
Key Recovery from State Information of Sprout:
Application to Cryptanalysis and Fault Attack

Subhamoy Maitra, Santanu Sarkar, Anubhab Baksi, Pramit Dey

Indian Statistical Institute, Kolkata
and Indian Institute of Technology Madras,

and National Institute of Technology, Karnataka, Surathkal
subho@isical.ac.in,sarkar.santanu.bir@gmail.com,anubhab91@gmail.com,

pramitdey@yahoo.com

Abstract. Design of secure light-weight stream ciphers is an impor-
tant area in cryptographic hardware & embedded systems and a very
recent design by Armknecht and Mikhalev (FSE 2015) has received seri-
ous attention that uses shorter internal state and still claims to resist the
time-memory-data-tradeoff (TMDTO) attacks. An instantiation of this
design paradigm is the stream cipher named Sprout with 80-bit secret
key. In this paper we cryptanalyze the cipher and refute various claims.
The designers claim that the secret key of Sprout can not be recovered
efficiently from the complete state information using a guess and deter-
mine attack. However, in this paper, we show that it is possible with a
few hundred bits in practical time. More importantly, from around 850
key-stream bits, complete knowledge of NFSR (40 bits) and a partial
knowledge of LFSR (around one third, i.e., 14 bits); we can obtain all
the secret key bits. This cryptanalyzes Sprout with 254 attempts (con-
sidering constant time complexity required by the SAT solver in each
attempt, which is around 1 minute in a laptop). This is less than the ex-
haustive key search. Further, we show how related ideas can be employed
to mount a fault attack against Sprout that requires around 120 faults
in random locations (20 faults, if the locations are known), whereas the
designers claim that such a fault attack may not be possible. Our crypt-
analytic results raise quite a few questions about this design paradigm
in general that should be revisited with greater care.

Keywords. Cryptanalysis, Fault Attack, Key-stream, Sprout, Stream Cipher.

1 Introduction

Very recently a new paradigm for light-weight stream cipher design has been
explored by Armknecht and Mikhalev [3] that uses shorter internal state. Even
with the shorter internal state, this design claims to resist the time-memory-
data-tradeoff (TMDTO) attacks. One interesting feature of this design is that,
unlike the popular stream ciphers, it uses the secret key bits during the pseudo-
random bit generation too (in general the secret key is only used in the initial



2

key scheduling phase). In this direction, a specific stream cipher, called Sprout is
presented that uses 80-bit secret key and 70-bit initialization vector. This [3] is
a very interesting idea to design stream ciphers with shorter internal states. The
main difference in operational part of such design with the traditional ones is to
use the secret key during the Pseudo-Random Generation Algorithm (PRGA).
In traditional stream cipher designs, the key and IVs are loaded in the cipher
state during the Key Loading Algorithm (KLA) and then the cipher is run
sufficient number of rounds without generating any key-stream bit during the
Key Scheduling Algorithm (KSA). It is believed that after the KSA, the cipher
state reaches a considerably random looking configuration. Then the Pseudo-
Random Generation Algorithm (PRGA) routine is executed and in that phase
the secret key bits are generally not used again (only the state bits are used).
The design of Sprout, motivated towards design with relatively shorter state and
still resisting the TMDTO attack, considers using the secret key bits (stored in a
separate register) during the PRGA too. Sprout considers several building blocks
from the previous designs of Grain family [1,2,12,13].

While a new paradigm of design is quite interesting, the success of the design
depends on how an actual instantiation of such idea can successfully resist crypt-
analytic attempts. This is the reason we look at Sprout in detail. We specifically
note the following claims by the designers of Sprout [3] and refute those.

Guess and Determine Attacks. The designers make certain arguments to
claim that efficiently recovering the secret key bits from the state may not be
possible. Here the secret key size is κ = 80. They consider that only one fourth
of the secret key bits (i.e., 20 out of 80) may be recovered, but the rest of the
bits (i.e., 3κ/4 = 60) could be found only by exhaustive key search, i.e., with an
effort of 260.

In Section 2, we show that this is not correct. In fact, once the state is known
at some round while PRGA is running, one can find the secret key bits quite
efficiently. This raises serious security concern regarding this specific cipher. The
use of each key bit independently in updating the state during the PRGA seems
to be the main reason for recovering the secret key bits.

Algebraic Attacks. The designers claim that algebraic attack may not be pos-
sible on Sprout as the algebraic equations become complicated rapidly. While this
statement is indeed true (see Table 4), we manage to keep the degree bounded
by adding new variables for the Linear Feedback Shift Register (LFSR) and the
Non-Linear Feedback Shift Register (NFSR) updates (Sections 2.1, 2.2).

We show that guessing a portion of the state bits, it is possible to recover
the secret key too. That presents a cryptanalysis of the cipher as the state
size is equal to the key size in this design. One may always consider design
modifications that may be tried to resist such attacks, but the ideas will always
attract additional hardware and thus the main motivation towards such designs
with shorter states will be lost.



3

Fault Attacks. The authors of Sprout mention that though the ciphers in the
Grain family are vulnerable to fault attacks [4,18], those ideas will not affect
Sprout as one cannot recover the secret key even if the state is known by fault
attack.

