
Key-node-Separated Graph Clustering
and Layout for Human Relationship

Graph Visualization
Takayuki Itoh, Ochanomizu University, Japan
Karsten Klein, Monash University, Australia

Abstract

Many graph drawing methods apply node clustering
techniques based on density of edges to find tightly
connected subgraphs, and then hierarchically visual-
ize the clustered graphs. On the other hand, users
may want to focus on important nodes (called key
nodes in this paper) and their connections to groups
of other nodes while using some applications. For this
requirement, it is effective to separately visualize the
key nodes detected based on adjacency and attributes
of the nodes. This paper presents a graph visualiza-
tion technique for attribute-embedded graphs which
applies a graph clustering algorithm taking into ac-
count the combination of connections and attributes.
The graph clustering step divides the nodes according
to the commonality of connected nodes and similar-
ity of feature value vectors. It then calculates the
distances between arbitrary pairs of clusters accord-
ing to the number of connecting edges and similarity
of feature value vectors, and finally places the clusters
based on the distances. Consequently, the technique
separates important nodes which have connections to
multiple large clusters, and improves the visibility of
connections of such nodes. This paper presents ex-
amples with human relationship graph datasets, in-
cluding a co-authorship and a Twitter communication
network dataset.

1 Introduction

Graphs are used to model relations between entities
in many real-world applications. Common tasks of
graph analysis include understanding of correlations
between the connections and attributes of the enti-
ties, and discovery of key entities which have many
connections or many particular attributes. Human
relationship is a typical information for which graph
visualization can be very useful for analysis purposes.
People in social networks have connections, so called
friendships, and the relations between subsets of peo-
ple might form complex subnetworks. Understanding
of correlations between the connection structures and
attributes of the people, such as jobs, hometowns, and
hobbies, may contribute to various social and busi-
ness analytics. Also, discovery of key persons and
analysis of their positions and roles in a network may

contribute to understand how information spreads in
social networks.

Often, nodes or substructures of a graph are ag-
gregated for analysis and visualization based on ei-
ther the structure or attributes, for example by hier-
archical clustering. Various techniques on hierarchi-
cal graph visualization have been developed for such
graph analysis tasks, because a hierarchical structure
is useful for overview of and quick understanding of
the graph structures, and top-down operations for
graph exploration and navigation. Graph clustering
algorithms are often applied before applying hierar-
chical graph visualization. Many of them treat tightly
connected subregions of the graphs as clusters; how-
ever, that does not always work well for discovery of
key nodes and tight connections. Figure 1 illustrates
the problem of graph clustering. The red nodes in
Figure 1(a) are connected to a large number of nodes,
and therefore they are certainly important nodes in
this graph. However, they may belong to the cluster
(1) because they form a tightly connected subgraph
with the five blue nodes, even though they also con-
nect to many other nodes. In this case, the red nodes
are not very visible if the high-level structure of the
clustered graph is drawn as Figure 1(b). Also, many
edges between blue and red nodes are not visible be-
cause they are drawn in a small region corresponding
to the cluster (1). Users may miss to find these im-
portant connections while looking at the high-level
structure. On the other hand, the red nodes will be
separated from this cluster if commonality of neigh-
bor nodes or similarity of attributes are applied as
criteria of the clustering process. If the commonal-
ity of neighbor nodes is applied to the clustering, five
blue nodes form a cluster because they are connected
to just blue and red nodes, while two red nodes form
another cluster because they are connected to all col-
ors of nodes. Or, if colors of the nodes represent their
attributes, the blue and red nodes can form separate
clusters. Figure 1(c) illustrates the result. A set of
connections between blue and red nodes can be em-
phatically displayed by a thick bundle connecting the
two clusters. In this case, the red node will be still
visible when the high-level structure of the graph is
drawn as Figure 1(d). This structure is preferable for
the following reasons:

• Connectivity with important nodes and multiple
clusters will be comprehensive in the visualiza-
tion results.

• Less edges will be tangled in the small regions of
display spaces corresponding to clusters.

• Edge bundling algorithms can be easily applied

1

to large number of edges connecting to important
nodes such as the red node in Figure 1(d).

