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ABSTRACT As cloud computing and AI as a Service are provided, it is increasingly necessary to deal
with privacy sensitive data. To deal with the sensitive data, there are two cases of outsourcing process:
i) many clients participate dynamically ii) many clients are pre-determined. The solutions for protecting
sensitive data in both cases are the multi-key homomorphic encryption (MKHE) scheme and the threshold
multi-key homomorphic encryption (TMKHE) scheme. However, these schemes may be difficult for clients
with limited resources to perform MKHE and TMKHE. In addition, due to the large size of the evaluation
keys, in particular multiplication and rotation keys, the communication between the clients and server that
provide outsourcing service increases. Also, the size of the evaluation keys that the server must hold is
tremendous, in particular, for the multiplication and rotation keys, which are essential for bootstrapping
operation. In this paper, we propose a variant of MKHE and TMKHE with reduced evaluation keys.
To reduce the size of the evaluation keys, we propose a variant of ring learning with errors (RLWE), called
RLWE reusing errors (ReRLWE). ReRLWE generates other components by reusing the error that is used
when generating an RLWE sample. We prove that RLWE can be reduced to ReRLWE and propose modified
evaluation keys under the ReRLWE assumption, which are the modified multiplication and rotation keys.
For MKHE, multiplication and rotation keys are reduced by 66% and 25%, respectively. For TMKHE,
a multiplication and rotation keys are reduced by 50% and 25%, respectively.

INDEX TERMS Homomorphic encryption (HE), multi-key homomorphic encryption (MKHE), ring
learning with error (RLWE), threshold multi-key homomorphic encryption (TMKHE).

I. INTRODUCTION
Recently, cloud computing services that provide on-demand
computing resources through a network are being actively
used, and AIaaS (AI as a Service), which provides various
AI-based functions to customers, has attracted much atten-
tion. However, when an outsourcing server uses the client’s
private data, there is a risk of leakage of the client’s data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Neetesh Saxena .

This means that it is difficult to use the client’s raw data
and hinder outsourcing companies from developing vari-
ous related systems. To prevent this problem, a client that
requires cloud services and AIaaS uses the cryptogrphic
scheme. However, it was difficult to process encrypted data
in an encrypted state in the previous public key encryp-
tion schemes. To process encrypted data, the homomorphic
encryption (HE) scheme has been proposed. HE is the public
key encryption scheme that enables the homomorphic oper-
ations on encrypted data and makes it possible to preserve
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TABLE 1. Summary of the reduced ratio for modified evaluation keys for MK-CKKS and TMK-CKKS.

security in the data processing. Fully HE(FHE), which sup-
ports an arbitrary number of two homomorphic operations
simultaneously, was first constructed by Gentry [1] by apply-
ing bootstrapping, but this was impractical for outsourcing
services. Many HE schemes have been developed with vari-
ous improvements and optimizations [2], [3], [4], [5]. Thus,
a client using HE can protect sensitive personal data when
receiving the cloud computing service and AIaaS [6], [7], [8].

However, HE is not always an appropriate solution when
many clients participate in a single outsourcing server. For
example, in HE for multiple clients and a single outsourcing
server, the data should be encrypted under the same public
key. If Bob generates a public key through his secret key and
shares it with all clients in the outsourcing server, each client
encrypts its own data using the shared public key. This means
that Bob may access the data of other clients. In other words,
the problem of concentration of authority arises. To solve this
problem, the multi-key HE (MKHE) [9], [10], [11] allows
each client to generate its own secret/public key pair, and an
outsourcing server performs homomorphic operations using
all clients’ public and evaluation keys. Therefore, when many
clients simultaneously participate in the outsourcing server,
MKHE is more appropriate than HE.

However, there are several problems for MKHE. First,
the ciphertext of MKHE is expanded during homomorphic
operations and this expansion is proportional to the number of
clients. Second, each client needs to generate the evaluation
keys and the outsourcing server must have the evaluation
keys of all clients to support homomorphic operations. Thus,
due to the large size of evaluation keys, the computational
and memory costs are higher than those of HE. Also the
communication cost between all clients and the outsourcing
server is increased.

A partial solution to these problems is the thresholdMKHE
(TMKHE). TMKHE is the variant of MKHE schemes with
the pre-defined clients to generate a common public key
and many evaluation keys. It also allows prior communica-
tion between clients to generate a common public key and
evaluation keys [14]. Thus, the ciphertext expansion does
not depend on the number of clients, and the size of the
evaluation keys possessed in the outsourcing server can be
reduced [12], [13]. However, in TMKHE, a new client is hard
to participate in the ongoing process, while MKHE has the
advantage that new client can easily participate. Therefore,
it is necessary to choose MKHE or TMKHE according to
the situation.

Although there are studies that practically implement
HE [2], [3], [4], [5], MKHE and TMKHE, there is a prob-
lem to solve. When a client’s computer resources are lim-
ited, it may be difficult to generate many evaluation keys.
To support homomorphic operation, in particular bootstrap-
ping, each client must generate evaluation keys, which may
be difficult to generate due to a lack of computer memory.
In addition, although the evaluation keys have been reduced
due to TMKHE, it is still a burden for clients with limited
resources. This problem becomes a bottleneck for clients with
limited resources to be served the cloud computing services
and AIaaS.

MKHE and TMKHE are constructed based on the
ring-learning with errors problem (RLWE). The learning
with errors problem (LWE) was introduced by Regev in
2005 [15],and then its ring variant was also proposed [16].
The hardness of LWE is first demonstrated when the secret
distribution is uniform. However, in [17], LWE also satisfies
the hardness when the secret distribution is the error distri-
bution, and in the case of RLWE, it can be applied similarly.
At this time, we consider the following question.

If the error defined in the RLWE problem is used once again
as a secret, is the problem still difficult?

That is, the sample of the variant RLWE distribution is of the
form

(a, a · s+ x, a · x + e),

where a ← Rq, s ← Rq, and x, e are chosen from the error
distribution, and it is asked if it is distinguishable from this
sample and the sample of the uniform distribution.

A. OUR CONTRIBUTIONS
In this paper, we focus on the multi-key residue num-
ber system (RNS) variant Cheon-Kim-Kim-Song scheme
(MK-RNS-CKKS), and the threshold MK-RNS-CKKS
(TMK-RNS-CKKS). For convenience, we refer to
MK-RNS-CKKS and TMK-RNS-CKKS as MK-CKKS and
TMK-CKKS, respectively.

First, we propose a variant of RLWE by reusing the
error used to define an RLWE problem, called the ReRLWE
problem. To define the ReRLWE problem, we define the
ReRLWE distribution, where the error for generating an
RLWE sample is reused as a secret for the other RLWE sam-
ple. In other words, the sample of the ReRLWE distribution
is of the form (a, a · s+ x, a · x+ e), where a← Rq, s← Rq,
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and x, e← χ for polynomial ring Rq and error distribution χ .
Second, we demonstrate that there exists a reduction from
RLWE to ReRLWE. Since the RLWE problem is NP-hard,
the ReRLWE problem is also NP-hard (Section III).

Third, under the ReRLWE assumption, we propose modi-
fied evaluation keys, called modified multiplication and rota-
tion keys in MK-CKKS and TMK-CKKS. The modified
multiplication key is generated by reusing the error usedwhen
generating the public key for each client. Also, the ReRLWE
sample can be used per two rotation indices instead of using
RLWE samples per one rotation index (Section IV).

