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Abstract. This paper is concerned with cryptosystems offering perfect or un- 

conditional secrecy. For those perfect-secrecy systems which involve using keys 

just once, the theory is well established; however, this is not the case for those 

systems which involve using a key several times. This paper takes a rigorous 

approach to the definition of such systems, and exhibits some new families of 

examples of systems providing perfect secrecy for which the number of keys is 

minimal. 
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1. Scope and Purpose 

Two of the main applications of cryptography are the provision of secrecy and/or 

authentication for messages. In 1949 Shannon [14] showed how to construct 
systems offering unconditional secrecy, i.e., theoretically perfect-secrecy systems, at 

the expense of the use of very large key spaces. Following this work on secrecy, 

Simmons [15] and others [3], [6] have considered systems which offer unconditional 
authentication, again at the expense of requiring very large numbers of keys. 

In fact, most practical security systems are not theoretically secure, and could be 
broken given unlimited computational resources. Such practical security systems 
are based on reasonable assumptions about the difficulty of certain computational 

problems, and have the advantage of using manageable numbers of keys. 

Nevertheless, unconditionally secure systems do find a use in certain special 
applications, e.g., the Washington-Moscow "Hot Line" [10]. It is also interesting 
to note that, although such "perfectly-secure" systems have been studied for nearly 
40 years, the theory is not fully developed, at least in the public domain. It is the 
purpose of this paper to contribute to the development of this theory. 

In particular, it attempts to classify a number of different definitions of perfect 
secrecy. Developing from this discussion of definitions, lower bounds are given for 

1 Date received: April 27, 1989. Date revised: May 7, 1990. 
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the number of keys in such perfect systems, and theorems characterizing systems 

meeting these lower bounds ("key-minimal systems") are obtained. The last part of 

the paper is concerned with discussing examples of key-minimal systems providing 

unconditional secrecy. 

2. Notation 

In this section we develop the notation and list the assumptions used throughout 

this paper. We use the basic model for a security code developed by Simmons 1,15] 

and used by Brickell 1,3], De Soete I-4], 1,5], and Stinson [16], 1,17]. 

In this model there are three parties: the Transmitter, T, the Receiver, R, and an 

opponent, O. T wishes to send R one or more pieces of information in such a way 

that they cannot be read (secrecy) and/or modified/impersonated (authentication) 

by O. T and R achieve this by using a security code in conjunction with a secret, 

preagreed encoding rule from this security code; this encoding rule may be regarded 

as the cryptographic transformation corresponding to a secret key. It is always 

assumed that O knows the security code completely, the only secret is the encoding 

rule (i.e., the key) in use. 

More formally, a security code consists of three sets: a set S of source states, a set 

M of encoded messages, and a set E of encoding rules. Each encoding rule e is an 

injective function from S into M. Note that in the general case e may map a single 

element of S onto more than one message; this situation is usually called splittin# 

and we do not allow it here (note that splitting is implicitly ruled out by our 

assumption that each encoding rule is a function). We write k for ISl, v for IMI, and 

b for IEI throughout, and, following De Soete 1,4], [5], write SC(k, v, b) for a security 

code with k source states, v encoded messages, and b encoding rules. 

In this notation the set of source states corresponds to the set of different pieces 

on information T may wish to send to R. The set of encoded messages corresponds 

to what is actually transmitted and, perhaps, intercepted by O. The objective is to 

design the SC(k, v, b) so that the scheme protects T and R from O. 

We write pM(m), ps(S), and pE(e) for the a priori probabilities of occurrence 

of message m e M, source state s e S, and encoding rule e E E. We assume that 

encoding rules and source states are chosen independently, and hence 

Ps.E(s, e) = ps(s)" p~(e). 

We also assume that if two or more source states are to be encoded and sent using 

the same encoding rule, then the probabilities of occurrence of these source states 

are independent. 
Note that, since the probability of a message occurring is completely dependent 

on the associated probabilities for encoding rules and source states, we always have 

pM(m) = ~, ps(s)" pn(e), 

where ~ .  denotes the sum over all pairs (s, e) of source states s and encoding rules 

e such that e(s) = m. 
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We write pslu(slm), Puls(mls), PElu(elm), and PulE(role) for the conditional 

probabilities that source state s was intended if it is known that message m was 

sent, etc. 

So far we have considered the probabilities of occurrence of single source states, 

encoding rules, and messages. In fact, for the majority of this paper we are concerned 

with the situation where L distinct source states are to be communicated from T 

to R (using the same encoding rule), and hence L distinct messages are sent from 

T to R. In this context, ifS' is any L'-subset of S (L' < L), then we write ps(S' : L) for 

the probability that the intended set of L source states includes S'. The probability 

PM(M': L) is defined in a similar way (where M' is a subset of M of cardinality 

at most L). 

We drop the subscripts in our probability notation if it is clear what probability 

space is being used. We also drop the value L if it is clear how many source states 

are to be communicated. We abuse the notation slightly by writing ps(S) where s is 

an i-tuple of distinct source states, instead of something like ps~o(s : i) where S(i) 

denotes the set of all i-tuples of distinct source states. We also write p(s : i) where 

s is aj-tuple of distinct source states, j < i. By this we mean the probability that the 

source states in s are the first j of the i sent. In this context observe that 

p(s: i) = p(s :j), 

although a similar result would not be true if s was replaced by a j-subset of S. 

Minor abuses like these should be clear from the context, and have been done for 

the sake of clarity of exposition. 

The only restrictions we place on the probability distributions are as follows. We 

require that for every encoding rule e 

pE(e) > O, 

for every messagem 

and for every source state s 

pM(m) > O, 

ps(s) > O. 

This can easily be achieved by simply removing from the sets under consideration 

those source states, messages, and encoding rules with probability 0 of occurrence. 

If M' is some subset of M, i.e., M' is a set of encoded messages, then M' is said 

to be an allowable set if and only if there exists an encoding rule e and a subset S' 
of S such that 

e(S') = M'. 

In other words, M' is allowable iff M' could correspond to a set of messages 

encoded under a single encoding rule. An equivalent definition is as follows. M' is 
allowable iff 

PM(M') > O. 
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Note that this probabilistic definition is only equivalent to the original one under 

the above assumptions that all encoding rules and source states have nonzero 

probabilities of occurrence. Note also that, since every message is assumed to have 

a nonzero probability of occurrence, every singleton message set {m} is allowable. 

