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Quasi-cyclic multi-edge LDPC codes for long-distance

quantum cryptography
Mario Milicevic 1, Chen Feng2, Lei M. Zhang1 and P. Glenn Gulak1

The speed at which two remote parties can exchange secret keys in continuous-variable quantum key distribution (CV-QKD) is

currently limited by the computational complexity of key reconciliation. Multi-dimensional reconciliation using multi-edge low-

density parity-check (LDPC) codes with low code rates and long block lengths has been shown to improve error-correction

performance and extend the maximum reconciliation distance. We introduce a quasi-cyclic code construction for multi-edge codes

that is highly suitable for hardware-accelerated decoding on a graphics processing unit (GPU). When combined with an 8-

dimensional reconciliation scheme, our LDPC decoder achieves an information throughput of 7.16 Kbit/s on a single NVIDIA

GeForce GTX 1080 GPU, at a maximum distance of 142 km with a secret key rate of 6.64 × 10−8 bits/pulse for a rate 0.02 code with

block length of 106 bits. The LDPC codes presented in this work can be used to extend the previous maximum CV-QKD distance of

100 km to 142 km, while delivering up to 3.50× higher information throughput over the tight upper bound on secret key rate for a

lossy channel.
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INTRODUCTION

Quantum key distribution (QKD), also referred to as quantum
cryptography, offers unconditional security between two remote
parties that employ one-time pad encryption to encrypt and
decrypt messages using a symmetric secret key, even in the
presence of an eavesdropper with infinite computing power and
mathematical genius.1–4 The security of QKD stems from the no-
cloning theorem of quantum mechanics.5–7 Unlike classical
cryptography, quantum cryptography allows the two remote
parties, Alice and Bob, to detect the presence of an eavesdropper,
Eve, while also providing security against brute force, key
distillation attacks that may be enabled through quantum
computing.8 Today’s public key exchange schemes such as
Diffie-Hellman and encryption algorithms like RSA, respectively,
rely on the computational hardness of solving the discrete log
problem and prime factorization.9,10 Both of these problems,
however, can be solved in polynomial time by applying Shor’s
algorithm on a quantum computer.11–13 Future threats may also
arise from the discovery of a new classical algorithm capable of
solving such cryptography problems in polynomial time on a
classical Turing machine.
While such threats remain speculative, QKD systems have

already been realized in several commercial and research settings
worldwide.14–17 There are two protocols for generating a
symmetric key over a quantum channel: (1) discrete-variable
QKD (DV-QKD) where Alice encodes her information in the
polarization of single-photon states that she sends to Bob, and (2)
continuous-variable QKD (CV-QKD) where Alice encodes her
information in the amplitude and phase quadratures of coherent
states.4,18 In DV-QKD, Bob uses a single-photon detector to
measure each received quantum state, while in CV-QKD, Bob uses
homodyne or heterodyne detection techniques to measure the
quadratures of light.4,19–21 While DV-QKD has been experimentally

demonstrated up to 404 km,22 cryogenic temperatures are
required for single-photon detection at such distances.4 CV-QKD
systems can be implemented using cost-effective detectors that
are routinely deployed in classical telecommunications equipment
that operates at room temperature.4,18 Recently, the unidimen-
sional CV-QKD protocol was experimentally demonstrated up to
50 km,23 where Alice modulates only one quadrature (e.g.,
amplitude) instead of two, to reduce cost and complexity, with
the trade-off of lower secret key rate and higher sensitivity to
channel excess noise.24 Both CV-QKD and DV-QKD protocols are
comprised of four steps: (1) quantum transmission over a private
quantum channel, (2) sifting of measured quantum states, (3)
reconciliation over an authenticated classical public channel that
is assumed to be noiseless, and (4) privacy amplification via
hashing.2,5,6 The majority of QKD research focuses on applications
over optical fiber, since quantum signals for both CV-QKD and DV-
QKD can be multiplexed over classical telecommunications traffic
in existing fiber optical networks.25,26

The motivation of this work is to address the two key challenges
that remain in the practical implementation of CV-QKD over
optical fiber: (1) to extend the distance of secure communication
beyond 100 km with protection against collective Gaussian
attacks,27–30 and (2) to increase the computational throughput
of the key reconciliation (error correction) algorithm in the post-
processing step such that the maximum achievable secret key rate
remains limited only by the fundamental physical parameters of
the optical equipment at long distances.6,7,31,32 There are two
limitations to the speed of key reconciliation. The first is the secret
key rate, which is fundamentally limited by the transmittance and
excess noise on the lossy optical channel, and is measured in bits/
pulse.33 The second is the rate of computational throughput from
the hardware implementation, measured in bits/second.31 To
compare the two rates, we normalize the secret key rate to bits/
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second by choosing a realistic CV-QKD pulse sampling rate of frep
= 1 MHz.7,34 While secure QKD networks can be built using
intermediate trusted nodes, or through measurement-device-
independent QKD (MDI-QKD) with untrusted relay nodes,35–37 the
long-distance reconciliation problem is motivated by the follow-
ing two reasons: (1) each intermediate node introduces additional
vulnerability, and (2) implementing efficient quantum repeaters
remains a challenge.3,4,22 Jouguet and Kunz-Jacques showed that
Megabit/s one-way forward error correction using multi-edge low-
density parity-check (LDPC) codes is achievable for distances up to
80 km,31 while Huang et al. showed that the distance could be
extended to 100 km by controlling excess noise.38 Two-way
interactive error-correction protocols such as Cascade or Winnow
are not practical for long-distance QKD due to their large latency
and communication overhead.39–42 Here we explore high-speed
LDPC decoding for one-way reconciliation in CV-QKD beyond
100 km.
A particular challenge in designing error-correcting codes for

