
Key Phrase Aware Multi-Head Attention for Abstractive
Summarization

Shuaiqi Liu1, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen

Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract

Automatic text summarization techniques can produce a concise summary of one or

more text documents and support people to process the textual information more ef-

ficiently. The abstractive summarization methods aim to generate novel sentences as

a summary covering salient content from input documents. Compared with previous

RNN-based abstractive summarization models, the transformer-based models employ

the self-attention mechanism to capture dependencies in documents, and they can gen-

erate better summaries. But existing works have not considered key phrases in deter-

mining self-attention weights of the transformer-based summarization model. Conse-

quently, some of the tokens within key phrases only receive small attention weights,

which can affect completely encoding key phrases that convey the salient ideas of in-

put documents. In this paper, we propose the Key Phrase Aware Transformer (KPAT),

a model with the highlighting mechanism in the encoder to assign greater attention

weights for tokens within key phrases. Specifically, we first build the block diago-

nal highlighting matrix to indicate key phrases’ positions and their importance scores.

To combine the self-attention weights with the phrases’ importance, we design two

structures of highlighting attention for each head and the multi-head highlighting at-

tention. Besides, the block-wise linear transformation on the highlighting matrix is

adopted to adjust the scale of phrases’ importance scores. The experimental results on

two datasets from different summarization tasks and domains show that our proposed

model significantly outperforms the competitive baseline models.

∗Corresponding author.
Email address: cssqliu@comp.polyu.edu.hk (Shuaiqi Liu)

Preprint submitted to Journal of Information Processing and Management May 25, 2021

The following publication Liu, S., Cao, J., Yang, R., & Wen, Z. (2022). Key phrase aware transformer for abstractive summarization. Information
Processing & Management, 59(3), 102913 is available at https://dx.doi.org/10.1016/j.ipm.2022.102913.

This is the Pre-Published Version.

Keywords: Text summarization, Abstractive summarization, Key phrase extraction,

Deep Learning

1. Introduction

Nowadays, people are suffering from the information explosion, which refers to

the rapid increase in the amount of published information or data. With the rapid

development of online services, including social media, search engines, news websites,

and electronic preprint websites, people can easily obtain massive textual information.5

However, it also brings challenges for people to process their acquired texts. It would

be a heavy burden to read through all the text content and find out the parts they are

interested in.

During the COVID-19 pandemic, hundreds of thousands of scientific articles about

the pandemic were published1, and a flood of news articles about this epidemic also10

swept most news websites. People were drowned in the torrent of coronavirus papers

and news articles, while a large amount of information is not what people care about

or are interested in. There is an urgent need to develop advanced tools to help people

efficiently process the massive and fast-growing textual information2.

The automatic text summarization techniques, which aim to produce a concise sum-15

mary of one or more text documents, can be adopted to alleviate the above problem.

On the one hand, high-quality summaries can help people efficiently obtain the key in-

formation in original documents. On the other hand, people can first read the summary

to determine if one document is worth further reading, which enables people to quickly

filter out undesired documents and save a lot of time and effort.20

Previous text summarization methods can be generally classified into two cate-

gories, namely extractive methods and abstractive methods. The extractive methods

select important sentences from input documents to form the summary, while the ab-

stractive methods aim to generate novel sentences as summaries.

1https://www.nature.com/articles/d41586-020-03564-y
2https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-

keep-them-afloat

2

30
coronary

artery
tissues
without

atherosclerotic
plaques

that
served

as
the

control
group

coronary
artery

tissues

atherosclerotic
plaques

control
group

30
coronary
artery
tissues
without
atherosclerotic
plaques
that
served
as
the
control
group

3
0

co
ro

n
a

ry
a

rt
e

ry

tis
su

e
s

w
ith

o
u

t
a

th
e

ro
sc

le
ro

tic
p

la
qu

e
s

th
a

t
se

rv
e

d
a

s
th

e
co

n
tr

o
l

gr
ou

p

3
0

co
ro

n
a

ry
a

rt
e

ry

tis
su

e
s

w
ith

o
u

t
a

th
e

ro
sc

le
ro

tic
p

la
qu

e
s

th
a

t
se

rv
e

d
a

s
th

e
co

n
tr

o
l

gr
ou

p

Highlighting Matrix

Self-Attention Weight Matrix

Highlighting Attention
Weight Matrix

Figure 1: The highlighting mechanism assigns greater attention weights for tokens within key phrases indi-
cated by the highlighting matrix.

This paper focuses on the abstractive summarization models, which also require25

capturing the salient content from input documents. Compared with the previous RNN-

based abstractive summarization models, transformer-based models [16, 28, 29] em-

ploy the self-attention mechanism to capture dependencies in input documents, and

they can generate better summaries.

Calculating attention weights is a crucial step in the self-attention mechanism. In-30

put documents usually contain some key phrases that convey the salient ideas of input

documents. Existing works have not considered key phrases in determining attention

weights of self-attention. Key phrases are usually composed of multiple tokens, which

should be highly related and serve as a complete grammatical unit in input documents.

When testing the existing transformer-based models, we observe some of the tokens35

within key phrases only receive small attention weights, which can affect completely

3

encoding key phrases and the salient ideas they convey.

In this paper, we propose the Key Phrase Aware Transformer (KPAT), an abstractive

summarization model with the highlighting mechanism in the encoder. As shown in

Fig.1, the highlighting mechanism assigns greater attention weights for tokens within40

key phrases. And there are three parts of the highlighting mechanism, including the

highlighting matrix, the highlighting attention for each head, and the multi-head high-

lighting attention.

Our work is inspired by previous studies in education and psychology that indi-

cate key phrases are important for people to understand [39, 18] and summarize [4, 9]45

the given documents. Highlighting key phrases can help people with dyslexia improve

comprehension [39, 18]. Yue et al. [53] suggest a potential benefit of highlighting can

be it makes use of a cognitive bias named the Von Restorff effect [49, 37]. The high-

lighted portion of text stands out from the surrounding non-highlighted text, which

makes it more memorable [53]. Their findings can be instructive to improve the atten-50

tion mechanism in summarization models.

We build a highlighting matrix for each input token sequence to indicate key phrases’

positions in the attention weight matrix and phrases’ importance scores. Besides, the

block-wise linear transformation is adopted on the highlighting matrix to adjust the

scale of phrases’ importance scores. To combine the self-attention weights with the55

phrases’ importance, we propose two structures of highlighting attention for each head

in the KPAT model. After comparing the effects of adopting the highlighting attention

in the different numbers of heads and layers, we discover adopting it in a subset of

heads surpass adopting it in all heads.