As we have noted earlier, this is not correct indeed. In Section 3, we present
how it is possible to recover the state by mounting Differential Fault Attack
(DFA) against Sprout. We need around 120 faults to mount such an attack and
we respect all the usual assumptions related to the restrictions on injecting the
faults. However, we note that Sprout is better resistant than the Grain family
against the DFA.

Before proceeding further, let us briefly describe the stream cipher Sprout
and provide some introduction to fault attacks.

1.1 Description of Sprout

Sprout is basically an adaptation of Grain 128a [1]. Table 1 gives an overview of
the stream cipher. One may note that the designers of Sprout reduce the size of
the key (80 bits), IV (70 bits) and state (80 bits) from Grain 128a; while they
increase the number of initialization rounds (320).

Cipher Key size IV size State size Initialization rounds

Sprout 80 70 80 (40 LFSR + 40 NFSR) 320
Grain 128a 128 96 256 (128 LFSR + 128 NFSR) 256

Table 1. Overview of Sprout and Grain 128a.

Like the members of the Grain family [1,2,12,13], the state of Sprout is com-
posed of one LFSR and one NFSR, which we denote by Lt and Nt respectively
for a given round t. As mentioned in Table 1, both of them are of 40 bits. For
a given round t, we denote LFSR bits as lt, lt+1, . . . , lt+39 and NFSR bits as
nt, nt+1, . . . , nt+39 respectively. We also denote the secret key by k and its bits
by k0, k1, . . . , k79, respectively.

Sprout keeps the secret key intact in a separate register other than the 80-bit
state. In each round after the initial 80 rounds, one particular key bit will be
involved in the state through the bit nt+39 (depending on the output of a 6
variable linear function of the state) or will not be involved at all. Initially, to
make sure all the key bits are involved in the state, in the first 80 rounds of the
KSA routine, each key bit is directly involved in the system (through nt+39).
This process is determined by the function ‘round key’, which is defined as [3,
Equation 5]:

k∗t =

{
kt, if 0 ≤ t ≤ 79

k(t mod 80) ∧ (lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29), otherwise.
(1)



4

Thus, after the first 80 rounds of initialization, one particular key bit is involved
in the state if the linear term (lt+4⊕ lt+21⊕ lt+37⊕nt+9⊕nt+20⊕nt+29) results
in 1. Ideally, this term should be perfectly random over {0, 1}, and hence one
particular key bit is involved in the state with a probability of 1

2 .
This cipher uses one counter which is composed of 9 bits; of which the lower

7 bits are a modulo 80 counter, whose bits are denoted by (c6t , c
5
t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t )

respectively for a given round t. The 5th LSB (c4t ) of this counter is only employed
in the design. It may be noted that, c4t has a cycle of period 80 - in each cycle it
takes the values : 0, 0, . . . , 0︸ ︷︷ ︸

16 times

, 1, 1, . . . , 1︸ ︷︷ ︸
16 times

, 0, 0, . . . , 0︸ ︷︷ ︸
16 times

, 1, 1, . . . , 1︸ ︷︷ ︸
16 times

, 0, 0, . . . , 0︸ ︷︷ ︸
16 times

.

The NFSR is initially loaded with the first 40 bits of IV. During the KSA,
the register is shifted one bit 320 times; and the bit nt+39 is updated as nt+39 =
zt ⊕ g(Nt) ⊕ k∗t ⊕ lt ⊕ c4t . Here the non-linear function g(Nt), having the same
form of Grain 128a, is defined as:

g(Nt) = nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39

⊕ nt+2nt+25 ⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18

⊕ nt+22nt+24 ⊕ nt+26nt+32 ⊕ nt+33nt+36nt+37nt+38

⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31

and zt denotes the key-stream produced, which is defined as:

zt = (nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38)

⊕ (lt+30)⊕ (nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕ nt+23 ⊕ nt+28 ⊕ nt+34). (2)

The LFSR Lt, is initially loaded with the last 30 IV bits appended with a
specific 10 bit pattern: (1, 1, 1, 1, 1, 1, 1, 1, 1, 0). In each round, it is shifted one
bit, and the bit lt+39 is updated from both its contents as well as the key-stream
bit during KSA: lt+39 = lt ⊕ lt+6 ⊕ lt+15 ⊕ lt+20 ⊕ lt+25 ⊕ lt+35 ⊕ zt.

Here the key-stream bit is generated prior to the state update. Like the
members of the Grain family, the key-stream produced during the KSA is not
outputted, rather it is internally fed to the state (through nt+39). When the
KSA routine is over, the PRGA routine is carried out and now the key-stream
produced is not fed back. Thus, in PRGA:

– the NFSR update function is changed to: nt+39 = g(Nt)⊕ k∗t ⊕ lt ⊕ c4t ,
– the LFSR update function is changed to: lt+39 = lt ⊕ lt+6 ⊕ lt+15 ⊕ lt+20 ⊕
lt+25 ⊕ lt+35,

– the key-stream produced zt is outputted;

and everything remains the same as in KSA. It is to be mentioned that the round
t is not reset to zero at the beginning of PRGA.