Finally, we verify the correctness and security of the pro-
posed schemes. Also, due to the modified evaluation keys, the
homomorphic operation time increases slightly. However, the
size of evaluation keys can be reduced. For MK-CKKS,
the modified multiplication key and many rotation keys are
reduced by 66% and 25%, respectively. Also, for TMK-
CKKS, the modified multiplication and many rotation keys
are reduced by 50% and 25%, respectively (Section V).
Our contributions are briefly described in Table 1. There-
fore, it is possible to perform the multi-key homomor-
phic operation even though client’s computer resources are
limited.

B. RELATED WORKS
The CKKS scheme [2] was first proposed without boot-
strapping as a somewhat homomorphic encryption scheme
that supports only a finite number of multiplications.
Cheon et al. [19] suggested a bootstrapping operation using
a sine function with a Taylor approximation. Chen et al. [20]
and Han and Ki [21] proposed improved bootstrapping meth-
ods. Because bit integers used to represent the ciphertexts
in the CKKS scheme cannot be stored with the basic data
type, the CKKS scheme had to use arbitrary precision data
type libraries. However, Cheon et al. [3] applied the RNS
system in the CKKS scheme to remove the external library.
The RNS-CKKS scheme causes more approximation error in
the homomorphic multiplication of the RNS-CKKS scheme
than in that of the original CKKS scheme. To overcome this
problem, Kim et al. [22] proposed a management method
for the scaling factor in the RNS-CKKS scheme. In addi-
tion, Lee et al. [4] proposed two procedures to significantly
increase the precision of the RNS-CKKS bootstrapping
operation: an algorithm for deriving the optimal minimax
approximation polynomial for modular reduction, and a
composite-function procedure involving the inverse sine
function. The multi-key version of CKKS (MK-CKKS) was
proposed byChen et al. [9]. The public key size ofMK-CKKS
increased linearly with the number of clients. To overcome
this problem, Mouchet et al. [13] suggested a common pub-
lic, multiplication, and rotation keys using communication
between clients. However, owing to the common public keys
of clients, the size of the public key for the server is reduced,
while the communication cost is increased. To reduce
the communication cost, Part [14] suggested a variant of

TABLE 2. The notations for the RLWE problem and homomprhic
encryption scheme.

TMK-HE (called compact MK-HE in [14]). In this scheme,
communication between clients is used to generate a common
public key. However, in order to generate commonmultiplica-
tion and rotation keys, the client’s multiplication and rotation
keys sent to the server are generated in the server.

C. ORGANIZATION
The remainder of this paper is organized as follows:
In Section II, the RLWE problem, MK-CKKS, and TMK-
CKKS are introduced. In Section III, we propose a variant
of RLWE and prove the hardness of this problem. Section IV
proposes the variant of MK-CKKS and TMK-CKKS based
on the variant of RLWE. Section V shows the correctness
and security of the proposed schemes and compares them
with previous schemes. Finally, the conclusion is provided
in Section VI.

II. PRELIMINARIES
In this section, we introduce the RLWE problem,MK-CKKS,
and TMK-CKKS. See Table 2 for related notations of the
RLWE problem and homomorphic encryption schemes.

A. LATTICES AND LATTICE PROBLEM
An n-dimensional lattice is a discrete subgroup of Rn.
More specifically, for linearly independent vectors {b1, . . . ,
bn} ⊆ Rn, the set

L = L(b1, . . . ,bn) =
{

n∑
i=1

xibi : xi ∈ Z

}

is a lattice in Rn with basis {b1, . . . ,bn}. A lattice is an
ideal lattice if it is isomorphic to some ideal I of R. The i-th
successive minimum λi(L) is the smallest radius r such that
L contains i linearly independent vectors of norm at most r .

Now, we introduces the shortest independent vector prob-
lem over the lattice L.
Definition 1: The SIVP is defined as follows: Given a

lattice L of dimension n, the SIVP is to find the n linearly
independent vectors v1, . . . , vn ∈ L such that maxi∥vi∥ ≤
γ · λn(L), where γ ≥ 1 is a function of dimension n.

This problem is known to be NP-hard for any approxima-
tion factor γ ≤ O(1) [18]. The SIVP problem can be extended
to the polynomial ring R if the lattice L is the ideal lattice,
denoted as Id-SIVP.
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B. RING LEARNING WITH ERRORS
In this subsection, we introduce the RLWE problem.
Definition 2 (RLWE Distribution): For a secret s ∈ Rq and

a distribution χ over Rq, a sample from the RLWE distribu-
tion As,χ over R2q is generated by choosing a← Rq uniformly
at random, choosing e← χ , and outputting (a, b = a · s+ e
mod qR).
Definition 3 (RLWE Problem, Average-Case Decision):

The average-case decision version of the RLWE problem,
denoted RLWEq,χ , is to distinguish with non-negligible
advantage between independent samples from Aq,χ and the
same number of uniformly at random and independent sam-
ples from R2q, where s← Rq is uniformly at random.
In [16], there exists a reduction from SIVP to RLWE when

the error distribution χ is the Gaussian distribution. This
means that the RLWE problem is also NP-hard. In addition,
if the error distribution χ is supported on Rq, then the secret s
can also be chosen from χ without affecting the hardness of
the RLWE problem [17].

C. MULTI-KEY HOMOMORPHIC ENCRYPTION SCHEME
The CKKS scheme is the homomorphic encryption for the
arithmetic of approximate numbers based on the RLWE prob-
lem [2]. The main idea of CKKS is to consider an encryption
error as part of a computational error that occurs during
approximate computations. Since the CKKS scheme have
to use multi-precision data type libraries, the authors of [3]
introduce the residue number system variant of CKKS, called
RNS-CKKS. RNS-CKKS uses the RNS form to represent
ciphertexts and perform homomorphic operations efficiently.
The product of the large primes is used for the ciphertext
modulus in RNS-CKKS, and these large primes are chosen
to be similar to the scaling factor, which is a parameter
controlling the approximated error.

1) RESIDUE NUMBER SYSTEM
Let C = {q0, . . . , qℓ−1} is the set of positive integers coprime
each other and let a ∈ ZQ where Q =

∏ℓ−1
i=0 qi. We denote by

[·]C the map from ZQ→ Zq0 × · · · × Zqℓ−1 , defined by

a→ [a]C = ([a]q0 , . . . , [a]qℓ−1 ) ∈ Zq0 × · · · × Zqℓ−1 .

This map is a ring isomorphism from the Chinese Remainder
Theorem (CRT) and [a]C is called the RNS representation of
a ∈ ZQ. This isomorphism over the integers can be extended
to a ring isomorphism [·]C : Rq → Rq0 × · · · × Rqℓ−1 by
applying it coefficient-wise over the cyclotomic rings.

2) CANONICAL EMBEDDING
Let K = Q[X ]/⟨XN + 1⟩. The canonical embeddings are the
N ring homomorphisms σj : K → C for all j = 1, . . . ,N ,
where C is the set of complex numbers. They are defined
by σj(X ) = ζ

j
M , where ζM is the solution of XN + 1 for

any j ∈ Z×M with N = 2r for some positive integer r ,
where Z×M denotes the set of integer j module M such that
gcd(j,M ) = 1. We define the canonical embedding vector as

the ring homomorphism σ : K → CN as σ (x) = (σj(x))j∈Z×M
under component-wise addition and multiplication. Let H =
{(zj)j∈Z∗M : zj = z̄−j}, and π be a natural projection from H to

CN/2. Then the range of σ is exactly H.

