Hindawi

Mathematical Problems in Engineering
Volume 2021, Article ID 1392362, 15 pages
https://doi.org/10.1155/2021/1392362

Hindawi

Research Article

Key Points Tracking and Grooming Behavior Recognition of
Bactrocera minax (Diptera: Trypetidae) via DeepLabCut

Wei Zhan ©,' Yafeng Zou,' Zhangzhang He,” and Zhiliang Zhang"

ISchool of Computer Science, Yangtze University, Jingzhou 434023, China
2Insect Ecology Laboratory, College of Agriculture, Yangtze University, Jingzhou 434025, China

Correspondence should be addressed to Wei Zhan; zhanwei814@yangtzeu.edu.cn
Received 28 June 2021; Revised 16 July 2021; Accepted 22 July 2021; Published 3 August 2021
Academic Editor: Yunchao Tang

Copyright © 2021 Wei Zhan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Statistical analysis of Bactrocera grooming behavior is important for pest control and human health. Based on DeepLabCut, this
study proposes a noninvasive and effective method to track the key points of Bactrocera minax and to detect and analyze its
grooming behavior. The results are analyzed and calculated automatically by a computer program. Traditional movement tracking
methods are invasive; for instance, the use of artificial pheromone may affect the behavior of Bactrocera minax, thus directly
affecting the accuracy and reliability of experimental results. Traditional research studies mainly rely on manual work for behavior
analysis and statistics. Researchers need to play the video frame by frame and record the time interval of each grooming behavior
manually, which is time-consuming, laborious, and inaccurate. So the advantages of automated analysis are obvious. Using the
method proposed in this paper, the image data of 94538 frames from 5 adult Bactrocera were analyzed and 14 key points were
tracked. The overall tracking accuracy was as high as 96.7%. In the behavior analysis and statistics, the average accuracy rate of the
five grooming behavior was all above 96%, and the accuracy rate of the remaining two grooming behavior was over 87%. The
experimental results show that the automatic noninvasive method designed in this paper can track many key points of Bactrocera
minax with high accuracy and ensure the accuracy of insect behavior recognition and analysis, which greatly reduces the manual
observation time and provides a new method for key points tracking and behavior recognition of related insects.

1. Introduction

Bactrocera minax is one of the most serious pests in citrus
[1]. Since the 1960s, citrus diseases and insect pests have
been increasing year by year. The economic losses caused by
Bactrocera minax are as high as 300 million yuan per year,
and its resulting rotten of citrus endangers human health [2].
It has been confirmed that inhibition of grooming behavior
increases mortality in insect-pathogen bioassay [3, 4].
Grooming behavior provides effective solutions for Bac-
trocera minax control.

First of all, let us introduce what is grooming behavior.
Grooming is a broad definition, including all forms of body
surface care. For animals, grooming is a very important
activity for healthy survival [5] and is also a very common
behavior [6]. Grooming has multiple functions: removing
foreign dust particles from the epidermis and the surface of

sensory organs [7], removing secretions and epidermal lipids
from the soiled body surface [8, 9], collecting pollen particles
as food [10], and removing external parasites or pathogens
[11-16]. The grooming behavior of insects is a very im-
portant part of their defense mechanism [17]. The role of
insect grooming and hygienic activities is gaining recogni-
tion in the field of insect pathology [18]. Hygienic behavior
has been shown to play a key role in disease prevention in
insects [19, 20].

