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Abstract. Iterated Even–Mansour (EM) encryption schemes (also named “key-
alternating ciphers”) were extensively studied in recent years as an abstraction of com-
monly used block ciphers. A large amount of previous works on iterated EM concen-
trated on security in an information-theoretic model. A central question studied in these
papers is: What is the minimal number of rounds for which the resulting cipher is in-
distinguishable from an ideal cipher? In this paper, we study a similar question in the
computationalmodel:What is theminimal number of rounds, assuring that no attack can
recover the secret key faster than trivial attacks (such as exhaustive search)? We study
this question for the two natural key scheduling variants that were considered in most
previous papers: the identical subkeys variant and the independent subkeys variant. In the
identical subkeys variant, we improve the best known attack by an additional round and
show that r = 3 rounds are insufficient for assuring security, by devising a key recovery
attack whose running time is about n/ log(n) times faster than exhaustive search for an
n-bit key. In the independent subkeys variant, we also extend the known results by one
round and show that for r = 2, there exists a key recovery attack whose running time is
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faster than the benchmark meet-in-the-middle attack. Despite their generic nature, we
show that the attacks can be applied to improve the best known attacks on several con-
crete ciphers, including the full AES2 (proposed at Eurocrypt 2012) and reduced-round
LED-128 (proposed at CHES 2012).

Keywords. Cryptanalysis, Key recovery attacks, Iterated Even–Mansour,
LED block cipher, AES2 block cipher, Backdoors in cryptography.

1. Introduction

1.1. Background

TheEven–Mansour cryptosystemwas first proposed atAsiacrypt 1991 [15] in an attempt
to obtain the simplest possible block cipher. It uses a single publicly known permutation
P on n-bit values and two secret n-bit keys K1 and K2 and defines the encryption
of the n-bit plaintext m as E(m) = P(m ⊕ K1) ⊕ K2. The decryption of an n-bit
ciphertext c is similarly defined as D(c) = P−1(c ⊕ K2) ⊕ K1. The construction can
be naturally generalized into an r -round iterated EM encryption function (also called a
key-alternating scheme in [1,7] and other papers), which is defined using r permutations
P1, P2, . . . , Pr and r + 1 keys K1, K2, . . . Kr+1 as

E(m) = Pr (. . . P2(P1(m ⊕ K1) ⊕ K2) . . . ⊕ Kr ) ⊕ Kr+1,

where decryption is defined in an analogous way.
For about 20 years, this scheme received little attention in the cryptographic liter-

ature, but since 2011 it became a very active research area. One possible explanation
for this is the very simple key schedule of iterated EM schemes. This makes them an
attractive choice for block ciphers with low resource consumption, which became a very
important design goal in recent years, with the rise of lightweight cryptography. Some
of these lightweight designs, such as LED-64 (presented at CHES 2011 [20]) and Zorro
(presented at CHES 2013 [18]), have no key schedule at all, but instead, use several
public permutations, separated by additions of the same key, namely an iterated EM
with identical subkeys.
As several concrete instances of iterated EM schemes were proposed, many papers

(e.g., [13,27,29,34]) devised various attacks on these primitives. Several of these attacks
exploit specific properties of the internal permutations of the primitives and are thus
restricted to specific instances. Other attacks target (almost) all primitives with a specific
key schedule. These attacks are more general and work regardless of the choice of the
internal permutations of the scheme (typically by assuming that the permutations are
chosen uniformly at random).
An additional line ofwork in the analysis of iteratedEMschemes takes an information-

theoretic approach and is mostly aimed at formally proving the security of these schemes
by bounding the information that is available to the attacker. The security analysis of
iterated EM schemes can thus be roughly divided into two types:

– Computational In this analysis model, the focus is on algorithms that break a given
iterated EM scheme (usually by recovering the secret key) and measure their com-
plexity by counting the number of operations they perform. When we analyze the
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security of a given iterated EM scheme in this model, we are thus interested in what
is the most computationally efficient algorithm that can break it.

– Information-Theoretic In this analysis model, the focus is on the amount of infor-
mation that is required in order to distinguish a given iterated EM scheme from
some ideal construction (such as a random permutation). When we analyze the
security of a given iterated EM scheme in this model, we are thus interested in
counting the number of queries to its internal permutations that are required in
order to distinguish the scheme from the ideal construction.

The main motivation behind the information-theoretic model is that (similarly to
many problems in computer science) it is very difficult to prove lower bounds on the
complexity of algorithms in the computational model, while proving lower bounds
in the information-theoretic model is generally much easier. As lower bounds in the
information-theoretic model can often serve as bounds in the computational model,
these bounds may also contribute to understanding security in the computational model.
Indeed, in the paper introducing the EM scheme [15], Even and Mansour proved an
information-theoretic bound that any attack on the scheme with n-bit keys must satisfy
DT = Ω(2n) (where D is the data complexity and T is the number of queries to the
permutation, which serves as a lower bound on the time complexity of the algorithm).
Shortly after the introduction of the scheme, Daemen [9] presented an attack matching
the bound DT = O(2n) (where T is the actual time complexity of the algorithm),
though in the chosen-plaintext model. Twenty years later, Dunkelman et al. [14] showed
that the same bound holds also in the known-plaintext model, thus fully determining the
security of EM in the key recovery model. Furthermore, Dunkelman et al. showed that
the single-key variant of EM, defined as E(m) = P(m ⊕ K ) ⊕ K , provides exactly the
same security level.
The information-theoretic analysis of iterated EM schemes was initiated At Eurocrypt

2012 by Bogdanov et al. [7]. This study was pursued in a series of papers, including [1,
8,24,25,35], and is still developing. However, we emphasize that for small values of
r > 1, there is a significant gap between the lower bounds obtained in the information-
theoretic model, which is relevant in the computational model, and the complexity of
the corresponding best known algorithms. For example, for an iterated EM scheme
with identical subkeys and r = 2, the information-theoretic lower bound (the natural
extension of the bound for r = 1) is 22n/3 [7], whereas the complexity of the best known
algorithm so far is only about 2n/n [29]. Thus, in the information-theoretic model,
small values of r seem less interesting, and the main investigated question is what is
the minimal r , assuring that the encryption scheme cannot be distinguished from an
ideal cipher in complexity of Ω(2n). Such a value of r can also be meaningful in the
computational model, although the true minimal value of r that ensures that the scheme
is secure in the computational model is perhaps significantly lower.

1.2. Our Contribution

In this paper, we analyze iterated EM schemes in the computational model. As the
analysis strongly depends on the key scheduling algorithm used to derive the subkeys
K1, . . . , Kr+1 from the secret key K , and there are many possible key schedules, we
concentrate on the two most natural variants:
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– The independent subkeys variant, in which the subkeys K1, K2, . . . , Kr+1 are fully
independent, such that the effective key size is (r +1)n bits. This variant is arguable
the most natural generalization of the original EM scheme, and it was studied in
most of the theoretic papers on iterated EM constructions [7,8,24,35].

– The identical subkeys variant, in which K1 = K2 = · · · = Kr+1 = K . This variant
is the natural generalization of the single-key variant of EM defined in [14], and it
was studied in [1,25].

The main question we study is similar to the main question studied in [1,25] in the
ideal cipher model, namely what is the minimal number r such that r -round iterated EM
is indifferentiable from an ideal cipher. The question we study can be informally stated
as follows:

Question 1 What is the minimal number r such that r-round iterated EM provides
“full security” with respect to key recovery attacks?

The precise meaning of “full security” in this context depends on the key scheduling
algorithm. In the identical subkeys iterated EM variant, the “trivial” attack is exhaustive
key search, requiring O(2n) time for an n-bit key.Hence,we say that the scheme provides
full security if any attack on it requires Ω(2n) time, data or memory. In the independent
subkeys variant, the currently best known generic attack is an obvious meet-in-the-
middle attack, which can break the scheme in O(2�r/2�n) time, and hence, the scheme
can be considered secure if any attack on it requires Ω(2�r/2�n) time, data or memory.
We say that a cipher provides m-bit security if any attack on it requiresΩ(2m) time, data
or memory. In these terms, the question above can be formulated as

Question 1 (Reformulated) What is the minimal r such that r-round iterated EM
with n-bit subkeys provides n-bit security (in the identical subkeys variant), or �r/2�n-
bit security (in the independent subkeys variant)?

We emphasize that we can only give lower bounds on the value of r by presenting
efficient attacks. In order to upper bound r , we need to prove a lower bound on the
computation complexity of all algorithms that try to break the corresponding scheme.
However, as previously mentioned, this is considered a very difficult task, as we lack
such proof techniques in the computational model.
Our main results are the following:

Conclusion 1. The minimal number of rounds, r1, such that an r1-round iterated EM
with identical n-bit subkeys provides n-bit security is r1 ≥ 4.

We support this claim by devising a key recovery attack on 3-round EM with identical
subkeys, which is n/ log n times faster than exhaustive key search. This result improves
by a full round the best previously known result [29] that can break 2-round EM (with
roughly the same complexity as our 3-round attack).

Conclusion 2. The minimal number of rounds, r2, such that an r2-round iterated EM
with independent n-bit subkeys provides n-bit security is r2 ≥ 3.
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We support this claim by devising a key recovery attack on 2-round EM with indepen-
dent subkeys whose overall complexity is o(2n). This is the first result on this variant
which succeeds to go further than the twenty-year-old attacks of [9] on the original EM
scheme.
After examining the two main iterated EM variants, we present applications of our

techniques to three other EM variants that may be naturally used by concrete ciphers.

– Iterated EM with Random Involutions: Involutions are functions that satisfy f ( f (x))

= x for all x . They are used as building blocks in several block ciphers (such as
KHAZAD [4], Anubis [3] and NOEKEON [10]). Involutions were already consid-
ered for EM schemes with identical subkeys in [14], which showed that choosing
the permutation to be a random involution does not reduce its resistance to key re-
covery attacks. We show that contrary to the EM case, in iterated EM schemes with
identical subkeys, choosing the Pi ’s to be random involutions reduces the security
considerably. Indeed, while the attacks on 2-round and 3-round iterated EM with
an n-bit key require about O(2n−log n) time, in the involutional case the complex-
ity reduces drastically to O(2n/2) and O(23n/4), respectively. A rather surprising
implication of this result is that one can reduce the security of a 2-round iterated
EM scheme by pre-pending an additional round whose permutation is a (possibly
strong) involution (e.g., a keyless Feistel construction with no round constants).
This reduction in security can be considered as a way to insert a backdoor into
iterated EM constructions.