1.2 Brief Background of Fault Attack

Fault attacks consider that a fault can be injected to toggle one or more locations
of the cipher state and then it is possible to note the differences in the key-stream



5

bits to recover certain information about the state. This model of attack could
be successfully employed against a number of cryptographic primitives [7]. Initial
works in this direction appear in [8,10] and later such attacks on stream ciphers
have been explored in [14]. Here, a typical attack scenario generally consists of an
adversary who can inject a random fault (using laser shots/clock glitches [19,20])
on a cryptographic device and as a result of that one or more bits of its internal
state may get altered. Once a fault is injected, the faulty output from this altered
device is utilized to deduce information about its internal state. In this model,
the attacker needs a few privileges like the ability to re-key the device, control the
timing of the fault etc. One may note that this is in fact a differential attack [9].
In Differential Fault Attack, the attacker is allowed to inject faults in the internal
state during the PRGA (rather than putting differences during KLA as done in
differential attacks against stream ciphers). Then by analyzing the difference
between the faulty and the fault-free key-streams, the attacker should be able
to obtain some information about the internal state.

One may be aware that all the ciphers in the eStream [11] hardware portfolio,
namely Grain v1, Mickey 2.0 and Trivium, have been cryptanalyzed against
Differential Fault Attacks [4,5,6,15,16,17,18]. In all these cases, it was enough
to recover the cipher state by DFA as the KSA and PRGA of such ciphers are
reversible, providing the secret key once the state is known. However, this is not
the case for Sprout [3]. In Sprout, the recovery of state does not immediately
imply that the secret key bits will be revealed too. In fact, the designers comment
that this may not be possible efficiently. However, in Section 2 we refute that
claim and show that one can obtain the secret key bits efficiently once the state
is known.

Another difference in the fault attack scenario here is we have the unknown
secret key bits constantly involved in the state update. This is unlike that of
Grain v1, Mickey 2.0 and Trivium. Thus obtaining clean signatures of the fault
locations, to identify the location of a fault injected in a random position, is
quite a challenging task here. We use the probability of matching between each
corresponding pair of fault-free and faulty key-stream bits to explain the signa-
ture. Further we consider correlations between the differential stream and the
signatures to obtain the good matches and thereby identifying the fault location
(Section 3). After finding the location of the faults, we can use corresponding
differential key streams to obtain a system of nonlinear equations and those can
be solved using an efficient SAT Solver tool (Section 3.1).

Organization of the Paper. In the rest of the paper, we discuss about the
applicability of the three type of attacks we have mentioned. Section 2 deals
with the Guess and Determine approach, where we assume that (somehow) we
know the state (LFSR + NFSR) of the cipher at some round during the PRGA,
and use the information to recover the secret key efficiently. Next, in Sections
2.1 and 2.2, we present how Algebraic Attacks can be mounted on the cipher
successfully given the full/partial knowledge of the state. The results we obtain
are quite surprising and it raises serious concerns regarding the security of the



6

cipher. Later, in Section 3 we discuss about the fault attack model on Sprout.
We first discuss about fault signatures and then, in Section 3.1 we deal with the
problem of state recovery by observing the actual key-streams and the faulty
key-streams. Thus, the fault attack finds out the state information from the key-
streams; and the previous two attacks find out the secret key from the known
state information. Finally, Section 4 concludes the paper.

2 Recovering the Secret Key Bits from the State

Let us begin with what has been explained in [3, Section 5] regarding the security
against the Guess and Determine Attacks.

“The newly inserted key bit is not used for the output until it propa-
gates to the position nt+38. There it will become part of the monomial
nt+4nt+38lt+32 of the output function. Even if the attacker knows the
other values of the output function, she can only recover this key bit
when nt+4 and lt+32 are both equal to 1. Hence in average only one bit
out of four can be recovered in this straightforward way. Observe in addi-
tion that before this particular key bit is involved in the output function
for the first time, it has been used as linear terms in the NFSR update
function when it was at the position n39. Thus, the key bit influences the
state of the NFSR before it could be recovered (which is the case with
probability 1/4 only). Guessing the key bits that cannot be recovered
would hence induce an additional effort of O(23κ/4) = O(260).”

While the above observation is correct, the corollary in the last sentence is
indeed an upper bound and that can be reduced drastically by looking at the
involvement of a specific secret key bit in several rounds of key-stream bits.

Here we assume that, for a particular round t, we somehow intercept 80
bits of the state during PRGA. Now let us take a closer look at how the state
update is done. As described in Equation 1, one particular secret key bit (namely,
k(t mod 80)) may be involved in the state through nt+39, which is determined by
the following round key function:

k∗t =

{
kt, if 0 ≤ t ≤ 79

k(t mod 80) ∧ (lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29), otherwise.

We consider the case t ≥ 80 as this case is prevalent during PRGA. As we
know the round t, we immediately know which particular secret key bit may be
involved to the state in that round.

Definition 1 (Involvement Term). Given a particular round t, the involve-
ment term, denoted by µt, is defined as:

µt =

{
1, if 0 ≤ t ≤ 79

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29, otherwise.



7

Clearly, k(t mod 80) will be involved to the state in the t-th round if µt = 1. At
this point we show that, given a state, we can practically get this information
for 20 consecutive key bits (on whether or not they will be involved in the
corresponding state) in Theorem 1.

Theorem 1. Consider that at a round t during PRGA, the state (i.e., [nt, . . . ,
nt+39] and [lt, . . . , lt+39]) is available. Then it is possible to obtain µu for u
∈ [t− 8, t+ 11].