The researchers needed to do a lot of experiments in Petri
dishes in the exact same environment. They used special
drugs to inhibit the grooming behavior of the insects. At this
point, they need to perform a large number of statistics on
the effects of different drugs on grooming behavior. At
present, the key point tracking technology in the field is to
add markers on the body of insects, which may interfere with
the action of Bactrocera minax and affect the experimental
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results. In biomechanics, genetics, behavior, and neurosci-
ence, extracting animal behavior without using markers is
usually the key to measure behavior effect [21]. In traditional
Bactrocera minax behavior studies, researchers mainly rely
on manual work to obtain the behavior time parameters and
observe, analyze, and record the times of each behavior by
playing videos frame by frame [22], which is a very time-
consuming, labor-consuming, boring process, and the rel-
ativity is extremely low. On the contrary, the progress of
computer vision constantly inspires data analysis methods to
reduce manual labor [23-27]. Computer vision and deep
learning have been widely used in different areas, such as
medical diagnosis [28], detection of COVID-19 [29], defect
detection in the industry [30], classification of crop pests in
agriculture [31], face recognition in life [32], and automatic
driving of car application [33]. Technologies bring us a lot of
convenience. Domestic and international research on animal
behavior classification technology and target tracking
technology has been strengthened, and certain progress has
been made [34-37]. We have tried some deep learning al-
gorithms, such as ABRS, which can only find the time point
of different behavior switching in a complex environment
but cannot track target or recognize the accurate grooming
behavior [38]. Another deep learning algorithm is Deep-
LabCut, which can track the target key points but cannot
solve the behavior classification problem [32]. Thus, it is not
suitable for our environment. So we want to integrate the
characteristics of these two algorithms to invent a new al-
gorithm, which can not only accurately track key points but
also identify and classify insect behavior.

The main purpose of this paper is to develop an algo-
rithm that can automatically track the trajectory of Bac-
trocera minax key points and accurately identify its
grooming behavior, so as to get rid of the invasive and
artificial analysis process of Bactrocera minax grooming
behavior. We used the DeepLabCut open-source toolkit and
optimized it further for our specific needs. We extended the
training data by data enhancement technology, chose the
residual network (ResNet-50) as the backbone network,
identify the key points of Bactrocera minax using optimized
DeepLabCut algorithm, and filter the abnormal jitter points.
Then we detected and classified the grooming behavior
through the relative position relationship of the key points.
Finally, 14 key points tracking, grooming behavior recog-
nition, and time interval statistics of Bactrocera minax were
realized.

2. Materials and Methods

2.1. Experimental Equipment and Environment. The com-
puter hardware device GPU used in this experiment is an
NVIDIA 1660Ti, CPU is Intel Core i5-9300h, 16 GB ram;
software development environment is Python 3.6, using
TensorFlow GPU 1.14.0, using the open-source toolbox
DeepLabCut 2.1.5, mainly using libraries such as NumPy
1.17.3, OpenCV 3.4.5, and Matplotlib 3.1.1.

The grooming behavior videos were recorded by Sony
camera (Sony, hxr-mc58c) of 5 adult Bactrocera. The
shooting time was from May to August in 2019. It was a
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captive laboratory colony. The detailed culture conditions
are illustrated in this paper: feeding behavior of Bactrocera
minax (Diptera: Trypetidae) on male inflorescence of Cas-
tanea mollissima (Fagales: Fagaceae) [22]. The shooting
resolution is 1920 x 1080, and the frame rate is 25 frames/s.
The size of the culture dish (35x20mm) allows the Bac-
trocera minax to move freely in the dish.

2.2. Experimental Methods

2.2.1. Data Acquisition and Processing. High-definition
camera was used to record the adult video of Bactrocera
minax (Figure 1(a)). We manually capture the key frames in
the original video and increased the proportion of pixels
occupied by the target. It meant that the screenshots were
taken with as little background as possible and then use it as
training data of neural network. We can also automatically
capture the key frames through the DeepLabCut open-
source toolbox to save time and improve efficiency [21], but
the effect of model training will not be so good. Our data
preprocessing was divided into four processes, as shown in
Figure 1(b). In the process of image data filtering, we re-
moved the samples with fuzzy, obviously noisy image data,
and saved samples that contain most of the key points. In
order to make the training model more accurate, the
methods of flipping, changing scale, and changing contrast
were used to expand the original image to generate similar
image data in the process of image data expansion [39]. In
the last step of data annotation, we marked the key points to
be detected (Figure 1(c)), including head, left antennae, right
antennae, left side of the body, the right side of the body, left
forefoot, right forefoot, left middle foot, right middle foot,
left hindfoot, right hindfoot, left wing, right wing, and head.

2.2.2. Training Model. To meet the needs of the insect be-
havior researcher, we choose the suitable backbone network,
adjust model hyperparameters, optimize DeepLabCut, and
design behavior recognition algorithms.

Bactrocera minax’s key points are difficult to identify
because of their small joints and fast movements. In order to
improve the recognition accuracy, we deepen the number of
neural network layers to extract more feature information.
However, as the number of network layers is too much, the
analysis rate was reduced. The backbone of the neural
network we choose is ResNet-50 [21, 40] (Figure 2). The
analysis speed of neural network in the same depth is greatly
accelerated, and the performance degradation caused by
network deepening was effectively solved [40].