(a) Clustering based on

density of connections

(1)
(2)

(b) High-level drawing

of the clustered graph (a)

(4)
(5)

(c) Clustering based on

commonality of neighbors

(d) High-level drawing

of the clustered graph (c)

(3)

(6)

(7)

Figure 1: Clustering based on density of connections
or commonality of neighbors.

Key node finding is useful in many real world ap-
plications. Development of key-node-conscious graph
visualization techniques is therefore expected to be an
important contribution in many academic and busi-
ness fields. Moreover, additional information such
as attributes of nodes have to be taken into account
in many applications. In case of human relationship
graphs where nodes correspond to humans, we often
need to take into account preferences or characters
of humans as attributes of nodes. Their preferences
or characters can be often converted to numeric val-
ues by recent analysis techniques, including natural
language processing with the documents written by
the humans. Graph visualization featuring key-node-
identification combining topology and attribute based
clustering is therefore useful for these applications.
Also, this clustering will contribute to visible repre-
sentation of the tight connections between key nodes
and their adjacent clusters.
This paper presents a graph visualization technique

that features graph clustering based on a combina-
tion of structural neighborhood and attribute simi-
larity. The technique supposes that each node of the
graph has a constant-sized feature vector representing
its attributes. It calculates distances between pairs
of nodes according to similarity of feature vectors as
well as commonality of neighbor nodes, and generates
clusters of the nodes according to their distances. It
then calculates the initial positions of clusters apply-

ing a graph layout algorithm, and adjusts the posi-
tions by triangular mesh smoothing algorithm, where
the mesh is generated by connecting centers of clus-
ters by a Delaunay triangulation algorithm. Finally,
it calculates the positions of nodes in each of the clus-
ters, applies an edge bundling technique to design the
shapes of edges, and draws all the nodes and edges.

2 Related Work

Graph clustering partitions the nodes of a graph into
clusters, i.e. node sets that are usually disjoint, with
the goal of having many intra-cluster edges and few
inter-cluster edges. Graph clustering is useful not
only for visualization but also various analytic pur-
poses, and actually large number of algorithms have
been presented, as introduced by Schaeffer [10] or sev-
eral other survey papers.
The most popular approach for graph clustering

is extraction of tightly connected subgroups of nodes.
Many graph clustering techniques using this approach
are based on agglomerative clustering algorithms.
Meanwhile, Schaeffer’s survey [10] also points that
there are various criteria to measure the distances
among the nodes of graphs, including similarity of
feature value vectors in the multidimensional Eu-
clidean spaces, adjacency-based node similarity mea-
surements, in addition to the tightness of the connec-
tions which can be measured as number of paths be-
tween two nodes. The presented technique calculates
distances among nodes as a combination of feature
value vector distances and adjacency-based dissimi-
larities.
Hierarchically clustered graphs are an effective data

structure for information visualization because they
are suitable for overview, zoom, and filtering oper-
ations. Node layout is definitely an important is-
sue for comprehensive graph visualization. Many im-
provements in quality and computational efficiency
have been achieved in the development of force-
directed methods since Eades proposed his seminal
spring embedder model [4]. Better alternatives in-
clude multilevel approaches and recent advances in
stress-based layout computation [5], which basically
apply a multidimensional scaling. Meanwhile, sev-
eral techniques [3] [8] efficiently visualize hierarchi-
cal graphs by applying space-filling layout techniques
such as Treemaps.
Edge bundling has been an active topic since Holten

[6] presented a technique which hierarchically bun-
dles edges connecting nodes of tree structure level-
by-level, and draws them as Spline curves. Edge
bundling is especially effective coupling with the pre-
sented technique, because it clusters nodes based on