3) FAST BASIS CONVERSION AND MODULUS SWITCHING
Let D = {q0, . . . , qℓ−1, p0, . . . , pk−1} be a basis and B =
{p0, . . . , pk−1} and C = {q0, . . . , qℓ−1} be its subbases.
Let P =

∏k−1
i=0 pi and Q =

∏ℓ−1
j=0 qj. Then the fast basis

conversion converts the RNS bases from C to B without the
merging process of CRT, which is defined as

ConvC→B([a]C) =

ℓ−1∑
j=0

[a(j) · q̂−1j ] · q̂j mod pi


0≤i<k

,

where [a]C = (a(0), . . . , a(ℓ−1)) ∈
∏ℓ−1

j=0 Zqj and q̂j =∏
i̸=j qi ∈ Z. This operation can be extended to the cyclo-

tomic rings
∏ℓ−1

j=0 Rqj . Now, we define the modulus switch-
ing operations ModUp and ModDown, which are necessary
during homomorphic operations. ModUp operation is to add
other moduli in B to the current RNS basis C to expand the
modulus space without changing the value:

ModUpC→D([a]C) = (ConvC→B([a]C), [a]C).

ModDown is to remove themoduli inB from the current RNS
basis D by dividing the value by P:

ModDownD→C([a]B, [b]C)

= ([b]C − ConvB→C([a]B)) · [P−1]C

4) MULTI-KEY RNS-CKKS
MK-CKKS follows the same pipeline as RNS-CKKS. The
difference between RNS-CKKS and MK-CKKS is that all
clients use the public parameter randomly generated polyno-
mial a ∈

∏ℓ−1
j=0 Rqj . This assumption is called the common

reference string (CRS) assumption. Let d be the number of
different clients. Then, a ciphertext related to d different
clients is of the form

ct = (c0, . . . , cd ) ∈

ℓ−1∏
j=0

Rqj

d+1

,

which is decryptable using the concatenated secret key sk =
(s0, . . . , sd−1, 1) as

µ = ⟨ct, sk⟩ =
d−1∑
i=0

ci · si + cd .

The detailed procedures in the MK-CKKS scheme are given
as follows:
• MK-CKKS.Setup(1λ): Given a security parameter

λ, set the RLWE dimension N , ciphertext modulus
q0, . . . , qL and special modulus p0, . . . , pk−1 satisfying
qj ≡ pi ≡ 1 mod 2N for all j = 0, . . . ,L and for all
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i = 0, . . . k − 1, secret key distribution χsec, and error
distribution χerr over R. Generate a random polynomial

a = (a(0), . . . , a(k+L))←
k−1∏
i=0

Rpi ×
L∏
j=0

Rqj .

Return the public parameter

pp = (N , χsec, χerr, a, {qj}, {pi}),

for all j = 0, . . . ,L and i = 0, . . . , k − 1.
• MK-CKKS.UniEnc(µ; s): For µ ∈ R, generate

mk = (mk0,mk1,mk2) ∈

k−1∏
i=0

Rpi ×
L∏
j=0

Rqj

3

as follows:
1) Sample r ← χsec.
2) Sample

mk0 = (mk (0)0 , . . . ,mk (k+L)0 )←
k−1∏
i=0

Rpi ×
L∏
j=0

Rqj .

3) Sample e1← χerr and set

mk (j)1 = −s · mk
(j)
0 + e

(j)
1 mod pj

for 0 ≤ j < k and

mk (k+j)1 = −s · mk (k+j)0 + e(k+j)1

+ [P]qj · r mod qj

for 0 ≤ j ≤ L.
4) Sample e2← χerr and set

mk (j)2 = r · a(j) + e(j)2 mod pj

for 0 ≤ j < k and

mk (k+j)2 = r · a(k+j) + e(k+j)2 + [P]qj · s mod qj

for 0 ≤ j ≤ L.
• MK-CKKS.KeyGen(pp): Each i-th client samples the
secret key si ← χsec, and an error ei ← χerr. Set the
public key as

pki =
(
pk (j)i = (a(j), b(j)i )

)
0≤j≤k+L

,

where

b(j)i ←−a
(j)
· si + ei mod pj

for 0 ≤ j < k and

b(k+j)i ←−a(k+j) · si + ei mod qj

for 0 ≤ j ≤ L. The multiplication key is set by

mki← MK-CKKS.UniEnc(si; si).

• MK-CKKS.Ecd(z;1): For a vector z ∈ CN/2 and the
scaling factor 1, return

m(X ) = σ−1
(⌊
1 · π−1(z)

⌉
σ (R)

)
∈ R,

where ⌊π−1(z)⌉σ (R) denotes the rounding of π−1(z) into
an element of σ (R).

• MK-CKKS.Dcd(m(X );1): For a polynomialm(X ) ∈ R,
return a vector z ∈ CN/2 whose entry of index j is zj =⌊
1−1 · m(ζ 5

j

M )
⌉
for j ∈ {0, 1, . . . ,N/2 − 1}, where ζM

is theM -th root of unity.
• MK-CKKS.Enc(z; pki): For a message z ∈ CN/2 and
the scaling factor 1, generate the message polynomial
by

m(X ) = MK-CKKS.Ecd(z;1).

Then, sample v← χsec and e0, e1← χerr and generate
the ciphertext

ct =
(
ct(j) = ⌊P−1 · (c(j)0 , c

(j)
1 )⌉ + (0,m) mod qj

)
,

where (c(j)0 , c
(j)
1 ) = v · pk (j)i + (e0, e1) for 0 ≤ j ≤ L.

As in [9], a ciphertext cti = (c0, . . . , cki ) corresponding to
the tuple of the parties (id0, . . . , idki−1) ∈ {0, . . . , d − 1}ki+1

is converted into the ciphertext

ct∗ = (c∗0, . . . , c
∗

d) ∈

(
L∏
i=0

Rqi

)d+1
that is defined as

c∗d = cki and c
∗
i =

{
ci if i = idj for some 0 ≤ j ≤ ki − 1
0 otherwise

for 0 ≤ i ≤ d − 1. Then we obtain

⟨cti, (sid1 , . . . , sidki , 1)⟩ = ⟨ct∗, (s0, . . . , sd−1, 1)⟩.

Hereafter, we will assume that this pre-processing is always
performed before homomorphic operations such that two
input ciphertexts are related to the same set of d parties.
• MK-CKKS.Add(ct1, ct2): Given two ciphertexts ct1, ct2 ∈(∏ℓ

i=0 Rqi
)d+1

at level ℓ, return the ciphertext

ct′ = ct1 + ct2 ∈

(
ℓ∏
i=0

Rqi

)d+1
.

• MK-CKKS.Mult(ct1, ct2; {(mki, bi)}0≤i≤d−1): Given

two ciphertexts cti ∈
(∏ℓ

i=0 Rqi
)d+1

at level ℓ, compute

ĉt = ct1 ⊗ ct2 ∈

(
ℓ∏
i=0

Rqi

)(d+1)2

and return the ciphertext

ct← MK-CKKS.Relin(ĉt; {(mki, bi)}0≤i≤d−1)

as described in Algorithm 1.
• MK-CKKS.Rescale(ct): For a ciphertext

ct = (c0 = (c(j)0 ), . . . , cd = (c(j)d )) ∈

 ℓ∏
j=0

Rqj

d+1
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Algorithm 1 Relinearization for MK-CKKS (adapted
From [9])

1: Input : ĉt = (ĉi,j)0≤i,j≤d , {(mki, bi)}0≤i≤d−1.