such long distances is the low signal-to-noise ratio (SNR) of the
optical quantum channel, which typically operates below −15 dB.
At such low SNR, high-efficiency key reconciliation can be
achieved only using low-rate block codes with large block lengths
on the order of 106 bits,43–46 where approximately 98% of the bits
are redundant parity bits that must be discarded after error-
correction decoding. The reconciliation efficiency is defined as β
= Rcode/C(s), where CðsÞ= 0:5log2ð1þ sÞ is the Shannon limit at a
particular SNR s, and Rcode= k/n is the code rate of a linear block
code where (n− k) redundant parity bits are concatenated with k
information bits to form an encoded block of n bits.47–49 In order
to maximize the secret key rate and reconciliation distance, the
error-correcting code must achieve a high β-efficiency and high
error-correction performance with low frame error rate (FER). The
direction of reconciliation between Alice and Bob also impacts the
maximum secret key rate and reconciliation distance. In direct
reconciliation, the direction of communication in both the
quantum and classical channel is from Alice to Bob. However,
the distance with direct reconciliation is limited to about 15 km.50–
52 The reverse reconciliation scheme achieves a higher secret key
rate at longer distances by reversing the direction of communica-
tion in the classical channel from Bob to Alice.7,44,53

Jouguet et al. previously explored multi-edge LDPC codes for
long-distance reverse reconciliation due to their high efficiency
and near-Shannon limit performance with low-rate codes.
However, such codes require hundreds of LDPC decoding
iterations to achieve asymptotic error-correction perfor-
mance.7,31,53,54 This is in contrast to LDPC codes employed in
the IEEE 802.11ac (Wi-Fi) standard, where the SNR is above 0 dB,
the block length is 648 bits, and the LDPC decoder typically
operates at 10 iterations to deliver Gigabit/s decoding through-
put.55–57 At low SNR, a CV-QKD system with a Gaussian input and
Gaussian channel can be approximated as a Binary Input Additive
White Gaussian Noise Channel (BIAWGNC), where binary LDPC
codes can be used in conjunction with multi-dimensional
reconciliation schemes to further improve error-correction perfor-
mance and increase distance.7,44,45,48,53 However, the computa-
tional complexity and latency of decoding random LDPC parity-
check matrices with block lengths on the order of 106 bits remains
a challenge.
We introduce a quasi-cyclic code construction for multi-edge

LDPC codes with block lengths of 106 bits to simplify decoder
design and increase throughput.54,58 Computational acceleration
is achieved through an optimized LDPC decoder design imple-
mented on a state-of-the-art graphics processing unit (GPU),
which provides floating-point computational precision and high-
bandwidth on-chip memory. GPUs are a low-cost platform that is
highly suitable for high-throughput decoding of long block-length
codes, as opposed to application-specific integrated circuits
(ASICs) or field-programmable gate arrays (FPGAs), which suffer

from limited memory, fixed-point computational precision, highly
complex routing, and silicon area constraints.59–61 The LDPC codes
presented in this work can be used to extend the previous
maximum CV-QKD distance of 100 km to 142 km, while delivering
up to 3.50× higher decoded information throughput over the
tight upper bound on the secret key rate for a lossy channel.33

Here we show that LDPC decoding is no longer the computational
bottleneck in long-distance CV-QKD, and that the secret key rate
remains limited only by the physical parameters of the quantum
channel.

RESULTS

Quasi-cyclic multi-edge LDPC codes

We extend the design of low-rate, multi-edge LDPC codes by
applying a quasi-cyclic (QC) construction technique.58,62 QC codes
impose a highly-regular parity-check matrix structure with a
sufficient degree of randomness in order to achieve near-Shannon
limit error-correction performance, while reducing decoder
implementation complexity.58 QC codes are defined by a parity-
check matrix constructed from an array of q × q cyclically-shifted
identity matrices or q × q zero matrices.58 The tilings evenly divide
the (n− k) × n parity-check matrix into n/q QC macro-columns and
(n− k)/q QC macro-rows. The expansion factor q in a QC matrix
determines the trade-off between decoder implementation
complexity and error-correction performance. Our goal is to
construct QC codes that achieve comparable FER performance to
a random code with the same degree distribution, but with lower
decoding latency to maximize throughput.
We constructed five QC-LDPC codes with expansion factors q∈

{21, 50, 100, 500, 1000} based on the Rcode= 0.02 multi-edge
degree distribution previously designed by Jouguet et al. for CV-
QKD reverse reconciliation on the BIAWGNC.7,53 For performance
comparison, we also constructed a non-QC multi-edge random
code with the same degree distribution. Under Sum–Product
decoding, the error-correction performance of the q∈ {100, 500,
1000} QC codes was significantly worse than the random code.
Thus, only the q= 21 and q= 50 QC codes are presented here.
Table 1 summarizes the code parameters. In order to maintain the
same degree distributions, the block length of the q= 21 QC code
was adjusted to n= 1.008 × 106 bits, and the code rate of the q=
50 QC code was adjusted to Rcode= 0.01995.
Our multi-edge LDPC codes achieve similar error-correction

performance on the BIAWGNC compared to those developed by
Jouguet et al. with multi-dimensional reconciliation.53 Figure 1
presents the FER versus SNR error-correction performance under
soft-decision Sum–Product decoding for the d= 1 and d= 8
reconciliation dimensions.63 Both QC codes outperform the
random code in the high β-efficiency region at low SNR. The q
= 50 QC code achieves the best overall FER performance over d=
1, 2, 4, 8 dimensions, due to its slightly lower code rate. The q= 21
QC code also performs better than the random code over all
dimensions, due to its longer block length. With d= 8 dimensional
reconciliation, at SNR= 0.0283, which corresponds to a reconcilia-
tion efficiency of β= 0.99, the q= 21 and q= 50 QC codes
achieve 1.92% and 6.57% lower FER than the non-QC random
code, respectively.