At this time, we divided the labeled images into a
training set and a validation set at a ratio of 8 to 2, and then
through the neural network, the batch size is 8. The training
adopts batch processing, and multiple images were pro-
cessed at a time, so the size of the pictures should be
consistent. If the size of the input image does not meet the
required size, we will shrink the shorter side randomly to
between 256 and 480 pixels, and the long side and the short
side were scaled in equal proportion to ensure the length-to-
width ratio of the image remains unchanged, and then, it was
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FIGURE 1: Acquisition and processing of data of adult Bactrocera minax. (a) Experimental recording environment of Bactrocera minax, grid
size=1mm. (b) Data preprocessing process. (c) We mark the key points of the intercepted images, and the key points are selected from the

experimental parts.

randomly cut into multiple 224 x 224 pictures. The loss
function is Huber loss:

0.5% Y X7, 1X| <k,
Huber loss = ! (1)
n
kx Y 1X|-05%K,  |X|>k.
1

The loss value is calculated by forwarding propagation,
and the weight and bias are updated by backpropagation to
achieve the purpose of training parameters, where k is set to 1.

Using the method of migration learning [41-43], the
parameters of the ImageNet dataset pretraining model are
taken as initialization parameters. ImageNet dataset includes
more than 20,000 class targets, and more than 14 million
image URLSs are manually annotated by ImageNet. Using the
ImageNet dataset as input and training weight as initiali-
zation parameter can get better weight parameters faster.
Figure 3 shows the process of model training and video
analysis.

Then, the annotation dataset in Section 2.2.1 is used as
input to the neural network. If the training result always fails

to achieve the specified accuracy, it is necessary to expand
the dataset and adjust the training hyperparameters. After a
large number of experiments, we set the learning rate of the
hyperparameters as a ladder, the first 10,000 times of iter-
ative learning rate is 0.005, the 10,000 to 400,000 times
learning rate is set to 0.002, and the latter learning rate is set
to 0.001.

We evaluate the training model (the results of the model
evaluation are shown in Figure 4(a)) and optimize the
model. First, the model is used to analyze the video, extract
the wrong prediction frames, correct the key points of the
error detection, manually move to the correct position, and
train again. Then we can get a better and more accurate
model by repeating the above training process. After re-
peating iterative training and parameter adjustment, we
finally get a better model. We input the video into this
trained model to obtain the coordinates and probability
(confidence level) each key point and save this information
in the CSV table, which is used to the key points tracking,
grooming behavior recognition, and statistics of Bactrocera
minax in Section 2.2.3. If the Bactrocera minax move
quickly, the camera will not be able to accurately capture the
location of the key points, and the image will be blurred,
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FIGURE 2: Train a deep neural network (DNN) architecture to
predict the body part locations on the basis of the corresponding
image.

such as the wing in Figure 4(b). Another possibility is that
the key points are hidden behind the body, such as the left
hindfoot in Figure 4(c).

2.2.3. Keypoints Tracking, Grooming Posture Recognition,
and Statistics of Bactrocera minax. On the premise of
tracking key points with high accuracy, the method used in
this paper classifies grooming behavior by the location re-
lationship of key points. At this time, we found out the
relationship between behavior and key points through long-
term observation of giant Bactrocera minax behavior. Be-
cause the culture dish is placed vertically, the citrus fly
cannot groom its body with its forefoot and hindfoot at the
same time; otherwise, it cannot be adsorbed on the culture
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FIGURE 3: Process of model training and video analysis.

dish. Traversing the coordinates of each key point, if the
pixel of the forefoot coordinate changes and the hindfoot
remains unchanged, the behavior is divided into the first
category (the forefoot grooming, midfoot with the forefoot
grooming, and the antennae grooming). If the coordinates of
the hindfoot change continuously and the forefoot remains
unchanged, the behaviors are divided into the second cat-
egory (the wings grooming, hindfoot grooming, the abdo-
men grooming, and midfoot with the hindfoot grooming). If
the coordinates of forefoot, midfoot, and hindfoot are
constantly changing, it is the moving process of Bactrocera
minax, and the behavior detection is excluded. Then, the
grooming behavior of each part is represented by the co-
ordinate relationship of the key points. Figure 5 shows the
states of seven grooming behaviors of machine analysis.