2: Output : ct = (ci)0≤i≤d ∈
(∏ℓ

i=0 Rqi
)d+1

3: (c′′i )0≤i≤d ← 0
4: for 0 ≤ i, j ≤ d − 1 do
5: c′′i,j← ModUp(ĉi,j) · bj
6: c′i,j← ModDown(c′′i,j)
7: c′i,j← ModUp(c′i,j)
8: (c′′i , c

′′
d )← (c′′i , c

′′
d )+ c

′
i,j · (mki,0,mki,1)

9: c′′j ← c′′j +ModUp(ĉi,j) · mki,2
10: end for
11: cd ← ĉd,d +ModDown(c′′d )
12: for 0 ≤ i ≤ d − 1 do
13: ci← ĉi,d + ĉd,i +ModDown(c′′i )
14: end for

at level ℓ, compute

c′(j)i = q−1ℓ ·
(
c(j)i − c

(ℓ)
i

)
mod qj

for i = 0, . . . d and 0 ≤ j ≤ ℓ− 1 and return

ct′ = (c′0, . . . , c
′
d ) ∈

ℓ−1∏
j=0

Rqj

d+1

.

• MK-CKKS.RotKeyGen(t; si): For each i-th client and
given rotation index t ∈ Z∗2N , generate a random poly-
nomial rki,0 ←

∏k−1
j=0 Rpj ×

∏L
j=0 Rqj and an error

e← χerr. Set the rotation key as

rki = (rk (j)i = (rk (j)i,0, rk
(j)
i,1))0≤j≤k+L ,

where

rk (j)i,1←−rk
(j)
i,0 · si + e

(j) mod pj

for 0 ≤ j < k and

rk (k+j)i,1 ←−rk (k+j)i,0 · si + e(k+j)

+[P]qj · τt (si) mod qj

for 0 ≤ j ≤ L.
• MK-CKKS.Rot(ct, {rki}0≤i≤d−1): Given a ciphertext

ct = (c0, . . . , cd ) at level qℓ, compute τt (ct) =
(τt (ci))0≤i≤d and return the ciphertext ct as described in
Algorithm 2.

To decrypt the ciphertext related to multiple clients, authors
in [9] use the distributed decryption. The distributed decryp-
tion consists of two algorithms: partial decryption and merge.
First, each i-th client receives the i-th entry of a ciphertext and
decrypts it with noise. Subsequently, the partially decrypted
results are merged with cd to recover the message.
• MK-CKKS.ParDec(ct, si): For each i-th client, given a
ciphertext ct = (c0, . . . , cd ), and a secret si, sample an
error ei← χerr and return

µi = ci · si + ei mod q0.

Algorithm 2 Rotation for MK-CKKS (adapted From [9])
1: Input: τt (ct) = (τt (ci))0≤i≤d , {rki}0≤i≤d−1
2: Output: ct = (ci)0≤i≤d
3: for 0 ≤ i ≤ d − 1 do
4: c′i← ModUp(τt (ci))
5: cd ← cd +ModDown(c′i · rki,1)
6: c′i← c′i · rki,0
7: ci← ModDown(c′i)
8: end for
9: cd ← cd + τt (cd )

• MK-CKKS.Merge(ct, {µi}0≤i≤d−1): Compute and
return

µ =

d−1∑
i=0

µi + cd mod q0.

D. THRESHOLD MULTI-KEY RNS-CKKS
In MK-HE, ciphertext expansion occurs as homomorphic
operation proceeds. This expansion is proportional to the
number of clients. Also, MK-HE is possible only when all
clients’ public keys are possessed in the outsourcing server.
A partial solution to overcome the ciphertext expansion is for
a pre-defined number of clients to generate a common public
key. MK-HE that achieves multi-key security and no cipher-
text expansion is called a threshold MK-HE (TMK-HE).
This subsection introduces TMK-CKKS adapted from [14].
In [14], TMK-CKKS generates a common public key using
the prior communication between clients. A common public
key is generated as follows.
• TMK-CKKS.ComPK(pk0, . . . , pkd−1): Given all
clients’ public keys

pki = (pk (j)i = (a(j), b(j)i ))0≤j≤k+L ,

return a common public key

p̂k = (p̂k
(j)
= (a(j), b(j)))0≤j≤k+L ,

where b(j) :=
∑d−1

i=0 b
(j)
i .

After generating a common public key through the prior
communication between clients, encryption is performed
through a common public key. In addition, each client gener-
ates the evaluation keys by using the common public key. The
following algorithms are for the encryption and the evaluation
key generation.
• TMK-CKKS.Enc(z; p̂k = (p̂k

(j)
= (a(j), b(j)))): For

each client and a message z ∈ CN/2 and the scaling
factor 1, generate the message polynomial by

m(X ) = MK-CKKS.Ecd(z;1).

Then, sample v← χsec and e0, e1← χerr and generate
the ciphertext

ct =
(
ct(j) = ⌊P−1 · (c(j)0 , c

(j)
1 )⌉ + (0,m) mod qj

)
,

where (c(j)0 , c
(j)
1 ) = v · pk (j) + (e0, e1) for 0 ≤ j ≤ L.
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• TMK-CKKS.MultKeyGen(p̂k = (a, b); si): For each
i-th client, generate the multiplication key mki =
(mki,0,mki,1) as follows:
1) Sample ri← χsec
2) Sample ei← χerr and

mk (j)i,0 = a(j) · r (j)i + e
(j)
i mod pj

for 0 ≤ j < k and

mk (k+j)i,0 = a(k+j) · r (k+j)i + [P]qj · si

+ e(k+j)i mod qj

for 0 ≤ j ≤ L.
3) Sample e′i← χerr and

mk (j)i,1 = b(j) · r (j)i + e
′(j)
i mod pj

for 0 ≤ j < k and

mk (k+j)i,1 = b(k+j) · r (k+j)i + e′(k+j)i mod qj

for 0 ≤ j ≤ L.
• TMK-CKKS.RotKeyGen(p̂k = (a, b); t, si): For each
i-th client and rotation index t , generate the rotation key
rki = (rki,0, rki,1) as follows:
1) Sample ri← χsec
2) Sample ei← χerr and

rk (j)i,0 = a(j) · r (j)i + e
(j)
i mod pj

for 0 ≤ j < k and

rk (k+j)i,0 = a(k+j) · r (k+j)i + e(k+j)i mod qj

for 0 ≤ j ≤ L.
3) Sample e′i← χerr and

rk (j)i,1 = b(j) · r (j)i + e
′(j)
i mod pj

for 0 ≤ j < k and

rk (k+j)i,1 = b(k+j) · r (k+j)i + e′(k+j)i

+ [P]qj · τt (si) mod qj

for 0 ≤ j ≤ L.
After the evaluation keys generated by each client are sent

to the outsourcing server, the common evaluation keys can be
generated in the outsourcing server as follows:

mk =
d−1∑
i=0

mki and rk =
d−1∑
i=0

rki.

Thus, we can perform the homomorphic operation so that
ciphertext expansion does not occur as follows:
• TMK-CKKS.Add(ct1, ct2): Given two ciphertexts

ct1, ct2 ∈
(∏ℓ

i=0 Rqi
)2

at level ℓ, return the ciphertext

ct′ = ct1 + ct2 mod qℓ.