We denote the set of all allowable/-subsets of M by Xi. 

We define allowable tuples of messages in the same way. If m is an i-tuple of 

distinct encoded messages, then m is allowable if and only if there exists an encoding 

rule e and an i-tuple of distinct source states s such that 

e(s) = m. 

Note that here, as throughout this paper, if 

S = ( S l ,  S 2 . . . . .  Si) 

is an i-tuple of source states, then by e(s) we mean (e(sl), e(s2) . . . . .  e(si)). We denote 

the set of allowable i-tuples of distinct encoded messages by Y~. 

3. Definitions of "Perfect" Secrecy 

The initial problem that needs to be overcome in a formal study of cryptosystems 

providing unconditional or "perfect" secrecy is the fact that existing definitions 

vary. Therefore, before attempting to study such systems we review the existing 

definitions, and indicate the relationships between them. 

The first definition we give is a slightly modified version of a definition due to 

Stinson [16], [17]. 

Definition. Give L > 1, an SC(k, v, b) is said to provide Unordered Perfect L-fold 

secrecy (U(L)-secrecy) if, for every allowable L-subset M' of M and for every 

L-subset S' of S, 

pslM(S'IM' : L) = ps(S' : L). 

The second definition we give is the unmodified form of Stinson's definition [16], 

[17]. 

Definition. Given L > 1, an SC(k, v, b) is said to provide Stinson Perfect L-fold 

secrecy (S(L)-secrecy) if, for every allowable L'-subset M' of M (L' < L) and for every 

L"-subset S' of S (L" < L'), 

psIM(S'IM' : L')  = ps(S' : L'). 

Note that the requirement that M' be an allowable U-subset is not explicitly 

present in Stinson's definition [16], [17]. However, it is implicitly present, since 

otherwise pslM(S'IM':L')  is undefined. 
The following result follows without difficulty from the above definitions: 

Lemma 3.1. An SC(k, v, b) provides S(L)-secrecy if and only if it provides U(L')- 

secrecy for  every L' satisfying 1 <_ L' <_ L. 
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However, U(L)-secrecy by itself is not sufficient to guarantee S(L)-secrecy. For 

example, any SC(k, v, b) provides U(k)-secrecy, but will not necessarily provide 

S(k)-secrecy. Note that both these definitions are concerned with unordered sets of 

messages. A scheme providing S(L)-secrecy protects its users against the opponent 

O gaining any information about the content of a set of L intercepted messages. 

However, such a scheme will not necessarily prevent O gaining information about 

the possible orderings of source states corresponding to observed messages. To 

provide this stronger notion of secrecy requires the use of a scheme satisfying our 

third definition, as follows: 

Definition. Given L _> l, an SC(k, v, b) is said to provide Ordered Perfect L-fold 

secrecy (O(L)-secrecy) if, for every allowable L-tuple m of distinct messages from M 

and for every L-tuple s of distinct source states from S, 

PsiM(Slm : L) = ps(S : L). 

It is then straightforward to establish: 

Lemma 3.2. I f  an SC(k, v, b) provides O(L)-secrecy, then it also provides O(L')- 

secrecy for  every L' satisfying 1 < L' < L. 

Proof. Suppose s is an (L - 1)-tuple of distinct source states, and suppose m is 

an allowable (L - 1)-tuple of distinct messages. In addition let X(s) be the set of 

L-tuples of distinct source states which "agree" with s in the first (L - 1) positions. 

Similarly, let X(m) be the set of allowable L-tuples of distinct messages which 

"agree" with m in the first (L - 1) positions. Then 

PslM(Slm" L -- 1) 

= ~ PslM(S'I m 
s' e X(s) 

= Z 

s' ~ X(s) 

= 

s'  e X(s) 

= Z 
s'  ~ X(s) 

= Z 
s' ~ X(s) 

(by O(L)-secrecy) 

= ~ ps(s ' :L)  
s'  E X(s) 

= Ps(S : L - 1). 

The result then follows. 

"L) 

PMls(mls' : L)" ps(s' " L)/pM(m " L) 

[] 
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We also have: 

Lemma 3.3. I f  an SC(k, v, b) provides O(L)-secrecy, then it also provides S(L)- 

secrecy. 

Proof. Suppose M* is any element o f X  i and S* is any j-set of source states, where 

j < i < L. Let TL(M*) denote the subset of YL consisting of those L-tuples containing 

all the elements of M*. Similarly, let TL(S*) denote the set of L-tuples of distinct 

source states which contain all elements of S*. Then 

PslM(S*IM*) = ~' , PSlM(SIM*) 
s e  TL(S ) 

= ~ ,  (l/D) ~ pM(m)'PslM(Slm) 
TL(S ) M* s ~  m ~  L( ) 

(where D = me TL(M~ * PM(m))) 

= ~ (l/D) ~ pM(m)'ps(S) 
s e  S*  L( ) L( ) m ~ M *  

= ~ s *  ps(S) 
s L( ) 

= ps(S*). 

The result then follows. 

(by O(L)-secrecy) 

[] 

It is straightforward to see why the converse is not true; consider the following 

example: 

Example. Let E = {eo, el, e2}, S = {So, Sl, S2}, M = {m o, ml, m2}, and suppose 

ei(si) = ink, where k = i + j (mod 3). Suppose also that p(ei) = �89 for every i. 