Figure 5 shows still images of the seven different
grooming behaviors. The seven behaviors in Figure 6 cor-
respond to those in Figure 5 one by one, reflecting more
clearly the coordinate relationship and movement law of
each carding behavior.

After a lot of experiments and comparison with the
original video, we set the confidence level of 0.8 as the
detection threshold. When it is lower than 0.8, the coor-
dinates are not accurate. But we still want to find the slightly
correct coordinates of these key points. We use median
function to eliminate noise:

_X0+X1+X2+X3+X4+X6+X7+X7+X8+X9

X
> 10

(2)

Although the coordinates of these key points are not
accurate, the motion is continuous, and blur or occlusion of
a single image does not affect the judgment. So we can
predict the action in this frame as the same as that in the
previous frame. We analyze the behavior of each frame and
then save the frame number in the list, and each different
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FIGURE 4: The results of model evaluation and two cases of inaccurate positioning of key points. (a) The cross is the result of manual marking
and the circle is the result of machine analysis. (b) The rapid movement of the Bactrocera minax causes its wings to blur. (c) The left hindfoot

of the Bactrocera minax is covered by the body.

behavior is stored in its own list. If it is detected that the
coordinate relationship of each key point in a frame does not
meet any of the above classification rules, the system cannot
predict the behavior at this time. It will automatically play
the first 10 frames and the last 10 frames of the current frame
and help the system predict the frame through the staff
confirmation, so as to ensure the correct classification of the
behavior.

Figure 7 shows a simple illustration of the general
process of our experiments.

The Bactrocera minax video recorded by Sony camera
(Sony, hxr-mc58c) is transferred to the server, and the video
data are loaded into the neural network model. We analyze
the video through the trained model to get the coordinates of
each key point. All frame numbers of the video are stored in
different behavior lists through coordinate relationship.
Read these lists, there may be some similar grooming

behaviors leading to classification errors. So the list may miss
some frames or store the frame number of other behaviors.
In order to further reduce the error, we need to eliminate
some error detection, so we use the following methods to
reduce the error of statistical time (Figure 8).

The black square is the frame number stored in the list
(correct frame detection), and white squares are the frame
number that are not stored in this list. Let us assume that the
video has 27 frames, among them, grooming behavior X
occurred in 1-26 frames. So correct frame detection is 1, 2, 4,
6, 8, 11, 12, 14, 16, 18, 20, 22, 24, and 26, and missed de-
tection is 3, 5, 7, 9, 10, 13, 15, 17, 19, 21, 23, and 25. There is
no behavior at frame 27. We need to recover frames that
were not detected correctly. So we create a window with a
size of 25. Starting from the first frame, we can see that 25
frames are selected in the red window (1-25 frames, 25
frames is 1 second, which depends on the number of frames
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FIGURE 5: Seven grooming posture of Bactrocera minax. (a) Forefoot and midfoot reciprocal grooming. (b) Forefoot grooming. (c) Antennae
grooming. (d) Midfoot and hindfoot reciprocal grooming. (e) Wing grooming. (f) Hindfoot grooming. (g) Abdomen grooming.

of video recording). We assume that more than half of these
25 frames are classified as the behavior X. In other words,
there are more than 13 black squares in the red window. We
judge that the behavior X occurred in 1-25 frames and the
detection is correct; otherwise, the detection is wrong. When
the detection is correct, we record the first of 25 frames as the
beginning time of the behavior. Next, we need to find the end
time of the behavior. To avoid missing any frame, we use the
sliding window method (stride=1) to analyze the next 25
frames (2-26) from the second frame and then the next 25
frames (3-27) from the third frame and so on. At this time,
we have saved start time. If 2-26 frames are also detected
correctly, the start time is still the first recorded frame, and
no change is made until it is detected incorrectly. If the
detection is not correct, in other words, there are less than 13
black squares in the red window. Obviously, we can see that
on the third detection (3-27), there are only 12 black squares
in the red window. The condition of correct detection is not