In our experiments, we train and evaluate our model on a multi-document sum-60

marization (MDS) dataset named Multi-News [13] and a single document summariza-

tion (SDS) dataset named Pub-Med [11]. The automatic evaluation results show that

our proposed model significantly improves the ROUGE scores [26] of generated sum-

maries. The results of human evaluation also confirm our model can improve the infor-

mativeness of generated model. These experimental results verify the effectiveness of65

our proposed methods on different summarization tasks (MDS and SDS) and datasets

from different domains (news articles and biomedical academic literature).

4

The rest of this paper is organized as follows. We list our objectives and contribu-

tion in Section 2. Section 3 discusses related work and Section 4 briefly introduces the

original transformer model. We present our proposed method in Section 5 and our set-70

tings of experiments in Section 7. Our experimental results are reported and analyzed

in Section 8. Finally, Section 9 concludes this paper and discusses our future work.

2. Objectives and contribution

In this work, our motivation is to enhance the transformer-based abstractive sum-

marization model’s ability to completely encoding key phrases that usually convey the75

salient ideas of input documents. Specifically, we have three objectives:

• To extract key phrases from input documents and score their importance.

• To combine attention weights with the phrase importance.

• To verify the effectiveness of our method on different summarization tasks and

datasets from different domains.80

The contribution of this work is threefold:

• We present the highlighting mechanism that assigns greater attention weights for

tokens within key phrases.

• We propose two structures of highlighting attention for each head and the multi-

head highlighting attention to combine attention weights with key phrases’ im-85

portance.

• Our proposed model significantly outperforms the competitive baseline models

on different summarization tasks and datasets from different domains.

3. Related work

3.1. Automatic text summarization90

Automatic text summarization aims to reduce the length of input text while pre-

serving the meaning. Previous text summarization methods can be generally classified

into two categories: extractive summarization and abstractive summarization.

5

The extractive summarization methods select a subset of sentences from input doc-

uments to form summaries, which maximize the coverage of salient content in input95

documents while minimizing the redundancy. In the past decades, extractive methods

have been extensively studied [12, 32, 30, 42, 33, 3]. But the extracted summaries

suffer from problems of coherence and readability [50, 52].

In contrast, the abstractive summarization methods capture and represent the se-

mantic information of input documents and then generate novel sentences as sum-100

maries. Compared with extractive methods, the abstractive methods can approximate

human-written summaries by merging and compressing information from multiple sen-

tences and generating new expressions not contained in input documents [17, 27].

Some released large-scale datasets for single document summarization (SDS) [20,

35, 11, 44] and multi-document summarization (MDS) [28, 13, 31] make it possible to105

train large neural models for abstractive summarization.

Previous encoder-decoder models [40, 34, 38, 8] equipped with the attention mech-

anism [2] have achieved great performance on abstractive summarization. However,

they were found to miss some important content in input documents [24, 51]. How to

retain the key information of input documents in the generated summaries has received110

increasing attention in the past few years.

Some previous works focus on improving the copy mechanism. Gehrmann et al.

[16] utilize the attention masks to restrict copying phrases from the selected parts of an

input document. Xu et al. [51] add words’ centrality score to the linearly transformed

encoding hidden state when calculating the copy distribution.115

Several papers also explore the potential of enhancing the encoder. Li et al. [24, 25]

extend the pointer-generator-based models [43] with a separate LSTM-based encoder

to get the keywords’ representation and then combine it with the sentence representa-

tion. In this work, we explore the potential of leveraging phrase importance as guidance

to adjust attention weights in the multi-head self-attention of the transformer encoder.120

3.2. Key phrase extraction

Key phrase extraction is the task of identifying a set of representative phrases con-

sisting of multiple words from a document. The extracted phrases should reflect the key

6

aspects of an input document [36]. Previous automatic key phrase extraction methods

usually contain two steps. First, selecting the candidate phrases and then determining125

key phrases by using unsupervised or supervised algorithms. Since there are usually no

key phrase labels in summarization datasets, we only focus on unsupervised extraction

methods, including a statistics-based method and some graph-based ranking methods.

Tf-idf [41] is a widely used statistics-based key phrase extraction method. It scores

the candidate phrases according to the following formulas:130

tf-idf(t, d,D) = tf(t, d) · idf(t,D) (1a)

tf(t, d) =
ft,d∑

t′∈d ft′,d
(1b)

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(1c)

The term frequency (tf) describes the frequency of the term t in one sample d and

can be calculated by Eq. (1b). In Eq. (1c), the inverse document frequency (idf) is

defined as the logarithm of the quotient, which is obtained by dividing the total number

of samples N in dataset D by the number of samples containing the term t. Candidate

phrases can be ranked according to their tf–idf score, which equals the product of tf135

and idf. The phrases with the top-N tf–idf scores will be selected as key phrases of

each sample.

Graph-based ranking methods first create a graph for a document, in which vertexes

represent candidate phrases and edges connect related candidate phrases. Different

methods have their ways to score candidate phrases based on the graph and then sort140

the candidates to select key phrases with top scores. The commonly used graph-based

methods include TextRank [32], TopicRank [6], and PositionRank [15]. They first con-

duct tokenization and part-of-speech tagging on input documents as pre-processing and

then utilize a syntactic filter to keep only nouns and adjectives as candidates. In this

work, we adopt the TopicRank [6] and PositionRank [15], which significantly outper-145

form the TextRank [32] on many key phrase extraction datasets of news articles and

academic literature [6, 15].

7

PositionRank [15] builds the graph based on words’ co-occurrence relations. Based

on the idea that key phrases generally occur on positions very close to the beginning

of a document or occur frequently, it adopts the position-biased PageRank algorithm150

[7] to assign larger probabilities to words that are found early or frequently in a given

document. In the post-processing phase, adjacent candidate words are concatenated

to reconstruct key phrases composed of multiple words. The phrases’ scores will be

assigned as the sum of words’ scores, and the phrases with top scores will be selected

as key phrases.155

TopicRank [6] groups the candidate phrases into topics by clustering and build

the complete graph, where topics are vertices and edges are weighted according to

the semantic relations between topics. Topics are scored and ranked by the TextRank

algorithm [32]. For each of the most important topics, one of the candidate phrases

clustered into that topic will be selected as a key phrase.160

4. Preliminaries

4.1. Encoder and decoder in transformer

The transformer model [47] follows the encoder-decoder structure. The encoder

maps input sequences to continuous representations. Given the representations of in-

puts, the decoder is responsible for generating the output sequences.165

The transformer encoder consists of N identical layers, and each of them has two

sub-layers. The first sub-layer conducts the multi-head self-attention mechanism and

the second sub-layer is a position-wise fully connected feed-forward network. The

outputs of stacked sub-layers are connected with the residual connection [19] and nor-

malized with layer normalization [1].