Proof. Look at the locations used in the NFSR for the involvement of the secret
key bits. These are nt+9, nt+20 and nt+29. Now looking at the sequence of these
three bits for t = −8, . . . , 0, . . . , 11; one may note that all these triplets are
available from the state information [nt+39, . . . , nt]. The corresponding LFSR
bits will always be available as we can move forward and backward with the
LFSR. Thus, µu = lu+4 ⊕ lu+21 ⊕ lu+37 ⊕ nu+9 ⊕ nu+20 ⊕ nu+29 is known for
u ∈ [t− 8, t+ 11]. ut

One may notice that, in order to generate key-stream zt for the round t,
we need to know the first bit of NFSR (nt). Since we do not precisely know
the corresponding nt’s for t ≤ 0 (it is lost during NFSR update), we have to
exhaustively search for it. This appears to be less practical. Hence, we should
consider µt’s for t > 0.

Definition 2 (Involvement Vector). The vector, Mt = {µt+1, . . . , µt+11} for
a given round t is called the involvement vector.

Based on the involvement vector for a round t, we can easily infer about
whether the key bits k(t+1 mod 80), k(t+2 mod 80), . . . , k(t+11 mod 80) will be involved
in the rounds t+ 1, t+ 2, . . . , t+ 11, if we are given the state at round t.

Mt does not contain any term involving the secret key bits; and hence, to
compute Mt it is sufficient to know the state at round t. Now, if Mt is of Ham-
ming weight w, we can generate 2w trial keys and use these trial keys one by
one to produce key-streams. Noticing whether or not these trial key-streams
match with the original key-stream, we can reduce the search complexity for
the secret key space greatly. Moreover, if for all the trial keys that produce
matching key-streams, some bit(s) in the corresponding position(s) is fixed to a
value (either 0 or 1) and the corresponding Mt bit is 1, then we know for sure
that the corresponding secret key bit must be equal to that fixed value. Such
information, in turn, can be further utilized to infer about more secret key bits.
Hence, by a dynamic programming approach, we can find out all the 80 secret
key bits. As in each step, trial keys are set separately, the overall computational
complexity is not multiplicative, rather additive. Hence, the complexity for this
approach remains bounded, and should be much less than the exhaustive search
of complexity 280. This is the central theme of our Guess and Determine Attack.

Let us now describe a few issues that are to be taken care of while generating
the matching key-streams:



8

1. Since, we now have trial keys each of length 11, we can generate at most
13 key-stream bits. This is because, the key-stream generation precedes the
NFSR update (we do not have to bother about the LFSR, since once we
know it, we can always run it in forward or backward direction as many
rounds we want) in each round t. Now, the secret key bit is involved in nt+39

(if at all); and the earliest possibility that the key bit may influence the key-
stream is through nt+38 (from Equation 2), i.e., 2 rounds later. Also notice
that, in the meantime, two more key bits may be involved in the state, but
they will not affect the key-stream produced before round zt+13.

2. The first two key-stream bits will be identical for all the trial keys (and it will
match with the first two of the original key-stream). The reason is already
mentioned in the last point: A key bit k(t mod 80) will affect (if at all) the
key-stream bit zt+2 at the earliest.

Experimental results show that, in the initial involvement vector, on an aver-
age 5.5 secret key bits are involved in the state (which is justifiable, since each of
the 11 key bits has 0.5 probability to be involved). Hence, we run an exhaustive
search over the 5.5 secret key bits that will be involved in the following key-
stream bits (25.5 computations). We notice that around 3.5 bits of secret key
bits can be recovered from this search.

Example. Assume, without loss of generality, that we manage to get a copy of
80-bit state just after the KSA routine is performed, i.e., the state is known for
t = 320, c4t = 0, so that we know that the secret key bits of interest are k0, k1, . . .,
in that order. Now the PRGA routine is carried out generating the key-stream
bits, and also changing the state (but we do not have access to the state now).
Also note that, although public, we do not need to use the IV in the course of
this algorithm.

Now, for our example, assume that the NFSR and the LFSR cells are:

Nt = 0101011000011110110011111011110111100000

Lt = 0101000100001010001100000101001010010001

One may note that the first involvement vector, Mt = (0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1).
That means, the key bits k1, k3, k7, k9, k10 will be involved in the state. Since the
Hamming weight of Mt is 5, we run 25 separate trial keys (for the key bits which
are not involved, we set 0) to see which of them produce matching key-streams
with the original key-stream. Here, in this case, original key-stream (first 13 bits)
is 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1. As it turns out, there are 4 trial keys of such type:

0,1, 0,1, 0, 0, 0, 0, 0, 0, 1, 0, 0

0,1, 0,1, 0, 0, 0, 0, 0, 1, 0, 0, 0

0,1, 0,1, 0, 0, 0, 1, 0, 0, 0, 0, 0

0,1, 0,1, 0, 0, 0, 1, 0, 1, 1, 0, 0



9

Notice that, the 1st bit (2nd MSB) in each trial key is identical (1), so as the
situation for the 3rd bit; and in both the cases, the corresponding bit of Mt is
1. Thus, now we know that k1 and k3 are both 1.

We may continue with this idea for each block of 11 bits consecutively. In
that case, we may expect to have much less effort than the exhaustive key search.
While this idea is worth exploring and we are working on it, we have noted that
directly attempting to solve the system of equations efficiently recovers the secret
key too. Next, we explain this.

2.1 Obtaining the Secret Key Bits from the Complete State
Information and the Key-stream

This approach is based on algebraic techniques. We treat the secret key bits and
unknown state bits as Boolean variables, and then generate several equations.
Then, we solve them using a SAT solver tool.