• TMK-CKKS.Mult(ct1, ct2;mk): Given two ciphertexts

ct1, ct2 ∈
(∏ℓ

i=0 Rqi
)2

at level ℓ, compute

ĉt = ct1 ⊗ ct2 ∈

(
ℓ∏
i=0

Rqi

)4

and return the ciphertext

ct← TMK-CKKS.Relin(ĉt;mk)

as described in Algorithm 3.

Algorithm 3 Relinearization for TMK-CKKS (adapted
From [14])

1: Input: ĉt = (ĉ0, ĉ1, ĉ2, ĉ3),mk = (mk0,mk1)

2: Output: ct = (c0, c1) ∈
(∏ℓ

i=0 Rqi
)2

3: c̄0← c̄0 +ModDown(ModUp(ĉ0) · mk0)
4: c̄1← c̄1 +ModDown(ModUp(ĉ0) · mk1)
5: c̄0← c̄0 + ĉ1 + ĉ2
6: c̄1← c̄1 + ĉ3

• TMK-CKKS.Rot(ct, rk = (rk0, rk1)): Given a cipher-
text ct = (c0, c1) at level qℓ, compute

τt (ct) = (τt (c0), τt (c1))

and return the ciphertext ct as described in Algorithm 4.

Algorithm 4 Rotation for TMK-CKKS (adapted From [14])
1: Input: τt (ct) = (τt (c0), τt (c1)), rk = (rk0, rk1)

2: Output: ct = (c0, c1) ∈
(∏ℓ

i=0 Rqi
)2

3: c̄0← ModDown(ModUp(τt (c0)) · rk0)
4: c̄1← ModDown(ModUp(τt (c0)) · rk1)
5: c̄1← c̄1 + τt (c1)

III. HARDNESS OF VARIANT OF RLWE
In this section, we propose a variant of RLWE, called
ReRLWE. The hardness of RLWE is first demonstrated when
the secret distribution is uniform [16]. However, RLWE also
satisfies the hardness when the secret distribution is the error
distribution. Through this fact, we can consider the RLWE
sample by reusing the error as follows.

(a, b, c), b = a · s+ x, c = a · x + e,

where a ← Rq, s ← Rq and x, e are chosen from the error
distribution. To prove the hardness of ReRLWE, we formally
define this distribution as follows.
Definition 4 (ReRLWE Distribution): For a secret s← Rq

from the uniform distribution overRq and an error distribution
ψ over Rq, a sample from ReRLWE distribution As,ψ over
R3q is generated by choosing a ← Rq uniformly at random,
choosing x, e← ψ , and outputting (a, b, c), where

b = a · s+ x mod qR

c = a · x + e mod qR.
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Now, we define the ReRLWE problem. Similar to the
RLWE problem, this problem asks to distinguish from the
uniform distribution over R3q.
Definition 5 (ReRLWE Problem): The average-case deci-

sion version of the ReRLWE problem, denoted ReRLWEq,ψ ,
is to distinguish with non-negligible advantage between the
sample from As,ψ and the sample from the uniform distribu-
tion over R3q.
The following theorem is that the RLWE problem can be

reduced to the ReRLWE problem. This means that ReRLWE
is also an NP-hard problem, which is as hard as the RLWE
problem.
Theorem 1: Let q be a prime and ψ be an error distribu-

tion. Assume that there exists an algorithm A to distinguish
the ReRLWEq,ψ distribution from the uniform distribution
over R3q. Then there exists an algorithm B to distinguish the
RLWEq,ψ distribution from the uniform distribution over R2q.

Proof: Assume thatA is a distinguisher of ReRLWEq,ψ
with a non-negligible advantage. Then we can construct a
distinguisher B against RLWEq,ψ as follows. B gets as inputs
a ∈ Rq and b ∈ Rq. Then B proceeds as follows.
(i) If a has no inverse, abort B and output reject.
(ii) u← Rq
(iii) c← a−1 · b+ a · u
(iv) Output A(a, c, b).
If the input of B is distributed according to the uniform
distribution over R2q, then c is also uniformly at random. If the
input of B is distributed according to the RLWE distribution
As,ψ of the form (a, b) = (a, a · s + x), where s, x ← ψ ,
we have

c = a−1 · b+ a · u

= a−1(a · s+ x)+ a · u

= s+ a−1 · x + a · u

= s+ a · (a−2 · x + u).

Denote s′ = a−2 · x + u. Then s′ is uniformly at random
and independent of x since s′ and a−2 · x are independent
from Remark 2. Then c = a · s′ + s and (a, c, b) = (a, a ·
s′ + s, a · s + x), which has the ReRLWEq,ψ distribution.
Thus, we conclude thatB has the same advantage asA, which
contradicts the hardness of RLWEq,ψ .
Remark 1: In MK-CKKS and TMK-CKKS, we use the

prime modulus q satisfying q ≡ 1 mod 2N and q ≫ 2N .
Then we obtain Rq ≃ ZN

q by the number-theoretic trans-
formation [24]. For (c0, . . . , cN ) ∈ ZN

q , if ci ̸= 0 for all
i = 0, . . . ,N − 1, then (c0, . . . , cN−1) has an inverse for
element-wise product. This means that

Pr[a ∈ Rq has an inverse in Rq] =
(
1−

1
q

)N
≫

(
1−

1
2N

)N
≥ e−

1
2 ,

which e is the Euler’s constant. The last inequality can be
obtained as N → ∞. Thus, the probability a ∈ Rq has an
inverse is non-negligible.
Remark 2: Let U be a uniform distribution over Rq. Now,

we will prove that a−2 · x + u is uniformly at random and
satisfies the perfect secrecy. Let k = a−2 · x and c = k + u.
Then, we obtain

Pr[C = c] =
∑
u

Pr[C = c ∧ U = u]

=

∑
u

Pr[K = c−u ∧ U = u]

=

∑
u

Pr[K = c− u]Pr[U = u].

The third equality holds because the distribution K andU are
independent. Since u runs through all possible elements in
Rq, c− u also runs through all possible elements in Rq. This
means that ∑

u

Pr[K = c− u] = 1.

Therefore, we obtain

Pr[C = c] =
∑
u

Pr[K = c− u]Pr[U = u]

=

∑
u

Pr[K = c− u](
1
qN

)

=
1
qN
.

Therefore, a−2 · x + u is uniformly at random. Also, the
independence of a−2 · x and u yields

Pr[K = k|C = c] =
Pr[C = c|K = k]Pr[K = k]

Pr[C = c]

=
Pr[U = u]Pr[K = k]

Pr[C = c]

=

1
qN · Pr[K = k]

1
qN

= Pr[K = k].

This means that a−2 · x + u satisfies the perfect secrecy.
Therefore, a−2 · x + u and a−2 · x are independent. Since
a−2 is known, a−2 · x + u and x are independent.

IV. MULTI-KEY AND THRESHOLD MULTI-KEY
RNS-CKKS UNDER ReRLWE ASSUMPTION
In this section, we introduce the modified evaluation keys,
called modified multiplication and rotation keys, for MK-
CKKS and TMK-CKKS schemes under the ReRLWE
assumption. The error used for generating the public key
can be reused when generating the modified multiplication
key. Also, we need many rotation keys to operate the boot-
strapping for MK-CKKS and TMK-CKKS. For two rotation
indices t1, t2 ∈ Z∗2N , two RLWE samples are required. How-
ever, by reusing error, a modified rotation key can be gener-
ated through on ReRLWE sample for two rotation indices t1
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and t2. And thus, we can generate fewer keys while reusing
the error of the RLWE sample.