Table 1. Constructed multi-edge LDPC codes

Structure Expansion Factor
q

Code Rate
Rcode

Block Length (Bits)
n

Random N/A 0.02 1 × 106

Quasi-Cyclic 21 0.02 1.008 × 106s

Quasi-Cyclic 50 0.01995 1 × 106
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The error-correction performance beyond the waterfall region is
not of practical interest for long-distance CV-QKD since the codes
are intended to operate with a high FER at low SNR with high β-
efficiency in order to maximize the secret key rate and distance.
While not shown in Fig. 1, the d= 2 and d= 4 reconciliation
schemes achieve approximately 0.04 dB and 0.08 dB coding gain,
respectively, over the d= 1 scheme in the waterfall region for all
three codes. Thus, higher reconciliation schemes extend code
performance to lower SNR where the FER > 0 and β→ 1.

Secret key rate and distance

Accounting for finite-size effects, the secret key rate for a CV-QKD
system with one-way reverse reconciliation is given by

Kfinite ¼
Nprivacy

Nquantum

� �
1� Peð Þ βIAB � χBE � Δ Nprivacy

� �� �
; (1)

where Nprivacy bits comprise the privacy amplification block,
Nquantum is the number of sifted symbols after quantum
transmission and measurement, Pe is the reconciliation FER, IAB
is the mutual information between Alice and Bob, χBE is the Holevo
bound on the information leaked to Eve, and Δ(Nprivacy) is the
finite-size offset factor.6,64

For each fixed-rate LDPC code, there exists a unique FER-β pair,
where each β corresponds to a particular SNR operating point in
each FER-SNR curve shown in Fig. 1. The FER and efficiency β are
positively correlated, such that there exists an optimal trade-off
between β and FER where Kfinite is maximized for a fixed
transmission distance. To achieve key reconciliation at long
distances, the operating point must be chosen in the waterfall
region of the FER-SNR curve where β is high, despite the high FER
where Pe→ 1.
Key reconciliation for a particular β-efficiency is only achievable

over a limited range of distances where Kfinite > 0. When β is high,
the FER Pe→ 1, and thus Kfinite→ 0 as erroneous frames are
discarded after decoding. As a result, the maximum reconciliation
distance is limited by the error-correction performance of the
LDPC code. In general, for a single FER-β pair, LDPC decoding can
achieve either (1) a high secret key rate at short distance, or (2) a
low secret key rate at long distance. For long-distance CV-QKD
beyond 100 km, key reconciliation is only achievable with high β-
efficiency at the expense of low secret key rate.
Figures 2 and 3 present the finite secret key rate results for the

three LDPC codes over the distance range of interest with Nprivacy

= 1012 bits based on the d= 1 and d= 8 reconciliation dimen-
sions, respectively. The quantum channel was characterized using

previously published experimental results and parameters.7,38,64

Here we assume the standard loss of a single-mode fiber optical
cable to be α= 0.2 dB/km, with a transmittance of T ¼ 10�α‘=10,
where the distance ‘ is expressed in kilometers. The excess
channel noise (measured in shot noise units) is chosen to be
constant ϵ= 0.01 for 0 ≤ ‘ ≤ 100 km, and monotonically increasing
as ϵ= 0.01+ 0.001ð‘� 100Þ for 100 km < ‘ ≤ 170 km.38 Bob’s
homodyne detector efficiency is chosen to be η= 0.606, with an
added electronic noise of Vel= 0.041 (measured in shot noise
units).7 In Eq. (1), we arbitrarily choose Nquantum= 2Nprivacy and a
conservative security parameter of 10−10 for Δ(Nprivacy).

64 For each
curve in Figures 2 and 3, Alice’s modulation variance VA (measured
in shot noise units) is calculated at each distance point ‘, assuming
a fixed code rate Rcode, such that the β efficiency, SNR, and FER
remain constant over the entire distance range where Kfinite > 0.
Here, VAð‘; βÞ= sðβÞð1þ χtotalð‘ÞÞ, where the SNR is given by sðβÞ
= 22Rcode=β � 1, and χtotalð‘Þ is the total noise added between Alice
and Bob.6

The three LDPC codes achieve similar finite secret key rates and
reconciliation distances with both d= 1 and d= 8 schemes for
β ≤ 0.92, since the codes are operating close to their respective
error floors. However, for β > 0.92, the FER becomes a limiting
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d=1 - Random, R=0.02
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d=1 - QC, q=50, R=0.01995

d=8 - Random, R=0.02

d=8 - QC, q=21, R=0.02

d=8 - QC, q=50, R=0.01995

d=8 d=1

Fig. 1 FER vs. SNR for Sum–Product decoding with d= 1 and d= 8
dimensional reconciliation on the BIAWGNC

Fig. 2 d= 1 dimensional reconciliation with Nprivacy= 1012 bits:
finite secret key rate Kfinite vs. distance for collective attacks on
BIAWGNC with Sum–Product decoding and reverse reconciliation

Fig. 3 d= 8 dimensional reconciliation with Nprivacy= 1012 bits:
finite secret key rate Kfinite vs. distance for collective attacks on
BIAWGNC with Sum–Product decoding and reverse reconciliation
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factor to achieving a non-zero secret key rate. The d= 1 scheme
achieves a maximum efficiency of β= 0.96, where the maximum

distance is limited to 122 km. For β > 0.96, the FER Pe= 1, thus
Kfinite= 0. The d= 8 scheme operates up to β= 0.99 efficiency,
with a maximum distance of 142 km. The d= 8 scheme achieves
higher secret key rates for all three LDPC codes at β= 0.95 and β

= 0.96 in comparison to the d= 1 scheme since the code FER
performance is higher. The d= 2 and d= 4 schemes both achieve
a maximum efficiency of β= 0.97 at 127 km. While not shown

here, the maximum reconciliation distance with Nprivacy= 1010 bits
is only 128 km for β= 0.99 under d= 8 dimensional reconciliation.
Thus, the reconciliation distance is also largely dependent on the
privacy amplification block size.