– Iterated EM with Alternating Subkeys: One of the possible ways to instantiate
iterated EMwith block size of n bits and key size of 2n bits (which is quite common,
e.g., AES-256 and IDEA) is to divide the master key K into two n-bit subkeys
K1, K2 and use them alternately. This design is used in the block cipher LED-
128 [20]. We adapt our attack on 3-round EM with identical subkeys to an attack
on 8-round EM with alternating subkeys, thus showing that the minimal number of
rounds required in alternating subkeys EM for providing 2n-bit security is at least
9. The best previous result on this scheme was an attack on 6 rounds [29] (resulting
from an adaptation of an attack on 2-round EM with identical subkeys).

– Iterated EM with Linearly Derived Subkeys: In numerous block ciphers, the round
subkeys are not identical, but are all derived from the master key in a linear way.
Examples includeDES, IDEAandSHACAL-1.We show that our attacks on iterated
EM with identical subkeys can be adapted to work with the same complexity on
iterated EM in which the subkeys are linearly derived from the master key.

Although our results are generic and do not depend on the structure of the permutations
Pi (with the exception of involutional schemes), they provide the best known attacks
against several concrete block ciphers. These ciphers include both variants of LED (LED-
64 and LED-128), proposed by Guo et al. at CHES 2011 [20] and AES2, presented at
Eurocrypt 2012 by Bogdanov et al [7]. In addition, we present an application of our
techniques to 8 rounds (out of 12) of the block cipher Crypton (a former AES candidate),
which has relatively weak round functions, making it somewhat different from the other
ciphers we consider. While 8-round Crypton can be attacked with other techniques
(as shown in [22,28]), it is of a particular interest, as it demonstrates that our generic
techniques can be competitive with highly specialized attacks even on block ciphers



702 I. Dinur et al.

with weak round functions (for which one may expect specialized techniques to reach
more rounds than our generic techniques). Additionally, our attack is generic and can
work even if the round function of Crypton is replaced by a very strong function.
Wealsomention the block cipherZorro (presented atCHES2013byGérard et al. [18]),

whose preliminary version was a 3-round EM with identical subkeys. Due to our attack
(communicated to the designers), the designers decided to increase its number of rounds
to 6, in exchange for simplifying the permutations used in the rounds (see [19, page12]).1

1.3. Our Techniques

The origin of our techniques is the first paper which analyzed EM, by Daemen [9] in
1991. Daemen observed that in single-key EM, an attacker can use the fact that the XOR
of the unknown input and output of the permutation P is equal to the known XOR of
the plaintext and the ciphertext. This observation can be used to break single-key EM
significantly faster than exhaustive search.
At FSE 2013, Nikolić et al. [29] extended the basic observation considerably. They

considered the graph of the function P ′(x) = x ⊕ P(x) 2 and showed that vertices with
a large in-degree in this graph can be exploited to bypass an additional round of EM.
Thus, [29] described the first key recovery attack on 2-round EMwith identical subkeys,
which is faster than exhaustive search (by a small factor).
In this paper, we develop these techniques one step further and show that the graphs of

the functions P ′
1 and P ′

3 (corresponding to the permutations P1 and P3) can be deployed
simultaneously, resulting in the first attack on 3-round EMwith identical subkeys. How-
ever, this enhancement by itself increases the time complexity of the 2-round attack
further, and it becomes very close to exhaustive key search. Nevertheless, a surprising
feature of our attack on 3-round EM is that it has about the same time complexity as
the 2-round attack. This feature is due to a novel filtering technique (which is related
to the splice-and-cut technique [2]) based on tailor-made linear subspaces that offers an
efficient method to quickly dispose of data which is useless for our attack.
Another novel technique thatwedevelop in this paper allowsus to adapt the differential-

based attack of [27] (which was originally applied to 2-round iterated EMwith identical
subkeys) to the more complex case of 2-round iterated EM with independent subkeys.
While the attack of [27] makes use of plaintext pairs with a fixed difference, we notice
that in its original form, it is not faster than the standard meet-in-the-middle attack on
this scheme. In our attack, we work on nonstandard structures of plaintext triplets which
offer a more efficient method to filter out wrong key guesses.

1 We note that the main motivation for most of the results described above is to understand the theoretic
security of the schemes we consider. As in many previous cryptanalytic attacks, it is very likely that practi-
tioners will prefer to use a straightforward exhaustive search due to its simplicity, lower memory complexity
and parallelizability. In fact, the same distinction between theory and practice applies to numerous other com-
putational tasks such as matrix multiplication, in which the best theoretic algorithms are not likely to be used
by practitioners.

2 In [29], the permutation P is actually the full encryption function, and thus, x is a plaintext and P(x) is
its corresponding ciphertext.
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1.4. Organization of the Paper

Thepaper is organized as follows. InSect. 2,weoverviewprevious attacks on iteratedEM
constructions and their relation to our work, while in Sect. 3, we describe our complexity
model. In Sect. 4, we present our attacks on iterated EM with identical subkeys. Our
attacks on iterated EM with independent subkeys are presented in Sect. 5. In Sect. 6,
we consider other variants of iterated EM, as described above. The applications of our
techniques to the block ciphers LED-64, LED-128, AES2 and Crypton are presented in
Sect. 7. Finally, we conclude the paper in Sect. 8.

2. Related Work

In order to understand the context of our results on iterated EM constructions, we elabo-
rate further on the previous works in the computational model defined in the Introduction
and emphasize their relation to our work.3 As previously mentioned, the security of the
original EMscheme (i.e., with r = 1) is completely determined, and thus,we concentrate
on iterated EM schemes (i.e., with r > 1).

In this paper, we are mainly interested in attacks which are not cipher-specific and can
thus be applied to (almost) any iterated EM construction (with some fixed key schedule).
The first class of such attacks was presented by Mendel et al. [27], which explored ways
to generalize Daemen’s differential attack on the EM construction [9] to related-key
attacks on iterated EMconstructions. For iterated EMwith independent subkeys,Mendel
et al. showed that Daemen’s attack can be generalized to yield a related-key attack on r
rounds with complexity of O(r2n/2) (where n is the subkey size).4 For iterated EMwith
identical subkeys, Mendel et al. showed that Daemen’s attack can be used to break two
rounds with complexity of O(2n/2) in the related-keymodel. Finally, they also presented
some attacks in the single-key and related-key models, which assume that some of the
internal permutations exhibit a high probability differential characteristic. The related-
key attacks are mostly incomparable to our results, as we consider the more standard
single-key attack model throughout our paper.
The second class of generic attacks was presented by Nikolić et al. [29] in their work

on LED. They considered iterated EM with identical subkeys and showed that 2 rounds
are not sufficient to provide full security. The attack model considered in [29] is similar
to ours, and we succeed to extend the results of [29] by a full round, describing the first
attack on 3-round iterated EM (which has roughly the same complexity as the attack
of [29] on 2-round EM). In addition, we present improved attacks on 2-round iterated
EM, improving the attack of [29] in both data and memory complexities.
More recently, in [12], the authors studied the security of certain iterated EM variants

with 2 subkeys, and in particular with alternating subkeys of the form K1, K2, K1,

K2, . . .. This study is driven by applications that use this specific instantiation of iterated
EM, such as the LED-128 block cipher. This work studied variants with up to 4 rounds

3 The works in the information-theoretic model are not directly related to our work since they assume that
the time complexity of the adversary is unbounded (and the only bound is on the number of queries). Hence,
they are not reviewed in this paper.

4 It should be noted that a similar attack was presented in [7].
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and showed that 4-round iterated EM with alternating n-bit keys provides at most n-bit
security (compared to O(22n) of exhaustive search). In our paper, we do not consider
this EM variant separately (since it is less natural from the theoretic point of view),
but rather show that our attack on 3-round EM with identical subkeys can be easily
adapted to give an attack on 8-round EM with alternating subkeys with complexity of
O(22n−log n). As [12] considered an iterated EM variant with significantly less rounds (4
vs. 8), but provided attacks with much lower complexity, their results are incomparable
with the results of the this paper (as our main motivation is to investigate Question 1).

3. Our Complexity Model

Throughout the paper, we follow the standard conventions in the analysis of time and
memory complexities. Our basic unit of memory is an n-bit block. Our basic unit of
time is a single evaluation of the encryption or the decryption function, i.e., the full
r -round iterated EM scheme. The full encryption function requires the evaluation of the
r permutations Pi (which are assumed to be heavy operations) and a small number of
simple operations (such as XORs), which are assumed to require negligible time. Thus,
we assume that an invocation of a single permutation Pi (or its inverse) costs 1/r time
units.
For the sake of convenience, we often partition the attack into an offline preprocessing

phase, which analyzes the properties of the public Pi ’s, and an online attack phase
which analyzes the given plaintexts and ciphertexts. However, we always define the
time complexity of the attack as the sum of the complexities of its offline and online
phases. This is different from the model used by Hellman in his time/memory trade-off
attack [21], which allowed unlimited free preprocessing and considered only the online
complexity (note that in ourmodel,Hellman’s attack is not better than exhaustive search).
To prevent other types of “cheating,” we always add the time required to generate the
data to the final time complexity and add the space required to hold the data to the final
space complexity.
All of our attacks are better than exhaustive search by small factors, which raises

the natural question whether they should be considered as legitimate attacks. This is a
general problem in cryptanalysis, since it is difficult to decide whether an attack such as
the Biclique attack on AES-128 [6] (which requires 2126 time) really “breaks” a scheme
whose exhaustive search requires 2128 time. Some researchers suggested that this issue
should be decided by the nature of the attack: If an attack on an n-bit scheme has an
outer loop which tries 2n different possibilities, but performs for each one of them an
operation which is cheaper than a single encryption, then the attack should be called an
“improvement of exhaustive search” rather than a “real attack,” and the scheme is not
said to be “broken” by it. However, this is a fragile definition since the same attack can
be described in multiple ways, and it is not always clear whether it tries 2n or fewer
possibilities.
Fortunately, in cryptographic schemes such as EM which can be naturally defined

for arbitrarily large key sizes n, we can avoid this fragility by analyzing the asymptotic
complexity of the attack. As we show in this paper, our attacks are about n/ log(n) times
faster than exhaustive search. Since this ratio is unbounded when n increases, our attacks
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are asymptotically better than any standard or improved version of exhaustive search,
and this is a robust statement since it ignores all the multiplicative constants, which are
associated with a particular model of computation.
A delicate issue which we face in the analysis of our attacks is the complexity of sort-

ing. As most papers in the field, our analysis assumes that this complexity is negligible
compared to the complexity of cipher evaluations performed by our attacks. Moreover,
since we are also interested in asymptotic analysis, we further assume that the asymp-
totic complexity gap between the cipher evaluations and sorting is sufficiently large, and
thus, sorting complexity can also be neglected asymptotically. This assumption can be
justified by the (implicit) requirement to make the public permutations Pi sufficiently
strong as n grows. In particular, sorting a list of S n-bit elements requires O(n ·S ·log(S))

bit operations, and our attacks sort lists of approximate size S = log(n)/n ·2n , requiring
O(n · log(n)/n · 2n · log(log(n)/n · 2n)) = O(n log(n) · 2n) bit operations. Our attacks
also make about S = log(n)/n · 2n cipher evaluations, and thus, if we assume that each
evaluation requires (at least) θ(n2) bit operations, then the complexity of the cipher
evaluations is θ(n log(n) · 2n) bit operations, which is also the asymptotic complexity
of the full attacks (implying that the complexity of sorting can be neglected asymptot-
ically). Note that as the complexity of exhaustive search is θ(2n) cipher evaluations, it
is equivalent in this case to θ(n2 · 2n) bit operations, and thus, our attacks are faster by
a factor of about n/ log(n).
Some of the concrete schemes we consider in this paper (such as LED and AES2)

pose the following problem: They use the general iterated EM framework, but instantiate
P with a fixed-key AES-like permutation, which is defined only for a few values of n,
and thus, it is difficult to define their asymptotic security. We solve this problem in two
ways. First, we observe that all our attacks are completely generic and do not exploit any
particular properties of P besides its randomness. We can thus analyze the performance
of our attacks, assuming that AES is replaced in these schemes by a random permutation
over n-bit values and show that their asymptotic time complexity is smaller than that of
exhaustive key search by a factor of n/ log n. In addition, we carefully analyze the exact
complexity of our attacks for the particular values of n recommended for these schemes
and show that they are between 7 and 64 times faster than exhaustive search, depending
on the particular scheme we attack.