2

the commonality of adjacent nodes, and consequently
it constructs hierarchy of the nodes so that large num-
ber of edges can be bundled.
It is often interesting to emphasize important nodes

in graphs. Ohsawa et al. [9] presented the KeyGraph
concept which features nodes bridging multiple sub-
graphs. Correa et al. [2] applied various schemes
to calculate centrality sensitivity to effectively visu-
alize social networks. Our study presented in this
paper takes into account the combination of neigh-
borhoods and attributes of nodes differently from the
above techniques. Meanwhile, several graph drawing
techniques are suitable for key-node conscious draw-
ing: for example, bipartite graphs. Hong et al. [7]
visualized citation networks by dividing most cited
papers and others as different types of nodes and ap-
plying a bipartite graph drawing technique, to focus
on the connections between important nodes and the
others. Our technique presented in this paper also
aims to focus on such connections; however, the tech-
nique can be combined with a variety of graph layout
algorithms.
Multivariate node attribute is also often taken into

account during the graph layout processes. Shnei-
derman et al. [12] presented an implementation
and a case study of graph visualization applying a
metaphor of substrates, which specifies the positions
of nodes based on their attribute values. Shi et
al. [11] presented a graph clustering scheme which
applies attribute-based partitioning for higher-level
nodes and topology-based partitioning for lower-level
nodes. Our technique also takes into account both
attributes and topology; however, our technique is
different from it since ours applies attribute-based
and adjacency-based metrics simultaneously in a sin-
gle clustering process.

3 Presented Technique

This section proposes the presented graph visualiza-
tion technique and its components. This includes the
clustering and layout methods, rendering, as well as
the interaction concept.

3.1 Processing flow

The presented technique supposes that all nodes have
the same constant number for the dimension of the
feature vector. The following is the supposed data
structure of an input graph G consisting of a set of
nodes N and edges E.

G = {N,E}

N = {n1, ..., nNn
}

E = {e1, ..., eNe
}

ni = {ai1, ..., aiNa
}

ei = {nj, nk} (1)

Here, ni denotes the i-th node, ei denotes the i-th
edges, aij denotes the value of the j-th dimension
of the i-th node, Nn denotes the number of nodes,
Ne denotes the number of edges, and Na denotes the
number of dimensions.

The presented technique first generates clusters of
nodes according to the similarity of feature vectors
and commonality of adjacent nodes. It then applies
a stress-minimizing graph layout algorithm to the set
of clusters to calculate these initial positions. In the
next step, these positions are connected by a Delau-
nay triangulation algorithm, and a mesh smoothing
algorithm is applied to set apart the dense clusters
and maintain the preferable distances between them.
Finally, the technique draws the graph applying a
Bézier-curve-based edge bundling. Our current im-
plementation specifies the color of a node based on
the dimension which has the largest value in ai1 to
aiNa

. Also, it optionally paints the triangular mesh
used for the cluster position arrangement as the back-
ground color by interpolating the colors of the nodes.

The following sections describe technical compo-
nents of the presented technique.

3.2 Graph Clustering

The presented technique calculates two types of dis-
tances between all pairs of nodes: dissimilarity of fea-
ture vectors dvec, and discommonality of the adjacent
nodes dadj . It defines the distance between a pair of
nodes as

d = αdvec + (1.0− α)dadj (2)

where α is a user-specified value satisfying (0.0 ≤
α ≤ 1.0). Our implementation features a GUI slider
widget so that users can freely adjust α and interac-
tively look at various visualization results. The tech-
nique then generates clusters of nodes by an agglom-
erative clustering algorithm with the furthest neigh-
bor method. The algorithm starts generating clusters
consisting of one node, and repeats the merge of clus-
ters until the minimum distance between two clusters
exceeds the user-defined threshold. The two types of
distances are calculated by the following process.

Dissimilarity of feature vectors

The technique calculates the similarity between the
two nodes as the inner product of the feature values.
We define the dissimilarity calculated from the inner

3

product as the distance between the two nodes dvec,
by the following equation.

dvec = 1.0− inner

inner = ni · nj/|ni||nj | (3)

Discommonality of adjacent nodes

We define the discommonality of adjacent nodes by
the number of commonly connected nodes. To spec-
ify the distance dadj between two nodes ni and nj,
the technique counts the number of nodes which are
connected to both ni and nj . It simply calculates the
distance as follows.

dadj = 1.0/(1 + nadj) (4)

Here, nadj is the number of nodes connected to both
the nodes.