A. MULTI-KEY RNS-CKKS UNDER ReRLWE ASSUMPTION
In this subsection, we introduce the modified evaluation keys
for the MK-CKKS scheme under the ReRLWE assumption,
called ReMK-CKKS. Most of the algorithms in Subsec-
tion II-D are the same, but the KeyGen, Relin, RotKeyGen,
and Rot algorithms are modified as follows.
• ReMK-CKKS.KeyGen: Each i-th client samples the
secret key si ← χsec, an error xi, ei ← χerr and sets
the public key as

pki =
(
pk (j)i = (a(j), b(j)i )

)
0≤j≤k+L

,

where

b(j)i ←−a
(j)
· si + x

(j)
i mod pj

for 0 ≤ j < k , and

b(k+j)i ←−a(k+j) · si + x
(k+j)
i mod qj

for 0 ≤ j ≤ L. Set the modified multiplication key as

mk (j)i = a(j) · x(j)i + e
(j)
i mod pj

for 0 ≤ j < k and

mk (k+j)i = a(k+j) · x(k+j)i + e(k+j)i

+ [P]qj · si mod qj

for 0 ≤ j ≤ L.
• ReMK-CKKS.Mult(ct1, ct2; {(mki, pki)}0≤i<d ): Given

two ciphertexts ct1, ct2 ∈
(∏ℓ

i=0 Rqi
)d+1

at level ℓ,
compute

ĉt = ct1 ⊗ ct2 ∈

(
ℓ∏
i=0

Rqi

)(d+1)2

and return the ciphertext

ct← ReMK-CKKS.Relin(ĉt; {(mki, pki)}0≤i<d )

as described in Algorithm 5.
We generate three components

mki = (mki,0,mki,1,mki,2)

to perform the homomorphic multiplication in MK-
CKKS, but in ReMK-CKKS, only one component mki
needs to be generated by reusing the error used in the
public key.

• ReMK-CKKS.RotKeyGen(t1, t2; si): For each i-th
client and given rotation indices t1, t2 ∈ Z∗2N , generate a
random polynomial rki,0 ←

∏k−1
i=0 Rpi ×

∏L
i=0 Rqi and

an error xi, ei← χerr. Sets the rotation key as

rki = (rk (j)i = (rk (j)i,0, rk
(j)
i,1, rk

(j)
i,2))0≤j≤k+L ,

where

rk (j)i,1←−rk
(j)
i,0 · si + x

(j)
i mod pj

Algorithm 5Modified Relinearization for ReMK-CKKS

1: Input : ĉt = (ĉi,j)0≤i,j≤d , a, {(mki, pki =

(a, bi))}0≤i≤d−1.

2: Output : ct = (ci)0≤i≤d ∈
(∏ℓ

i=0 Rqi
)d+1

3: for 0 ≤ i, j ≤ d − 1 do
4: ĉi,j← ModUp(ĉi,j)
5: ĉ′i,j← ĉi,j · bj
6: ci← ci + ĉ′i,j · a
7: cj← cj + ĉi,j · mki
8: cd ← cd + ĉ′i,j · bi
9: end for
10: for 0 ≤ i ≤ d do
11: ci← ModDown(ci)
12: if i ≤ d − 1 then
13: ci← ci + ĉd,i + ĉi,d
14: else
15: cd ← cd + ĉd,d
16: end if
17: end for

for 0 ≤ j < k and

rk (k+j)i,1 ←−rk (k+j)i,0 · si + x
(k+j)
i

+[P]qj · τt1 (si) mod qj

for 0 ≤ j ≤ L, and

rk (j)i,2←−rk
(j)
i,0 · x

(j)
i + e

(j)
i mod pj

for 0 ≤ j < k and

rk (k+j)i,2 ←−rk (k+j)i,0 · x(k+j)i + e(k+j)i

+ [P]qj ·
(
τt2 (si)− τt1 (si) · rk

(k+j)
i,0

)
mod qj

for 0 ≤ j ≤ L.
• ReMK-CKKS.Rot(ct, {rki}0≤i<d ): Given a ciphertext

ct = (c0, . . . , cd ) at level qℓ, compute τt (ct) =
(τt (ci))0≤i≤d and return the ciphertext ct as described in
Algorithm 6.

We generate rki = (rki,0, rki,1) and rk ′i = (rk ′i,0, rk
′

i,1) for
two rotation indices t1, t2 ∈ Z∗2N in MK-CKKS. However,
in ReMK-CKKS, we generate rki = (rki,0, rki,1, rki,2) for
two rotation indices t1, t2 ∈ Z∗2N . Also, unlike the rotation
operation of MK-CKKS, ReMK-CKKS must generate f1 :=
rki,0 · rki,0 and f2 := rki,0 · rki,1 + rki,2 for the rotation index
t2 ∈ Z∗2N . And thus, the rotation operation time of ReMK-
CKKS increases slightly.

B. THRESHOLD MULTI-KEY RNS-CKKS UNDER
ReRLWE ASSUMPTION
In this section, we introduce the modified evaluation keys
for the TMK-CKKS scheme under the ReRLWE assump-
tion, called ReTMK-CKKS. In [14], common public key
was generated through communication between clients to
resolve the expansion of ciphertext. In addition, by sending
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Algorithm 6Modified Rotation for ReMK-CKKS
1: Input: τt (ct) = (τt (ci))0≤i≤d , {rki =

(rki,0, rki,1, rki,2)}0≤i≤d−1
2: Output: ct = (ci)0≤i≤d
3: c̃← 0
4: if t = t1 then
5: for 0 ≤ i ≤ d − 1 do
6: τt (ci)← ModUp(τt (ci))
7: ci← τt (ci) · rki,0
8: c̃← c̃+ τt (ci) · rki,1
9: ci← ModDown(c̄i)

10: end for
11: else if t = t2 then
12: for 0 ≤ i ≤ d − 1 do
13: τt (ci)← ModUp(τt (ci))
14: ci← τt (ci) · rk2i,0
15: c̃← c̃+ τt (ci) · (rki,0 · rki,1 + rki,2)
16: ci← ModDown(c̄i)
17: end for
18: end if
19: c̃← ModDown(c̃)
20: cd ← cd + c̃

the evaluation keys generated by users to the server, a com-
mon evaluation keys are generated to lower the communica-
tion cost between clients. Although many operations in the
proposed scheme are similar to those in [14], the algorithms
for generating the modified evaluation keys are different.
This generating method is used in Subsection IV-A. Also,
to reduce the rotation keys, we modify the setup algorithm
for ReTMK-CKKS, that is, we consider a more common ref-
erence string. In this way, the size of the evaluation keys can
be reduced compared to that in [14]. The following operation
is the modified setup.
• ReTMK-CKKS.Setup(1λ): Given a security parameter

λ, set

pp← MK-CKKS.Setup(1λ)

for all 0 ≤ j ≤ L and 0 ≤ i < k . Let w = |Z∗2N |/2.
Generate random polynomials

a1, a2 . . . , aw−1, aw←
k−1∏
i=0

Rpi ×
L∏
i=0

Rqi .

Return the public parameter pp = (pp, {ai}1≤i≤w).
The ReTMK-CKKS scheme also generates modified com-
mon evaluation keys. At this time, to generate common rota-
tion keys, we use one of the common reference strings, ai.
That is, in ReMK-CKKS.RotKeyGen, each i-th client uses
the common reference strings aj as rki,0 for some j ∈
{1, 2, . . . ,w}. The generation method of modified common
evaluation keys is as follows.
• ReTMK-CKKS.ComMultKey(mk0, . . . ,mkd−1): Given
all client’s modified multiplication keys mki, the server

generates a common modified multiplication key

mk =
d−1∑
i=0

mki.