time of method statistics in this paper

satisfied. So the last frame of these 25 frames is not grooming
behavior X. Now we will use the last frame of behavior X (the
last black square, frame 26) as the end time of the behavior.
In this way, we find the start and the end time of behavior X,
which is the exact time period when behavior X first appears
in the video. Similarly, if the list stores hundreds of frame
numbers instead of just these 27 frames, then we start from
the end frame (frame 27), repeat the above operation, and
find the start frame and end frame again. In this way, we can
find the specific time of all grooming behaviors X in the
video. Similarly, read the other list, classify all behaviors, and
record the time. We also invite entomologists to help us
manually count the duration of each grooming behavior in
the video. They observe, analyze, and record the times of
each behavior by playing videos frame by frame. Finally, they
count the duration of each grooming behavior, and the time
unit is seconds. Then we calculate the accuracy (equation
(3)) and difference (equation (4)) between the two methods:

accuracy =

time of manual statistics — time of method statistics in this paper

(3)

time of manual statistics

(4)

difference =

time of manual statistics

Figure 9 shows the video analysis process.
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FIGURE 6: Movement law and coordinate relationship of seven grooming behaviors. (a) In the process of the forefoot and midfoot reciprocal
grooming: one midfoot is close to one or more forefeet. (b) In the process of grooming the forefeet: the forefeet are close together. (c) In the
process of the antennae grooming: the forefoot and antennae move at the same time and the coordinates change constantly. (d) In the
process of the hindfoot and midfoot reciprocal grooming: one midfoot is close to one or more hindfoot. (e) In the process of wing grooming:
the coordinates of hindfoot and wing change constantly. (f) In the process of hindfeet grooming: the hindfeet are close together. (g) In the
process of the abdomen grooming: hindfeet grooming is similar to abdomen grooming, only hindfeet movement, but in the process of

abdomen grooming, hindfeet are not close together.

3. Experimental Results

The video of Bactrocera minax collected in the laboratory of
oriental Bactrocera minax in Agricultural College of Yangtze
University in May 2019 was selected as the evaluation
sample. The collected videos were 25 frames, with a reso-
lution of 1920 %1080. 224 images intercepted from ten
videos were marked with “left antennae,” “right antennae,”
“left side of the body,” “right side of the body,” “left fore-
foot,” “right forefoot,” “left midfoot,” “right midfoot,” “left
hindfoot,” “right hindfoot,” “left wing,” “right wing,” “head,”
and “abdomen” with a total of 3136 data. The training results

of ResNet-50 are shown in Figure 10. The validation loss
value of the first 100,000 cycle training of the network
decreases rapidly, and the loss value reduces to 0.00211.
Finally, the loss has converged to the specified range of 0.001
passing through 412200 iterations. After 441600 repeated
iterations, the loss value tends to be stable, and the final
validation loss is 0.00079, which has reached the training
goal [21]. We also tried to use another neural network
resnet_101 to train. At first, it got better results than ResNet-
50. After a lot of iterations, their loss value was almost the
same. But it takes more time to detect [37], so ResNet-50 is
still a better choice.
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Figure 8: Elimination of false detection and recovery of missed detection.

We used a single 1660ti GPU to analyze the video of
Bactrocera minax with an average duration of 12 minutes.
The running time experiment results are shown in Figure 11,
with the unit of minutes.

It can be seen from Figure 11 that, for a video with
1920 x 1080 pixels and a duration of about 12 minutes, the
analysis time of 6G 1660ti GPU is about 45 minutes, and the
processing speed is about 7 Hz. When we use hardware with
good performance to handle video with different resolutions,
for instance, one can process the 682 x 540 pixel frames at

around 30Hz on an NVIDIA 1080Ti GPU, and low-reso-
lution videos with 204 X162 pixel frames are analyzed at
around 85 Hz [44]. This means that when we deal with small-
resolution video with better hardware, we can process data
in real time. For humans, we cannot do the same endless
counting as machines because the process is time-con-
suming and tedious. Therefore, it is difficult to calculate their
exact time. If you exclude breaks, a 12-minute video usually
takes about 5 hours, which is 6-7 times longer than a
machine.
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Finally, after analyzing the video with the program, we
get the coordinate information of our 14 key points, and the
program stores them in the table file. In this experiment, we
analyze the data of 94538 frames from 5 videos of no. 01-05
and summarize the confidence level of machine detection of
each key point (Table 1).