This example provides S(2)-secrecy and U(2)-secrecy. However, it only provides 

O(1)-secrecy and not O(2)-secrecy. 
Before proceeding to our fourth (and final) definition it is important to note that 

all the above definitions relate to "ciphertext-only" attacks. Essentially, they are all 

concerned with the situation where the opponent O has intercepted L encoded 

messages and wishes to deduce information about the corresponding set of L source 

states. We now consider a definition of perfect security (due to Massey [10]) based 

on the concept of a "known-plaintext" attack. 
Massey defines a known-plaintext attack of order i to be an attack where the 

opponent O has intercepted i valid and distinct plaintext/ciphertext pairs (i.e., source 

state/encoded message pairs) all encrypted using the same encoding rule, e say. O 

is also assumed to have a further encoded message, m say, produced using e and 

distinct from the messages in the i pairs, for which he wishes to obtain information 

about the corresponding source state. Then the attack will be said to "succeed" if 

there exists some source state s, distinct from the states in the i pairs, such that the 

probability that s corresponds to m given the knowledge of the i pairs is different 

from the a priori probability of s (given that it is known that it differs from the source 

states contained in the i pairs). 
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Definition. An SC(k, v, b) is said to provide Massey Perfect L-fold secrecy (M(L)- 

secrecy) if, for any i < L, the scheme is secure against an order i known-plaintext 

attack. 

Note that the above definition is intended to be precisely the same as Massey's 

except that what we call M(L)-secrecy is what Massey calls Perfect (L - 1)-fold 

secrecy. We have modified the definition so that it corresponds more closely with 

the other definitions given here. An equivalent definition of M(L)-secrecy, and one 

that fits more naturally with the other definitions, is as follows: 

Definition. Consider any SC(k, v, b). Let s be any i-tuple of distinct source states 

and let s' be the unique (i - 1)-tuple derived from s by deleting its last entry. Let m 

be any allowable i-tuple of distinct messages with the property that there exists an 

encoding rule e and an i-tuple of distinct source states s* with e(s*)= m and 

s* agreeing with s in all the first i -  1 positions. Then, the SC(k, v, b) provides 

M(L)-secrecy if and only if, for every i < L and for every s, s', m as above, 

p(slm, s ' : i )  = p(sls' : i). 

Note that, by definition, M(L)-secrecy implies M(L')-secrecy for every L' < L. It 

is perhaps surprising to discover that Massey's definition is no stronger than the 
previous one. In fact we have: 

Theorem 3.4. I f  an SC(k, v, b) provides O(L)-secrecy, then it also provides M(L)- 
secrecy. 

Proof. Suppose i < L and that m, s, s' are as in the definition immediately above; 

in addition let X(s') denote the set of all i-tuples of distinct elements of S which 

agree with s' in the first i - 1 positions. Moreover, suppose that the system provides 

O(L)-secrecy and hence O(i)-secrecy (by Lemma 3.2). Then 

p(slm, s':  i) = p(s, m, s':i)/p(s', m :i) 

= p(s, m : i)/p(s', m : i) 

= p(s lm:i ) 'p(m:i ) /p(s ' lm: i ) .p(m:i )  

= p(s : i)/p(s'lm: i) (by O(i)-secrecy). 

Now 

Hence 

p ( s ' lm : i )=  ~ p(t lm:i)  
t �9 X(s ' )  

= ~ p(t:i) 
t ~ X(s ' )  

= p(s' : i). 

(by O(i)-secrecy) 

p(slm, s': i) = p(s:i)/p(s': i) 

= p ( s t s '  : i) .  [] 
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It is also rather surprising to discover that the converse to Theorem 3.4 is not 
true. Consider the following example: 

Example. Let E = {eo, el, e2}, S = {s o, sl}, M = {m o, ml, m2}, and suppose 
ei(sj) = ink, where k = i + j (mod 3). Moreover, suppose that p(ei) = �89 for every i, 

Then it is straightforward to see that this example gives O(1)-secrecy, M(2)-secrecy, 

S(2)-secrecy, and U(2)-secrecy, but does not give O(2)-secrecy. Note also that the 

example following Lemma 3.3 provides S(2)-secrecy and U(2)-secrecy but only 
M(1)-secrecy and O(1)-secrecy. 

From now on, although it is a little more powerful, we use the definition of 

O(L)-secrecy rather than that of M(L)-secrecy, since it appears to be easier to 

handle. Before proceeding note also that, for L = 1, all the above definitions 

coincide and in fact equate to Shannon's notion of perfect secrecy [14]. 

4. Bounds for L-Secrecy Systems 

We now consider a variety of bounds which can be established for L-secrecy systems 

of various types. We start by considering the weakest form of L-secrecy, namely 

U(L)-secrecy. 

Lemma 4.1. I f  an SC(k, v, b) provides U(L)-secrecy, then for every allowable L-set 

of messages M' and for every L-set of  source states S' there exists an encoding rule 

e such that 

e(S') = M'. 

Proof. 

such that there is no encoding rule which maps S' onto M'. Then, clearly 

psIM(S'IM' ) = O, 

which contradicts the assumption of U(L)-secrecy since 

ps(S') > O. 

Suppose not, i.e., suppose there exists a pair of L-sets M', S' (M' allowable) 

[] 

It is also straightforward to show: 

Lemma 4.2. I f  an SC(k, v, b) provides U(L)-secrecy, then 

b>_lXLI, 

where, as before, X L is the set of allowable L-subsets of M. Moreover, if 

b = IXLI, 

then: 

(i) I f  S* is any L-subset of  S and M* is any element of X t ,  there exists a unique 

encoding rule e such that 

e(S*) = M*. 
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(ii) For every encoding rule e, if M* is any element of XL which is also a subset of 

e(S), then 

pr(e) = PM(M*). 

Proof. Let S* be any L-subset of S. Then, by Lemma 4.1, if M* is any allowable 

L-subset of M, there exists an encoding rule e with 

e(S*) = M * .  

Therefore, if we fix S* and let M* range over all elements of XL, we obtain a set of 

I XL[ different encoding rules. The bound follows. 

Now suppose b = IXL[. Following the above argument, it is clear that fixing S* 

and letting M* range over all the elements of XL exhausts the set of encoding rules. 

Statement (i) then follows immediately. 

To establish (ii) suppose S* is any L-set of source states and let M* be any 

element of X L. In addition let e be the unique encoding rule which maps S* onto 

M*. Then 

PSIM(S*IM*) = PEIM(elM*) 

= pul~(M*le), pe(e)/pu(M*) 

= Ps(S*)'p~(e)/Pu(M*). 

But, by the definition of U(L)-secrecy, 

Hence 

and (ii) follows immediately. 

PsI~(S*IM*) = ps(S*). 

pc(e) = pM(M*) 

[] 

Using these lemmas we can now establish the following theorem, the bound of 

which was previously obtained in the two eases of greatest interest by De Soete [4], 

and a special case of which is also given by Stinson [18, Theorem 2.1]. 