LayerNorm(x+ Sublayer(x)) (2)

The decoder is also composed of identical N layers. The multi-head self-attention

sub-layers mask subsequent positions in attention weight matrices. Compared with the

encoder layers, the decoder layers add a sub-layer, which performs the encoder-decoder

8

attention over the output of the encoder and that of the multi-head self-attention sub-

layer in the decoder.170

4.2. Attention in transformer

The transformer model [47] adopts the multi-head attention in both the encoder and

decoder. The multi-head attention mechanism relies on the scaled dot-product attention

on each head, which operates on a query Q, a key K, and a value V:

Attention(Q,K, V) =WmV (3a)

Wm = softmax(
QKT

√
dk

) (3b)

where Wm ∈ Rn×n, and dk is the dimensionality of key.

The multi-head attention employs the scaled dot-product attention on h heads.

MultiHead(Q,K, V) = HeadsW o

Heads = Concat(Head1, ...,Headh)

Headi = Attention(Q,K, V)

(4)

where the matrix Headi is calculated by Eq. (3a). The results of all the heads will be

concatenated and then projected through a feed-forward layer, whose parameter matrix

is W o ∈ Rhdv×dmodel .175

In the self-attention layers, all the keys, values, and queries come from the output

of the previous layer. While in the encoder-decoder attention layers, the queries come

from the previous decoder layer, and the keys and values are from the output of the

encoder [47].

5. Proposed method180

Our proposed method includes several steps, including data pre-processing, key

phrase extraction, building highlighting matrix, and summarization, as depicted in Fig.

2. The procedures of data pre-processing and key phrase extraction will be presented in

sub-section 5.1. And sub-section 5.2 will introduce our KPAT model, which comprises

9

Preprocessing

Key Phrase Extraction

Building Highlighting Matrix

 Summarization

Truncated
Documents

Key Phrases

Input
Documents

Summary
Highlighting

Matrixes

Figure 2: The workflow of proposed method.

the highlighting matrix, the highlighting attention for each head, and the multi-head185

highlighting attention mechanism.

5.1. Data preparation

We need to prepare the dataset for training and evaluating the proposed summariza-

tion model. Each input example of our KPAT model contains the truncated articles, key

phrases, and their importance scores. As introduced in sub-section 5.1.1, we first pre-190

process input documents. And then, the automatic key phrase extraction method can

be utilized to assess the phrase importance and select the phrases with top importance

scores in sub-section 5.1.2.

5.1.1. Input documents pre-processing

The input documents need to be pre-processed to meet the requirements of neural195

summarization models. Considering not all the content in these documents is related

to the text summarization task, we need to remove irrelevant content. For example,

figures and tables should be removed and only preserve the text content.

Since the input length of the neural summarization model is usually limited and

shorter than that of input documents, we still need to truncate input documents. For200

the MDS dataset, we can truncate input documents within each example. In some SDS

10

datasets, single input documents contain multiple parts. And we can truncate these

parts considering their contribution to the summary. Except for the length, we also

need to change the format of input text content. For example, we need to lowercase all

tokens and perform sentence and word tokenization.205

More specific operations should depend on the nature of the dataset and the require-

ments of the summarization model. We will discuss these operations in sub-section 7.1.

5.1.2. Phrase importance assessment

This paper aims to enhance the transformer model’s ability to completely encoding

key phrases that convey the salient ideas of input documents. As a prerequisite, the210

phrases’ importance should be assessed, and key phrases should be identified. Since

there are usually no key phrase labels in the summarization datasets, we utilize unsu-

pervised extraction methods discussed in sub-section 3.2 to score phrases and select the

phrases with top scores as key phrases. After removing stopwords, we tried a statistics-

based method named tf-idf3[41], and two graph-based ranking methods, namely the215

TopicRank [6], and the PositionRank4 [15].

For each input example comprising one or more documents, we adopt the extrac-

tors mentioned above to identify key phrases and use the L2 normalized scores of key

phrases as their importance scores. We only select the bigrams and trigrams since

longer phrases are sparse and more likely to be compressed in summaries.220

After the step of key phrase extraction, we build the highlighting matrix based on

the extracted key phrases and their importance scores, and the details will be illustrated

in sub-section 5.2.2. We also conduct the experiments to compare the effects of adopt-

ing different key phrase extractors and selecting different numbers of key phrases. The

experimental results will be reported and analyzed in sub-section 8.4.225

5.2. Key phrase aware transformer model

In this section, we introduce the Key Phrase Aware Transformer (KPAT), a model

with the highlighting mechanism. We first present the architecture of the KPAT model.

3We calculate the tf-idf score by the library named scikit-learn https://scikit-learn.org/stable/index.html
4We adopt the implementations of TopicRank and PositionRank from https://github.com/boudinfl/pke

11

Multi-Head
Highlighting

Attention

Add & Norm

Input
Embedding

Output
Embedding

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Copy Generator

Input
Sequence

Output Sequence
(Shifted Right)

Positional
Encoding

Positional
Encoding

N ×
N ×

Output
Probability

Highlighting
Matrix

Encoder

Decoder

Figure 3: The architecture of the Key Phrase Aware Transformer (KPAT) model.

And then, three key components in the highlighting mechanism, including the high-

lighting matrix, the highlighting attention for each head, and the multi-head highlight-230

ing attention, will be introduced separately.

5.2.1. Model architecture

The KPAT model follows the encoder-decoder structure. In this paper, we mainly

focus on the encoder part, since our motivation is to augments the transformer’s abil-

ity to encode key phrases in input documents. And our decoder follows the copy-235

transformer model in [16, 13]. Fig. 3 depicts the architecture of the KPAT model.

The encoder of the KPAT model consists of N identical layers. Each encoder layer

12

has two sub-layers: the multi-head highlighting attention layer and the position-wise

fully connected feed-forward network. The original transformer model [47] adopts the

multi-head self-attention layer in each encoder layer. While in the KPAT model, we240

replace the multi-head self-attention layers with the multi-head highlighting attention

layers, which will be presented in sub-section 5.2.4. Each multi-head highlighting

attention layer contains h heads and employs the highlighting attention on p highlighted

heads. We depict the highlighting attention in sub-section 5.2.3. The inputs of these

encoder layers contain both the output of the previous layer and the highlighting matrix.245

5.2.2. Highlighting matrix

The first step of the highlighting mechanism is to build a highlighting matrix for

each input example based on the results of key phrase extraction. The highlighting ma-

trix can indicate key phrases’ positions in the attention weight matrix and the phrases’

importance scores.250

As described in sub-section 5.1.1, the input example in the MDS dataset is the

concatenation of multiple truncated articles, and the example of the SDS dataset can

be the truncated single document. Each input example can be represented as an input

sequence (t1, ..., tn) containing n tokens. We use (p1, ..., pk) and (s1, ..., sk) to de-

note key phrases and their importance scores. For each input example, we build the255

highlighting matrix H ∈ Rn×n with the same shape as the attention weight matrix.