Forming the Equations. Our idea is to introduce new variables to the system
of equations such that the degree is bounded, but the number of variables as
well as equations grow. Let zt, . . . , zt+`−1 be the key-stream bits from round t to
t+`−1. Suppose at round t, we know both the LFSR Lt = [lt, lt+1, . . . , lt+39] and
NFSR Nt = [nt, nt+1, . . . , nt+39]. Our target is to find the secret key from the
knowledge of zt, . . . , zt+`−1; lt, lt+1, . . . , lt+39 and nt, nt+1, . . . , nt+39. Since Lt
and Nt have no unknown bit (all bits are known to be either 0 or 1), key-streams
will be some function of the secret key bits only.

However, it may be noted that; it is practically difficult, if not infeasible, to
compute the Algebraic Normal Form (ANF) of key-streams after certain rounds
as the number of monomials grows exponentially. To overcome this problem, at
each PRGA round t > 0, we introduce two new variables: Lt and Nt; equate
them with the update functions of Lt and Nt, respectively, and then update the
registers. This means, at each round, we are increasing the number of variables
as well as the equations by 3 (another equation comes due to the key-stream).

We initially start with 80 variables: k0, k1, . . . , k79. Then corresponding to
each key-stream bit zt+i, we introduce two new variables Lt+i,Nt+i and obtain
three more equations, for all i = 0, . . . , ` − 1. Thus, in total we have 3` equa-
tions over 80 + 2` variables. Note that, this approach allows us to formulate the
expression for zt+i via a series of equations, for all i = 0, . . . , ` − 1. If at each
round t > 0, the variables Lt,Nt were replaced by their equivalent algebraic
expressions in k0, k1, . . . , k79, the expressions will be too large to handle after
certain rounds. This is one clear advantage of our approach.

Required Number of Key-stream Bits. One may be interested to know
how many key-stream bits, at the least, are required to recover all the secret key
bits k0, k1, . . . , k79. An estimation of this query can be given as follows. Consider
80 consecutive key-stream bits as a block. Note that, one particular key-stream
bit, say zt+2, will contain the key bit kt mod 80 with probability 1

2 , as we consider



10

µt to be uniformly random over {0, 1} (which is a well accepted assumption for
a good cipher). This indicates that, in a block of key-stream bits, around 40 key
bits will be involved if we further assume the independence of µt’s.

Now consider 80 key-stream bits as a block. In such a block, one particular
key bit will not be involved with probability 1

2 . Next, we generalize this observa-
tion for x such consecutive blocks. That is, in 80x consecutive key-stream bits,
one particular key bit will not be involved with probability 1

2x (assuming the
independence of the key-stream bits). Therefore, the expected number of key
bits that will not be involved in the 80x consecutive key-stream bits is 80

2x . To
ensure each key bit is involved in the 80x consecutive key-stream bits at least
once, we require that 80

2x < 1. This gives x ≥ 7. In other words, we need at least
7× 80 = 560 key-stream bits to expect that each key bit is involved in (at least
one) key-stream bit. Practically we observe through our experiments, for unique
and quick solvability this required number of key-stream bits is nearly 900. This
means, we manage to find out the secret key (80 bits) on the basis of nearly 900
following key-stream bits together with the LFSR and NFSR state information
at a specific round.

We formulate the whole problem in a SAT solver, Cryptominisat-2.9.5, under
SAGE 5.13 [21] on a laptop running with Linux Mint 17.1. The hardware config-
uration is: Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz D CPU 1.83 GHz and
4 GB RAM. It is worth mentioning that, the system of equations can be solved
within 1 second in our implementation. In Table 2, we present our experimental
results which we obtain after averaging 100 random experiments. While column
1 of Table 2 gives the number of key-stream bits we utilise per experiment, col-
umn 2 gives the average number of solutions as returned by the SAT solver,
column 3 gives the average number of solved key-bits, and the last column gives
the average time consumed by our computer. It is to be noted that, column 3 is
basically the result of logarithm (base 2) of column 2, subtracted from 80.

# Key-stream bits # Solutions Avg. # solved key bits Time (second)

350 23.2 75.46 0.24
450 3.1 78.37 0.24
550 1.9 79.07 0.28
650 1.2 79.74 0.32
750 1.1 79.86 0.37
850 1.1 79.86 0.41
900 1.0 80 0.45

Table 2. Results observed when complete state information is known.



11

2.2 Obtaining the Complete Secret Key Bits from Partial State
Information and Key-stream

Since there are some really impressive results towards finding out the secret key
bits given the complete state information (Section 2.1), one natural question is
therefore: Whether it is possible to find the secret key from the partial (< 80
bits) information of the state.

# Key-stream
bits

LFSR
bits known

NFSR
bits known

# Solutions
Avg. #

solved key bits
Time

(seconds)

300 First 30 First 30 292.8 71.81 21.76
350 First 30 First 30 237.8 72.11 55.33
400 First 30 First 30 5.4 77.57 51.39

300 Every 1/3rd All 602.6 70.77 50.54
350 Every 1/3rd All 34.4 74.90 49.33
400 Every 1/3rd All 6.6 77.28 76.64

Table 3. Results observed when partial state information is known.