From Table 1, we can select the coordinates of key points
greater than a certain confidence level according to our
accuracy requirements and select reliable and satisfactory
data. In this experiment, we need to count the specific time
interval of the grooming behavior of Bactrocera minax and
have high requirements for the accuracy of the key points.
We can see that the confidence level only decreases by
0.261% when it is increased from 0.9 to 0.95, while the
accuracy decreases by 0.855% when it is increased from 0.9
to 0.99, which is a larger decrease. This means that we will
discard more key point information, of which perhaps most
of the key point detection is accurate, and 0.95 confidence is
already a very high value. Therefore, we choose the

experimental threshold with a confidence level greater than
0.95. The recognition rate of the key points whose confidence
level is greater than 0.99 has an overall target tracking ac-
curacy of more than 96.720%. Figure 12 shows the detailed
video detection results corresponding to each adult fly whose
confidence level is greater than 0.99.

In similar papers on machine learning and deep learning
algorithms, we use the same video data for testing, and their
accuracy rates of tracking key points are shown in Table 2.
We have achieved 95.2% accuracy with the original Deep-
LabCut algorithm [44]. In fast animal pose recognition using
deep neural networks, we use the same training data and it
results in 94.6% of peak performance [45].

There is no suitable algorithm to complete similar tasks
in the classification and statistics of the grooming behavior
of Bactrocera minax. Therefore, we compare the results of
machine prediction in our manuscript with the results of
expert manual statistics. Table 3 records the statistical results
of the above two methods.



Mathematical Problems in Engineering

49
48
47
46

45

Runtime (min)

44

43

42

41

Video 1 Video 2

Video 3

11

Video 4 Video 5

Video number

B First run
I Second run
I Third run

Fourth run
I Fifth run
[ Average

FIGURE 11: Statistics of computer analysis video time consumption.

TaBLE 1: Confidence level of key points.

The confidence level is

The confidence level is

The confidence level is The confidence level is

Key points lower than 0.8 (%) greater than 0.9 (%) greater than 0.95 (%) greater than 0.99 (%)
Head 0.181 99.730 99.666 99.490
Left antenna 1.355 98.374 98.129 97.618
Right antenna 0.983 98.750 98.542 97.888
Left forefoot 3.243 96.365 96.024 95.287
Right forefoot 2.062 97.588 97.264 96.442
Left side of body 0.109 99.850 99.828 99.774
Right side of body 0.186 99.741 99.686 99.540
Left middle foot 4.405 95.109 94.651 93.408
Right middle foot 3.628 95.906 95.689 95.305
Left hindfoot 2.938 96.198 95.327 93.606
Right hindfoot 6.990 92.414 91.825 90.630
Left wing 2.207 97.803 97.697 97.433
Right wing 1.431 98.404 98.268 97.954
Abdomen 0.116 99.829 99.800 99.709
Average value 2.131 97.57 97.314 96.720

4, Discussion

In terms of computer vision, a lot of machine learning image
processing models and deep learning models have been
developed to accurately classify and identify crop pests
[46, 47] and a key points tracking and grooming behavior
recognition system of Bactrocera minax has been developed
inspired by human behavior estimation [48]. The accuracy of
traditional machine vision classification mainly depends on
the input features. The extracted features are mainly shape,
color, texture, and so on, which are usually made by hand,
and the original data are converted into feature vectors
[49-51]. Some researchers have classified some behaviors of
mice, chickens, and other animals [52-54], and they have a

good effect on large and obvious targets. There is no good
solution for small targets such as Bactrocera minax because
its body color is similar and the characteristics are not
obvious. Therefore, like many researchers, we improve the
accuracy rate by applying the deep learning model [55],
which is a method to automatically extract abstract features
[56] without the need of manual operation. However, in the
actual environment, due to the small target and poor video
quality of the Bactrocera minax, many open-source models
cannot meet the needs of the scene. For example, YOLOv4
[57], which was recently published this year, has a high
accuracy rate in target detection and is widely used, but it
still cannot accurately detect, identify, and track the small
key points of Bactrocera minax. DeepLabCut [44] can
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FIGURE 12: The detailed video detection results corresponding to each adult fly.

TaBLE 2: Comparison of several detection methods.