Theorem 4.3. 

Moreover, if 

I f  an SC(k, v, b) provides U(L)-secrecy, then 

then: 

(i) I f  L > 1, for any pair of  encoding rules el, e2 either 

el(S ) = e2(S ) 

or el(S) and e2(S ) are disjoint. 
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(ii) If  e 1 and e 2 are encoding rules satisfying 

el(S) = e2(S), 

then 

Pr,(ea) = PE(e2) = pM(M*) 

for every M* in XL which is also a subset of el(S). 

Proof. 

P. Godlewski and C. Mitchell 

By Lemma 4.2, to establish the bound we need only show that 

'Xt., > - (v/k)'(kL). 

Choose any message m; then, since we assume throughout that pM(m) > 0, there 

exists a source state s and an encoding rule e with 

e(s) = m. 

Now, it is clear that 

le(S)l = k, 

and hence there are at least allowable L-subsets of M which include m. 

Since there are precisely v ch~ f~ m this gives us a t~ ~ v ' ( k  - ll) 

necessarily distinct) allowable L-subsets of M. Each such allowable L-subset cannot 

have been counted more than L times, giving us 

The bound follows. 

Now suppose that 

and hence 

xL,  )jL 

Suppose also that L > 1. We know that each message m is included in at least 

(kL--11) allowableL-sets;hence, sincethereareonly(v/L) '(kL-11)allowable 

L-setsintotal, eachmessagemiscontainedinprecisely(kL--11) aUowableL-sets. 

Now, if e is any encoding rule for which m ~ e(S), then since [e(S)l = k, e itself will 

immediately yield allowable L-sets containing m. Hence, if e' is any 
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other encoding rule for which m ~ e'(S), then e(S) = e'(S), since there are no more 

allowable L-sets containing m. Note that the above argument is only valid if L > 1. 

The above applies for all messages m and (i) follows. 

Statement (ii) is immediate on application of Lemma 4.2(ii). [] 

We consider examples of schemes possessing U(L)-secrecy in Section 5 below. 

Note that, because S(L)-secrecy implies U(L)-secrecy, the results of Theorem 4.3 

also apply to S(L)-secrecy systems. Before proceeding observe that Theorem 4.30) 

does not hold for the case L = 1. Counterexamples are provided by any latin 

rectangle scheme (see Section 5 below). 

If we now consider O(L)-secrecy, then we get a similar set of results as follows: 

Lemma 4.4. I f  an SC(k, v, b) provides O(L)-secrecy and t satisfies 1 <_ t <_ L, then 

for every allowable t-tuple of distinct messages m and for every t-tuple of distinct 

source states s there exists an encoding rule e such that 

e(s) = m. 

P r o o f .  

such that there is no encoding rule which maps s onto m. Then, clearly 

Pslu(slm) = 0, 

which, by Lemma 3.2 contradicts the assumption of O(L)-secrecy since 

Ps(S) > O. 

It is also straightforward to show: 

Suppose not, i.e., suppose there exists a pair of t-tuples m, s (m allowable) 

[] 

Lemma 4.5. I f  an SC(k, v, b) provides O(L)-secrecy, then 

b >--IYLI, 

where, as before, YL is the set of allowable L-tuples of distinct elements of M. 

Moreover, if 

b =  IYLP, 

then: 

(i) I f  s is any L-tuple of distinct elements of S and m is any element of YL, there 

exists a unique encoding rule e such that 

e(s) = m. 

(ii) For every encoding rule e, if m is any element of Y~. for which the elements of  

m are all contained in e(S), then 

pe(e) = pu(m). 

Proof. Let s be any L-tuple of distinct elements of S. Then, by Lemma 4.4, if m is 

any element of YL, there exists an encoding rule e with 

e(s)  = m .  
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Therefore,  if we fix s and let m range over all elements of YL, we obtain a set of I YLI 

different encoding rules. The bound  follows. 

Now suppose b = I YLI" Following the above argument,  it is clear that  fixing s and 

letting m range over all the elements of YL exhausts the set of encoding rules. 

Statement (i) then follows immediately. 

To  establish (ii) suppose s is any L-tuple of distinct source states and let e be the 

unique encoding rule which maps s onto  m. Then  

PslM(Slm) = pEiM(elm) 

= Pmle(mle)" p+(e)/pu(m) 

= Ps(S)'pn(e)/pM(m ). 

But, by the definition of O(L)-secrecy, 

PS.M(Slm) = ps(S). 

Hence 

pc(e) = pu(m). 

Statement  (ii) follows immediately. [ ]  

Using these lemmas we can now establish the following result. Note  that the 

bound  in this theorem was previously established for M(L)-secret systems by 

Massey [10, equat ion (5)]. 

Theorem 4.6. I f  an SC(k, v, b) provides O(L)-secrecy, then 

b >_ v. (k - 1)[/(k - L)!. 

Moreover, if 

b = v. (k - 1)[/(k - L)I, 

then: 

(i) I f  L > 1, for any pair of encoding rules el, e2 either 

el(S ) = e2(S ) 

or el(S ) and e2(S ) are disjoint. 

(ii) I f  e I and e2 are encoding rules satisfying 

el(S) = e2(S), 

then 

p~(el) = Pe(e2) = pM(m) 

for every m in YL for which all elements in m are in el(S ). 

Proof.  By Lemma 4.5, to establish the bound  we need only show that  

I YLI > v ' ( k -  1 ) l / ( k -  L)!. 
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Choose any message m; then, since p u ( m )  > 0, there exists a source state s and 

an encoding rule e with 

Now, it is clear that 

e(s)  = m.  

le(S)[--- k, 

and hence there are at least (k - 1)!/(k - L ) !  allowable L-tuples of distinct elements 

of M which have m as their first entry. Since there are precisely v choices for m this 

gives us 

IYLI > v . ( k  - 1)!/(k - g)! 

and the bound follows. 

Now suppose that 

and hence 

b = v ' ( k  - 1)!/(k - L)!, 

(b =)  I YLI = v .  ( k  - 1)!/(k - L)!. 