GPU-Accelerated Decoding

We implemented a multi-threaded Sum–Product LDPC decoder
on a single NVIDIA GeForce GTX 1080 GPU using the NVIDIA CUDA
C++ application programming interface. The operations of the
Sum–Product algorithm were re-ordered to avoid uncoalesced
memory writes and to maximize the amount of thread-level
parallelism for arithmetic computations.
A quasi-cyclic matrix structure reduces data permutation and

memory access complexity by eliminating random, unordered
memory access patterns. QC codes require fewer memory lookups
for message passing since the parity-check matrix can be
described with approximately q-times fewer terms, where q is
the expansion factor of the QC parity-check matrix, in comparison
to a random matrix for the same block length. Table 2 presents
the latency of one decoding iteration for the three codes, and also
highlights their respective error-correction performance and GPU
throughput at the maximum β= 0.99 efficiency with d= 8
reconciliation. The raw GPU throughput (including parity bits) is
given by

K raw
GPU ¼

BlockLength

LatencyPer Iteration ´ Iterations
bits=sð Þ; (2)

and the average information throughput of the GPU decoder is
given by

K 0
GPU ¼ K raw

GPURcode 1� Peð Þ bits=sð Þ: (3)

The latency per iteration depends on the LDPC code structure and
the number of memory lookups, while the FER is bound by the
maximum number of iterations.
Table 3 compares the performance of the random and QC

codes at the maximum achievable distance for each reconciliation
dimension. The QC codes achieve approximately 3× higher raw
decoding throughput K raw

GPU over the random code with d= 1, 2, 4, 8
dimensional reconciliation at the maximum distance point for
each β-efficiency. When scaled by the FER and code rate, the QC
codes achieve between 1.6× and 12.8× higher information
throughput K 0

GPU over the random code.
Pirandola et al. recently showed that there exists a tight upper

bound on the secret key rate for a lossy channel.33 For a fiber-optic
channel, this limit is determined by the transmittance T and is

Table 2. LDPC decoding latency and error-correction performance for

Rcode= 0.02 multi-edge codes on a single NVIDIA GeForce GTX 1080

GPU

LDPC code Random
multi-edge

q= 21 QC
multi-edge

q= 50 QC
multi-edge

Block length (Bits) 1 × 106 1.008 × 106 1 × 106

Code rate 0.02 0.02 0.01995

Connections in parity
matrix

3,337,494 160,185 66,747

Total latency per
iteration (ms)

3.528 1.296 1.177

FER performance and decoding throughput at β= 0.99 and d= 8

Max iterations 500 500 500

Average iterations 470 451 470

FER 0.883 0.792 0.883

K raw
GPU raw throughput

(Mb/s)
0.603 1.724 1.807

K 0
GPU information

throughput (kb/s)
1.409 7.16 4.207

Table 3. Overview of secret key rate and GPU (NVIDIA GeForce GTX 1080) throughput at the maximum reconciliation distance with Rcode= 0.02

multi-edge codes and Nprivacy= 1012 bits

Reconciliation
dimension

Maximum
reconciliation
efficiency

LDPC code Maximum
distance
(km)

Finite secret
key rate K 0

finite

at max distance
with frep=
1MHz (bit/s)

Upper bound
on key rate K 0

lim

at max distance
with frep=
1MHz (Kbit/s)

GPU raw
throughput
K raw
GPU (Mbit/s)

GPU info.
throughput
K 0
GPU (Kbit/s)

K 0
GPU

speedup
over K 0

lim

(K 0
GPU/K

0
lim)

d= 1 β= 0.960 Random 122.40 0.021 5.152 0.613 0.111 0.02×

QC, q= 21 122.40 0.042 5.152 1.887 0.686 0.13×

QC, q= 50 122.40 0.023 5.128 1.966 1.426 0.28×

d= 2 β= 0.970 Random 127.20 0.005 4.129 0.612 0.222 0.05×

QC, q= 21 127.20 0.020 4.129 1.856 2.700 0.65×

QC, q= 50 127.20 0.009 4.129 1.983 0.360 0.09×

d= 4 β= 0.970 Random 127.20 0.010 4.129 0.604 0.439 0.11×

QC, q= 21 127.20 0.030 4.129 1.818 3.938 0.95×

QC, q= 50 127.20 0.069 4.129 1.855 2.692 0.65×

d= 8 β= 0.990 Random 142.40 0.037 2.049 0.604 1.409 0.69×

QC, q= 21 142.40 0.066 2.049 1.724 7.160 3.50×

QC, q= 50 142.40 0.064 2.049 1.808 4.207 2.05×

At the maximum distance points of ‘= 122 km, ‘= 127 km, and ‘= 142 km, the excess noise ϵ is, respectively, set to 0.032, 0.037, and 0.052, and Alice’s

modulation variance VA is, respectively, set to 14.0, 17.5, and 34.1
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given by

Klim ¼ �log2 1� Tð Þ bits=pulseð Þ: (4)

The upper bound versus distance is plotted in Fig. 4, along with
the GPU-decoded information throughput for the q= 21 QC code
under d= 8 dimensional reconciliation. Figure 4 illustrates that the
decoded information throughput K 0