• ReTMK-CKKS.ComRotKey(rk0, . . . , rkk−1): Given
all clients’ modified rotation keys rki = (rki,0 =
aj, rki,1, rki,2), the server generates a common modified
rotation key rk = (rk0 = aj, rk1, rk2) as

rk1 =
d−1∑
i=0

rki,1 and rk2 =
d−1∑
i=0

rki,2.

We perform homomorphic multiplication and rotation algo-
rithms using modified common multiplication and rotation
keys as follows.

• ReTMK-CKKS.Mult(ct1, ct2; pk = (a, b),mk): Given

two ciphertexts ct1, ct2 ∈
(∏ℓ

i=0 Rqi
)2

at level ℓ, com-
pute

ĉt = ct1 ⊗ ct2 ∈

(
ℓ∏
i=0

Rqi

)4

and return the ciphertext

ct← MK-CKKS.Relin(ĉt;mk) ∈

(
ℓ∏
i=0

Rqi

)2

as described in Algorithm 7.

Algorithm 7Modified Relinearization for ReTMK-CKKS

1: Input: ĉt = ĉ0, ĉ1, ĉ2, ĉ3), {pk = (a, b),mk}

2: Output: ct = (c0, c1) ∈
(∏ℓ

i=0 Rqi
)2

3: ĉ0← ModUp(ĉ0)
4: c0← ĉ1 + ĉ2 +ModDown(ĉ0 · (ab+ mk))
5: c1← ĉ3 +ModDown(ĉ0 · b2)

• ReTMK-CKKS.Rot(ct, rk = (rk0, rk1, rk2)): Given a
ciphertext ct = (c0, c1) at level ℓ, compute

τt (ct) = (τt (c0), τt (c1))

and return the ciphertext c̄t as described in Algorithm 8.

In the TMK-CKKS, the multiplication key is generated as
mk = (mk0,mk1) and two rotation keys are generated as
rk = (rk0, rk1) and rk ′ = (rk ′0, rk

′

1) for two rotation indices
t1, t2 ∈ Z∗2N . However, in ReTMK-CKKS,mk is generated as
only one component and rk = (rk0, rk1, rk2) is generated for
two rotations t1, t2 ∈ Z∗2N under ReRLWE assumption (we
can think (pk = (a, b),mk) as a ReRLWE sample). Unlike
Subsection IV-A, the multiplication operation time increases
slightly because f1 := ab + mk and f2 := b2 have to be
generated. In the case of rotation operation, the operation time
increases as in Subsection IV-A.
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Algorithm 8Modified Rotation for ReTMK-CKKS
1: Input : τt (ct) = (τt (c0), τt (c1)), rk = (rk0 =
aj, rk1, rk2)

2: Output : ct = (c0, c1) ∈
(∏ℓ

i=0 Rqi
)2

3: if t = t1 then
4: τt (c0)← ModUp(τt (c0))
5: c0← ModDown(τt (c0) · rk0).
6: c1← ĉ1 +ModDown(τt (c0) · rk1).
7: else if t = t2 then
8: τt (c0)← ModUp(τt (c0))
9: c0← ModDown(τt (c0) · a2j ).
10: c1← ĉ1 +ModDown(τt (c0) · (rk2 + rk0 · rk1)).
11: end if

V. CORRECTNESS, SECURITY, AND COMPARISON
A. CORRECTNESS
In this subsection, we will show that the multiplication and
rotation in the proposed ReMK-CKKS and ReTMK-CKKS
schemes satisfy the correctness.
Theorem 2: ReMK-CKKS.Mult and ReMK-CKKS.Rot

are correct.
Proof: First, we will show the correctness of

ReMK-CKKS.Mult. Let sk = (s0, . . . , sd−1, 1) be a
secret key and let ct1 and ct2 be ciphertexts for messages
m1 and m2, respectively. Let ctmult be a ciphertext after
ReMK-CKKS.Mult between ct1 and ct2. In lines 2–9 of
Algorithm 5, ModDown(ĉi,j · a · bj) is added to the i-th
component of ctmult, and ModDown(ĉi,j · mki) is added to
the j-th component of ctmult. In addition, ModDown(ĉi,jbibj)
is added to cd of ctmult. And thus, when decryption is per-
formed, we first calculate the following equation.

ĉi,j · a · bj · si + ĉi,j · mki · sj
= ĉi,j · (a · (−a · sj + xj) · si + (a · xi + ei + P · si) · sj)

= ĉi,j · (−a2 · si · sj + a · si · xj + a · sj · xi
+ ei · sj + P · si · sj),

and

ĉi,j · bi · bi = ĉi,j · (−a · si + xi) · (−a · sj + xj)

Thus, we obtain

ĉi,j · a · bj · si + ĉi,j · mki · sj + ĉi,j · bi · bi
= ĉi,j · (P · si · sj + ei · sj + xi · xj)

and through the ModDown operations, we obtain

ĉi,j · si · sj + P−1 · ĉi,j · (ei · sj + xi · xj).

Therefore, we obtain

⟨ctmult, sk⟩ ≈ ⟨ct1 ⊗ ct2, sk⊗ sk⟩
= ⟨ct1, sk⟩ · ⟨ct2, sk⟩
≈ m1 · m2.

Now, we will show the correctness of ReMK-CKKS.Rot.
Let ctrot be a ciphertext after ReMK-CKKS.Rot for
τt (ct). If t = t1, in the lines 3–9 of Algorithm 6,
ModDows(τt (ci)·rki,0) is added to the i-th component of ctrot
and ModDows(τt (ci) · rki,1) is added to the d-th component
of ctrot. Thus, we obtain

τt (ci) · τt (si)+ P−1 · τt (ci) · xi

through theModDown operation. Before we observe the case
of t = t2, we compute rki,2 + rki,0 · rki,1 and obtain

rki,2 + rki,0 · rki,1 = −rk2i,0 · si + ei + P · τt2 (si).

Now, we observe the case of t = t2. In the lines 11–19 of
Algorithm 6, ModDown(τt (ci) · rk2i,0) is added to the i-th
component of ctrot and ModDown(τt (ct )·(rki,2+rki,0 ·rki,1))
is added to the d-th component of ctrot. Thus, we obtain

τt (ci) · τt (si)+ P−1 · τt (ci) · ei.

Therefore, we obtain

⟨ctrot, sk⟩ ≈ ⟨τt (ct), τt (sk)⟩ ≈ τt (m).

Theorem 3: ReTMK-CKKS.Mult and ReTMK-CKKS.
Rot are correct.

Proof: The correctness of ReTMK-CKKS.Rot is sim-
ilar to the proof of the correctness of ReMK-CKKS.Rot.
Therefore, we will only show the correctness of
ThrReMK-CKKS.Mult.