Assuming a phrase pr contains b tokens in the input sequence pr = (xa, ..., xa+b),

the phrase’s importance score sr is added to the elements Hi,j , where i = a, . . . , a +

b, j = a, . . . , a + b, in the highlighting matrix. The phrases may be overlapping or

nested, and the token ti may be contained in c phrases (pr, ..., pr+c), whose impor-260

tance scores are (sr, ..., sr+c). The element Hii is assigned as the maximum value of

the c phrases’ importance scores. Finally, we will get a block diagonal matrix as the

highlighting matrix H=diag(H1, H2, ...,Ht), in which the main-diagonal blocks are

square matrices and all off-diagonal blocks are zero matrices, as depicted in Fig. 1.

13

Linear Linear Linear

MatMul

Scale

Mask

Softmax

MatMul

Highlight
Matrix

Block
Linear

Add

Linear Linear Linear

MatMul

Scale

Mask

Softmax

Highlight
Matrix

Block
Linear

Softmax

Mask

MatMul

L1Norm

Add

(a) (b)

Q K V Q K V

Figure 4: An overview of the proposed highlighting attentions, namely (a) the weighted highlighting attention
and (b) the additive highlighting attention.

5.2.3. Highlighting attention265

The highlighting attention is the crucial component in our model for adjusting at-

tention weights according to the phrase importance. For the head m, the original trans-

former model [47] adopts Eq. (3b) to calculate the scaled dot-product attention.

We propose two structures of highlighting attention, namely the weighted high-

lighting attention and the additive highlighting attention, to replace the scaled dot-270

product attention. Two structures of highlighting attention are compared in Fig. 4.

The highlighting attention adjusts attention weights according to the phrase impor-

tance. And the highlighting matrix H can be used to determine which elements in the

attention weight matrix should be increased.

The weighted highlighting attention mainly modifies Eq. (3b) to calculate the275

14

attention weight matrix Wm for the head m.

Wm = softmax(
QKT

√
dk

+Hm) (5a)

Hm = block linear(H) (5b)

Hm = diag(linear(H1), ..., linear(Ht)) (5c)

Since the softmax function applies the exponential function to each input element

and normalizes them through dividing by the sum of all these exponentials. Eq. (6)

indicates the additive operation in Eq. (5a) can be identical to calculating the weighted

average, so we name it the weighted highlighting attention.280

softmax(zi + bi) =
ebiezi∑n
j=1 e

bjezj
i = 1, . . . , n (6)

The additive highlighting attention is also designed to adjust the attention weight

matrix Wm. The block diagonal highlighting matrix H will be transformed by Eq.

(5c). And the result Hm will be normalized by the softmax function5 and added into

the original attention weight matrix Wm′ calculated by Eq. (3b). After that, the matrix

Wm
b produced by Eq. (7b) will be normalized along the dimension, where the softmax285

function is computed, to ensure the sum of elements in this dimension equals one.

Wm
:, j =

Wm
b :, j

||Wm
b :, j ||1

j = 1, . . . , n (7a)

Wm
b =Wm′ + softmax(Hm) (7b)

5Since the number of key phrases is limited, and the highlighting matrix can be sparse, we mask the zero
elements and only conduct the softmax operation on the nonzero elements.

15

5.2.4. Multi-head highlighting attention

In our model, the encoder with dmodel consists of N layers and h heads. Each en-

coder layer contains the multi-head highlighting attention as a sub-layer. We proposed

the multi-head highlighting attention mechanism, which employs the highlighting at-

tention on p highlighted heads and the scaled dot-product attention on the rest of (h−p)

normal heads.

MultiHead(Q,K, V) = HeadsW o

Heads = Concat(Head1, ...,Headh)

Headi = Attention(Q,K, V)

(8)

where the projection is a parameter matrix W o ∈ Rhdv×dmodel . Eq. (3a) calculates

the matrix Headi. The attention weight matrix W of the highlighted heads can be290

calculated by Eq. (5a) or Eq. (7a), and that of the normal heads can be calculated by

Eq. (3b). The results of all the heads will be concatenated and then projected through

a feed-forward layer.

6. Datasets

We train and evaluate our model on a MDS dataset named Multi-News [13] and a295

SDS dataset named Pub-Med [11] to verify the effectiveness of our proposed methods

on different summarization tasks (MDS and SDS) and datasets from different domains

(news articles and biomedical academic literature).

Multi-News [13] contains summaries of news articles collected from the website

newser.com. In this MDS dataset, each example includes multiple news articles col-300

lected from diverse news sources about the same event and a summary written by pro-

fessional editors.

Cohan et al. [11] collected the scientific papers from PubMed and built up a SDS

dataset named PubMed. The scientific papers are usually long documents, and the

abstracts in these papers can be used as the ground truth summaries. We find the305

original PubMed dataset fails to separate the abstracts from body sections in some

16

examples. So we remove abstracts from the body sections to avoid target sequences

appear in input sequences.

Table 1 summarizes the statistical information of these two datasets. Since Multi-

News is a MDS dataset, the length of the input document is calculated on the concate-310

nation of all the input documents in each example. We find the input documents in

the PubMed dataset are notably longer than that of the Multi-News dataset. Addition-

ally, biomedical literature’s format and content organization are quite different from

news articles, so we need to adopt different data pre-processing operations on these

two datasets.315

Table 1: Statistical information of the two datasets. ”Pairs” denotes the number of examples. And ”Words”
denotes the average number of words in the input documents and ground truth summaries

Dataset Pairs Words (Doc) Words (Summary)

Multi-News 56K 2,103 264
PubMed 133K 3,016 203

Table 2: The percentage of examples contain common section names in the PubMed dataset.

Sections Train Val Test

Introduction 78.7% 75.1% 76.3%
Discussion 70.8% 68.5% 69.6%
Result 62.3% 54.9% 56.4%
Conclusion 56.1% 54.2% 55.2%
Methods 58.9% 52.3% 54.0%
Case report 24.4% 28.3% 28.8%
Analysis 24.3% 21.4% 21.6%

7. Experiments

7.1. Data pre-processing

To prepare the text data for training and evaluating the summarization model, we

need to remove irrelevant content, filter out some outliers, change the format and length

of text content, and split the dataset into training, validation, and test subsets. We320

lowercase all tokens in two datasets and perform sentence and word tokenization using

17

NLTK [5]. More specific operations should depend on the nature of the dataset and the

requirements of the summarization model.

For the Multi-News dataset, we follow the settings of data preparation in [13], only

keep examples with 2-10 input documents per summary. For the neural abstractive325

models, we take the first 500/S tokens from each article for the example with S articles.