GPU of the reconciliation
algorithm is higher than the upper bound on secret key rate
K 0
lim on a lossy channel with a 1 MHz source at each maximum

distance point from β= 0.8 to β= 0.99. Table 3 presents the finite
secret key rate K 0

finite and the upper bound on secret key rate K 0
lim

for a lossy channel for each maximum distance point. Both Klim
and Kfinite are scaled by the light source repetition rate frep, such
that K 0

lim = frepKlim and K 0
finite = frepKfinite, where a realistic CV-QKD

repetition rate of frep= 1 MHz is assumed.7,34,51

The rightmost column in Table 3 (K 0
GPU=K

0
lim) presents the two

key results of this work. First, it shows that the GPU decoder can
achieve between 2.05× and 3.50× higher information throughput
K 0
GPU over the upper bound on secret key rate K 0

lim with a 1 MHz
source using QC-LDPC codes with d= 8 dimensional reconciliation
only. This maximum 3.50× speedup is highlighted in Fig. 4 at
142 km with β= 0.99. The second result is that d= 1, d= 2, and d
= 4 dimensional reconciliation schemes are not well-suited for
long-distance CV-QKD since the K 0

GPU speedup over K 0
lim is less than

1×. In general, Table 3 shows that QC codes achieve lower
decoding latency than the random code at long distances, thereby
making them more suitable for reverse reconciliation at high β
efficiencies. Since the decoder delivers an information throughput
higher than the upper bound on secret key rate, we conclude that
LDPC decoding is no longer the post-processing bottleneck in CV-
QKD, and thus, the secret key rate remains limited only by the
physical parameters of the quantum channel.
The results presented in Table 3 and Fig. 4 assumed a light

source repetition rate of frep= 1 MHz. While a higher source
repetition rate such as frep= 100 MHz would raise the upper
bound on secret key rate K 0

lim above the maximum GPU decoder
throughput K 0

GPU, it would still not introduce a post-processing
bottleneck for CV-QKD. The GPU decoder currently delivers an

information throughput K 0
GPU between 5286× and 135,000× higher

than the finite secret key rate K 0
finite with a 1 MHz light source at

the maximum distance points for d= 1, 2, 4, 8 dimensional
reconciliation schemes. Even with a source repetition rate of frep=
1 GHz, the GPU information throughput K 0

GPU would still exceed
the operating secret key rate K 0

finite between 5.3× and 13.5× for
distances beyond 122 km, assuming the same quantum channel
parameters. Further computational speedup can be achieved by
concurrently decoding multiple frames using multiple GPUs.
Figure 5 compares the LDPC decoding throughput versus

distance for several GPU-based CV-QKD and DV-QKD implementa-
tions, illustrating that high-throughput reconciliation at long
distances is achievable only using large block-length codes that
approach the Shannon limit with >90% efficiency for CV-QKD or
<10% quantum bit error rate (QBER) for DV-QKD. This work
achieves the longest reconciliation distance compared to the
previously published works.
At the time of writing, there has not been any reported

investigation of the construction of QC codes for multi-edge LDPC
codes targeting low-SNR channels below −15 dB for long-distance
CV-QKD. Previous DV-QKD implementations used QC-LDPC codes
with block lengths of 103 bits from the IEEE 802.11ac (Wi-Fi)
standard,55 however, these works did not achieve reconciliation
beyond 50 km.65,66 Bai et al. recently showed that rate Rcode= 0.12
QC codes with block lengths of 106 bits can be constructed using
progressive edge growth techniques, or by applying a QC
extension to random LDPC codes with block lengths of 105 bits,
however, the reported QC codes target an SNR of only −1 dB,67

and are thus not suitable for long-distance CV-QKD beyond
100 km.
At the time of writing, there is only one reported decoder

implementation designed to operate in the low-SNR regime for
long-distance CV-QKD reconciliation.31 Jouguet and Kunz-Jacques
reported a GPU-based LDPC decoder that achieves 7.1 Mb/s
throughput at SNR= 0.161 (β= 0.93) on the BIAWGNC,31 for a
random multi-edge LDPC code with a block length of 220 bits and
Rcode= 1/10.54 For throughput comparison purposes, we designed
two additional multi-edge codes with the same code rate, block
length, and SNR threshold:54 a random code and a q= 512 QC
code.

Fig. 4 GPU information throughput K 0
GPU of the q= 21 QC-LDPC

code with d= 8 dimensional reconciliation up to the maximum
distance point for β∈ {0.80, 0.88, 0.92, 0.96, 0.98, 0.99}, and upper
bound on secret key rate for a lossy channel K 0

lim vs. distance. Here
we show that the GPU information throughput K 0

GPU is higher than
the tight upper bound on secret key rate at the maximum distance
point for each β-efficiency using a single NVIDIA GeForce GTX 1080
GPU. Thus, the speed of key reconciliation in the post-processing
step is no longer a bottleneck in CV-QKD

Fig. 5 Raw throughput K raw
GPU vs. distance of GPU-based LDPC

decoders for CV- and DV-QKD. For CV-QKD implementations,31,32,85

the annotated values indicate the LDPC code code block length n,
code rate R, reconciliation efficiency β, and SNR of the quantum
channel. For DV-QKD implementations, the annotated values
indicate the block length n, code rate R, and QBER.15,65,86 Our LDPC
decoder throughput result is obtained using a single NVIDIA
GeForce GTX 1080 GPU