4. Attacks on Iterated Even–Mansour with Identical Subkeys

In this section,we consider iteratedEMschemeswith r permutations P1, P2, . . . , Pr , and
r + 1 identical subkeys, all equal K , as shown in Fig. 1 (note that if all the permutations
are also the same, the scheme is extremely vulnerable to slide attacks [5]). Our goal is
to use properties of one of the public permutations P ∈ {P1, P2, . . . , Pr } in order to

m
⊕

P1
⊕

P2
⊕

Pi

⊕
Pr

⊕
c

K K K K K

Fig. 1. Iterated EM with identical subkeys.
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y ⊕
K

x
P

P (x)⊕
K

Q(K, y)

⊕
P ′(x)

Q

⊕
Q′(K, y)

Fig. 2. The Functions P, P ′, Q, Q′.

deduce properties of the associated keyed permutation5 Q(K , x) = K ⊕ P(x ⊕ K )

(used inside the EM construction), which hold for any value of K .
As Daemen pointed out in 1991 [9], for any value of K and in any invocation of

Q(K , x), the XOR of its input and output is equal to the XOR of the input and output of
the internal P function in the same invocation, i.e., x ⊕ Q(K , x) = (x ⊕ K )⊕ P(x ⊕ K ).
Another interesting observation is that when K is unknown, we cannot determine x ⊕ K ,
but the addition of K just renames the input vertices in the bipartite graph of P ′(x) =
x ⊕ P(x), and thus, it preserves the distribution of in-degrees of its output vertices.
In particular, if some output values of P ′ are more likely than expected (i.e., appear
more than the average), then we can predict the value Q(K , x) with a higher probability
than expected even when K is unknown. More specifically, any t-way collision on the
value v in P ′, namely x1, x2, . . . , xt such that x1 ⊕ P(x1) = x2 ⊕ P(x2) = · · · =
xt ⊕ P(xt ) = v for some value of v, yields a t-way collision on the value v in the
function Q′(K , x) = x ⊕ Q(K , x) = x ⊕ K ⊕ P(x ⊕ K ) (see Fig. 2). Assume that
indeed we manage to find during a preprocessing phase a large t-way collision in the
public P ′(x) on the output value v. Since it also yields a t-way collision on the value v

in the keyed function Q′(K , x), there are at least t values of x for which Q′(K , x) = v,
and thus, Q(K , x) = x ⊕ v. Consequently, we can guess Q(K , x) with a probability,
which is t times higher than the expected 1/2n even when we know nothing about K .
This graph theoretic property is strongly related to the one used in [29], but we use

it in a different way. Whereas we use properties of the public permutations (which
can be observed during a preprocessing phase), [29] exploits properties of the given
plaintext–ciphertext pairs: assume that m j ⊕ c j = v for multiple plaintext–ciphertext
pairs (m j , c j ). Then, for all of these pairs, they know that (m j ⊕ K ) ⊕ (c j ⊕ K ) = v.
Thus, the attack of [29] is based on the property that the XOR of the inputs to the first and
last public permutations P1 and P−1

r attains the value v more than the expected number
of times. In particular, in their attack, it is not clear how to compute such a v during a
preprocessing phase, and they have to wait for the actual data in order to search for the
best v in it. Our attacks, on the other hand, are based on the property that the XOR of
the input and output of a single public permutation attains some value v more than the

5 In general, given some public permutation Pi , we denote Qi (K , x) = K ⊕ Pi (x ⊕ K ).
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expected number of times, and thus, we can find the best v once and for all, before any
data are given for a particular key.
In order to estimate the highest expected in-degree in the bipartite graph of P ′(x) =

x ⊕ P(x), we assume that for a random choice of the permutation P , the function P ′
behaves as a random function. This is not completely true, since there are some extremely
expensive ways to distinguish between such cases (for example, the XOR of all the 2n

values of P ′ is zero, whereas the XOR of all the outputs of a truly random function is
unlikely to be zero). However, it is easy to verify with appropriate simulations that the
in-degree distributions of the twomodels behave almost identically, which is all we need
in our attack.6

The main problem in applying this attack is that going over all the 2n possible values
of x in order to find the most popular v will make our attack slower than exhaustive
search (since we do not allow free preprocessing). Fortunately, we can find vertices v′,
which are almost as popular by trying only a subset X ⊆ {0, 1}n of possible inputs. We
denote this restricted function by f|X and note that it induces a subgraph in the bipartite
graph associated with f , in which the left side of the graph contains only the vertices
in X . Our goal now is to analyze the expected distribution of the in-degrees in random
subgraphs of random functions.
Random functions have been extensively analyzed in the literature (e.g., see [16]). It is

well known that the in-degree of an element in the range of f|X is distributed according
to the Poisson distribution with an expectation λ, which is equal to the average in-degree
(i.e., λ = |X |/2n , which is the ratio between the sizes of the domain and range of f|X ).
Given a parameter t , the probability that an arbitrary element v will have an in-degree of
t is thus (λt e−λ)/t ! (see, for example, [32]). We have 2n elements in the range, implying
that we expect that about (2n ·λt e−λ)/t ! vertices will have an in-degree of t . If we equate
this number to 1 and ignore low-order terms, we can deduce that the largest expected
in-degree t satisfies t · log(t) = n, and thus, t is approximately equal to n/ log(n). The
crucial point is that this highest in-degree grows in an unbounded way as n increases,
and thus, any complexity of the form O(2n/t) behaves asymptotically as o(2n). If we
reduce this maximal t to t − i for a small i , we expect to find about (t/λ)i vertices which
have this reduced in-degree. Since t > 1 and λ < 1, this number grows exponentially
with i , and we can thus find a huge number of vertices, which have almost maximal
in-degrees. To get a sense of the concrete values implied by this distribution for n = 64
(the block size of the LED block cipher), refer to Table 1.

The attacks in this paper are described in terms of several parameters, and it is usually
possible to obtain various trade-offs between their time, data and memory complexities
by tweaking the parameter values. However, since there is no simple formula which
describes the exact trade-off curves, one needs to determine favorable trade-off points
on the curves by plugging in a few values for the parameters and calculating the resultant
complexities of the algorithms. This is demonstrated in our attacks, where we suggest
concrete points on the curves which minimize the time complexity, but stress that there
are other options as well.

6 In fact, collisions in P ′(x) are slightly less likely to occur when P is a random function, since if P(x) =
P(y) (for x 
= y), then P ′(x) 
= P ′(y), whereas if P is randompermutation, then x 
= y implies P(x) 
= P(y),
and the probability for P ′(x) = P ′(y) is a bit higher. As a result, our analysis slightly underestimates the
highest expected in-degree, and thus, the attacks that we describe are actually (negligibly) faster.
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Table 1. Concrete in-degree values with n = 64.

Number of inputs Vertex degree Expected number of vertices

264 20 2 or 3
19 55
18 1060

263 17 1
16 8
15 260

260 10 4
9 695
8 100130 ≈ 216.6

4.1. Attacks on 2-Round Iterated Even–Mansour with Identical Subkeys

We start by describing a very basic attack, 2Round1K ey Basic. Let S and D be para-
meters.
Preprocessing:

PR1. Evaluate P ′
1 on an arbitrary subset of inputs X , such that |X | = S, and store the

output values (without their associated input values) in a sorted list.
PR2. Traverse the sorted list and find the output v1 which occurs the maximal number

of times (in t1 consecutive locations).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext–ciphertext pair (mi , ci ):

(a) Assume that Q1(K , mi ) = mi ⊕ v1 � zi and calculate P2(zi ).
(b) Test the suggestion for the key K ′ = P2(zi ) ⊕ ci by checking whether indeed

Q1(K ′, mi ) = mi ⊕ v1. If the test fails, increment i and return to Step O2.
Otherwise, return the suggested key.

The time complexity of the preprocessing phase is S evaluations of P1, and itsmemory
complexity is also S. Note that the output of the preprocessing phase is only the value
v1 and the corresponding number t1, and we can discard the rest of the sorted list (as
mentioned above, in our model we ignore the sorting time of the list). In addition, since
we can execute the online phase in streaming mode by working on each given plaintext–
ciphertext pair independently and discarding it afterward, its memory complexity is
negligible. The expected time and data complexities of the online phase depend on the
value of t1: We know that there are at least t1 values of x such that Q1(K , x) = x ⊕ v1.
According to the birthday paradox, after trying about 2n/t1 arbitrary messages, we
expect7 that at least one mi will satisfy Q1(K , mi ) = mi ⊕ v1 and suggest the correct
value of K . Thus, the expected data complexity of the online algorithm is 2n/t1, and in
order to compute its time complexity, we need to sum 2n/t1 evaluations of P2 in Step

7 The attack (and similar attacks described in this paper) succeeds to recover the key with probability of
about 1 − e−1 ≈ 0.63. For a higher success probability, we need to increase the data and time complexities
accordingly.
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O2.(a), 2n/t1 evaluations of Q1 (or P1) in Step O2.(b), and 2n/t1 encryptions in order
to generate the data.