3.3 Cluster Layout

The presented technique then generates a cluster
graph, consisting of vertices corresponding to the clus-
ters of nodes, and bundles corresponding to sets of
edges connecting two nodes belonging to two differ-
ent clusters. Bundles are weighted according to the
number of edges.
We denote the cluster graph as

CG = {V,B}

V = {v1, ...}

B = {b1, ...}

vi = {ni1, ...}

bi = {ei1, ...} (5)

where CG is the cluster graph, V is the set of vertices,
and B is the set of bundles. A vertex vi consists of a
set of nodes nij belonging to the cluster correspond-
ing to vi, and a bundle bi consists of a set of edges eij
connecting the pairs of nodes belonging to the corre-
sponding same pair of clusters.
As our approach is based on the calculation of

distances between nodes, a distance-based layout
method is a natural choice to calculate the layout
for the cluster graph. In our implementation, we ap-
ply the stress minimization layout algorithm from the
Open Graph Drawing Framework OGDF 1 to calcu-
late initial positions for the vertices. This algorithm
tries to minimize the error between the geometric dis-
tances between pairs of nodes in the drawing and
given input distances. Starting from an initial draw-
ing using the PivotMDS method as described in [1],

1http://www.ogdf.net

the algorithm iteratively minimizes a stress function
on the nodes’ positions. Stress in the layout is defined
here as ∑

u,v

wuv(||pu − pv|| − duv)
2 (6)

where wuv is a normalization constant set to
1/sp(u, v)

2
, the inverse of the square of the short-

est path between two nodes. This gives priority to
the error between nodes that have a small graph the-
oretic distance compared to long range errors. pu is
the position of node u in the layout, and duv given
ideal distances between u and v. In graph layout al-
gorithms, these distances are usually set to the graph
theoretic distance between the nodes. In order to ap-
ply the distance based method to the cluster graph,
we need to derive distances for the clusters similar to
the distance calculation for the nodes. In addition
to the distances, we would also like to take into ac-
count the cluster graph topology, i.e. the connectivity
between clusters. To this end, our current implemen-
tation defines a weight w for each bundle as

w = βwbun + (1.0− β)wvec (7)

where wbun is proportional to the number of edges
belonging to the bundle. wvec is calculated from in-
ner products of the average vector values of the two
clusters, similar to the equation (3). β is a user-
specified value satisfying (0.0 ≤ β ≤ 1.0). The ob-
tained weights are reversed to obtain distances for
the layout algorithm, i.e. the larger the weight, the
smaller the ideal distance between the connected ver-
tices. Based on these distances between adjacent ver-
tices, all pairwise distances between clusters are cal-
culated using all pairs shortest path computation.
It may happen that the layout algorithm places ver-

tices too closely especially due to the dense connec-
tions. To relax such layout results, the technique then
forms a triangular mesh connecting the set of vertices
by applying the incremental Delaunay triangulation
algorithm, and moves the vertices by applying a mesh
smoothing algorithm. The movement of the i-th ver-
tex, movvi , is calculated by the following equation
while repeating the mesh smoothing algorithm.

movvi = len1

sumvi

|sumvi |

sumvi =
∑

k

distik

distik = 0 (if |vi − vk| ≥ len2)

distik = len2

vi − vk

|vi − vk|
(if |vi − vk| < len2) (8)

Here, len1 is a constant value to keep the length of the
movement vector constant. vi is the position of the

4

i-th vertex. vk is the position of a vertex connected
to vi by a bundle. len2 is the preferable distance be-
tween vi and vk. This algorithm attempts to keep
constant distances between adjacent vertices to avoid
a too dense layout, while it does not attract far ver-
tices.

3.4 Graph Rendering

After calculating the positions of vertices correspond-
ing to the clusters, the technique assigns positions to
nodes in each of the clusters. Our current implemen-
tation just places nodes on the adequate number of
concentric circles around the position of the cluster.

It then applies a node swapping algorithm to reduce
the sum of edge lengths. The algorithm initially lets
all the nodes in a cluster unfixed. It selects an unfixed
node, and calculates the sum of edges lengths for all
edges connecting to the node, while traversing the
positions of all unfixed nodes in the cluster. Once the
best position is found, the process swaps the position
of the current node as the best position and fixes it.
The process repeats one-by-one for all the nodes in
the cluster.