Quasi-cyclic multi-edge LDPC codes for long-distance

M Milicevic et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2018)  21 



Table 4 presents a performance comparison between our two
designed Rcode= 1/10 codes and the result achieved by Jouguet
and Kunz-Jacques.31 Our q= 512 QC code achieves 1.29× higher
throughput than the 7.1 Mb/s reported by Jouguet and Kunz-
Jacques,31 further demonstrating that the QC code structure offers
computational speedup benefits for multi-edge codes operating
in the high β-efficiency region at low SNR. Both GPU models have
a similar memory bus width, which is the primary constraint that
limits the latency per iteration. Here, GPU decoder performance is
bound by the memory access rate, and not the floating-point
operations per second (FLOPS). A wider GPU memory allows for a
higher memory access rate, which reduces decoding latency.
GPUs continue to deliver higher computational performance

with each successive architecture generation. We present here the
potential LDPC decoding speedup improvement using the latest
NVIDIA TITAN V GPU (released in December 2017), in comparison
to our results achieved on a NVIDIA GeForce GTX 1080 GPU
(released in May 2016). The NVIDIA TITAN V delivers 110
TeraFLOPS with 5210 cores and a 652 GB/s memory bandwidth,
which is a 2× improvement in both the number of computational
cores and memory bandwidth over our NVIDIA GeForce GTX 1080.
Since our GPU-based decoder is memory bound, we ignore the
improvement in FLOPS, and consider only the increase in memory
bandwidth and number of cores. We estimate that our LDPC
decoder would achieve 4× higher throughput on the latest NVIDIA
TIVAN V GPU. At the maximum distance of 142 km with β= 0.99
and d= 8 reconciliation, using our q= 21 QC-LDPC code on an
NVIDIA TITAN V GPU, we estimate that our decoder would achieve
a raw throughput K raw

GPU of 6.90 Mb/s, and an information

throughput K 0
GPU of 28.6 Kb/s, which is 14× higher than the tight

upper bound on the secret key rate with a 1 MHz light source.

DISCUSSION

We introduced quasi-cyclic multi-edge LDPC codes to accelerate
long-distance reconciliation in CV-QKD by means of a GPU-based
decoder implementation and multi-dimensional reconciliation
schemes. Other error-correcting codes have also been studied
for the low-SNR regime of CV-QKD, including polar codes, repeat-
accumulate codes, and Raptor codes.31,68,69 However, at the time
of writing, there are no hardware implementations of such codes
for long-distance CV-QKD beyond 100 km. In addition to extend-
ing information theoretic security to general attacks for finite key
sizes,30,70–72 a major remaining hurdle to extending the distance in
CV-QKD is reducing excess noise in the optical channel.38 Future
work might also investigate the security of CV-QKD and LDPC
decoding performance with non-Gaussian noise. GPU-based
decoder implementations with QC codes would provide a suitable
platform for such investigations. Furthermore, QC codes and GPU
decoding can also be applied in DV-QKD, where reconciliation is
performed on the binary symmetric channel.
In this work, we showed that the first post-processing step

(reconciliation) can achieve 3.50× higher information throughput
than the upper bound on secret key rate up to 142 km at a speed
of 7.16 Kb/s, using rate Rcode= 0.02 LDPC codes with block lengths
of n= 106 bits. To achieve this 142 km distance with security
against finite-size effects, we assumed that the second post-
processing step (privacy amplification) is performed using a block
length of Nprivacy= 1012 bits. While the speed of privacy
amplification has recently been demonstrated up to 100Mb/s
for a block length of Nprivacy= 108 bits,73 the maximum achievable
distance with Nprivacy= 108 bits is limited to 88 km with β= 0.99
and d= 8 reconciliation (assuming the same channel parameters
as in this work). For CV-QKD beyond 100 km, privacy amplification
block lengths of Nprivacy ≥ 1010 bits are required. Toeplitz hashing
methods can be employed to achieve high computational
parallelism for block lengths on the order of Nprivacy= 1012 bits.74

Such implementations should achieve a minimum throughput on
the order of 10 Kb/s such that the complete post-processing chain
(reconciliation and privacy amplification) maintains a higher
throughput than the upper bound on secret key rate.
The LDPC codes and reconciliation techniques presented in this

work can be applied to two areas that show promise for QKD: (1)
free-space QKD using low-Earth orbit satellites to extend the
distance of secure communication beyond 200 km without fiber-
optic infrastructure,75,76 and (2) fully-integrated monolithic QKD
chip implementations that combine optical and post-processing
circuits.4,77,78 While GPUs integrate seamlessly into post-
processing computer systems and provide a low-cost platform
for design exploration, their high power consumption (on the
order of 200W per card) may present QKD system scaling
limitations. A single-chip solution would accelerate the adoption
of QKD in modern network infrastructure with lower cost, power,
and integration complexity.

METHODS

Multi-dimensional reverse reconciliation

Following the quantum transmission and sifting steps, Alice and Bob,
respectively, share correlated Gaussian sequences, X and Y, of length n,
where n is equivalent to the LDPC code block length and n ≤ Nprivacy ≤

Nquantum.
5–7 The BIAWGNC is induced from the physical parameters of the

quantum channel, and is assumed to have zero mean and noise variance
σ2Z , Z � N 0; σ2Z

� �
.53 At each distance ‘, the SNR is given by s ¼ 1=σ2Z =

VAð‘Þ/ð1þ χtotalð‘ÞÞ. It follows then that X � Nð0; 1Þ, Y � N 0; 1þ σ2Z
� �

,
and Y= X+ Z.53

Table 4. GPU decoding comparison at SNR= 0.161 with d= 8 on

BIAWGNC targeting FER= 0.04 with Rcode= 1/10 codes

Specification This Work
(2018)

