the SC(k,v,b) provides M(L)-secrecy if and only 
if for every ic, and for every J, x', m as above : 

It is perhaps surprising to discover that Massey's definition is no stronger than the previous 
one. Ln fact we have: 

S 

p(slnts7 = p(sIs3. 

Theorem 3.4 If an SC(k,v,b) provides O(L)-secrecy then i t  also provides M(L)-secrecy. 

From now on, although it may be a little more powerful, we use the definition of O(L)-secrecy 
rather than that of M(L)-secrecy, since it appears to be easier to handle. Before proceeding note 
also that, for L = 1, all the above definitions coincide and in fact equate to Shannon's notion of 
perfect secrecy, [Shanl]. 
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4. BOUNDS FOR L-SECURE SYSTEMS 

We now consider a variety of bounds which can be established for L-secure systems of various 
types. We start by considering the weakest form of L-secrecy, namely U(L)-secrecy. 

Lemma 4.1 If an SC(k,v,b) provides U(L)-secrecy, then for every allowable L-set of 
messages M and for every L-set of source states S' there exists an encoding rule e such that 
e(S') = M. 

It is also saaightforward to show: 

Lemma 4.2 If an SC(k,v,b) provides U(L)-secrecy, then 
b 2 IALI, 
where AL is the set of allowable L-subsets of M. 

Using these Lemmas we can now establish the following theorem. Note the bound in this 
theorem is a special of theorem 5.3 in [DeSol] for systems providing S(L)-secrecy. 

Theorem 4.3 If an SC(k,v,b) provides U(L)-secrecy, then 

b 2 ( v I k ) . ( ~ ) ,  

Moreover, if b = (v/k).&), then: 

k 

(i) For any pair of encoding rules e l ,  e2 either 
e l w  = e2(S) 

e1(S) = e2(S) 

or el(S)  and q ( S )  are disjoint 
(ii) If el and ez are encoding rules satisfying 

then 

for every M* in AL which is also a subset of el(S) .  
&(el) = PE(e2) = PM(M*) 

We consider examples of schemes possessing U(L)-secrecy in section 5 below. Note that, 
because S(L)-secrecy implies U(L)-secrecy, the results of Theorem 4.3 also apply to S(L)- 
secure systems. 

If we now consider O(L)-secrecy, then we get a similar set of results as follows: 

Lemma 4.4 If an SC(k,v,b) provides O(L)-secrecy then for every allowable L-tuple of distinct 
messages m and for every L-tuple of distinct source states J there exists an encoding rule e such 
Ill;lt 

4 s )  = EL. 

It is also straightforward to show: 

Lemma 4.5 If an SC(k,v,b) provides O(L)-secrecy, then 
b 1 10Li, 
where OL is the set of allowable L-tuples of distinct elements of M. 

Using these Lemmas we can now establish the following result. Note that the bound in this 
theorem was previously established by Massey (equation (3, [Massl]). 

Theorem 4.6 If an SC(k,v,b) provides O(L)-secrecy, then 
b 2 v.(k-l)!/(k -L)!. 
Moreover, if b = v.(k - l ) ! / (k -L)! then: 
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(i) For any pair of encoding rules e l ,  eZ , either 
el,(S) = ez(S) 

e l m  = e2 (9 

or el,(S) and ez (S) are disjoint. 
(ii) If el,  and e2 are encoding rules satisfying 

then 

for every m in OL for which all elements in 
PE(el,) = PE(e2 ) = PMkd 

are in el,(S). 

5 .  EXAMPLES 

We will consider some examples of L-secure systems for which the numbers of encoding rules 
meet the lower bounds established in section 4 above. It is of interest to construct such 
systems since, for any security system, it is always desirable to minimise the number of 
encoding rules and hence the key size. We shall divide our examples into two categories; 
namely those satisfying the bounds of Theorems 4.3 and 4.6 respectively. 

We consider (t.w) homogeneous or transitive set of permutations, Latin Square, Perpandicular 
Array (using results in [Mulll]), Orthogonal Arrays of Type I1 ([RaolJ), to characterize and lo 
construct schemes achieving the bounds. 
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