Thus, for the experiments, we now assume state is known except for a few
bits. Since the state and the key in Sprout are of same length, this kind of analysis
gives better attack than the exhaustive key search. We present our experimental
results in Table 3. After lot of simulations, we observe that if NFSR is known
fully and 1/3rd bits LFSR are known (i.e., lt, lt+3, lt+6 . . . , lt+39 are known), then
one can find the remaining unknown state bits and key very efficiently. Thus, it
is possible to cryptanalyze Sprout with search complexity < 280.

3 Differential Fault Attack: Fault Signatures, Identifying
Fault Locations and Obtaining the State

Consider that we put a difference by injecting a fault at the f -th bit of the state.
The state is of 80 bits, consisting of a 40-bit NFSR denoted by [nt, . . . , nt+39]
and a 40-bit LFSR state [lt, . . . , lt+39]. Introducing a fault at f -th bit means, if
f < 40, then the fault is injected at the LFSR location f , and for f ≥ 40, we
consider that the fault is injected at the (f − 40)-th bit of the NFSR.

Given a fault f , we consider zi and z
(f)
i , the key-streams for the fault-free

and the faulty cases, for i = 0 to λ − 1. We denote ζ
(f)
i = zi ⊕ z

(f)
i , and

q
(f)
i = 1

2 − Pr(ζ
(f)
i = 1).

Definition 3. The vector Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) is called the signature

of the fault at location f . The sharpness of the signature Q(f) is defined as

σ(Q(f)) = 1
λ

∑λ−1
i=0 |q

(f)
i |.



12

f →

0
10

20
30

40
50

60
70

i→10
20

30
40

50
60

q
(f

)
i
→

−0.5
−0.4
−0.3
−0.2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 1. Plot of Q(f) for all f in [0, 79].

For our experiments, we consider λ = 64. Further, we make 215 runs with
random key-IV pairs to prepare the signatures Q(0), Q(1), . . . , Q(79). In the actual
attack model, this is done in the off-line phase by the attacker by knowing
the description of the cipher. The signatures are presented in Figure 1. These
signatures are stored in a file for comparison during the on-line phase. As we
have defined the sharpness, we may note that the faults at certain location may
be useful than some other location. For example, one may note the cases for
f = 30 and f = 31 as in Figure 2. It is very clear that identifying the location if
the fault is indeed injected at 30 (blue) has much better chance than that of 31
(red). Now consider that a fault is injected at a random (but unknown) location
g, (0 ≤ g < 80). Corresponding to that, we will obtain the key-streams zi and

z
(g)
i , the key-streams for the the fault-free and the faulty cases. We consider

η
(g)
i = zi⊕ z(g)i . Let us consider ν

(g)
i = 1

2 − η
(g)
i and Γ (g) = (ν

(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1).

Definition 4. The vector Γ (g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) is called the trail of the

fault at the unknown location g.

Note that, this happens while we actually inject a fault and manage to obtain
the data itself. Thus, here we have no question of probability attachment. Now
Γ (g) is compared with each of the Q(f)’s, for f = 0, . . . , 79.



13

0 10 20 30 40 50 60
i→

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

q(f
)

i
→

Fig. 2. Plot of Q(30) (blue) and Q(31) (red).

Definition 5. We tell that a signature Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail

Γ (g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) do not match, if there exists at least one i, (0 ≤ i <

λ) such that (q
(f)
i = 1

2 and ν
(g)
i = − 1

2 ) or (q
(f)
i = − 1

2 and ν
(g)
i = 1

2 ).

However, it is quite natural that this may not always happen, and thus we
need to extend this definition. For this purpose, we incorporate the correlation
coefficient between two sets of data.

Definition 6. We use correlation coefficient µ(Q(f), Γ (g)) between the signature

Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail Γ (g) = (ν

(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) for evaluat-

ing how good they match. Naturally, −1 ≤ µ(Q(f), Γ (g)) ≤ 1. In case they do not
match as per the Definition 5, then we assign µ(Q(f), Γ (g)) = −1.

Then we make the following experiment to consider how one can locate the
faults. For each fault g (consider now that g is known), we calculate the trail

Γ (g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1). We now calculate µ(Q(f), Γ (g)) for each of the

faults f, (0 ≤ f < 80). We note

1. max79
f=0 µ(Q(f), Γ (g)),

2. µ(Q(g), Γ (g)), and
3. α(Q(g)), the number of f ’s for which µ(Q(f), Γ (g)) > µ(Q(g), Γ (g)).

One may now note in Figure 3, when µ(Q(g), Γ (g)) (blue) is close to
max79

f=0 µ(Q(f), Γ (g)) (red), α(Q(g)) is small and it is easier to locate these faults.

However, if µ(Q(g), Γ (g)) is much smaller than max79
f=0 µ(Q(f), Γ (g)) (red), i.e.,

α(Q(g)) is large, that means identifying this fault location will be harder.



14

0 10 20 30 40 50 60 70 80
g →

−0.1

0.0

0.1

0.2

0.3

0.4

co
rr

el
at

io
n

co
ef

fic
ie

nt
→

Fig. 3. Plot of max79
f=0 µ(Q(f), Γ (g)) (red) and µ(Q(g), Γ (g)) (blue).