Jouguet and Kunz-
Jacques (2014)31

Code rate 1/10 1/10

Block length (Bits) 220 220

SNR 0.161 0.161

LDPC code structure Random
Multi-Edge

q= 512 QC
Multi-Edge

Random
Multi-Edge

Connections in parity-
check matrix

4,063,229 7932 N/A

Early termination No Yes No Yes No

Max iterations 88 88 100 100 100

Average iterations 88 78 100 78 100

FER 0.04 0.04 0.0243 0.0243 0.04

Latency per iteration
(ms)

4.73 4.84 1.28 1.47 1.48

K raw
GPU GPU raw

throughput (Mb/s)
2.52 2.78 8.21 9.17 7.1

K 0
GPU GPU info.

throughput (Kb/s)
242 267 801 895 682

GPU model NVIDIA GeForce
GTX 1080

AMD Radeon
HD 7970

CMOS technology 16 nm 28 nm

GPU cores 2560 2048

GPU GFLOPS 8228 3789

GPU memory bus
width (Bits)

256 384

GPU memory
bandwidth (GB/s)

320 264
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In reverse reconciliation, Bob generates a uniformly-distributed random
binary sequence S of length k, and performs a computationally
inexpensive LDPC encoding operation to generate a codeword C of
length n, where Ci∈ {0, 1}, based on a binary LDPC parity-check matrix H
that is also known to Alice. Bob then transmits his classical message M to
Alice, where Mi ¼ ð�1ÞCiYi for i= 1, 2, …, n.6

Long-distance reverse reconciliation can be achieved with multi-
dimensional reconciliation schemes where the multiplication and division
operators are defined.44,45 Normed division is only defined for four finite-
dimensional algebras: the real numbers R R

d¼1
� �

, the complex numbers C
R

d¼2
� �

, the quaternions H R
d¼4

� �
, and the octonions O R

d¼8
� �

.79 Hence,
here we consider only the d= 1, 2, 4, 8 dimensions. Assuming error-free
transmission of M over the classical channel, Alice attempts to recover
Bob’s codeword C using her sequence X as follows:

R¼ MX�1

¼ ðUYÞX�1

¼ ðUðXþ ZÞÞX�1

¼ ðUXþ UZÞX�1 by right distributivity aðbþ cÞ ¼ abþ ac

¼ UXX�1 þ UZX�1 by left distributivity ðbþ cÞa ¼ baþ ca

¼ Uþ UZX�1 by right cancellation abb�1 ¼ a

¼ Uþ UZ X�

Xk k2
:

(5)

Here, R, M, U, X, Y, and Z are d-dimensional vectors. Alice observes a

BIAWGNC described by R=U+N, where U is comprised of ð�1ÞCi

components, and the multi-dimensional noise is given by N= (UZX*)/

Xk k2.53 For d= 1, Alice observes a channel with binary input Ui ¼ ð�1ÞCi

and additive noise Ni ¼ ð�1ÞCiZi=Xi . For d= 2, U= ð�1ÞC2i ; ð�1ÞC2i�1

h i
, and

for d= 4, U= ð�1ÞC4i�3 ; ð�1ÞC4i�2

h
, ð�1ÞC4i�1 ; ð�1ÞC4i

i
. The Cayley-Dickson

construction can be applied to derive the multi-dimensional noise N for d
= 2, 4, 8.80 Since the noise is identically distributed in each dimension, C
can be assumed to be the all-zero codeword, i.e., Ci= 0 for all i= 1, 2, …, n
to simplify the derivation.
For d-dimensional reconciliation, each consecutive group of d quantum

coherent-state transmissions has the same channel noise variance. For d=
1, each Ri has a unique channel noise variance defined by σ2Ni ¼ σ2Z= Xij j2 for
i= 1, 2, …, n. For d= 2, reconciliation is performed over successive (R2i−1,
R2i) pairs: (R1, R2),(R3, R4), …, (Rn−1, Rn), which are constructed from the
quadrature transmission of successive (M2i−1, M2i) pairs for i= 1, 2, …, n/2.
Here, R2i−1= ð�1ÞC2i�1 þ N2i�1 and R2i= ð�1ÞC2i þ N2i for i= 1, 2, …, n/2.
While the real and imaginary noise components, N2i�1 and N2i, are not
equal, the variance of the channel noise is uniform over both dimensions,
such that σ2Nð2i�1Þ = σ2Nð2iÞ for each (R2i−1, R2i) pair. For d= 4 and d= 8, each
d-tuple of successive Ri values has a unique channel noise for each
dimensional component, but the channel noise variance remains uniform
over all d dimensions.
Alice performs LDPC decoding using the shared parity-check matrix H,

and her computed soft-decision value Ri and channel noise variance σ2Ni for
each i= 1, 2, …, n via the computationally expensive Sum–Product
algorithm to build an estimate bS of Bob’s sequence S. LDPC decoding is
successful if bS ¼ S, whereas a frame error is said to have occurred when
bS≠S.

Frame error rate with undetected errors

The number of possible codewords for any binary linear block code is
2k ¼ 2nRcode . Here, with n= 106 bits and Rcode= 0.02, the number of
possible valid codewords is approximately 4 × 106020. As such, it is possible
for the decoder to converge to a valid codeword where the decoded
message is incorrect, i.e., the parity check passes but bS≠S. In coding theory,
this is referred to as an undetected error. To detect such errors, a cyclic
redundancy check (CRC) of Bob’s original message S can be transmitted as
part of the frame, and then verified against the computed CRC of Alice’s
decoded message bS. If the CRC results of S and bS are equal, the decoding is
successful and bS can be used to distill a secret key. The probability of
detecting an error is given by Pdetected error= P(Parity Fail)+ P(Parity Pass ∩
CRC Fail). A truly undetected error occurs when both the parity check and
CRC pass, but bS≠S. Both detected and undetected errors contribute to the
FER, hence the probability of frame error is defined as Pe= Pdetected error+

Pundetected error. We found that a 32-bit CRC code was sufficient to detect all
invalid decoded messages without sacrificing information throughput.
Thus, the FER is reduced to Pe= Pdetected error since Pundetected error= 0.