After the node placement we apply an edge
bundling algorithm between pairs of clusters. Our
implementation applies Bézier curves between pairs of
nodes setting four control points, where two of them
are placed at the position of two nodes, and others are
placed between them. This design is close to Holten’s
hierarchical edge bundling [6] that applied B-Spline
curves. Our design is simpler because we do not need
to consider the variety of depths of hierarchy.

Our implementation assigns colors of nodes based
on either of the following procedure.

Distribution of feature vector values. The technique
assigns node colors according to the feature vector
values, to represent the relevancy among the connec-
tions and features. One could assign either a color
depending on all individual values per dimension, the
variation of values, or just on the dominating dimen-
sion. Our current implementation simply assigns col-
ors to each of the dimensions of the feature vector,
and selects the color of a node as the color of the
dimension which has the largest value in the feature
vector of the node.

Centrality. The technique also assigns node colors ac-
cording to their centrality [2]. Our current implemen-
tation just calculates colors based on their degree: it
assigns gray to low-degree nodes, and red to high-
degree nodes. We would like to apply a variety of
centrality metrics to calculate colors of nodes in later
versions.

4 Experiments

This section introduces our experiments with two
datasets. We set α in equation (2) to 0.5 for all ex-
amples shown in the figures.

4.1 Data

We applied our technique to the following datasets.
Our motivation to apply our method is to visually
find key persons, and explore the relationships be-
tween the key persons and their adjacent persons.
This section demonstrates that our technique is able
to show the edges between key nodes and groups of
their adjacent nodes.

Set A: Co-authorship data. This dataset was
created based on a publication bibliography from the
NERC Biomolecular Analysis Facility (NBAF) 2. We
downloaded the full NBAF bibliography for the years
1998-2013, which contains 1821 authors and 564 pa-
per titles. We constructed a graph that models the
paper co-authorship, consisting of 1821 nodes and
11097 co-authorship edges, where each node has a
12-dimensional feature vector.
To construct the feature vectors, we firstly counted

the frequency of terms in all the paper titles, and
selected 20 terms from them. We then counted the
frequency of the selected terms in the paper titles for
each author, and specified the top one term as the
corresponding term of an author. We counted the
number of authors for each term, and finally selected
the 12 terms covering a large number of correspond-
ing authors. We counted the frequency of the selected
12 terms in the paper titles again, and treated the
frequency values as the 12-dimensional feature vec-
tor of an author. The selected terms were as follows:
Genetic (red), Molecular (orange), Loci (yellow), Mi-
crosatellites (yellowish green), Isolation (green), In-
breeding (bluish green), Transcriptomics (sky blue),
Expression (blue), Bacterial (indigo), Breeding (pur-
ple), and Polymorphic (pink).

Set B: Twitter communication data. This
dataset was published on the NodeXL Graph Gallery,
which records Twitter users whose tweets are related
to food security, or who were replied to or men-
tioned in those tweets, on 17 September 2014 3. We
constructed a graph that models the communication
among Twitter users, consisting of 4973 nodes and
4223 communication edges.

2http://nbaf.nerc.ac.uk/support/publications
3http://www.nodexlgraphgallery.org/Pages/Graph.

aspx?graphID=28286

5

Similar to the set A, we firstly counted the fre-
quency of terms in their tweets, and subjectively se-
lected the 8 important keywords, Somalia, Africa,
Ebola, India, Mubasher lucman, PTI, and AMP, from
the top 30 terms. We counted the frequency of the
selected 8 terms again, and treated the frequency val-
ues as the 8-dimensional feature vector of a Twitter
user.

4.2 Examples of Clustering and Lay-

out Results

This section first presents several clustering and lay-
out results using the dataset A. Two of the nodes in
the graph have an extremely large number of con-
nections; they are connected to 527 and 412 edges,
respectively. We will call these nodes key nodes in
the following.

Figure 2 shows an example of cluster layout and
edge bundling. Nodes are colored according to their
feature vector values. Edge bundling algorithm in
our implementation effectively reduces the cluttering
among the nodes and edges. Edges of the specified
nodes can be highlighted by click operations to fo-
cus on the connectivity of particular important nodes.
Similarly colored nodes are more concentrated in the
same clusters if we use a larger α value, while more
key nodes tend to be outside the large clusters if we
use a smaller α value. We repeated the same processes
10 times with the same dataset to measure the com-
putation time. On average, the technique required
2.496 seconds for graph clustering, 7.343 seconds for
stress-minimizing layout, and 1.464 seconds for mesh
generation and smoothing, respectively.