Methods

Original DeepLabCut algorithm
LEAP algorithm
Methods of this paper

Test set accuracy (%)

95.2
94.6
96.7

manually select the key points needed for the experiment to
mark and then track the movement of the target key points,
but it is unable to classify and record the behavior changes of
Bactrocera minax. In view of their shortcomings, the method
adopted in this paper classifies the grooming behavior
through the location of key points on the premise of tracking
key points with high accuracy.

This experiment is a noninvasive key point tracking of
Bactrocera minax. At present, the key point tracking tech-
nology in the field is to add markers on the body of insects,
which may interfere with the action of Bactrocera minax and
affect the experimental results. In biomechanics, genetics,
behavior, and neuroscience, extracting animal behavior
without using markers is usually the key to measure behavior
effect [21]. The above experiments and the experimental
results show that we have successfully and accurately tracked
the movement track of Bactrocera minax, and the key points
of its body parts using the computer with an overall accuracy
rate are of over 96.7% (the confidence level is greater than
0.99). Compared with the original DeepLabCut algorithm
[44] with target tracking accuracy rate of 95.2% and deep
learning algorithm with LEAP [45] accuracy rate of 94.6%,
the accuracy of the method used in this paper has been
improved. In the statistical analysis of grooming behavior,
the average accuracy rates of forefoot and midfoot reciprocal

grooming, midfoot and hindfoot reciprocal grooming,
hindfoot grooming, wing grooming, and abdomen
grooming are all above 96%, and the accuracy rates of
antennae and forefoot grooming are above 87%. The ac-
curacy of classification decreased significantly for the ac-
tivities of antennae grooming and forefoot grooming. The
possible reasons are as follows: (1) the grooming behaviors of
antennae and forefoot are all in a small area of the head, and
these key points of Bactrocera are too close and crowded,
leading to the improvement of error detection. (2) There is
no obvious distinction between grooming behavior itself. (3)
It is possible that the duration of grooming behavior is so
short and the switching frequency is so high that these
behaviors only last for a few frames, which leads to an in-
crease of misjudgment. (4) The definition and frame rate of
the video recorded by video equipment are low, which re-
duces the analysis performance of the computer.

In the future, we will continue to optimize our method by
improving the real-time performance of the algorithm,
shortening the analysis time, and reducing the requirements
of the algorithm for the hardware equipment through the
model quantization [58, 59] and the use of MobileNet
lightweight neural network [60]; by improving the accuracy of
deep neural network model and grooming behavior classi-
fication within the head range, and reducing the false de-
tection rate of behavior classification through expanding data,
collecting more data of Bactrocera minax in different envi-
ronments; by reducing the number of blocked key points
through multidimensional video recording of Bactrocera
minax; by overcoming self-occlusions and sensor noise
problems [61, 62]; and further improving the accuracy of key
points recognition through leverages multiview RGB-D data
and self-supervised, data-driven learning algorithms [63].
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TaBLE 3: Classification accuracy of individual behaviors.

Grooming behavior

Machine prediction (s)

Expert statistics (s) Accuracy (%) Difference degree

Antennae grooming 78.24
Forefoot grooming 132.96
Forefoot and midfoot reciprocal grooming 573.28
Hindfoot grooming 228.80
Wing grooming 468.44
Abdomen grooming 304.40
Midfoot and hindfoot reciprocal grooming 243.24

89.24 87.67 0.1232
151.64 87.68 0.1231
592.42 96.77 0.0323
235.84 97.01 0.0298
474.48 98.73 0.0127
316.64 96.01 0.0386
252.40 96.37 0.0284

5. Conclusion

In this paper, data enhancement technology is used to ex-
pand the training data, and the key points of Bactrocera
minax are identified using the DeepLabCut toolbox and
deep residual network. The grooming behavior is judged by
the relative position of the key points. The tracking of key
points and behavior recognition and statistics of grooming
behavior are realized. The experiment shows that this
method can effectively track the key points of Bactrocera
minax, and the accuracy rate is more than 96.7%. Compared
with other methods, the accuracy rate has been further
improved. This method can recognize the grooming be-
havior of Bactrocera minax and count its duration. The
average accuracy is more than 94%, which greatly reduces
the statistical time of manual observation within the al-
lowable error range. This paper also puts forward several
specific methods to further improve the accuracy and effi-
ciency of system detection.
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