4.1.1. Optimizing the Basic Algorithm

Wenowdescribe several useful optimizations of the 2Round1K ey Basic algorithm. The
first optimization is to use the freedom to choose the subset X during the preprocessing
phase in order to immediately filter out most of the wrong key suggestions that are now
filtered only in Step O2.(b) of the online algorithm and thus avoid the Q1 evaluations
in these cases. The idea uses a technique that resembles (but is not the same as) splice-
and-cut [2]: Assume that we choose the set X of size S as the subspace of values
x in which the n − log(S) LSBs are zero (or any other constant). Then, the value
of these n − log(S) LSBs in all the t1 inputs x that satisfy P ′

1|X (x) = v1 is zero.
Consequently, we know that for any plaintext mi , if mi ⊕ K is one of these t1 inputs,
then the n−log(S)LSBs of K are equal to those ofmi . Thus, before testing the suggested
key in Step O2.(b), we can check whether its n − log(S) LSBs are equal to those of mi

and otherwise discard it without evaluating Q1. We note that in this attack, the saving in
time complexity due to this optimization is small; however, in Sect. 4.3, we show that a
similar idea yields a more significant saving in our attacks on 3-round iterated EM. We
alert the reader that even though the values in X are now chosen in a specific way, the
attack remains a known-plaintext attack since there is no restriction on the choice of the
mi ’s.
The second optimization is to consider � > 1 outputs of P ′

1 with a high in-degree
instead of just one. This allows us to reduce the data complexity of the attack at the
expense of using more memory and slightly more time during the online phase of the
attack. Since the original online algorithm required only negligible memory, this trade-
off seems favorable. Our optimized algorithm 2Round1K eyOpt is described below,
using S, D and � as parameters.
Preprocessing:

PR1. Evaluate P ′
1 on a subset of S inputs, X , such that the n − log(S) LSBs of each

x ∈ X are zero. Store the output values in a sorted list.
PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v� which have the highest

in-degrees. Denote the in-degrees of the outputs v1, v2, . . . , v� by t1, t2, . . . , t�,
respectively.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext–ciphertext pair (mi , ci ):

(a) For j ∈ {1, 2, . . . , �}:
(i) Assume that Q1(K , mi ) = mi ⊕ v j � zi j and calculate P2(zi j ).
(ii) Let K ′ = P2(zi j ) ⊕ ci . If the n − log(S) LSBs of K ′ are different from

those of mi , discard it and return to Step O2.(a) (if j = � return to Step
O2). Otherwise, test K ′ by checking whether Q1(K ′, mi ) = mi ⊕ v j . If
the test succeeds, return K ′, otherwise, if j < � return to Step O2.(a) and
if j = � return to Step O2.
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As in the 2Round1K ey Basic, the time complexity of the preprocessing phase is S
evaluations of P1, and its memory complexity is also S. However, in 2Round1K eyOpt ,
a bigger list of size � is carried over to the online algorithm, and thus, its memory
complexity is increased to �. In order to calculate the time and data complexities, we
denote by t̄ the average value of t1, t2, . . . , t�, and thus, there are t̄� values of x for
which Q1(K , x) = x ⊕ v j for j ∈ {1, 2, . . . , �}. According to the birthday paradox,
after trying about 2n/(t̄�) arbitrary messages, we expect that at least one mi will satisfy
Q1(K , mi ) = mi ⊕ v j and suggest the correct value of K . Thus, the expected data
complexity of the attack is 2n/(t̄�). Since we perform � evaluations of P2 per given
message, the expected time complexity of the online algorithm is about � · D = 2n/t̄
evaluations of P2, S/2n · 2n/t̄ = S/t̄ evaluations of P1 in Step O2.(a).ii, and 2n/(t̄�)
time to generate the data.

4.1.2. Concrete Parameters

For n = 64, let S = 260, which implies λ = 260/264 = 2−4. As shown before, by
using the formula (2n · λt e−λ)/t ! = 264 · (2−4t e−1/16)/t ! with t = 10, it is easy to
check that in such an evaluated subgraph of a random function we expect to see at least
� = 4 vertices with an in-degree of 10. With these parameters, the time complexity of
the preprocessing phase is 260 evaluations of P1 (which is equivalent to 259 evaluations
of the 2-round scheme), and its memory complexity is 260. The memory complexity of
the online algorithm is negligible, its data complexity is 264/(10 · 4) = 258.7 known
plaintexts and its time complexity is 264/10 evaluations of P2 and 260/10 evaluations
of P1, which is equivalent to about 259.8 time units. Adding the 258.7 time required to
generate the data, we obtain a total time complexity of about 260.4, which is about 12
times faster than exhaustive search.
We can significantly reduce the data complexity by considering all the vertices with

an in-degree of at least 8, whose number � is expected to exceed 216. This does not affect
the time and memory complexities of the preprocessing phase. The memory complexity
of the online algorithm is now 216 (which is still quite small), its data complexity is
264/(8 · 216) = 245 known plaintexts and its time complexity is now 264/8 evaluations
of P2 and 260/8 evaluations of P1, which is equivalent in total to about 260.1 time units,
or about 15 times faster than exhaustive search. In this case, the 245 time required to
generate the data has a negligible effect on the total time complexity. Note that since
we use significantly less data compared to the previous attack (that used 258.7 data), we
actually gain in time complexity.

4.2. A Low-Memory Attack on 2-Round Iterated Even–Mansour
with Identical Subkeys

In this section, we present another attack on 2-round iterated EMwith identical subkeys.
The attack is different from all other attacks described in this paper, since it does not
exploit vertices with a high in-degree in random functions. In fact, the attack does not
assume any property of the public permutations and thus is expected to work even for
those which are highly non-random. The advantage of the attack compared to the attacks
presented above is that it requires significantly less memory during preprocessing (in
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fact, the preprocessing computation of the attack is negligible). On the other hand, it
requires more data than the data-efficient attack presented above, and in addition, it
requires chosen plaintexts (rather than known plaintexts).
In order to simplify our notation, let v be an n-bit vector and X a set of n-bit vectors.

We define the operation v⊕ X � {v⊕x |x ∈ X}. We now describe a generalization of the
filtering technique that we used in our optimized attack in Sect. 4.1: consider an arbitrary
message m and an affine subspace X of dimension d1, which is defined with a set of
n − d1 linear equations. If m ⊕ K ∈ X , then m ⊕ K satisfies the n − d1 linear equations
which define X . Thus, if we knowm, then we know the value of these linear equations on
K . More generally, given an affine subspace V of dimension d2, if there exists a message
m ∈ V such that m ⊕ K ∈ X , then the intersection of the subspaces K ⊕V and X is non-
empty, and this imposes n − d1 − d2 linear equations on K . Our attack is based on this
generalized filtering technique. Let S and D be parameters, such that S + log(S) < n:
Preprocessing:

PR1. Evaluate P ′
1 on the subspace of inputs X of size S, which contains all the vectors

whose n − log(S) LSBs are set to zero, and the log(S) MSBs attain all S possible
values. Store the S outputs v1, v2, . . . , vS . Denote by V the linear vector space of
dimension (at most) S spanned by v1, v2, . . . , vS .

PR2. Compute and store the (minimum of) n − log(S) − S linear equations imposed
on K assuming that (K ⊕ V )

⋂
X 
= ∅. Denote the computed matrix by A.

Online:

O1. Ask for the encryption of D structures (affine subspaces of dimension S) of plain-
texts, defined by m ⊕ V , where m is an arbitrary message.

O1. For each structure mi ⊕ V :

(a) Assume that ((mi ⊕ K ) ⊕ V )
⋂

X 
= ∅ and use mi to compute the values of
the linear equations of A on K .

(b) For each m j
i ∈ mi ⊕ V , compute z j

i � P2(m
j
i ) and use it to compute the value

of the linear equations of A on z j
i . Store these 2S values in a sorted list L1,

next to z j
i .

(c) For each ciphertext c j
i in the structure, compute the value of the linear equations

of A on c j
i ⊕K (their value on K is known fromStepO2.(a)). Search formatches

of this value in L1.
(d) For each match associated with c j

i and z�
i (for some value of �), obtain a

suggestion for the key K ′ = c j
i ⊕ z�

i and test it using one plaintext–ciphertext
pair. If the test succeeds, return the key.

In order to understand the main idea of the attack, assume that indeed ((mi ⊕ K ) ⊕
V )

⋂
X 
= ∅ for some mi (as assumed in Step O2.(a)), i.e., (mi ⊕ K ⊕ v) ∈ X for

some v ∈ V . Then, we know that P ′
1(mi ⊕ K ⊕ v) ∈ V , and thus Q′

1(K , mi ⊕ v) =
P ′
1(mi ⊕ K ⊕ v) ∈ V , i.e., Q1(K , mi ⊕ v) = mi ⊕ v ⊕ v′ for some v′ ∈ V . Since V is

a linear subspace, it implies that Q1(K , mi ⊕ v) ∈ mi ⊕ V . As we compute P2 for all
m j

i ∈ mi ⊕ V in Step O2.(b), we will get a match in step 2.(c) with the ciphertext of our
plaintext mi ⊕ v, and this match will suggest the correct key.
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The time complexity of the preprocessing phase is S evaluations of P1 in addition to
some linear algebra of complexity of about n3 bit operations in Step PR2 (which can
be performed by Gaussian elimination). As calculated shortly, these computations are
negligible compared to the computations performed in the online phase of the attack.
The memory complexity of the preprocessing phase is also proportional to S, with the
addition if about n2 bits required in order to store A. Again, this storage is negligible
compared to the storage required by the online algorithm.
The memory complexity of the online algorithm is about 2S , required to store L1

(note that we can work on the ciphertexts of each structure in streaming mode, and
thus, we do not need to store them in memory). The attack finds the correct key once
((mi ⊕ K ) ⊕ V )

⋂
X 
= ∅ for some mi . Since |X | = S, we need about 2n/S data for

this to occur with high probability, i.e., we require D ≈ 2n/(S · 2S) structures of 2S

plaintexts. For each such structure, we perform 2S evaluations of P2. In order to calculate
the expected number of trial encryptions performed in Step O2.(d) for each structure,
we notice that we match two lists of size 2S (although only L1 is explicitly stored in
memory). The number of matched bits is (at least) n − log(S)− S, and thus, the expected
number of trial encryptions per structure is 22S−n+log(S)+S = 23S+log(S)−n .

If we take S = n/4, then the time complexity of the trial encryptions is negligible
compared to the complexity of evaluations of P2, which is equivalent in total to about
0.5 · 2n/S encryptions. Adding the additional 2n/S encryptions required to prepare the
data, the total time complexity of the attack is equivalent to about 2n+0.6/S encryptions.
We note that there are several possible extensions to this algorithm, which include a

more complicated preprocessing phase. In particular, we can combine this attackwith the
techniques of Sect. 4.1 by looking for subsets X whose elements have a large in-degree
in the associated graph of P ′

1. However, we do not describe these highly complicated
extensions in this paper.

4.2.1. Concrete Parameters

For n = 64, let S = 16. Then, the memory complexity of the attack is 216, its expected
data complexity is 260 chosen plaintexts and its expected time complexity is about 260.6.