If some input documents are shorter than 500/S, we follow [13] and iteratively adjust

the quota for each document until reaching the 500-token limit. And then, we concate-

nate the truncated articles within one example into a single document. We follow [13]

to split the dataset into training (80%), validation (10%), and test (10%) sets.330

For the PubMed dataset, we follow the settings in [11], first filter out the outliers

which are excessively long or too short or do not contain an abstract. In each document,

figures and tables are removed. Math formulas and citation markers are normalized

with special tokens to preserve only the text content.

Considering the academic papers usually contain multiple sections and each of335

them contributes differently to the abstract, we need strategies to pre-process these

sections differently. We find the sections that appear after the conclusion section, like

acknowledgments, conflict of interest, and sponsorship, do not contribute to the content

in the abstract, so we should remove these sections.

We count the section names in these papers and find the most common sections,340

including introduction, discussion, results, conclusion, methods, case report, and anal-

ysis. Table 2 summarizes the percentages of examples containing these common sec-

tions. Since the concatenation of these common sections can be excessively long, and

the input length of neural summarization models is usually limited, we still need to

truncate these sections. We first count the number of common sections included in345

each paper. If one paper contains S common sections, we truncate each common sec-

tion to 1000/S tokens. If some of the sections are shorter than 1000/S tokens, the excess

quota will be equally distributed to other sections.

These truncated sections within one example are concatenated into a single docu-

ment as the input. We do not find significant performance improvement when increas-350

ing input length from 1000 to 2000 tokens, while training the neural models with a

larger input size is more time-consuming. Following the settings in [11], we split the

18

dataset into training (90%), validation (5%), and test (5%) sets.

7.2. Experimental setting

We adopt a 4-layer encoder and a 4-layer decoder to build the KPAT model. Each355

layer has eight attention heads. Both the word embedding size and hidden size are

set as 512. The maximum size of the vocabulary is set as 50000 as default. We also

use label smoothing [46] with smoothing factor 0.1 and dropout [45] with probability

0.2. The optimizer is Adam [21] with learning rate 2, β1=0.9 and β2=0.998. We also

adopt the learning rate warmup over the first 8,000 steps and decay as in [47]. During360

decoding, we use beam search with a beam size of 5. And trigram blocking is used to

reduce repetitions. We implement our model with OpenNMT-py [22]. All the models

are trained on one NVIDIA QUADRO RTX 8000 GPU.

7.3. Baselines

We compare our proposed KPAT model with the following comparative methods.365

These methods can be roughly divided into two categories, namely the extractive meth-

ods and abstractive methods.

7.3.1. Extractive methods

LexRank and TextRank6 [12, 32] are two graph-based ranking methods that can be

used for extractive summarization. They first build a sentence similarity graph and370

adopt the idea of PageRank [7] to scores sentences based on the graph. And then,

they sort these sentences in descending order of their score and select the top-ranked

sentences to form a summary.

Tf-idf scores of words within a sentence can be summed to measure the sentence’s

importance. An extractive summarization method [10] is built based on this idea. And375

we use it as a baseline to compare with introducing tf-idf into our abstractive method.

BertExt [30] stacks inter-sentence Transformer layers on top of the pre-trained BERT-

base model to capture document-level features. It inserts [CLS] token at the start of

6We utilize the implementation of the LexRank model from https://pypi.org/project/lexrank/ and that of
the TextRank model from https://radimrehurek.com/gensim 3.8.3/summarization/summariser.html

19

each sentence and uses the representation of [CLS] from the top layer of the BERT

model as sentence representation. We follow settings in [30] and fine-tune the BERT380

model and inter-sentence transformer layers jointly on the training sets of two datasets.

7.3.2. Abstractive methods

PG, PG-MMR are the pointer-generator network based models reported by Lebanoff

et al. [23]. The pointer-generator network [43] allows both copying words via pointing

and generating words from a fixed vocabulary. It utilizes the coverage mechanism to385

discourage repetition.

Hi-MAP [13] expands the existing pointer-generator network into a hierarchical net-

work and calculates sentence-level Maximal Marginal Relevance (MMR) score for

each sentence. The attention distribution of tokens within one sentence is multiplied

by the MMR score of the sentence to which they belong.390

DAA [11] extends the pointer-generator network with discourse-aware attention. It

consists of a hierarchical encoder modeling the discourse structure of each input docu-

ment and an attentive discourse-aware decoder.

CopyTransformer reported in [16, 13] adds the copy mechanism [43] to a 4-layer

transformer model. The decoder of our proposed model follows its architecture.395

SAGCopy [51] adds words’ centrality score to the linearly transformed encoding hid-

den state when calculating the copy distribution. And it introduces this copy mecha-

nism into the transformer model for abstractive summarization.

BertAbs [30] adopts the pre-trained BERT-base model as the encoder and randomly

initializes a decoder comprising six transformer layers. We adopt the settings in [30]400

and fine-tune the encoder and the decoder on the training sets of two datasets.

7.4. Evaluation metrics

We use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) F1 scores

[26] as the automatic evaluation metrics. Specifically, we report the overlap of uni-

grams (R-1), bigrams (R-2), and skip-bigram with unigrams (R-SU) between system-405

generated summaries and gold references provided by summarization datasets.

20

ROUGE-N is a statistic on n-gram co-occurring in both a candidate summary and

a set of reference summaries. And it can be calculated as follows:

R-Nr =

∑
S∈ref

∑
gramN∈S

Countm(gramN)∑
S∈ref

∑
gramN∈S

Count(gramN)
(9a)

R-Np =

∑
S∈ref

∑
gramN∈S

Countm(gramN)∑
S∈cand

∑
gramN∈S

Count(gramN)
(9b)

R-NF1 =
2× R-Np × R-Nr

R-Np +R-Nr
(9c)

Where N stands for the length of the n-gram. The result of Countm(gramN) is the

maximum number of n-grams co-occurring in both a candidate summary and a set of

reference summaries. R-Nr, R-Np, and R-NF1 represent the recall, precision, and F1

score of ROUGE-N. We report the F1 scores of ROUGE-1 (R-1) and ROUGE-2 (R-410

2) in the following tables, which reflect the coverage of unigrams and bigrams. They

can be regarded as means of assessing the informativeness of the generated summaries,

compared with the human-written summaries.