Constructing quasi-cyclic multi-edge LDPC codes

An equivalent definition of a code’s binary parity-check matrix H is given
by its Tanner graph G, which contains two independent vertex sets known
as check nodes (CNs) and variable nodes (VNs) that correspond to the rows
and columns of H, respectively.81 An edge between CN ci and VN vj
belongs to G if H(i, j)= 1. An LDPC code of length n can be specified by the
number of variable and check nodes, and their respective degree
distributions. The number of edges connected to a vertex in G is called
the degree of the vertex. The degree distribution of G is a pair of
polynomials ωðxÞ ¼

P
i ωix

i and ψðxÞ ¼
P

i ψix
i , which, respectively,

denote the number of variable and check nodes of degree i in G. As
n→∞, the error-correction performance of Tanner graphs with the same
degree distribution is nearly identical.82 Hence, the variable and check
node degree distributions can be normalized to Ω(x)=

P
i ðωi=nÞxi and

Ψ(x)=
P

i ðψi=ðn� kÞÞxi , respectively. To design a binary LDPC code, first
find the normalized degree distribution pair (Ω(x), Ψ(x)) of rate Rcode with
the best performance. Then, if n is large, randomly sample a Tanner graph
G that satisfies the degree distribution defined by ω(x) and ψ(x) (up to
rounding error) to construct H.
In a standard LDPC code, the degree distributions are limited to a single

edge type, such that all variable and check nodes are statistically
interchangeable. Multi-edge codes extend the degree distributions to
multiple edge types with an additional edge-type matching condition.54

The design and construction of multi-edge LDPC codes is described by
Richardson and Urbanke.54

The Rcode= 0.02 multi-edge LDPC codes in this work have the following
normalized degree distribution:

Ω x1; x2; x3ð Þ ¼ 9
400

x21x
57
2 x03 þ

7
400

x31x
57
2 x03 þ

24
25
x01x

0
2x

1
3

Ψ x1; x2; x3ð Þ ¼ 3
320

x31x
0
2x

0
3 þ

17
1600

x71x
0
2x

0
3 þ

3
5
x01x

2
2x

1
3 þ

9
25
x01x

3
2x

1
3 :

This distribution was designed by Jouguet et al. by modifying a rate 1/10
multi-edge degree structure.53,54 We generated random parity-check
matrices by randomly sampling Tanner graphs that satisfied the multi-
edge degree distribution defined by ω(x) and ψ(x), and the edge-type
matching condition. The random sampling technique does not degrade
code performance since the target FER is known to be high (Pe ≈ 10−1), and
the error floor is not a concern.83

To design a quasi-cyclic multi-edge code, repeat the random sampling
process using n/q as the block length instead of n to obtain a base Tanner
graph GB . The base matrix HB is obtained from GB by populating each non-
zero entry by a random element of the set {1, 2,…, q}. Let Ii be the circulant
permutation submatrix obtained by cyclically shifting each row of the q × q
identity matrix to the right by i− 1. The QC matrix H is obtained from HB

by replacing each non-zero entry of value i by Ii, and each zero entry by the
q × q all-zeros submatrix.

Quantum channel capacity vs. channel coding capacity

Here we examine two definitions of channel capacity in the context of CV-
QKD: (1) the capacity of the quantum channel, and (2) the capacity of the
channel coding problem. The first capacity is related to the complete QKD
system, which has an AWGN channel characterized by the optical quantum
losses and modulation variance. The second capacity is related to the
reconciliation step, i.e., the channel coding problem presented in Eq. (5). In
this paper, we considered the key reconciliation problem as a single
problem, however, for clarity, it should be decomposed into two related
problems: (1) distilling a common message from correlated random
sequences X and Y, and (2) channel coding for a binary input fast fading
channel with channel state information available only at the decoder. The
first problem is an information theory problem, and is independent of the
second channel coding problem.
The information theoretic problem attempts to distill the correlated

Gaussian sequence Y, in the presence of the quantum channel noise Z, as
given by Y= X+ Z. This problem is more formally known as “secret key
agreement by public discussion from common information”.84 The
efficiency β= Rcode/C(s) and channel capacity CðsÞ= 0:5log2ð1þ sÞ are
the efficiency and capacity related to solving the information theoretic
problem, where s represents the SNR on the optical quantum channel. For
clarity, let us redefine the overall QKD system efficiency as βAWGN and the
capacity as CAWGN.
In the channel coding problem, Alice attempts to recover an encoded

codeword C via error-correction decoding. In Eq. (5), the noise represents a
fading channel where each ith symbol has a unique channel noise
variance. Thus, the coding (fading) channel has an ergodic capacity, which
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can be expressed as Ccoding= E
1
2
log2 1þ 1

σ2
Ni

� �h i
. The ergodic capacity

Ccoding can be computed by averaging the SNR given by 1=σ2Ni for i= 1, 2,
…, n. It follows then that the channel coding efficiency is given by βcoding
= Rcode/Ccoding.
The overall QKD system efficiency can then be expressed independent

of the code rate as follows:

βAWGN ¼ βcoding
Ccoding

CAWGN

: (6)

The ergodic capacity of multi-dimensional reconciliation schemes d= 2,
4, 8 can be determined by applying the same expression for Ccoding. In this
paper, we consider only the overall QKD system efficiency βAWGN, which
we denote herein more simply as β.
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