4.3. Attacks on 3-Round Iterated Even–Mansour with Identical Subkeys

In the attacks on 2-round iterated EM with identical subkeys, we use properties of P1
in order to guess a value of Q1(K , x) with a higher probability than expected. We then
apply to this guess the public permutation P2, which immediately gives us a suggestion
for the key by XORing the obtained value with the ciphertext. In order to attack 3-round
iterated EM with identical subkeys, we start with the same idea. However, after the
evaluation of P2, we cannot immediately get a suggestion for the key, as we still have to
apply the complex operation of XOR’ing the unknown key, applying P3, and XOR’ing
the unknown key again, before we can compare the result to the ciphertext. Nevertheless,
we notice that given the value at the output of P2, we reduce the key recovery problem
to attacking a single-round EM scheme with one key, to which we can apply the simple
attack of [14]. Thus, we run an additional preprocessing step which evaluates and stores
in a sorted list the values of P ′

3(x) = x ⊕ P3(x) for various inputs x . The sorted list is
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used in the online algorithm in order to obtain suggestions for the key, as described in
the basic algorithm 3Round1K ey Basic below, which uses S1, S3 and D as parameters.
Preprocessing:

PR1. Evaluate P ′
1 on an arbitrary subset of inputs X1 such that |X1| = S1 and store the

output values in a sorted list.
PR2. Traverse the sorted list and find an output v1 with a maximal in-degree, denoted

by t1.
PR3. Evaluate P ′

3 on an arbitrary subset of inputs X3, such that |X3| = S3, and store the
output values P ′

3(x) in a sorted list L3 next to the corresponding value of P3(x).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext–ciphertext pair (mi , ci ):

(a) Assume that Q1(K , mi ) = mi ⊕ v1 � zi and calculate P2(zi ).
(b) Look for the value of P2(zi ) ⊕ ci in L3. If there is no match, return to Step O2

and increment i .
(c) For eachmatch of P2(zi )⊕ci , obtain the value of P3(x) (forwhich P2(zi )⊕ci =

P ′
3(x) = x ⊕ P3(x)) and test the key suggestion K ′ = P3(x)⊕ ci by checking

whether Q1(K ′, mi ) = mi ⊕ v1. If the test fails, continue with the next match
(if none remain, return to Step O2). Otherwise, return the key.

The time complexity of the preprocessing phase is S1 evaluations of P1 and S3 eval-
uations of P3, and its memory complexity is max(S1, S3). Note that we do not need to
store any of the values generated in the first step of the preprocessing after Step PR2
terminates. The memory complexity of the online algorithm is S3. In order to calcu-
late the expected time and data complexities of the online algorithm, we notice that
after we process D pairs (mi , ci ), we expect that at least (t1 · D)/2n of them satisfy
Q1(K , mi ) = mi ⊕ v1, and consequently at least (t1 · D · S3)/22n pairs will be matched
and suggest the correct value for the key in Step O2.(c). Thus, in order to obtain a cor-
rect suggestion for the key, we require (t1 · D · S3)/22n = 1, implying that the data
complexity of the attack is D = 22n/(t1 · S3). We expect a match in Step O2.(c) for
a fraction of S3/2n of the (mi , ci ) pairs. Thus, we estimate the time complexity of the
online algorithm as D = 22n/(t1 · S3) evaluations of P2, S3/2n · 22n/(t1 · S3) = 2n/t1
evaluations of P1, and 22n/(t1 · S3) time required to generate the data.

4.3.1. Optimizing the Basic Algorithm

Similarly to our 2Round1K eyOpt attack, we would like to use the freedom to choose
the subset X1 during preprocessing in order to reduce the time complexity of the attack.
However, in this attackwewill use this freedom in a different way:We “synchronize” the
sets X1 and X3 such that we can instantly rule out most pairs (mi , ci ) (just by comparing
bits of mi and ci ) that do not simultaneously satisfy both Q1(K , mi ) = mi ⊕ v1 and
P−1
3 (ci ⊕ K ) ∈ X3. Thus, we can discard most pairs (mi , ci ), which will suggest a

wrong key (or suggest no key at all) with a negligible computation.
We now assume that |X1| = |X3| = S. Similarly to the 2Round1K eyOpt algorithm,

we choose X1 as a subspace of values x in which the n − log(S) LSBs are zero (or
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mi
⊕

P1
⊕

P2
⊕

P3
⊕

ci

K K K K

O2: Compare n − log(S) LSBs

⊕

vj

zij ⊕
O2.(ii):

?∈ L3

yes
Test K ′ = y ⊕ ci

Fig. 3. The online algorithm of 3Round1K eyOpt .

any other constant). This implies that for any plaintext mi , if mi ⊕ K is one of the t1
inputs that satisfy P ′

1|X1
(x) = v1, then the n − log(S) LSBs of K are equal to those of

mi . As for x ∈ X3, we store the values of P ′
3(x) = x ⊕ P3(x) and set the additional

condition that the n − log(S) LSBs of P3(x) are zero (or any other constant). In fact,
during preprocessing, we do not evaluate P3(x) on x ∈ X3, but rather evaluate P−1

3 (y)

for each y ∈ Y3, where Y3 contains all n-bit vectors whose n − log(S) LSBs are zero.
Thus, we know that if ci ⊕ K ∈ Y3, then the n − log(S) LSBs of K are equal to those
of ci . Combining the conditions on mi and ci , we know that a pair (mi , ci ) will suggest
a correct key in our algorithm only if the n − log(S) LSBs of mi and ci are equal.
Similarly to the 2Round1K eyOpt attack, the second optimization is to consider

� > 1 outputs of P ′
1 with a high in-degree (instead of just one), which allows us to

reduce the data complexity of the attack. Our optimized algorithm 3Round1K eyOpt
is described below, and Fig. 3 illustrates its online part. Let S, D and � be parameters.
Preprocessing:

PR1. Evaluate P ′
1 on a subset of S inputs, X , such that the n − log(S) LSBs of each

x ∈ X are zero. Store the output values in a sorted list.
PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v� with the highest in-

degrees. Denote the in-degrees of outputs v1, v2, . . . , v� by t1, t2, . . . , t�, respec-
tively.

PR3. Let Y3 be the subspace of the |S| n-bit vectors in which the n − log(S) LSBs are
zero. For each y ∈ Y3, store P−1

3 (y) ⊕ y = P ′
3(P−1

3 (y)) in a sorted list L3 next
to y.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext–ciphertext pair (mi , ci ), if the n − log(S) LSBs of mi and ci

differ, discard it. Otherwise:

(a) For j ∈ {1, 2, . . . , �}:
(i) Assume that Q1(K , mi ) = mi ⊕ v j � zi j and calculate P2(zi j ).
(ii) Look for the value of P2(zi j ) ⊕ ci in L3. If there is no match: if j < �

return to Step O2.(a), otherwise ( j = �) return to Step O2.
(iii) For each match of P2(zi j )⊕ ci , obtain the value of y (such that P2(zi j)⊕

ci = P−1
3 (y)⊕ y = P ′

3(P−1
3 (y))), and test the key suggestion K ′ = y⊕ci

by checking whether Q1(K , mi ) = mi ⊕ v j . If the test succeeds, return
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m
⊕

P1
⊕

P2
⊕

c

K1 K2 K3

Fig. 4. A 2-round iterated EM with independent subkeys.

K ′, otherwise, if j < � return to Step O2.(a), and if j = � return to Step
O2.

The time complexity of the preprocessing phase is S evaluations of P1 and P−1
3 , and

its memory complexity is S + �. The memory complexity of the online algorithm is
also S + �, and we note that we will generally select a value of �, which is negligible
compared to S. Denote by t̄ the average value of t1, t2, . . . , t�, and thus, there are t̄�
values of x for which Q1(K , x) = x ⊕ v j for j ∈ {1, 2, . . . , �}. Consequently, in order
to obtain a correct suggestion for the key, we require that (t̄� · D · S)/22n = 1, implying
that the data complexity of the attack is D = 22n/(t̄� · S). We process a pair (mi , ci )

(i.e., we do not discard it in step 2) with probability S/2n , and for each such pair we
perform � evaluations of P2 and for a S/2n fraction of those we also evaluate Q1 (or
P1). The expected time complexity of the online algorithm is thus � · S/2n · D = 2n/t̄
evaluations of P2, S/t̄ evaluations of P1, and 22n/(t̄� · S) time required to generate the
data.
Thus, the attack has about the same time complexity as the 2Round1K eyOpt attack,

and for � = 1, it is more efficient than the 3Round1K ey Basic attack by a factor of
about 2n/S.

4.3.2. Concrete Parameters

For n = 64, let S = 260, i.e., λ = 260/264 = 2−4. Again, we use the formula (2n ·
λt e−λ)/t ! = (264·2−4t e−1/16)/t !with t = 8, such thatweexpect at least � = 216 vertices
with an in-degree of 8. With these parameters, the time complexity of the preprocessing
phase is 260 evaluations of P1 (equivalent to about 258.5 evaluations of the 3-round
scheme), and its memory complexity is 260. The memory complexity of the online
algorithm is 260, its expecteddata complexity is 2128/(8·216·260) = 249 knownplaintexts
and its expected time complexity is 264/8 evaluations of P2 and 260/8 evaluations of
P1, whose sum is equivalent to about 259.6 time units (the time required to generate the
data is negligible). Note that it is possible to reduce the data complexity further at the
expense of increasing the time complexity by considering vertices of a lower in-degree.8

5. Attacks on 2-Round Iterated Even–Mansour with Independent Subkeys

Unlike iterated EM schemes with identical subkeys, where the time complexity of ex-
haustive search is 2n , 2-round iterated EM with independent subkeys has 3n key bits
(see Fig. 4), and thus, straightforward exhaustive search has a time complexity of 23n .

8 For example, we expect more than 223 vertices with an in-degree of at least 7, and thus, if we use only
2128/(8 ·223 ·260) = 242 known plaintexts for the attack, the time complexity of the online algorithm slightly
increases from 259.6 to about 259.8.
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It is very easy to improve the time complexity of the attack to 22n by noticing that
K3 = P2(P1(m ⊕ K1) ⊕ K2) ⊕ c, and thus guessing K1 and K2 suffices in order to
compute K3. A further simple improvement is to use a meet-in-the-middle attack in or-
der to reduce the time complexity to about 2n , at the expense of using about 2n memory.
Such a MITM attack on an iterated EM scheme with an arbitrary number of rounds is
given in [7], and we describe it here for r = 2 (under the name 2Round3K eyM I T M)
for the sake of completeness.

1. Obtain 3 known plaintext–ciphertext pairs — (m1, c1), (m2, c2), (m3, c3).
2. For each value of K1, compute Δ1 = P1(m1 ⊕ K1) ⊕ P1(m2 ⊕ K1) and store

(Δ1, K1) in a list sorted according to Δ1.
3. For each value of K3:

(a) ComputeΔ3 = P−1
2 (c1⊕ K3)⊕ P−1

2 (c2⊕ K3) and search forΔ3 in the sorted
list.