Given α(Q(g)), for each g, we can actually estimate how many attempts we
should require to obtain the actual fault location. Further, we should consider a
few parameters to explain our attack. From the experimental data, one may note
that obtaining the random fault locations from signatures is more challenging in
Sprout than those of the Grain family. This is due to the non-linearity and secret
key bit involvement in case of Sprout. As we will describe in Section 3.1, obtain-
ing the exact state is possible from the differential key-stream corresponding to
20 correct fault locations (details are in Table 5). Thus, we need to pinpoint 20
fault locations from a larger number of random faults.

The exact algorithm for mounting the fault attack is as follows, where we
consider that all the faults are injected in the same round.

– Inject a fault at some random fault location.

– Obtain the differential trail Γ (g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1). Note that we need

to estimate g.
– For each f in [0, 79], calculate µ(Q(f), Γ (g)).
– Prepare a list of possible fault locations in Loci for this i-th experiment when
µ(Q(f), Γ (g)) ≥ τ , for some threshold τ .

We need to re-key the cipher again and again to prepare a list of possible fault
locations Loci, for i = 1 to 20 towards solving the systems of equations as
described later. Naturally, we will try to obtain faults in the locations where it
is easier to identify them. That means, we would like to locate the faults when
it is injected at some location g such that α(Q(g)) is small.

After several experimentation, we consider the set of following 26 fault loca-
tions, S = {10, 11, 12, 13, 14, 18, 19, 28, 29, 30, 41, 42, 46, 55, 56, 57, 58, 60, 63,



15

64, 68, 69, 71, 73, 74, 78}, (once again note that the values < 40 belong to the
LFSR and the values ≥ 40 belong to NFSR) for which

∏
g∈S(1 + α(Q(g))) ≈

239.82 < 240. This means that in such a case we need to try out little less than
240 options to find the correct fault locations out of 26 places. As described in
Section 3.1, it is enough to have the correct knowledge of 20 fault locations.

Now the question is how one can manage the faults in those locations. Natu-
rally, a random fault can be injected to a specific fault location with probability
1
80 . That is, a location f will not be touched in r attempts is (1 − 1

80 )r. Thus,
the expected number of locations in S that will not be touched by a fault in r
attempts is 26·(1− 1

80 )r and we like this quantity to be less than 6 so that we can
have around 20 correct locations. One may note that this can be achieved with
r = 120. Further maxT⊂S,|T |=20

∏
g∈T (1 + α(Q(g))) < 235.2. This means that

we will be able to obtain 20 correct fault locations with good expectation given
an effort of less than 235.2. Once we obtain the correct complete state, we can
use that for obtaining the secret key bits as in the previous section. Naturally,
when we obtain wrong states and wrong secret key bits for wrong choices of fault
locations, then the differential key-stream generated from that solution will not
match with the exact output. In this manner, we can identify the correct fault
locations and thereby obtain the correct state and secret key bits.

3.1 Obtaining the State from the Differential Key-streams

As pointed out earlier (in Section 2.1), the ANF of the key-stream expression will
be huge within a very few rounds. Table 4 quickly encompasses the rapid increase
of the ANF expression of the key-stream produced by Sprout. Here, at the begin-
ning of PRGA, we start with a total of 80+40+40 = 160 variables: k0, k1, . . . , k79
and lt+0, lt+1, . . . , lt+39, nt, nt+1, . . . , nt+39. With our current computational ca-
pability, it is difficult to go beyond round 9.

Round 1 2 3 4 5 6 7 8 9

Degree 3 3 6 6 8 10 12 14 16

# Monomials 13 13 34 55 95 512 9026 46385 2674135

Table 4. Growth of key-stream expression of Sprout.

With that set-up, we next generate the key-stream bits zt; then we introduce
two new variables Lt,Nt and obtain three more equations (it is already explained
in Section 2.1). Thus, finally we have 3` equations over 160 + 2` variables gen-
erated from fault-free key-streams.

We use a similar technique to extract equations from faulty key-streams.
Let us assume that a fault is injected in the LFSR location φ at PRGA round
t. The same method will work if the fault is injected in the NFSR. Since we
re-key the cipher with the same (key, IV) pair before injecting a fault; after
fault injection we get the state lt, lt+1, . . . , lt+φ−1, 1 ⊕ lt+φ, lt+φ+1 . . . , lt+39 and



16

nt, nt+1, . . . , nt+39 at the t-th round of PRGA. Then corresponding to each faulty

key-stream bit zφt , we introduce two new variables L(φ)
t ,N (φ)

t and obtain three
more equations. Thus we have additional 2` variables and 3` equations for each
faulty key-streams.

Thus when we introduce ν faults, the total number of variables is 160+2(ν+
1)` and the total number of equations is 3(ν + 1)`.

Experimental Results. After the identification of fault location and injection
time, a system of equations are formulated, and the equations are then fed into
a SAT solver. In our experiments, we want to minimize the number of faults so
that it helps in reducing the number of re-keying of the cipher.

# Faults
Solution time (seconds)

Minimum Maximum Average

22 5.89 42.83 10.23
21 14.18 109.55 25.82
20 7.15 982.14 231.51

Table 5. Results observed while obtaining state from fault attack.

We have considered the case when the faults are introduced in both LFSR and
NFSR randomly (here we consider that expected half of the faults are injected in
LFSR and the other half in NFSR). The results are as in Table 5. The amount of
key-stream is taken as 23. We have presented the time required for the SAT solver
part. For each row, we consider a set of ten (10) experiments. From Table 5, it is
clear that we can easily find the state of Sprout by injecting faults at 20 locations
when the correct locations are known. This can be achieved by injecting around
120 faults at random locations as explained previously.