We know that each message m is included as the first element in at least 

(k - 1)!/(k - L)! allowable L-tuples; hence, since there are only v. (k - 1)!/(k - L)! 

allowable L-tuples in total, each message m is contained as the first element in 

precisely (k - 1)!/(k - L)! allowable L-tuples. 

Suppose also that L > 1. Now, if e is any encoding rule for which m ~ e (S ) ,  then 

since le(S)l = k, e itself will immediately yield (k - 1)!/(k - L)! allowable L-tuples 

with first element m. Hence, i f e '  is any other encoding rule for which m ~ e ' ( S ) ,  then 

e ( S )  = e ' ( S ) ,  since there are no more allowable L-tuples with m as the first element. 

Note that the above argument is only valid if L > 1. This argument applies for all 

messages m and (i) follows. 

Statement (ii) follows immediately from Lemma 4.5(ii). []  

We consider examples of O(L)-secret systems in Section 5 below. Before proceeding 

observe that Theorem 4.6(i) does not hold for the case L = 1. Counterexamples are 

provided by any latin rectangle scheme (see Section 5 below). 

5. Examples of L-Secrecy Systems 

We now consider some examples of L-secrecy systems for which the numbers of 

encoding rules meet the lower bounds established in Section 4 above. It is of interest 

to construct such systems since, for any security system, it is always desirable to 

minimize the number of encoding rules and hence the key size. We divide our 

examples into two categories; namely, those satisfying the bounds of Theorems 4.3 

and 4.6, respectively. 
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5.1. Systems Providing U(L)-Secrecy and S(L)-Secrecy 

If we examine the bound of Theorem 4.3, it appears reasonable first to examine the 

case where v = k, and hence 

since this minimizes the number of encoding rules for a given number of source 

states. Indeed, if no authentication is required, then there seems no reason to choose 

v any larger than absolutely necessary. 

In this case we may identify S with M, and each encoding rule is then no more 

than a permutation on M. Moreover, by Theorem 4.3(ii), each encoding rule must 

be equiprobable. These constraints now enable us to give a purely combinatorial 
/ I N  

necessary and sufficient condition for a set o f ( L  ) permutations o n M  to form 
\ / 

a system providing U(L)-secrecy. Before proceeding note also that in this case Xi 

consists of all/-subsets of M, i.e., all i-subsets of M are allowable. 

Theorem 5.1. Suppose E is a set of encoding rules (permutations) for an 

SC(k , k , ( kL ) ) ,whereM=S.  ThenthisschemeprovidesU(L)-secrecyifandonlyif: 

(i) pe(e)= 1/(L)foreveryencodingrule e. 
i x. / 

(ii) For every pair of L-subsets M*, S* of M, there exists a unique encoding rule 
e with 

e(S*) = M*. 

Proof. Suppose the scheme provides U(L)-secrecy. Then (i) holds by Theorem 

4.3(ii). Moreover, (ii) holds by Lemma 4.2(i). 

Now suppose (i) and (ii) hold and suppose S* is an L-subset of S and M* is 

an L-subset of M (and hence allowable). Then 

p(S*IM*) = p(M*iS*)" p(S*)/p(M*) 

= p(e).p(S*)/p(M*) 

(where e is the unique encoding rule mapping S* to M*) 

: , ( S ' ) / ( ( k ) . , ( , ' ) )  (by (i)). 

J ~ ~ ~ 

But, by definition, 

ptM*) = ~ p(S'), pte) 
( e , S ' ) :  e ( S ' ) = M *  

( e , S ' ) :  e ( S ' ) = M  

= 1/(kL) (by (ii)). 
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Hence, as required, 

and the result follows. 

p(S*IM*) = p(S*) 

[] 

Note that, for the case L = 1, the above theorem was first obtained by Shannon 

(p. 681 of I-14-1). In the situation where the theorem holds we also have the following 

result: 

Theorem 5.2. Suppose E is a set of encoding rules (permutations) for an 
/ / ~ \ \  

SC(k ,  k, ( L ) ) w h i c h  provides U(L)-secrecy, and where M = S .  Then, for every 
\ \ l l  

L' < L, the scheme also provides U(L')-secrecy if and only if, for every pair of 

L'-subsets M', S' of M, there exist precisely w' encodin# rules e with 

where 

e(S') = M', 

w 
L L' " 

Proof. First, if M' and S' are any L'-subsets of M, then let E(S', M') denote the 

set of encoding rules which map S' onto M'. By definition, the scheme provides 

U(L')-secrecy 

This holds 

if and only if p(S'I M') = p(S'). 

if and only if p(M'IS') = p(M'), 

if and only if ~ p(e) = p(M'), 
e e g ( S ' , M ' )  

only if IE(S', M ' ) , / ( k ) = p ( M ' ) .  (*) if and 

First suppose that (.) holds. Now, if we fix M' and let S' range over all (Lk,) possible 

L'-subsets of M, then the sets E(S', M') will be pairwise disjoint and have the 

property that their union is E. Moreover, since the right-hand side of (.) will be 

fixed, they must all have the same size. Hence 

/(;) ) IEtS',M')I = IEI ' = L L' 

as required. 
Now suppose that (**) holds for all M' and S'. By definition, 

p(M') = ~ ~, p(S')" p(e) 
S '  e ~ E ( S ' , M ' )  

(**) 
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:r,,s,/(;) 

Equation (,) follows immediately. 

(by **) 

[] 

Before considering actual examples we explore in a little more detail sets of 

permutations satisfying condition (ii) of Theorem 5.1. We make the following 

definition. 

Definition. Suppose E is a set of permutations on the set S, where IEI : b and 

I Sl = k. Then E is said to be (t, w)-homogeneous on S if and only if, for every pair of 

t-subsets of S ($1, $2 say), there exist precisely w permutations e in E such that 

e (S1 )=S2 .  