ROUGE-SU is a statistic on skip-bigram with unigrams co-occurrence. A skip-

bigram is an ordered pair of words in a sentence allowing for arbitrary gaps between415

them. Given a sentence comprising multiple words senti = [w1, w2, ..., wn] in a can-

didate summary. The pair of words within the sentence (wj1, wj2) is a skip-bigram if

j1 < j2. ROUGE-S does not require consecutive matching but is still sensitive to word

order [26]. It counts all in-order matching word pairs and can be computed as follows:

R-Sr =
SKIP(X,Y)

C(m, 2)
(10a)

R-Sp =
SKIP(X,Y)

C(n, 2)
(10b)

R-SF1 =
(1 + β2)RskipPskip

Rskip + β2Pskip
(10c)

SKIP(X,Y) =
∑
S∈X

∑
s-grami∈S

Countm(s-grami) (10d)

Where s-grami is the i-th skip-bigram, m and n stand for the length of reference sum-420

21

mary X and generated candidate summary Y. C(m, 2) and C(n, 2) are the numbers of

skip-bigrams in X and Y. SKIP(X,Y) is the number of matched skip-bigrams between

X and Y.

However, ROUGE-S does not consider the generated sentences may not include

any word pair co-occurring with its references. ROUGE-SU extends the ROUGE-S by425

adding unigram as a counting unit. It can be implemented by adding a marker at the

beginning of candidate and reference sentences [26].

ROUGE-SU(X,Y) = ROUGE-S(X+, Y +) (11a)

SKIP(X+, Y +) = SKIP(X,Y)+ Uni-CNT (11b)

Uni-CNT =
∑
S∈X

∑
1grami∈S

Countm(1grami) (11c)

WhereX+ and Y + denote the reference and the candidate adding a start token. Uni-CNT

is the maximum number of unigrams co-occurring in both the candidate and the refer-

ence summary.430

8. Results and discussion

8.1. Automatic evaluation results

For the Multi-News dataset, the results of LexRank, TextRank, PG, PG-MMR, Hi-

MAP, and CopyTransformer on the Multi-News test set follow Fabbri et al. [13]. For

the PubMed dataset, we train and evaluate all the models since we choose a different435

truncation strategy compared with the original scheme provided by Cohan et al. [11]

and remove the abstracts from body sections in some examples that fail to separate the

abstract and body sections.

Two additional extractive baselines are evaluated in our experiments. A tf-idf based

extractive method [10] is adopted as a baseline to compare with introducing the tf-440

idf score into our abstractive model. We also fine-tune and evaluate a BERT-based

extractive method [30], which is more powerful than those unsupervised extractive

baselines mentioned above.

22

In addition to the abstractive baselines mentioned in [13, 11], we also evaluate

some additional abstractive baselines on two datasets. A BERT-based abstractive sum-445

marization method [30] is fine-tuned on our training sets. Another transformer-based

abstractive method named SAGCopy [51] discussed in subsection 7.3 is also trained

and evaluated on these two datasets.

Table 3: Evaluation results on the Multi-News test set.

Method R-1 R-2 R-SU

LexRank 38.27 12.70 13.20
TextRank 38.44 13.10 13.50
tf-idf 38.68 12.09 13.54
BertExt 44.27 15.09 17.44

PG 41.85 12.91 16.46
PG-MMR 40.55 12.36 15.87
Hi-MAP 43.47 14.89 17.41
BertAbs 42.21 15.14 16.33
SAGCopy 43.98 15.21 17.65
CopyTransformer 43.57 14.03 17.37

KPAT (Weighted) 45.30 15.96 18.62
KPAT (Additive) 44.37 15.55 17.77

Table 4: Evaluation results on the PubMed test set.

Method R-1 R-2 R-SU

LexRank 35.78 14.75 11.35
TextRank 36.41 14.97 11.90
tf-idf 33.67 9.18 10.74
BertExt 37.72 13.95 12.48

PG 38.37 13.59 14.72
DAA 38.95 15.41 15.63
BertAbs 39.29 15.59 15.84
SAGCopy 38.66 15.24 15.35
CopyTransformer 38.81 14.99 15.39

KPAT (Weighted) 40.04 15.82 16.24
KPAT (Additive) 39.67 15.61 15.94

Table 3 and Table 4 summarize the automatic evaluation results on the test sets of

Multi-News and PubMed. The ”KPAT (Weighted)” denotes the KPAT model equipped450

23

with the weighted highlighting attention mechanism on each head, and the ”KPAT (Ad-

ditive)” represents the KPAT model equipped with the additive highlighting attention

mechanism. Our proposed model significantly outperforms these baseline models on

all metrics. These results prove the effectiveness of the highlighting mechanism on

different summarization tasks (MDS and SDS) and datasets from different domains455

(news articles and biomedical academic literature). Besides, the weighted highlighting

attention is more favorable compared with the additive highlighting attention.

Table 5: Human evaluation results on the Multi-News test set. “Win” represents the generated summary of
our KPAT model is better than that of CopyTransformer in one aspect.

Win Lose Tie kappa

Informativeness 46.5% 21.5% 32.0% 0.664
Fluency 29.5% 26.0% 44.5% 0.639
Non-Redundancy 27.5% 25.5% 47.0% 0.624

Table 6: Human evaluation results on the PubMed test set. “Win” represents the generated summary of our
KPAT model is better than that of CopyTransformer in one aspect.

Win Lose Tie Kappa

Informativeness 43.0% 19.5% 37.5% 0.659
Fluency 27.0% 25.0% 48.0% 0.622
Non-Redundancy 23.5% 19.0% 57.5% 0.631

8.2. Human evaluation results

In addition to automatic evaluation, we performed the human evaluation to com-

pare the generated summaries in terms of informativeness (the coverage of information460

from input documents), fluency (content organization and grammatical correctness),

and non-redundancy (less repetitive information). We randomly select 50 samples from

the test sets of Multi-News and PubMed respectively. Four annotators are required to

compare two models’ generated summaries that are presented anonymously. We assess

their agreements by Fleiss’ kappa [14].465

The evaluation results in Table 5 and Table 6 suggest our proposed model signifi-

cantly outperforms the CopyTransformer in terms of informativeness and is compara-

tive in terms of fluency and non-redundancy on these two datasets.

24

8.3. Impact of the multi-head highlighting attention

We compare the effects of adopting the weighted highlighting attention in different470

numbers of heads and layers in the encoder of our proposed model. In this experi-

ment, we adopt the weighted highlighting attention mechanism on each head of our

KPAT model. The results on the test set of Multi-News are summarized in Table 7. It

reveals that adopting it in a quarter of the heads and half of layers achieves the best

performance. We discover adopting highlighting attention in a subset of heads surpass475

adopting it in all heads. Applying the multi-head highlighting attention on all layers

of the encoder is also not optimal. One possible reason is that the different heads and

layers in the transformer encoder attend to different types of information.

Multi-head attention in the transformer model [47] is designed for jointly attend-

ing to information from different representation sub-spaces. Voita et al. [48] find the480

heads in transformer model trained on the neural machine translation dataset have one

or more specialized functions and focus on different types of information, including

the adjacent tokens, syntactic relations, and rare words. Adopting the highlighting at-

tention in all heads and layers may affect the transformer-based model to encode other

types of useful information and lead to performance degradation.485

Table 7: Evaluation results on highlighting different numbers of heads and layers.