4 Conclusion

In this paper, we have discussed several crypatanalytic results on the newly
proposed stream cipher, Sprout [3], which uses a different paradigm of stream
cipher design, where the secret key bits are used during the PRGA. First, we
demonstrate that given the state of the cipher, the secret key bits can be recov-
ered efficiently. This refutes the claim of the designers related to the guess and
determine attack. More importantly, from the knowledge of the complete NFSR
(40 bits) and a partial information on the LFSR bits (around one third, i.e., 14
bits), we can obtain all the secret key bits by studying around 850 key-stream
bits. Thus Sprout gets cryptanalyzed in 254 attempts (considering constant time
complexity required by the SAT solver in each attempt). Similar ideas are em-
ployed to mount a fault attack against Sprout that requires around 120 faults,
whereas the designers claim that such a fault attack may not be possible. Since



17

Sprout uses the basic structure of the Grain family, there may also be a chance
to extend such type of analysis on these ciphers, where secret key bits are used
during the PRGA. Further, we expect to have some more designs on this very
paradigm to appear in near future, where our results may be utilized for bet-
ter understanding of such designs. In this direction, one may note the following
informal point. Instead of treating just one key bit each time in the round key
function, some function of multiple key bits could be used. This prevents the
straightforward involvement of a particular key bit at one round, and may pro-
vide better security at the cost of little hardware.

References

1. M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain-128 with
Authentication. Symmetric Key Encryption Workshop 2011, DTU, Denmark.

2. M. Ågren, M. Hell, T. Johansson and W. Meier. Grain-128a: a new version of
Grain-128 with optional authentication. IJWMC, 5(1): 48–59, 2011. This is the
journal version of [1].

3. F. Armknecht and V. Mikhalev. On Lightweight Stream Ciphers with Shorter
Internal States. To be presented in FSE 2015.

4. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the Grain Family
of Stream Ciphers. In CHES 2012, LNCS, Vol. 7428, pp. 122–139.

5. S. Banik and S. Maitra. A Differential Fault Attack on MICKEY 2.0. CHES 2013,
LNCS, Vol. 8086, pp. 215–232, 2013.

6. S. Banik, S. Maitra and S. Sarkar. Improved differential fault attack on MICKEY
2.0. Journal of Cryptographic Engineering. http://link.springer.com/article/
10.1007%2Fs13389-014-0083-9, 2014

7. A. Barenghi, L. Breveglieri, I. Koren and D. Naccache. Fault Injection Attacks
on Cryptographic Devices: Theory, Practice, and Countermeasures. Proceedings
of the IEEE, Vol. 100, No. 11, November 2012, pp. 3056–3076.

8. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In CRYPTO 1997, LNCS, Vol. 1294, pp. 513–525.

9. E. Biham and O. Dunkelman. Differential Cryptanalysis in Stream Ciphers. Cryp-
tology ePrint Archive, Report 2007/218.

10. D. Boneh, R. A. DeMillo and R. J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In EUROCRYPT 1997, LNCS, Vol. 1233, pp. 37–51.

11. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers.
http://www.ecrypt.eu.org/stream/

12. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained
Environments. ECRYPT Stream Cipher Project Report 2005/001, 2005. Available
at http://www.ecrypt.eu.org/stream.

13. M. Hell, T. Johansson, A.Maximov and W. Meier. A Stream Cipher Proposal:
Grain-128. In IEEE International Symposium on Information Theory (ISIT 2006).

14. J. J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In CHES 2004, LNCS,
Vol. 3156, pp. 1–20.

15. M. Hojśık and B. Rudolf. Differential Fault Analysis of Trivium. In FSE 2008,
LNCS, Vol. 5086, pp. 158–172.

16. M. Hojśık and B. Rudolf. Floating Fault Analysis of Trivium. In INDOCRYPT
2008, LNCS, Vol. 5365, pp. 239–250.

http://link.springer.com/article/10.1007%2Fs13389-014-0083-9
http://link.springer.com/article/10.1007%2Fs13389-014-0083-9
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream


18

17. Y. Hu, J. Gao, Q. Liu and Y. Zhang. Fault analysis of Trivium. Designs, Codes
and Cryptography, 62(3): 289–311, 2012.

18. S. Sarkar, S. Banik and S. Maitra. Differential Fault Attack against Grain family
with very few faults and minimal assumptions. To appear in IEEE Transactions
on Computers, 99(PrePrints):1, 2014. http://www.computer.org/csdl/trans/tc/
preprint/06857997-abs.html

19. S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks. In CHES
2002, LNCS, Vol. 2523, pp. 2–12.

20. S. P. Skorobogatov. Optically Enhanced Position-Locked Power Analysis. In CHES
2006, LNCS, Vol. 4249, pp. 61–75.

21. W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009. Avail-
able at http://www.sagemath.org. (Open source project initiated by W. Stein and
contributed by many).

http://www.computer.org/csdl/trans/tc/preprint/06857997-abs.html
http://www.computer.org/csdl/trans/tc/preprint/06857997-abs.html
http://www.sagemath.org

	Subhamoy Maitra, Santanu Sarkar, Anubhab Baksi, Pramit Dey