By Theorem 5.1, the study of U(L)-secret systems having 

is then precisely equivalent to the study of(L, 1)-homogeneous sets of permutations 

on a set of size k. Moreover, by Theorem 5.2 and Lemma 3.1, the study of S(L)- 

secret systems having 

is precisely equivalent to the study of(L, 1)-homogeneous sets of permutations on a 

s e t o f s i z e k w h i c h h a v e t h e p r o p e r t y t h a t t h e y a r e a l s o ( i , ( k L ) / ( k i ) ) - h o m o g e n e o u s  

for every i satisfying 1 _< i __N L. 
The following results hold for homogeneous sets of permutations. Note first that 

Lemmas 5.3 and 5.7 below have been independently derived by Kramer et al. 

[7, Theorem 1.1]. These results were also previously given by Nomura [12] for 

the case w = 1. 

Lemma 5.3. I f  E is (t, w)-homogeneous on S, then E is also (k - t, w)-homogeneous 

on S. 

Proof. Suppose E is (t, w)-homogeneous on S, and in addition suppose that S 1 and 

$2 are (k - 0-subsets of S. Then it should be clear that if 

C(S,) = S - S, ( /=  1, 2), 

then encoding rule e satisfies 

e(S1) = e(Sg) 
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if and only if 

e(C(S,)) = e(C(S2)). 

Since [C(SI)I = [C($2)1 = t the result follows. [ ]  

Lemma 5.4. I f  E is (t, w)-homogeneous on S, then 

Proof.  Let S 1 be any fixed t-subset of S. Then  for any t-subset of S ($2 say) there 

existprecisely wpermuta t ions in  Emapping  S1 onto  $2. Since there are (kt)  such 

subsets $2, and since each element of  E must  m a p  S~ onto  some such t-subset, the 

result follows. [ ]  

Lemma 5.5 (Mowbray) .  I f  E is (t, w)-homogeneous on S, where 1 < t < (k + 1)/2, 

then E is also (t', w')-homogeneous on S for every t' < t, where 

W ' = W "  
t t '  

Proof.  Suppose E is (t, w)-homogeneous  on S. If  X, Y are (t - 1)-subsets of  S and  

0 _< s < t - 1, then let N(X,  Y, s) denote the number  of  permuta t ions  e such that  

e(X) and Y have precisely s elements in common .  We now show (by induct ion on s) 

that  (given 1 < t _< (k + 1)/2) N(X,  Y, s) is independent  of  the choice of X and Y. 

This immedia te ly  yields the desired result (by setting s = t - 1). 

First suppose  s = 0. If  e is such that  e(X) and Y are disjoint, then there exist 

precisely (k - 2(t - 1)) choices for a t-set X '  where X '  contains X and e(X') is 

disjoint f rom Y. Tha t  is, there are exactly (k - 2(t - 1) ) .N(X,  Y, 0) pairs (e, X'),  

where IX'l = t, g '  contains  X, and e(X') and Y are disjoint. But, since E is (t, w)- 

homogeneous ,  there are also (k - ( t -  1 ) ) ' (  k - ( t -  / 1 ) ) . w  \ such pairs. Hence  the 
\ t ,/ 

claim is true for s = 0 and we have 

n(x ,  Y, o )=  w . (  k - ( t -  t _ 1))/(k- 2 ( t -  1)), 
k t 7 

where k - 2(t - 1) > 0, since t < (k + 1)/2. 

N o w  suppose s > 0 and suppose also that  the inductive hypothesis  is true for all 

s '  (0 < s '  < s). First suppose e is such that  e(X) and Y have precisely s elements in 

common;  then there exist precisely (k - 2(t - 1) + s) choices for a t-set X '  where X '  

contains  X and e(X') and Y meet  in precisely s elements. Second suppose e is 

such that  e(X) and Y have precisely s - 1 elements in common;  then there exist 

precisely (t - s) choices for a t-set X '  where X '  contains X and e(X') and Y meet  

in precisely s elements. Tha t  is, there are exactly (k - 2(t - 1) + s)" N(X,  Y, s) + 

(t - s)" N(X,  Y, s - 1) pairs (e, X'), where IX'l = t, X '  contains X, and e(X') and Y 
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meet in precisely s elements of S. But, since E is (t, w)-homogeneous, there are also 

(k - (t - 1 ) ) ' ( k  - (t - 1 ) ) ' ( t  - 1 )  - s s The resultfollows. [] 

The last result, when taken in conjunction with Theorem 5.2 and Lemma 5.3, 

implies the following: 

((k)) Corollary 5.6. I f  an SC k, k, L provides U(L)-secrecy and 1 < L < (k + 1)/2, 

then it also provides U(L')-secrecy for every L' satisfying either 1 < L' < L or 

k - L  < L '  < k .  

['xk 
The problem remains of constructing sets of permutations of cardinality ~L)  with 

x / 

the desired property for Theorem 4.3, i.e., constructing (L, 1)-homogeneous sets of 

permutations. We first note the following result giving a necessary condition for the 

existence of an (L, 1)-homogeneous set. 

Lemma 5.7. I f  E is (t, 1)-homogeneous on the k-set S (1 < t < (k + 1)/2), then 

Proof. Immediate from Lemma 5.5. [] 

We now consider examples of U(L)-secure systems which satisfy 

For the case L = 1, as observed by Shannon [14], the existence of such a set is 

precisely equivalent to the existence of a latin square of order k. We now describe 

the precise equivalence. 

A latin square of order k is merely a k by k matrix all of whose entries are taken 

from the set { 1, 2, . . . ,  k} with the property that the entries in any row are all distinct 

and the entries in any column are all distinct. Each row (and each column) will 

therefore contain a permutation of the numbers 1 to k. If row i contains the entries 

rl, r 2 . . . . .  rk, then define the permutation Pi by 

Pi(J) = rj. 

It is then clear that the k permutations Pl, P2, . . . ,  Pk will form a (1, 1)-homogeneous 

set on {1, 2 . . . . .  k}. Moreover, any (1, 1)-homogeneous set can be used to derive 

a latin square. It should also be clear that the one-time pad cipher (see, for example, 

Chapter 3 of Beker and Piper [1]) is equivalent to a latin square. It is easy to 

construct latin squares of any desired size (e.g., by letting the first row be any 

permutation and letting the subsequent rows be defined as all cyclic shifts of the 

first row), and hence (1, 1)-homogeneous sets exist for all values of k. 
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Finally, note that, since U(1)-secrecy, S(1)-secrecy, O(1)-secrecy, and M(1)-secrecy 

are all equivalent, latin squares are also in precise correspondence to key-minimal 

examples of these other types of perfect-secrecy schemes. 