(b) For each match, test the key K1, K2 = P1(m1 ⊕ K1) ⊕ P−1
2 (c1 ⊕ K3), K3

using (m3, c3), and if the tests succeeds return the key.

The memory complexity of the algorithm is 2n , required for storing the list in Step 2.
The time complexity of Step 2 is 2 · 2n evaluations of P1. We expect a single match in
Step 3.(a) for a value of K3, and hence, the expected time complexity of Step 3 is 2 · 2n

evaluations of P1 and 2n evaluations of the full cipher. The expected time complexity of
the attack is thus 3 · 2n ≈ 2n+1.6. We note that it is possible to trade some memory at
the expense of time. However, in this paper we are mainly interested in the attack with
the lowest time complexity.
In order to devise a more efficient attack, we use a property of the permutation Pi ,

which is shared by the keyed permutation Qi (Ki , Ki+1, x) = Pi (x ⊕ Ki ) ⊕ Ki+1 for
any value of Ki and Ki+1: These permutations have the same difference distribution
table. In order to demonstrate this, consider an entry with the value of t in the difference
distribution table of Pi and denote its input and output differences by Δ1 and Δ2,
respectively. Let us denote the t corresponding input–output pairs9 by ((x1, y1), (x1 ⊕
Δ1, y1 ⊕Δ2)), . . . , ((xt , yt ), (xt ⊕Δ1, yt ⊕Δ2)). Then, the t input–output pairs ((x1 ⊕
K1, y1 ⊕ K2), (x1 ⊕ K1 ⊕ Δ1, y1 ⊕ K2 ⊕ Δ2)), . . . , ((xt ⊕ K1, yt ⊕ K2), (xt ⊕ K1 ⊕
Δ1, yt ⊕ K2 ⊕ Δ2)) correspond to the same entry in the difference distribution table of
Qi (i.e., the entry with input and output differences Δ1 and Δ2, respectively).
Using the property above, if we find an entry [Δ1,Δ2] in the difference distribution

table of Pi with a large value, then we can use a similar attack to the one given in [27] on
2-round iterated EM,10 in order to break the scheme. However, our main observation is
that we can find such an entry by preprocessing the public function Pi , which does not
need to admit any special property in order to attack the scheme. Thus, our attack adds a
preprocessing algorithm to the online algorithm of the attack of [27] (which assumes that
we have an entry in the difference distribution table of Pi with a large value). In addition
(as we will see later), in the case of independent keys, the basic attack of [27] is not

9 In this paper, we consider unordered pairs, i.e., ((x, y), (u, v)) and ((u, v), (x, y)) are considered the
same pair.

10 Although the attack of [27] was previously applied to 2-round iterated EMwith one key, it can be adapted
to work for the case of independent keys.
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better than exhaustive search, and we will need to add another non-trivial component to
this attack. The details of our unoptimized attack 2Round3K ey Basic are given below,
where S1, S2, D are parameters:
Preprocessing:

PR1. Choose an arbitrary input differenceΔ1 
= 0 and evaluate P1 on S1 arbitrary input
pairs with input difference Δ1. For each pair (x, P1(x)), (x ⊕ Δ1, P1(x ⊕ Δ1)),
store the output difference P1(x) ⊕ P1(x ⊕ Δ1) in a sorted list, next to x .

PR2. Traverse the sorted list and find the most common output difference Δ2 (if there
are several options for Δ2, choose one arbitrarily). Keep only the entries of the
list which correspond to pairs with the output difference of Δ2 (assume that we
have t such pairs). For each such entry, recalculate and store (x, P1(x)), (x ⊕
Δ1, P1(x ⊕Δ1)) (note that we did not store P1(x) and P1(x ⊕Δ1) in the previous
step in order to save memory).

PR3. Evaluate P2 on S2 arbitrary input pairs with input difference Δ2. For each pair
(y, P2(y)), (y⊕Δ2, P2(y⊕Δ2)), store the output difference P2(y)⊕ P2(y⊕Δ2)

in a sorted list L2, next to y.

Online:

O1. Ask for the encryption of D arbitrary input pairs with difference Δ1.
O2. For each pair of plaintext–ciphertext pairs ((m1

i , c1i ), (m
2
i = m1

i ⊕ Δ1, c2i )):

(a) Search for the output difference c1i ⊕ c2i in L2, (if there is no match, discard
the pair and return to Step O2).

(b) For eachmatch (y, P2(y)), (y⊕Δ2, P2(y⊕Δ2)), we have 2 candidates for K3:
P2(y) ⊕ c1i and P2(y) ⊕ c2i . We also have 2t candidates for K1: the candidates
x ⊕ m1

i and x ⊕ m2
i for each of the t values of x . As each pair of values for K1

and K3 suggests a value for K2, we have 4t suggestions of the full key to test
using another plaintext–ciphertext pair.

Similarly to our analysis of random functions, assuming that P1 is a random permu-
tation, then each entry in its difference distribution table is distributed according to the
Poisson distribution [30].11 This will allow us to easily determine the expected value of
t and use it in order to analyze the expected complexity of our algorithm.
The memory complexity of the preprocessing phase is max(S1, S2), and its time

complexity is 2 · S1 evaluations of P1 and 2 · S2 evaluations of P2, or S1 + S2 evaluations
of the full scheme. The memory complexity of the online algorithm is S2. The data
complexity is D plaintext–ciphertext pairs, i.e., 2D chosen plaintexts. Using the birthday
paradox, out of the D plaintext–ciphertext pairs evaluated in the online phase, at least
(D · t)/2n−1 are expected to have a difference of Δ2 after P1 (note that we have 2n−1

unordered pairs with a given difference). Using the same argument, we expect that
(D · t · S2)/22(n−1) of them will match the pairs evaluated for P2 during preprocessing.
Thus, we require that (D · t · S2)/22(n−1) = 1, or D = 22(n−1)/(t · S2) in order to find the
key with high probability.Without going into the details of the time complexity analysis,
note that we are using only two plaintext–ciphertext pairs to filter the key suggestions,

11 However, we note that since we consider unordered pairs, then we have only 2n−1 possible pairs of a
given difference, and each pair can attain (almost) all 2n output differences.
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tested in Step O2.(b). As we have 3n bits of key and 2n bits of filtering, we need to test
at least 2n keys in Step O2.(b), and thus, the attack is not faster than the simple MITM
attack on this scheme.

5.1. A Time-Optimized Attack on 2-Round Iterated Even–Mansour
with Independent Subkeys

In order to improve the attack, we need to add more filtering conditions, and thus, we
actually work on triplets, as described in the improved algorithm 2Round3K eyOpt :
Preprocessing:

PR1. Choose an arbitrary input differenceΔ1 
= 0 and evaluate P1 on S1 arbitrary input
pairs with input difference Δ1. For each pair (x, P1(x)), (x ⊕ Δ1, P1(x ⊕ Δ1)),
store the output difference P1(x) ⊕ P1(x ⊕ Δ1) in a sorted list, next to x .

PR2. Traverse the sorted list and find the most common output difference Δ2 (if there
are several options for Δ2, choose one arbitrarily). Keep only the entries of the
list which correspond to pairs with the output difference of Δ2 (assume that
we have t such pairs). For each such entry, recalculate and store the full pair
(x, P1(x)), (x ⊕ Δ1, P1(x ⊕ Δ1)) in a list L1.

PR3. Choose another nonzero input difference Δ′
1. For each value x stored in L1,

evaluate P1 an additional time to obtain the pair (x ⊕ Δ′
1, P1(x ⊕ Δ′

1)). Store the
(total of) additional t output differences P1(x) ⊕ P1(x ⊕ Δ′

1) in a separate sorted
list of differences, L ′

1.
PR4. Evaluate P2 on S2 arbitrary input pairs with input difference Δ2. For each pair

(y, P2(y)), (y⊕Δ2, P2(y⊕Δ2)), store the output difference P2(y)⊕ P2(y⊕Δ2)

in a sorted list L2, next to y.

Online:

O1. Ask for the encryption of D arbitrary input triplets of the form m1
i , m2

i = m1
i ⊕Δ1

and m3
i = m1

i ⊕ Δ′
1 (for D arbitrary values of m1

i ).
O2. For each pair of plaintext–ciphertext pairs ((m1

i , c1i ), (m
2
i , c2i )):

(a) Search for the output difference c1i ⊕ c2i in the list L2 (if there is no match,
discard the pair and return to Step O2).

(b) For each match (y, P2(y)), (y ⊕ Δ2, P2(y ⊕ Δ2)), compute the 2 candidates
for K3: K ′

3 = P2(y) ⊕ c1i and K ′′
3 = P2(y) ⊕ c2i .

(c) Compute y′ = P−1
2 (c3i ⊕ K ′

3) and y′′ = P−1
2 (c3i ⊕ K ′′

3 ).
(d) Search L ′

1 for the four possibilities of the third difference obtained at this stage:
y′ ⊕ y, y′ ⊕ Δ2 ⊕ y, y′′ ⊕ y, y′′ ⊕ Δ2 ⊕ y (if there is no match, discard the
pair and return to Step O2).

(e) Test the 4t suggestions of the full key using (m3
i , c3i ). If the test succeeds, return

the key.

The time and memory complexities of the preprocessing phase are similar to those of
the 2Round3K ey Basic attack (the additional t evaluations of P1 and t units of storage
are negligible). Using the calculation done for 2Round3K ey Basic, the online algorithm
requires D = 22(n−1)/(t · S2) plaintext–ciphertext triplets. For each processed triplet,
we expect to find a match in L2 with probability S2/2n . For each such matched triplet,
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we need to compute P2(y) (in order to compute K ′
3 and K ′′

3 ) and evaluate P−1
3 twice

in order to compute y′ and y′′. Once we do so, the probability of a match in L ′
1 in Step

O2.(d) is proportional to t/2n . This is a negligible probability, and thus, we can neglect
the complexity of the trial encryptions in Step O2.(e). Thus, the online time complexity
(without counting the data) is about 3 · D · S2/2n = 0.75 · 2n/t evaluations of P2, or
0.375 · 2n/t evaluations of the full scheme.
The data complexity of the attack is D triplets, or 3D chosen plaintexts. However,

we can easily reduce it to 2D by requesting encryptions of structures containing the
messages m1

i , m1
i ⊕Δ1, m1

i ⊕Δ′
1 and m1

i ⊕Δ1⊕Δ′
1. Each such structure of 4 plaintexts

contains two triplets which we can exploit, implying that the data complexity of the
attack is only 2D. If we add the time to generate the data to the time complexity, we get
that the total time complexity of the online attack is about 2D +0.375 ·2n/t evaluations
of the full scheme.
An application of the algorithm to the block cipher AES2 is given in Sect. 7.