Figure 3 shows the layout of clusters, where nodes
are colored based on centrality, while adjusting the
threshold for sizes of clustering. The key nodes were
not swallowed by large clusters, but belonged to the
small clusters enclosed by red circles in this figure.

Figure 4 compares visualization results between our
and common techniques applying the same dataset
and dividing the nodes into approximately same num-
bers of clusters. Figure 4(a) is a result by our tech-
nique, where the two key nodes belonged to the same
small cluster indicated by a red circle. Figure 4(b)
shows the result applying a common clustering algo-
rithm for comparison (modularity clustering in this
example), where the two key nodes belonged to larger
clusters indicated by red circles. Figures 4(c) and 4(d)
compare the visibility of edges connected to the spec-
ified node. In Figure (c), most of edges are connected
to nodes in other clusters and therefore the edges are
more comprehensive. On the other hand, most of
edges shown in Figure (d) are connected to nodes in

the same cluster and therefore it is difficult to observe
the structure around the specified key node.

Table 1 shows the statistics of the clustering results,
where NumC denotes the number of clusters, NumN
denotes the number of nodes in the clusters which the
key nodes belong to, and NumIE denotes the num-
ber of edges inside the clusters (in other words, edges
connecting the nodes belonging to the same cluster).
This result demonstrates our technique successfully
divided such key nodes from large clusters As a re-
sult, we reduced the number of edges tangled inside
the cluster and therefore effectively showed the con-
nectivity between the key nodes and others. This
visualization represents the publication situation in
the area well, judging from the research community
information.

Next, we show the clustering and layout results us-
ing the dataset B. Figure 5 shows the comparison of
graph clustering and layout results between our tech-
nique and the common comparison technique, where
nodes are colored based on centrality. The dataset
contains five users which have extremely large num-
ber of communications with other Twitter users, as
indicated by red circles in the results. Figure 5(a)
demonstrates that our technique separated such key
nodes from large clusters. Also, the result effectively
shows that the key nodes connected the large clusters
and other portions of the graph. On the other hand,
Figure 5(b) shows that the key nodes were swallowed
by large clusters when we applied a common clus-
tering algorithm. Table 2 shows the statistics of the
clustering results with the dataset B. Our technique
drastically reduced the number of edges inside the
clusters, where the result by our technique just con-
tained 296 inside edges while the result by common
technique contained 6668 inside edges.

4.3 Case Study: Paper Co-authorship

Network

This section introduces the knowledge discovered
from the visualization of the dataset A.

Figure 6 (Upper left) shows that many authors
which have common co-authors are associated to the
common technical terms, and consequently formed
large clusters consisting of single colors. Then, we
turned the colors of nodes to their centrality, as shown
in Figure 6 (Upper right). We clicked several key
nodes placed in the small clusters drawn in bright
red, and observed the co-authorship of such impor-
tant authors. Other pictures in Figure 6 show the
connections of four important authors.

Here, the first and second examples shown in Figure
6 (Center left) and 6 (Center right) represent the con-

6

nections of important two authors, T. Burke and D.
A. Dawson, belonging to the same cluster and having
very similar co-authorships. We compared the small
differences of connections of these two authors. The
first one had stronger connections with a few clus-
ters of particular terms, such as Genetic. The second
one had relatively wide connections. She had connec-
tions with the clusters of terms Loci, Inbreeding, and
Isolation, which the first one did not have strong con-
nections to. Our technique reduces the edges inside
the clusters as demonstrated in Tables 1 and 2, and
therefore the edges connecting to the specified nodes
get more visible in these visualization results rather
than the results by the common technique.