For the case L = 2, we assert that the existence of a (2, 1)-homogeneous set of 

permutations is equivalent to the existence of a Perpendicular Array with parameters 

PA(k, k). We now justify this claim. 

Following Mullin et al. [11], a Perpendicular Array (PA) of order n and depth s 

(writ tenPA(n,s))isansby(~)array 

X = (x~j) 

withentriesfromasetMonnelementssuchthat,  foranytworowsofX,  the(~)  

columns contain all ( ~ )  unordered pairs of distinct elements of M. The following 

result, attributed by Mullin et al. [11] to E. Mendelsohn, is straightforward to 

establish: 

Lemma 5.8. In any PA(n, s) with s > 2, each element of M occurs (n - 1)/2 times 
in each row of X (and hence n is odd). 

Now, i f s=n , i . e . ,whenwehaveaPA(n ,n ) , thenXisannby(~)array ,  andit 

is straightforward to see that each column of X is a permutation of the elements of 

f ( n )  permutations which M. Just as with the latin squares we thereby derive a set o 2 

forms a (2, 1)-homogeneous set on M, where IMI - n. Conversely, given any (2, 1)- 

homogeneous set of permutations on a set of size k, we may immediately derive 

a PA(k, k). 

It is well known (see Corollary 2.5 of Mullin et al. [11]) that if 

n = pa (a > 1, p an odd prime), 

then there exists a PA(n, n). Hence key-minimal U(2)-secret systems can be con- 

structed whenever k is a power of an odd prime. It appears that no PA(n, n), and 

hence no key-minimal U(2)-secret code, is known for any other values of n. 

Finally, note that, given the above correspondence, for the case n = s Mendelsohn's 

Lemma 5.8 above is merely a special case of Lemma 5.5 (where w = 1 and t = 2). 

In addition, by the same lemma, any (2, 1)-homogeneous set is also (1, (k - 1)/2)- 

homogeneous, and hence, by Theorem 5.2, the existence of an S(2)-secret system 

with 

is also equivalent to the existence of a PA(k, k). 
(t, 1)-homogeneous sets of permutations have been previously studied by Nomura 

[12]. Recently, many (t, w)-homogeneous sets of permutations for t > 3 have been 
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discovered [7], [8], [19]. Before proceeding it is also interesting to note that as long 

ago as 1961, Rag [13] defined an Orthooonal Array of Type II of strength d, s 
constraints, order n, and index h, (N, s, n, d) : II to be an s by N array of elements of 

ann-setMsuchthat, inanysetofdrows, theNcolumnscontaineachofthe(~) 

d-subsetsofMexactlyhtimes(andhenceN= h" ( ~ ) ) .  It is then straightforward 

to see that a (t, w)-homogeneous set of permutations on a set of size k is precisely 

equivalent to a (w'(kt), k, k, t)" II, i.e., an orthogonal array of type lI with k con- 

straints. Rag [13, Theorem 2] went on to show the existence of(s(s - 1)/2, s, s, 2) : II 

whenever s is an odd prime power. This corresponds exactly to the known values 

of n for which there exists a PA(n, n) (see above). 

To conclude this discussion of U(L)-secret and S(L)-secret systems, we now relax 

our requirement that v = k, and consider schemes for which 

b=(v/k).(kL) and v > k .  

We first consider the (special) case L = 1. In this case the above equation reduces 

to b = v. Using Lemma 4.2 it is then straightforward to see that the existence of 

such a set of encoding rules is precisely equivalent to the existence of a k by v latin 
rectangle, where a latin rectangle is merely a k by v matrix, all of whose entries are 

taken from the set { 1, 2 , . . . ,  v} with the property that the entries in any row/column 

are all distinct (hence k < v). The equivalence is the same as that described above 

for latin squares in the case L = 1 and v = k. 

I fL  > 1, then, by Theorem 4.3(i), v = kt for some integer t, and the message space 

can be partitioned into t subsets of size k, say M1, M2 . . . . .  Mr, such that, for any 

encoding rule e, 

e(S) = M i 

for some i. Therefore let E i denote the set of encoding rules mapping S onto Mi and 

then El, E2, ..., E, will form a partition of E. Moreover, by Theorem 4.3(ii), if 

el(S) = e2(S), 

then 

p(el) = P(e2) , 

and hence let p~ denote the probability p(e) for any e in E v It is then straightforward 

to establish that each triple (S, M~, E~) forms an (L, 1)-homogeneous set of permuta- 

tions. This means that the study of U(L)-secrecy schemes with 

b=(v/k).(kL) and v > k  

is contained within the study of such schemes with v = k, and therefore we do not 

consider them further. 
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5.2 Systems Providing O(L)-Secrecy and M(L)-Secrecy 

If we examine the bound of Theorem 4.6, then, as in Section 5.1, it appears 

reasonable first to examine the case where v -- k, and hence b = kl/(k - L)! since 

this minimizes the number of encoding rules for a given number of source states. 

In this case we may identify S with M, and each encoding rule is then no more 

than a permutation on M. Moreover, by Theorem 4.6(ii), each encoding rule must 

be equiprobable. These constraints now enable us to give a purely combinatorial 
/ T X  

necessary and sufficient condition for a set o f ( L  ) permutations on M to form 
x / 

a system providing O(L)-secrecy. 

Theorem 5.9. Suppose E is a set of  encoding rules (permutations) for an 

SC(k, k, kl/(k - L)!), where M = S. Then this scheme provides O(L)-secrecy if  and 

only if: 

(i) pr.(e) = (k - L)!/k! for every encoding rule e. 

(ii) For every pair of  L-tuples of  distinct elements m, s of  M,  there exists a unique 

encoding rule e with 

e(s) = m. 

Proof. Suppose the scheme provides O(L)-secrecy. Then (i) holds by Theorem 

4.6(ii). Moreover, (ii) holds by Lemma 4.5(i). 