6. Attacks on Other Variants of the Iterated Even–Mansour Scheme

In this section we study three other variants of the iterated EM construction that may be
relevant for concrete block cipher instances, as described in the Introduction. In Sect. 6.1,
we consider iterated EM with identical subkeys where the permutations are chosen at
random among the family of involutions. We show that unlike the case of single-key
EM (where choosing the permutation to be an involution does not reduce the security),
in the iterated EM case, this choice drastically reduces the security of the scheme. In
Sect. 6.2, we consider iterated EM with two n-bit keys K1, K2 that are used alternately
as subkeys (as in the block cipher LED-128) and leverage our attack on 3-round EM
with identical subkeys to an attack on 8 rounds of this scheme. Finally, in Sect. 6.3 we
show that all of our attacks on iterated EM with identical subkeys can be adapted (with
about the same complexity) to schemes in which the subkeys are derived from the key
by any linear function.

6.1. Optimized Attacks on Iterated Even–Mansour Schemes with Involutional
Permutations

A permutation P is called an involution, if it is equal to its inverse, i.e., P = P−1.
In [14], the authors studied one-round EM schemes in which the internal permutation
P is chosen uniformly at random among the set of all the possible involutions on n-bit
strings. They showed a significant difference between the original (two-key) EM and the
single-key variant of EM. For single-key EM, they proved that using a random involution
does not reduce the security of the scheme with respect to key recovery attacks. On the
contrary, for two-key EM they presented an attack with D = 2n/2 and no evaluations of
P , showing that the security of involutional one-round EM schemes is greatly reduced
from the original DT = 2n curve, obtained for schemes built using randompermutations.
In this section, we show that while iterated EM with identical subkeys is a natural

generalization of single-key EM, the effect of using even a single random involution as
one of its permutations is a considerable reduction in security. This is somewhat similar
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to the case of two-key EM (considered in [14]); however, the effect of involutions on the
security of iterated EM schemes with identical subkeys is even more extreme: While the
total time complexity of the best attack on involutional two-key EM remains D = 2n/2

(as in standard two-key EM), the total time complexity of the best attacks on iterated
EM schemes with identical subkeys drops significantly when implementing them with
involutions. To show this, we optimize our attacks on 2-round and 3-round iterated EM
schemes with identical subkeys, to cases where some of their internal permutations are
chosen as random involutions. In particular, we show that even if we choose only one of
the internal permutations in such schemes as an involution, both the 2-round and 3-round
EM schemes become significantly weaker.
Our attacks are based on awell-known property of an n-bit random involution, namely

that it has an expected number of about 2n/2 fixed points [17] for which x = P(x). As
this implies that x ⊕ P(x) = 0, the vertex v = 0 in the graph of P ′(x) = x ⊕ P(x) is
expected to have an in-degree of about 2n/2. This is significantly larger than the expected
O(n)maximal degree of any vertex of P ′(x), when P is chosen as a random permutation
and results in attacks which are significantly more efficient.
We note that although a random involution (chosen uniformly at random among the

set of all the possible involutions on n-bit strings) has an expected number of about 2n/2

fixed points, there are many involutions with significantly fewer fixed points, or with no
fixed points at all. For example, the involution F(x) = x⊕c has no fixed points for c 
= 0.
However, when considering a relatively complex involution (obtained, for example, by
computing several rounds of a keyless Feistel structure), a natural assumption is that it
behaves similarly to a random involution, and thus, it has about 2n/2 fixed points.

6.1.1. An Attack on 2-Round Iterated EM with Identical Subkeys where P1
is an Involution

We show how to optimize the 2Round1K ey Basic attack of Sect. 4.1, in the case that
P1 is an involution: Given that we know in advance that the in-degree of v = 0 in the
graph of P ′

1 is expected to be about 2n/2, we can completely remove the preprocess-
ing phase. By exploiting the special vertex v = 0, the time and data complexities of
2Round1K ey Basic are both 2n/t1 ≈ 2n/2 (as t1 ≈ 2n/2), and it requires only a negligi-
ble amount ofmemory.Wenote that in the casewhen P1 is an involution, the optimization
techniques of 2Round1K eyOpt seem useless, as the in-degrees of all vertices v 
= 0 are
expected to be much smaller than 2n/2, and exploiting them in our attack is inefficient.

Finally, we note that the optimized attack in case P2 is an involution is simply obtained
by reversing the roles of encryption and decryption and applying the same optimization
as above.

6.1.2. An Attack on 3-Round Iterated EM with Identical Subkeys where P1
is an Involution

We show how to optimize the 3Round1K ey Basic attack of Sect. 4.3, in the case that
P1 is an involution. Similarly to the case of the 2Round1K ey Basic attack, we can
remove the first two steps of the preprocessing phase which evaluate P1. However, as
we still need to preprocess P3, the time and memory complexities of the preprocessing
phase are now S3. Recall that the time and data complexities of the online phase of
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3Round1K ey Basic are both about 22n/(t1 · S3), and as t1 = 2n/2, they are equal to
21.5n/S3. Thus, the total time complexity of the attack is max{21.5n/S3, S3}, giving
a time–data trade-off of T D = 21.5n for any 20.5n ≤ D ≤ 20.75n . In particular, for
D = 20.75n , we obtain T = 20.75n , using memory of M = 20.75n . We note that when
D < 20.75n , we can obtain M = D by first storing the data in memory and delaying the
processing of P3, which can now be done “on-the-fly.”

We additionally note that as in the case of the 2-round attack, the optimization tech-
niques of 3Round1K eyOpt seem useless in the scenario considered here. Moreover,
similarly to the 2-round attack, the optimized attack in case P3 is an involution is simply
obtained by reversing the roles of encryption and decryption and applying the same
optimization as above. When P2 is an involution, the attack can still be applied with a
trade-off of T D = 21.5n . However, it requires more advanced techniques of enumerat-
ing the internal values of the fixed point around P2, which are similar to the techniques
recently published in [12].
Finally, we point out a very interesting property of iterated EM schemes with identical

subkeys: As described in Sect. 4.1, our best attack on the single-key 2-round EM scheme,
built using random permutations P1 and P2, has a time complexity of about 2n/n.
Surprisingly, the result obtained above shows that not only does adding an arbitrary
involutional round (which is completely unrelated to the original permutations) to this
scheme not increase its security, but it rather significantly reduces it to T = 20.75n

(while also significantly reducing the memory complexity of the attack). To the best of
our knowledge, this is the first non-trivial backdoor that can be “hidden” at plain sight
concerning symmetric-key cryptosystems.

6.2. Extending Our Attacks to Iterated Even–Mansour Schemes with Alternating
Subkeys

As was pointed out in [27,29] in the specific case of LED-128, it is easy to reduce an
2r +2-round variant of EMwith alternating subkeys to an r -round variant with identical
subkeys. This is done by guessing K1 and combining consecutive pairs of permutations
(along with the XOR’ed key between them) into a single known permutation. In par-
ticular, [29] used this technique to devise the best known attack on LED-128, which
can break 6-step LED-128, based on an attack on 2-round EM with identical subkeys.
Similarly, we can leverage our attack on 3-round EM with identical subkeys to attack
8-round EM with alternating keys. This shows that the minimal number of rounds re-
quired for assuring 2n-bit security for iterated EM with alternating n-bit subkeys is at
least 9. The full details of the procedure are presented in Sect. 7, where it is applied
to the lightweight block cipher LED-128 (which is an instance of an iterated EM with
alternating subkeys).

6.3. Extending Our Attacks to Iterated Even–Mansour Schemes with Linearly
Derived Subkeys

All of our attacks on 2-round and 3-round EM schemes with identical subkeys can be
generalized to iterated EM schemes with linearly derived subkeys. Let us denote the
first key as K1 = K , and thus, K2 = L2(K ), K3 = L3(K ), and in 3-round iterated
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EM, K4 = L4(K ), where L2, L3, L4 are linear mappings. In order to attack such
schemes, all of the steps in our algorithms which are based on the equality of the keys
should be modified to handle the case where the keys are linearly dependent. This can
be easily done using simple linear algebra without increasing the complexity of the
algorithms. For example, our attacks on iterated EM schemes with one key are based
on the property x ⊕ Q(K , x) = x ⊕ K ⊕ P(x ⊕ K ). In the more general scheme, we
have Q∗(K , x) = L(K ) ⊕ P(x ⊕ K ) (for some linear mapping L and permutation P),
and it implies that L(x) ⊕ Q∗(K , x) = L(x ⊕ K ) ⊕ P(x ⊕ K ). Thus, if we know that
some values of the function P ′′(z) � L(z) ⊕ P(z) are more likely than expected (by
finding t-way collisions in this function), then we can predict the value of Q∗(K , x)

with a higher probability than expected and exploit this property in the same way as in
our attacks on schemes with identical subkeys.
The application of the attack to the former AES candidate Crypton (which can be

viewed as iterated EM with linearly derived subkeys) is presented in the next section.

7. Applications

7.1. LED-64 and LED-128

LED is a 64-bit block cipher designed for resource-constrained environments, proposed
by Guo et al. at CHES 2011 [20]. The twomain variants of LED are LED-64 (which sup-
ports 64-bit keys) and LED-128 (which supports 128-bit keys). The design of LED can
be viewed as a special case of iterated EM schemes: LED-64 is in fact an 8-step iterated
EM scheme12 with identical subkeys, and LED-128 is a 12-step iterated EM scheme
with alternating subkeys K1 and K2. The inner permutations of LED are based on the
AES design framework; however, since our attacks do not exploit any properties of these
permutations, we do not specify them here and refer the reader to [20] for further details.
In the single-key model, the best attack published so far on reduced LED-64 breaks

2 steps of this cipher [13]. For LED-128, the largest number of attacked steps was
6 (see [29]). In this paper, we use our generic attacks in order to improve the data
complexity of the attack on 6-step LED-128 from 259 to 245, while keeping the time and
memory complexities similar to the original attack. More significantly, we present the
first single-key attacks which are faster than exhaustive search on 3-step LED-64 and
on 8-step LED-128. The previously best known attacks on LED in the single-key model
and our new attacks are summarized in Table 2. Note, in particular, that our new attack
on 8-step LED-128 actually has a slightly better time complexity and requires about a
thousand times less data than the best previous attack, which could only be applied to 6
steps of LED-128, out of the full 12.

7.1.1. An Attack on 3 Steps of LED-64

We can attack 3-step LED-64 by directly applying 3Round1K eyOpt attack with n =
64, presented in Sect. 4.3. Thus, the preprocessing phase has a time complexity of about

12 In the design of LED, the term “step” is used in order to describe what we refer to as a “round” of an
iterated EM scheme. On the other hand, a “round” of LED is used in order to describe a smaller component
of its internal permutation. Thus, in order to avoid confusion, we will use the term “step” in this section.
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Table 2. Single-key attacks of step-reduced LED.