The third and fourth examples shown in Figure 6
(Lower left) and 6 (Lower right) represent two other
important authors, A. R. Cossins and J. K. Chip-
man. The former author had connections with clus-
ters of terms Molecular, Expression, and Bacterial,
with which the first and second authors did not have
strong connections. We found he was a certainly an-
other key person who has different specialty compar-
ing with the first and second persons. The latter
author had connections with clusters of terms Tran-
scriptomics and Expression, and many other clusters
consisting of uncolored nodes. This visualization sug-
gests that we may need to focus on several other terms
to understand the specialty of the fourth important
person and his related persons. Again, the edges con-
necting to the specified nodes are visible thanks to
the property of our technique.

4.4 User Evaluation

We conducted a subjective user evaluation with 13
university student participants majoring computer
science, not limited to graph drawing or information
visualization. We showed the two sets of visualiza-
tion results shown in Figures 4 and 5, and asked the
participants to compare the results by our and com-
mon techniques. We also asked them to answer the
following questions.

Q1: Which result do you feel is easier to find key
nodes?

Q2: Which result are you interested in the key nodes
and want to click them?

Q3: Which result do you feel is better to find the
number of clusters connected to the key nodes?

Q4: Which result do you feel is better to understand
how many nodes are connected to the key nodes?

Table 3 shows the statistic of the answers of the
participants. The result denotes that many partici-
pants rated our technique to be better to explore the
connection of key nodes, even though many of them
felt it was easier to find key nodes by using the com-
mon technique. Several participants mentioned that
it was easier to focus on larger clusters in the visu-
alization results, and therefore it was also easier to
find key nodes in the large clusters. Meanwhile, they
also mentioned that the key nodes visualized by our
technique were more interesting because it is easier to
find how they are connected to other clusters. Several
participants also mentioned that it was difficult to un-
derstand how many nodes are connected to key nodes
by the common technique, because many of the edges
connected the key nodes were inside the large clus-
ter. The result suggests that our technique is better
to observe the connection of the key nodes compared
to the common technique.

5 Conclusions and future work

This paper presented graph clustering and layout
techniques for visualization of feature vector embed-
ded graphs, which improves the visibility of important
nodes by separating them from large clusters. The pa-
per showed the experimental result that the presented
technique well separated the important nodes which
have extremely large number of edges from large clus-
ters, and reduced the number of inner cluster edges,
comparing with more common clustering algorithm.
The paper also introduced a case study with a co-
authorship network dataset.

The way the attribute values are used, for example
regarding the coloring, is biased towards the largest
value in the feature vector, even when it is not dom-
inating the others. For two vectors where the entries
are quite similar and largely differing, respectively,
the same value might be picked, which is not always
desirable. We will investigate further approaches to
use the attribute values, tailored to the application
area and task at hand. In addition, it will be inter-
esting to explore the impact of using different mea-
sures for distances and importance, e.g. taking into
account neighborhood structures. We also started to
investigate the value of different layout methods in
our approach.

Acknowledgments This research was partly sup-
ported by the Australian Research Council through
Discovery Project grant DP140100077.

7

References

[1] U. Brandes, C. Pich, Eigensolver Methods for
Progressive Multidimensional Scaling of Large
Data, The 14th International Symposium on
Graph Drawing GD, 42–53, 2006.

[2] C. Correa, T. Crnovrsanin, K.-L. Ma, Visual
Reasoning about Social Networks Using Central-
ity Sensitivity, IEEE Transactions on Visual-
ization and Computer Graphics, 18(1), 106–120,
2012.

[3] W. Didimo, F. Montecchiani, Fast layout com-
putation of clustered networks: Algorithmic ad-
vances and experimental analysis, Information
Sciences, 280, 185–199, 2014.

[4] P. Eades, A Heuristics for Graph Drawing, Con-
gressus numerantium, 42, 146–160, 1984.

[5] E. R. Gansner, Y, Hu, S. North, A Maxent-
Stress Model for Graph Layout, IEEE Transac-
tions on Visualization and Computer Graphics,
19(6), 927–940, 2013.

[6] D. Holten, Hierarchical Edge Bundles: Visualiza-
tion of Adjacency Relations in Hierarchical Data,
IEEE Transactions On Visualization And Com-
puter Graphics, 12(5), 741–748, 2006.

[7] S. Hong, W. Huang, K. Misue, W. Quan, A
Framework for Visual Analytics of Massive Com-
plex Networks, International Conference on Big
Data and Smart Computing (BIGCOMP), 15–
17, 2014.