Now suppose (i) and (ii) hold and suppose s is an L-tuple of distinct elements of 

S and m is an allowable L-tuple of distinct elements of M. Then 

p(slm) = p(mls) 'p(s)/p(m) 

= p(e)'p(s)/p(m) 

(where e is the unique encoding rule mapping s to m) 

= p(s)-(k - L)!/(k!.  p(m)) (by (i)). 

But, by definition, 

Hence, as required, 

and the result follows. 

p(m) = ~. p(s') 'p(e) 
(e, s') : e(s') = m 

= p ( s ' ) . ( k  - L)!/k! 
(e, s') : e(s ' )= in 

= (k - L)!/k! (by (ii)). 

p(slm) = p(s) 

[] 

Note that, for the case L = 1, the above theorem coincides with Theorem 5.1, 

which, for the L = 1 case, was first obtained by Shannon (p. 681 of 1-14]). In the 

situation where the theorem holds we also have the following result: 
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T h e o r e m  5.10. Suppose E is a set o f  encoding rules (permutations)  for  an 

SC(k, k, k!/(k - L)!) which provides O(L)-secrecy,  and where M = S. Then,  for  every 

L'  < L,  there exis t  precisely w'  encoding rules e with 

e(s) = m, 

where 

w'  = (k - L ' )! / (k  - L)!. 

Proof. First observe that, by Lemma 3.2, any scheme providing O(L)-secrecy must 

also provide O(L')-secrecy for every L' < L. Suppose m and s are any L'-tuples of 

distinct elements of M and let E(s, m) denote the set of encoding rules which map 

s onto m. By definition, since the scheme provides O(L')-secrecy: 

Hence: 

p(s lm)  = p(s). 

p(m) = p(mls) 

= ~, p(e) 
e ~ E(s, m) 

= IE(s, m)l'(k - L)[/k!. (,) 

Now, if we fix m and let s range over all k!/(k - L')! possible L'-tuples of distinct 

elements of M, then the sets E(s, m) will be pairwise disjoint and have the property 

that their union is E. Moreover, since the left-hand side of (.) will be fixed, they 

must all have the same size. Hence 

IE(s, m)l = IEI . (k - L ' )! /k!  = (k - Z')! /(k - L)! 

as required. [] 

Before considering actual examples we explore in a little more detail sets of 

permutations satisfying condition (ii) of Theorem 5.9. We make the following 

definition. 

Definition. Suppose E is a set of permutations on the set S, where [El = b and 

ISI = k. Then E is said to be (t, w)-transitive on S if and only if, for every pair of 

t-tuples of distinct elements of S (sl, s2 say), there exist precisely w permutations 

e in E such that 

e(sl) = s2. 

By Theorem 5.9, the study of O(L)-secret systems having b = k!/(k - L)! is then 

precisely equivalent to the study of (L, 1)-transitive sets of permutations on a set of 

size k. Moreover, by Theorem 5.10, every (L, 1)-transitive set of permutations is also 

(i, (k - i)!/(k - L)!)-transitive for every i satisfying 1 < i < L. 

The problem remains of constructing sets of permutations of cardinality 

k!/(k - L)! with the desired property for Theorem 5.9, i.e., constructing (L, 1)- 

transitive sets of permutations. 
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The case L = 1 has already been studied in Section 5.1 above. 

For the case L > 2, the theory of finite groups provides a number of examples. 

Suppose E is a set of permutations on k elements. If E forms a subgroup of S k, then 

E is a (t, w)-transitive set of permutations if and only if it is a t-transitive group. 

Moreover, using the language of group theory, it is a (t, 1)-transitive set if and only 

if it is a sharply t-transitive group. For a discussion of t-fold transitivity in finite 

permutation groups, see, for example, [20]. 

Two "trivial" families of group-based examples are provided by the symmetric 

group Sk and the alternating group Ak. As Massey [10] has noted, Sk is sharply 

k-transitive and hence provides an example (in fact the only example) of a key- 

minimal system providing O(k)- and M(k)-secrecy. In addition, Ak is sharply (k - 2)- 

transitive, and hence provides an example of a key-minimal system providing 

O(k - 2)- and M(k - 2)-secrecy. 

Sharply 2- and 3-transitive groups are known to exist for infinitely many values 

of k. However, the situation is very different for t > 4. Apart from Sk and Ak, the 

only t-transitive groups with t > 4 are the Mathieu groups: Ml l ,  M12, M2a, and 

M24, where Mi acts on a set of i elements; for details of the theory of the Mathieu 

groups, see, for example, Chapter 20 of [9]. Groups Ml l  and M23 are 4-transitive 

and M12 and M24 are 5-transitive; Mt I and M~2 are sharply 4- and 5-transitive, 

whereas M23 and M24 are not. Hence Mlt  and Mr2 (of orders 7920 and 95040, 

respectively) are the only "nontrivial" examples of sharply t-transitive groups for 

t_>4. 

To obtain further examples of(t, 1)-transitive sets it is therefore necessary to look 

for examples where the set of permutations does not form a group. The construction 

of such sets (often called sharply t-transitive permutation sets) has been the subject 

of research for some time (see, for example, [2]), and there are many examples 

known of (t, 1)-transitive sets which are not subgroups (or cosets of subgroups) 

of S~. 

To conclude this discussion of O(L)-secret systems, we now relax our requirement 

that v = k, and consider schemes for which 

b = ( v / k ) . k ! / ( k - L ) !  and v > k .  

The case L = 1 coincides with the discussion in Section 5.1. 

I fL  > 1, then, by Theorem 4.6(i), v = kt for some integer t, and the message space 

can be partitioned into t subsets of size k, say M1, M2 . . . . .  Mr, such that, for any 

encoding rule e, 

e(S) = Mi 

for some i. Therefore let Ei denote the set of encoding rules mapping S onto M s and 

then El, E2 . . . .  , Et will form a partition of E. Moreover, by Theorem 4.6(ii), if 

el(S ) = ez(S), 

then 

p(el) = P(e2), 

and hence let p~ denote the probability p(e) for any e in E~. 
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It is then straightforward to establish that each triple (S, M~, E~) forms an (L, 1)- 

transitive set of permutations. This means that the study of O(L)-secrecy schemes 

with 

b=(v/k)'k!/(k-L)! and v > k  

i~s contained within the study of such schemes with v = k, and therefore we do not 

consider them further. 
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