KPAT (Weighted) R-1 R-2 R-SU

1/4 Heads 1/2 Layers 45.30 15.96 18.62
1/2 Heads 1/2 Layers 44.61 15.60 18.16
All Heads 1/2 Layers 44.42 15.36 17.92

1/4 Heads All Layers 44.58 15.43 18.02
1/2 Heads All Layers 44.67 15.54 18.11
All Heads All Layers 44.35 15.23 17.90

8.4. Impact of the key phrase extractor

We compare the performance of introducing different key phrase extractors’ results

and different numbers of key phrases into our proposed model. Since there are usually

no key phrase labels in the summarization datasets, we only focus on unsupervised

25

extraction methods. We adopt and compare the tf-idf [41] based extractor and two490

graph-based ranking methods: TopicRank [6] and PositionRank [15]. The extracted

key phrases and their importance scores can be used to build the highlighting matrices

and then integrated into our abstractive summarization model.

The evaluation results in Table 8 and Table 9 suggest that introducing key phrases

extracted by the PositionRank algorithm can achieve the best results on the two datasets.495

As discussed in sub-section 3.2, PositionRank assigns larger probabilities to words

found early or frequently in a given document. It can meet the phenomenon that key-

phrases generally occur on positions close to the beginning of a document and occur

frequently [15].

When it comes to the number of key phrases for each example, selecting the top-500

10 key phrases performs well on the PubMed dataset. Considering PubMed is a SDS

dataset, ten key phrases can be enough for one input document. But it seems not enough

for the multiple input documents in each example since the multiple input documents

may contain more information and key phrases. And we discover selecting the top-20

key phrases performs better on the Multi-News dataset.505

Table 8: Impact of different key phrases selection settings on the Multi-News test set.

Key phrase extractor R-1 R-2 R-SU

tf-idf (top-10) 44.56 15.63 18.00
tf-idf (top-20) 44.84 15.80 18.21

TopicRank (top-10) 44.53 15.29 17.97
TopicRank (top-20) 45.24 15.93 18.56

PositionRank (top-10) 44.70 15.73 18.12
PositionRank (top-20) 45.30 15.96 18.62

8.5. Ablation study

The ablation studies aim to validate the effectiveness of individual components in

our proposed model. Table 10 and Table 11 summarize the results of ablation studies on

the two datasets. The results confirm that incorporating the highlighting attention and

the block-wise linear transformation on the block diagonal highlighting matrix is ben-510

eficial for both single document summarization and multi-document summarization.

26

Table 9: Impact of different key phrases selection settings on the PubMed test set.

Key phrase extractor R-1 R-2 R-SU

tf-idf (top-10) 39.88 15.70 16.06
tf-idf (top-20) 39.43 15.55 15.96

TopicRank (top-10) 39.48 15.73 15.91
TopicRank (top-20) 39.28 15.58 15.85

PositionRank (top-10) 40.04 15.82 16.24
PositionRank (top-20) 39.64 15.70 15.99

Table 10: Ablation study on the Multi-News test set. ”block linear” denotes the block-wise linear transfor-
mation on the block diagonal highlighting matrix

R-1 R-2 R-SU

KPAT model 45.30 15.96 18.62
w/o block linear 44.62 15.57 18.06
w/o highlighting attention 43.57 14.03 17.37
w/o self-attention 42.54 14.40 16.54

Table 11: Ablation study on the PubMed test set. ”block linear” denotes the block-wise linear transformation
on the block diagonal highlighting matrix

R-1 R-2 R-SU

KPAT model 40.04 15.82 16.24
w/o block linear 39.68 15.62 15.95
w/o highlighting attention 38.81 14.99 15.39
w/o self-attention 37.63 14.87 15.14

We also tried replacing the self-attention in a quarter of the heads and half of layers

with the highlighting matrices directly. And the performance degradation reveals that

it is important to combine the attention weight with the phrase importance.

9. Conclusion and future work515

In this paper, we propose the Key Phrase Aware Transformer (KPAT), a novel ab-

stractive summarization model with the highlighting mechanism in the encoder to as-

sign greater attention weights for tokens within key phrases. The highlighting mecha-

nism mainly comprises three parts: the highlighting matrix, the highlighting attention,

and the multi-head highlighting attention. We build a block diagonal highlighting ma-520

27

trix for each input token sequence and adopt the block-wise linear transformation on

the highlighting matrix to adjust the scale of phrases’ importance scores. For each head

in the KPAT model, we propose and compare two structures of highlighting attention.

Besides, we also compare the effects of adopting the highlighting attention in different

numbers of heads and layers in the encoder of our KPAT model. The experimen-525

tal results exhibit the effectiveness of our proposed model on different summarization

tasks and datasets from different domains. In future work, we intend to incorporate

multi-granularity features of input documents, including the phrase-level, sentence-

level, paragraph-level, and document-level features, into the transformer-based sum-

marization models and evaluate them on different datasets.530

References

[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. CoRR, abs/1409.0473, 2015.535

[3] R. C. Belwal, S. Rai, and A. Gupta. Text summarization using topic-based vector

space model and semantic measure. Information Processing & Management, 58

(3):102536, 2021.

[4] A. Benzer, A. Sefer, Z. Ören, and S. Konuk. A student-focused study: Strategy

of text summary writing and assessment rubric. Education & Science/Egitim ve540

Bilim, 41(186), 2016.

[5] S. Bird, E. Klein, and E. Loper. Natural language processing with Python: ana-

lyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[6] A. Bougouin, F. Boudin, and B. Daille. Topicrank: Graph-based topic ranking

for keyphrase extraction. In International joint conference on natural language545

processing (IJCNLP), pages 543–551, 2013.

28

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[8] S. Chopra, M. Auli, and A. M. Rush. Abstractive sentence summarization with

attentive recurrent neural networks. In HLT-NAACL, 2016.550

[9] M.-h. Chou. Implementing keyword and question generation approaches in teach-

ing efl summary writing. English Language Teaching, 5(12):36–41, 2012.

[10] H. Christian, M. P. Agus, and D. Suhartono. Single document automatic text sum-

marization using term frequency-inverse document frequency (tf-idf). ComTech:

Computer, Mathematics and Engineering Applications, 7(4):285–294, 2016.555

[11] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Go-

harian. A discourse-aware attention model for abstractive summarization of long

documents. In Proceedings of NAACL-HLT, pages 615–621, 2018.

[12] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in

text summarization. Journal of artificial intelligence research, 22:457–479, 2004.560

[13] A. R. Fabbri, I. Li, T. She, S. Li, and D. Radev. Multi-news: A large-scale

multi-document summarization dataset and abstractive hierarchical model. In

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 1074–1084, 2019.