References Cipher Steps Time Data Memory

[13] LED-64 2 248 216 CP 217

This paper LED-64 3 260.2 249 KP 260

[29] LED-128 6 2124.4 259 KP 259

This paper LED-128 6 2124.5 245 KP 260

This paper LED-128 8 2123.8 249 KP 260

The data complexity is given in chosen plaintexts (CP), or in known plaintexts (KP)

258.5 and memory complexity of 260. The online algorithm has a memory complexity
of 260, data complexity of 249 known plaintexts and time complexity of 259.6. Since in
this paper, we consider the preprocessing time as part of the attack (i.e., we assume that
we are trying to attack the scheme for the first time), the total time complexity of the
algorithm is about 260.2, which is about 14 times better than exhaustive search.

7.1.2. An attack on 6 Steps of LED-128

As was pointed out in [27,29], it is easy to reduce 2r + 2 steps of LED-128 (with its
alternating use of two keys) into an iterated EM scheme variant with identical subkeys by
guessing K1 and combining consecutive pairs of permutations (along with the XOR’ed
key between them) into a single known permutation. In particular, [29] leveraged their
attack on 2-step iterated EM into an attack on 6-step LED-128. Similarly, we guess
K1, and for each guess, we partially encrypt and decrypt the given plaintext–ciphertext
pairs and remain with a 2-step iterated EM scheme with identical subkeys all equal to
K2). Thus, we can apply our 2-step iterated EM attack (presented in Sect. 4.1) for each
guess of K1. However, we note that the preprocessing phase of our 2Round1K eyOpt
attack should be executed for each guess of K1, and it is thus now a part of the online
algorithmof the attack onLED-128.Moreover, the algorithm can no longer be performed
in streaming mode, as we need to reuse each plaintext–ciphertext pair for each guess of
K1. The general framework of the algorithm is given below.

1. Ask for the encryption of D arbitrary plaintexts and store them.
2. For each value of K1:

(a) Apply the 2Round1K eyOpt attack (including the preprocessing steps) on the
resultant scheme,with plaintext–ciphertext pairs (P1(mi ⊕K1), P−1

6 (ci ⊕K1)).
Test each returned key using another pair (m j , c j ).

Using the parameters of our 2Round1K eyOpt attack (presented in Sect. 4.1), the
expected data complexity of the attack is 245 known plaintexts and its memory com-
plexity is 260 (required for preprocessing, which is now part of the online algorithm).
We calculate the expected time complexity of the algorithm as follows: adding the pre-
processing and online time complexities, the main procedure of the attack performed for
each guess of K1 requires about 260.1 + 260 ≈ 261.1 evaluations of 4 out of the 6 permu-
tations, which is equivalent to about 260.5 evaluations of the full scheme. Compared to
this complexity, the partial encryption and decryption of each (m j , c j ) pair, and the trial
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⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

P1 P2 P3 P4 P5 P6 P7 P8 c

K1 K2 K1 K2 K1 K2 K1 K2 K1

Fig. 5. 8-step LED-128.

encryptions using (m j , c j ) (performed on average once per guess of K1) are negligible.
Thus, the expected time complexity of the attack is about 264+60.5 = 2124.5, which is
about 11 times better than exhaustive search.

7.1.3. An Attack on 8 Steps of LED-128

We use the same framework of our 6-step attack on LED-128 in order to attack 8 steps
of LED-128 (shown in Fig. 5). Namely, we guess K1, and for each guess, we partially
encrypt and decrypt the given plaintext–ciphertext pairs and remainwith a 3-step iterated
EM scheme with one key (K2). We then apply our 3Round1K eyOpt attack (presented
in Sect. 4.3) for each guess of K1. Thus, the memory complexity of the attack is 260 and
its data complexity is 249 known plaintexts. We calculate the expected time complexity
of the algorithm as follows: Adding the preprocessing and online time complexities,
the main procedure of the algorithm performed for each guess of K1 requires about
258.5 +259.6 ≈ 260.2 evaluations of 6 out of the 8 permutations, equivalent to about 259.8

evaluations of the full scheme. Thus, the expected time complexity of the attack is about
264+59.8 = 2123.8, which is about 18 times better than exhaustive search.

7.2. AES2

AES2 is a 128-bit block cipher presented at Eurocrypt 2012 by Bogdanov et al. [7]. The
cipher is a 2-round iterated EM construction, where each of the public permutations P1
and P2 is based on an invocation of full AES-128 with a prefixed and publicly known
key. The designers of the scheme claim that its security is 2128. However, the best attack
known to the designers (as claimed in [7]) is the MITM attack presented in Sect. 5, and
based on our analysis, it has a slightly higher time complexity of 3 · 2128 ≈ 2129.6 and a
memory complexity of 2128.
In order to attackAES2,we use our 2Round3K eyOpt attackwith S1 = 2124 and S2 =

2125.4. This implies that the memory complexities of both the preprocessing and online
phases are 2125.4. The time complexity of the preprocessing phase is S1 + S2 = 2124 +
2125.4 ≈ 2125.9 evaluations of the full scheme. Using the formula (2n · λt · e−λ)/t ! with
λ = 2124/2128 = 1/16 and t = 18, it is easy to check that we expect to find at least 10
entries in the difference distribution tablewith a value of 18 (we need only one). Plugging
in these values into the formula D = 22(n−1)/(t · S2), we obtain D ≈ 2124.4, implying
that the data complexity of the attack is 2125.4 chosen plaintexts. The time complexity of
the online attack is 2D + 0.375 · 2n/t ≈ 2125.6, and adding the preprocessing time, the
total time complexity of the algorithm is about 2125.9+2125.6 ≈ 2126.8. This is better than
the 2129.6 time complexity of the MITM attack by a factor of about 7 and clearly violates
the 128-bit security claimed for AES2 in [7]. We also note that the memory complexity
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is improved from 2128 to about 2125.4; however, the data complexity is greatly increased
to 2125.4.

7.3. Crypton

Crypton is a 128-bit block cipher, supporting key sizes up to 256 bits. It was designed
by Lim [26] and submitted as a candidate to the AES selection process. The structure of
Crypton is similar to that of AES. It has 12 rounds where each round employs subkey
addition and an SPN (Substitution-Permutation Network) structure for processing a
16-byte block. A short time after it was published, a tweaked version called Crypton
v1.0. was presented by the designer [26], featuring a slight strengthening of the round
transformation and a significant strengthening of the key schedule.
As the exact structure of the round function is not important for our attack, we omit

its description and describe only the part of the key schedule that is important for us. In
both Crypton and Crypton v1.0., the round subkeys are generated from the key in a two-
phase process. First, an expanded 256-bit key is generated in a nonlinear way from the
user-supplied key. Then, the expanded key is divided into two 128-bit words, which are
used to derive the subkeys in a linear way. The crucial point exploited in our attack is that
these two words are used independently: All subkeys of odd rounds are linear functions
of the first 128 bits of the expanded key, and all subkeys used in the even rounds are linear
functions of the last 128 bits of the expanded key.We note that in the transition toCrypton
v1.0., the linear key derivation functions were replaced by significantly more complex
functions, but their linearity and independence were preserved, thus not effecting our
attack.
The best previous attacks onCrypton in the single-keymodel are two statistical attacks

on 8-round Crypton with complexity of 2114.6 presented by Minier and Gilbert [28],
and a truncated differential attack on 8-round Crypton v1.0. with complexity of 2126.8,
presented by Kim et al. [22]. No attacks are known on more than 8 rounds of Crypton
in the single-key model. We note that in the related-key model, an attack on 9-round
Crypton was presented by Wei et al. [37].
Using our generic attack on iterated EM constructions, we obtain an attack on 8-

round Crypton and Crypton v1.0. with 256-bit keys. Our attack is much slower than
the attacks of [22,28]. However, it requires only known plaintexts and furthermore has
the advantage that it is much more generic: It works in the same way even if the round
function of Crypton is replaced by a very strong function, while both attacks of [22,28]
use the internal properties of the round function of Crypton in a very strong way.
To attack 8-round Crypton, we combine two of the extensions of our attacks on

iterated EM with identical subkeys presented in Sect. 6. As there is almost no practical
difference between recovering the user-supplied key and recovering the expanded 256-
bit key, we concentrate on recovering the expanded key. First, we guess the first 128 bits
of the expanded key. For each such guess, we can treat every two consecutive rounds
of Crypton (in which the key added in the middle is known), as a public permutation
in an iterated EM construction. Thus, 8-round Crypton is reduced to 3-round iterated
EM with linearly derived subkeys. Then, as described in Sect. 6, we can apply a simple
variant of our 3Round1K eyOpt attack (presented in Sect. 4.3) for each guess of the
first 128 bits of the expanded key.
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We note that although Crypton has relatively weak round functions compared to
the other ciphers considered in this paper, we did not find any reason that the relevant
distribution to the 3Round1K eyOpt attack (namely13 L(x)⊕P(x)) would significantly
deviate from that of a random function. Therefore, we analyze the attack on Crypton
similarly to the 3Round1K eyOpt attack, as detailed below.
Reusing the analysis of the 3Round1K eyOpt attack with n = 128, let S = 2123,

i.e., λ = 2123/2128 = 2−5. We use the formula (2n · λt e−λ)/t ! = (2128 · 2−5t e−1/32)/t !
with t = 14, such that we expect at least � = 220 vertices with an in-degree of 14.
Thus, the memory complexity of the attack is about 2123, and its data complexity is 2108

known plaintexts. Calculating the expected time complexity of themain procedure of the
algorithmperformed for each guess of the expanded K1 (by adding the preprocessing and
online time complexities of the 3Round1K eyOpt attack), we conclude that it requires
less than 2125 evaluations of single permutations. This is equivalent to less than 2122

evaluations of the full 8-round scheme, and thus, the expected time complexity of the
attack is about 2128+122 = 2250, which is about 64 times better than exhaustive search.

8. Conclusions

In this paper, we considered the security of iterated Even–Mansour schemes in the
computational model.We aimed at partially answering the question:What is theminimal
number of rounds r such that r -round iterated EM provides full security with respect to
key recovery attacks? We showed that for iterated EM with identical subkeys, r ≥ 4,
and that for iterated EM with completely independent subkeys, r ≥ 3. We then applied
our techniques to devise the best known attacks (in terms of number of attacked rounds)
on several block ciphers, including LED-64, LED-128 and AES2. For standard values of
the block size n, our attacks are between 7 and 64 times faster than exhaustive search, but
they differ from other improvements of exhaustive search, as their improvement factor
increases to infinity as n grows. Even though most of our attacks are not likely to be
practically significant, they indicate that block ciphers based on the iterated EM scheme
with identical subkeys should have at least 4 rounds, regardless of how strong we make
their internal permutations.
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