[8] T. Itoh, C. Muelder, K.-L. Ma, J. Sese, A Hybrid
Space-Filling and Force-Directed Layout Method
for Visualizing Multiple-Category Graphs, IEEE
Pacific Visualization Symposium, 121–128, 2009.

[9] Y. Ohsawa, N. E. Benson, M. Yachiba,
KeyGraph: Automatic Indexing by Co-
occurrence Graph based on Building Construc-
tion Metaphor, IEEE International Forum on
Research and Technology Advances in Digital
Libraries, 1998.

[10] S. E. Schaeffer, Graph Clustering, Comuter
Schience Review, 1(1), 27–64, 2007.

[11] L. Shi, Q. Liao, H. Tong, Y. Hu, Y. Zhao, C.
Lin, Hierarchical Focus+Context Heterogeneous
Network Visualization, IEEE Pacific Visualiza-
tion Symposium, 89-96, 2014.

[12] B. Shneiderman, A. Aris, Network Visualiza-
tion by Semantic Substrates, IEEE Transactions
on Visualization and Computer Graphics, 12(5),
733-740, 2006.

8

Table 1: Clustering result while adjusting the threshold for sizes of clusters using the dataset A.

NumC NumN NumIE
Our (Figure 3 (a)) 813 4,4 5946
Our (Figure 6 (Upper right)) 354 4,4 5421
Our (Figure 3 (b)) 264 4,4 5868
Our (Figure 4 (a)) 170 9,9 6141
Common (Figure 4 (b)) 159 33,54 8214

Table 2: Clustering result while adjusting the threshold for sizes of clusters using the dataset B.

NumC NumIE
Our (Figure 5 (a)) 2117 296
Common (Figure 5 (b)) 2076 6668

Table 3: Subjective evaluation results with datasets A and B.

dataset A dataset B
Question Our Common Our Common
Q1 6 7 2 11
Q2 9 4 10 3
Q3 9 4 7 6
Q4 10 3 8 5

9

Figure 2: An example. (Upper-left) Cluster layout. Rectangular regions are manually overlaid to show
zooming views. (Upper-right) Drawing all the edges without bundling. (Lower-left) Drawing all the edges
with bundling. (Lower-right) Highlight the edges connected to the particular node clicked by a user.

10

(a)

(b)

Figure 3: Clustering and layout result while adjusting the threshold for sizes of clusters. Red circles are
manually drawn to specify that key nodes connected to extremely large number of other nodes are contained
in the small clusters. (a) Divided to 813 clusters. (b) Divided to 264 clusters.

11

170 clusters, by our algorithm

(a)

159 clusters, by common algorithm

(b)

(c) (d)

Figure 4: Comparison of visualization results between our and common techniques. Rectangular regions are
manually overlaid to show zooming views. Red circles are manually drawn to indicate key nodes. (a) Result
by our technique. Two key nodes connected to extremely large number of other nodes remain in the small
cluster. (b) Result applying a common clustering algorithm. The key nodes are enclosed to a large cluster
as indicated by red circles.. (c) One of the key nodes visualized by our technique is clicked. Most of edges
are connected to nodes in other clusters and therefore the edges are more comprehensive. (d) The key node
visualized by a common technique is clicked. Most of the edges are connected to nodes in the same cluster
and therefore it is difficult to observe the structure around the clicked key node.

12

(a)

(b)

Figure 5: Comparison of graph clustering and layout of Twitter communication data. Rectangular regions
are manually overlaid to show zooming views. Red circles are manually drawn to indicate key nodes. (a) Our
technique well separates the key nodes, painted in red, from large clusters. We can observe that key nodes
connect to large clusters, or bridge many clusters. (b) Clustering by a common technique. The key nodes
are hidden in large clusters. It is difficult to observe the connection between the key nodes and others.

13

Expression

Genetic

Isolation

Polymorphic

Molecular

Figure 6: Case study with a co-authorship network.Rectangular regions are manually overlaid to show zoom-
ing views. (Upper left) Cluster layout. (Upper right) Importance representation. Important nodes are placed
in the small clusters indicated by red circles. (Others) Co-authorship of important persons.

14