[14] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psycholog-565

ical bulletin, 76(5):378, 1971.

[15] C. Florescu and C. Caragea. Positionrank: An unsupervised approach to

keyphrase extraction from scholarly documents. In Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1105–1115, 2017.570

[16] S. Gehrmann, Y. Deng, and A. M. Rush. Bottom-up abstractive summarization. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 4098–4109, 2018.

29

[17] S. Gupta and S. Gupta. Abstractive summarization: An overview of the state of

the art. Expert Systems with Applications, 121:49–65, 2019.575

[18] S. Hargreaves and J. Crabb. Study Skills for Students with Dyslexia: Support for

Specific Learning Differences (SpLDs). Sage, 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778. IEEE Computer Society, 2016.580

[20] K. M. Hermann, T. Kočiskỳ, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,

and P. Blunsom. Teaching machines to read and comprehend. In Proceedings

of the 28th International Conference on Neural Information Processing Systems-

Volume 1, pages 1693–1701, 2015.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,585

abs/1412.6980, 2015.

[22] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-

source toolkit for neural machine translation. In Proceedings of ACL 2017, System

Demonstrations, pages 67–72, 2017.

[23] L. Lebanoff, K. Song, and F. Liu. Adapting the neural encoder-decoder frame-590

work from single to multi-document summarization. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 4131–

4141, 2018.

[24] C. Li, W. Xu, S. Li, and S. Gao. Guiding generation for abstractive text summa-

rization based on key information guide network. In NAACL-HLT, 2018.595

[25] H. Li, J. Zhu, J. Zhang, C. Zong, and X. He. Keywords-guided abstractive sen-

tence summarization. In Proceedings of the AAAI Conference on Artificial Intel-

ligence, volume 34, pages 8196–8203, 2020.

[26] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out, pages 74–81, 2004.600

30

[27] H. Lin and V. Ng. Abstractive summarization: A survey of the state of the art. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

9815–9822, 2019.

[28] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and

N. Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint605

arXiv:1801.10198, 2018.

[29] Y. Liu and M. Lapata. Hierarchical transformers for multi-document summariza-

tion. In Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 5070–5081, 2019.

[30] Y. Liu and M. Lapata. Text summarization with pretrained encoders. In Proceed-610

ings of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 3721–3731, 2019.

[31] Y. Lu, Y. Dong, and L. Charlin. Multi-xscience: A large-scale dataset for extreme

multi-document summarization of scientific articles. In Proceedings of the 2020615

Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 8068–8074, 2020.

[32] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of

the 2004 conference on empirical methods in natural language processing, pages

404–411, 2004.620

[33] B. Mutlu, E. A. Sezer, and M. A. Akcayol. Candidate sentence selection for

extractive text summarization. Information Processing & Management, 57(6):

102359, 2020.

[34] R. Nallapati, B. Zhou, C. D. Santos, Çaglar Gülçehre, and B. Xiang. Abstractive

text summarization using sequence-to-sequence rnns and beyond. In CoNLL,625

2016.

31

[35] C. Napoles, M. R. Gormley, and B. Van Durme. Annotated gigaword. In Pro-

ceedings of the Joint Workshop on Automatic Knowledge Base Construction and

Web-scale Knowledge Extraction (AKBC-WEKEX), pages 95–100, 2012.

[36] E. Papagiannopoulou and G. Tsoumakas. A review of keyphrase extraction. Wiley630

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2):e1339,

2020.

[37] A. Parker, E. Wilding, and C. Akerman. The von restorff effect in visual ob-

ject recognition memory in humans and monkeys: The role of frontal/perirhinal

interaction. Journal of cognitive neuroscience, 10(6):691–703, 1998.635

[38] R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive

summarization. ArXiv, abs/1705.04304, 2018.

[39] L. Rello, H. Saggion, and R. Baeza-Yates. Keyword highlighting improves com-

prehension for people with dyslexia. In Proceedings of the 3rd Workshop on Pre-

dicting and Improving Text Readability for Target Reader Populations (PITR),640

pages 30–37, 2014.

[40] A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive

sentence summarization. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 379–389, 2015.

[41] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.645

Information processing & management, 24(5):513–523, 1988.

[42] Y. Sankarasubramaniam, K. Ramanathan, and S. Ghosh. Text summarization

using wikipedia. Information Processing & Management, 50(3):443–461, 2014.

[43] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with

pointer-generator networks. In Proceedings of the 55th Annual Meeting of the650

Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–

1083, 2017.

32

[44] E. Sharma, C. Li, and L. Wang. Bigpatent: A large-scale dataset for abstractive

and coherent summarization. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 2204–2213, 2019.655

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The jour-

nal of machine learning research, 15(1):1929–1958, 2014.

[46] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference660

on computer vision and pattern recognition, pages 2818–2826, 2016.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017.

[48] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-head665

self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 5797–5808, 2019.

[49] H. Von Restorff. Über die wirkung von bereichsbildungen im spurenfeld. Psy-

chologische Forschung, 18(1):299–342, 1933.670

[50] X. Wang, M. Nishino, T. Hirao, K. Sudoh, and M. Nagata. Exploring text links for

coherent multi-document summarization. In Proceedings of COLING 2016, the

26th International Conference on Computational Linguistics: Technical Papers,

pages 213–223, 2016.

[51] S. Xu, H. Li, P. Yuan, Y. Wu, X. He, and B. Zhou. Self-attention guided copy675

mechanism for abstractive summarization. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 1355–1362,

2020.

[52] J.-g. Yao, X. Wan, and J. Xiao. Recent advances in document summarization.

Knowledge and Information Systems, 53(2):297–336, 2017.680

33

[53] C. L. Yue, B. C. Storm, N. Kornell, and E. L. Bjork. Highlighting and its relation

to distributed study and students’ metacognitive beliefs. Educational Psychology

Review, 27(1):69–78, 2015.

34

	Introduction
	Objectives and contribution
	Related work
	Automatic text summarization
	Key phrase extraction

	Preliminaries
	Encoder and decoder in transformer
	Attention in transformer

	Proposed method
	Data preparation
	Input documents pre-processing
	Phrase importance assessment

	Key phrase aware transformer model
	Model architecture
	Highlighting matrix
	Highlighting attention
	Multi-head highlighting attention

	Datasets
	Experiments
	Data pre-processing
	Experimental setting
	Baselines
	Extractive methods
	Abstractive methods

	Evaluation metrics

	Results and discussion
	Automatic evaluation results
	Human evaluation results
	Impact of the multi-head highlighting attention
	Impact of the key phrase extractor
	Ablation study

	Conclusion and future work