Let s =
∑d−1

i=0 si be the sum of secret keys for each client
and sk = (s, 1). Letmk =

∑d−1
i=0 mki be the sum of the modi-

fied multiplication keys for each client. Let ct = (c0, c1) and
ct′ = (c′0, c

′

1) be ciphertexts corresponding to the messages
m and m′ with secret key sk , respectively. Let ct× = (c×0 , c

×

1 )
be a ciphertext after ReTMK-CKKS.Mult between ct and ct′.
Note that ct⊗ct′ = (c0c′0, c1c

′

0, c0c
′

1, c1c
′

1). We first compute

⟨(ab+ mk, b2), sk ⟩ = (ab+ mk) · s+ b2

= a · s · b+ mk · s+ b2

= (x − b) · b+ mk · s+ b2

= x2 + e · s+ P · s2.

Then, we obtain

c0c′0 · (ab+ mk) · s+ c0c
′

0 · b
2

= c0c′0 ·
(
(ab+ mk) · s+ b2

)
= c0c′0 ·

(
P · s2 + x2 + e · s

)
,

and through the ModDown operation, we obtain

c0c′0 · s
2
+ P−1 · c0c′0 · (x

2
+ e · s).

Thus, the ciphertext ct× satisfies that

⟨ct×, sk ⟩ = c×0 · s+ c
×

1

≈ c1c′1 + (c1c′0 + c0c
′

1) · s+ c0c
′

0 · s
2

≈ m · m′ mod q0.
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B. SECURITY
In this subsection, we prove that the proposed scheme sat-
isfies the indistinguishability under chosen-plaintext attack
(IND-CPA) security. For convenience, we prove the theorem
without considering the special modulus technique. We first
show that the public key with the modified multiplication key
is computationally indistinguishable from a uniform distribu-

tion over
(∏L

i=0 Rqi
)3
. Since it is similar to the case of the

modified rotation keys, we omit this case.
Theorem 4: The distribution of public keys with the mod-

ified multiplication keys is computationally indistinguish-

able from a uniform distribution over
(∏L

i=0 Rqi
)3

under the
assumption of ReRLWE and circular security.

Proof: Let pp be the ReRLWEq,χerr parameters gener-
ated in ReMK-HE.Setup (This algorithm is the same as the
MK-HE.Setup). We define the distribution D0 = {a, b,mk}

over
(∏L

i=0 Rqi
)3

as follows:

(i) a←
∏L

i=0 Rqi , s← χsec, x ← χerr, and b = −a · s+ x
(ii) e← χerr and mk = a · x + e+ s.

Now, we consider the distribution D1 over
(∏L

i=0 Rqi
)3
,

which is obtained fromD0 bymodifying its definitions (i) and
(ii) into

(i)’ a←
∏L

i=0 Rqi and b←
∏L

i=0 Rqi
(ii)’ mk ←

∏L
i=0 Rqi .

From Theorem 1 and the circular security, we obtain that D0
and D1 are computationally indistinguishable.

Now, we will show that the ReMK-CKKS is IND-
CPA secure under the ReRLWE assumption with parameter
pp← ReMK-HE.Setup.
Theorem 5: Let pp← ReMK-HE.Setup be the ReRLWE

parameter generated in the setup phase. Then the ReMK-
CKKS is IND-CPA secure under the RLWE and ReRLWE
assumptions with parameter pp.

Proof: LetA be an IND-CPA adversary for the ReMK-
CKKS. We consider a series of hybrids, where AdvH [A]
denotes the success probability of A in hybrid H .

• Hybrid H0: This is identical to the IND-CPA game,
where the adversary gets a distributed public key
with the modified multiplication key generated by
MK-CKKS.KeyGen. Also, the adversary gets encryp-
tion ct0 and ct1 of m0 and m1, respectively, computed
using MK-CKKS.Enc. Note that the public key with the
modified multiplication key consists of

(a, b,mk) := (a,−a · s+ x, a · x + e+ s),

where a ←
∏L

i=0 Rqi , s ← χsec, and x, e ← χerr.
Assume that there is a polynomial t(·) such that

AdvH0 [A] := |Pr[A((a, b,mk), ct0) = 1]

− Pr[A((a, b,mk), ct1) = 1]| > 1/t(λ).
(1)

• Hybrid H1: The hybrid H1 is identical to H0 except for
that b of the public key and the modified multiplication
key mk are chosen to be uniformly random from Rq.

In H1, the public and modified multiplication keys are uni-
formly random. In addition, mk is independent of (c0, c1).
Also, (a, c0) and (b, c1) are computationally indistinguish-

able from the uniform distribution over
(∏L

i=0 Rqi
)2

since
they can be viewed as two RLWE samples of secret v. Thus,
we obtain that

AdvH1 [A] = negl(λ). (2)

Now, we claim that

|AdvH0 [A]− AdvH1 [A]| ≤ negl(λ). (3)

A ciphertext is generated by adding an encoded plaintext to
a random encryption of zero. Hence we consider the random

variables (a, b, d, c0, c1) over
(∏L

i=0 Rqi
)5

defined by

a←
L∏
i=0

Rqi

b←−a · s+ x ∈
L∏
i=0

Rqi

mk ← a · x + e+ s ∈
L∏
i=0

Rqi ,

where s ← χsec, x, e ← χerr, and (c0, c1) = v · (a, b) +
(e0, e1) for v← χsec and e0, e1← χerr. Now, we change the
definition of (b,mk) as

b←
L∏
i=0

Rqi and mk ←
L∏
i=0

Rqi .

Then it is computationally indistinguishable by the ReRLWE
assumption with parameter pp from Theorem 4. This means
that

|AdvH0 [A]− AdvH1 [A]| ≤ negl(λ).

By combining (2) and (3), we obtain

AdvH0 [A] ≤ AdvH1 [A]+ |AdvH0 [A]

− AdvH1 [A]| = negl(λ),

which contradicts the result of (1).

C. COMPARISON
In this subsection, the numerical results of the proposed
ReMK-CKKS and ReTMK-CKKS schemes are compared
with MK-CKKS adapted from [9] and TMK-CKKS adapted
from [14], respectively. In our implementation, each number
is stored as an unsigned 64-bit integer. Also, our imple-
mentation is based on the RNS-HEAAN library and is per-
formed on a computer with AMD Ryzen Threadripper PRO
3995WX CPU @ 2.70GHz processor on a multi-threaded
mode. Table 3 lists the parameters used in all schemes.
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FIGURE 1. Comparison of the size of evaluation keys to be generated by one user for various parameter sets between MK-CKKS and
ReMK-CKKS.

FIGURE 2. Comparison of the time of homomoprhic multiplication for each parameter of MK-CKKS and ReMK-CKKS.

FIGURE 3. Comparison of the time of homomoprhic rotation for each parameter of MK-CKKS and ReMK-CKKS. The time of homomorphic rotation is
calculated as the sum of homomorphic rotation times for the two rotation indices.

TABLE 3. Proposed parameter sets. L and k denote the number of RNS
primes and the number of special primes, respectively. log q and log qi
denote the bit length of the largest RLWE modulus and individual RNS
primes, respectively.

1) COMPARISON OF MK-CKKS AND ReMK-CKKS
In Fig. 1, the size of the keys for the MK-CKKS and
the ReMK-CKKS schemes are compared. The size of the

multiplication key of ReMK-CKKS can be reduced by
66% compared to that of MK-CKKS for each client. The
size of rotation key for two rotation indices of ReMK-
CKKS can be reduced by 25% compared to that of
MK-CKKS for each client. Figs. 2 and 3 compare the
homomorphic evaluation times of MK-CKKS and ReMK-
CKKS. The multiplication operation time of ReMK-CKKS
is slightly reduced compared to that of MK-CKKS from
Figs. 2(a) to 2(d). This is because of the operations ModUp
and ModDown of ReMK-CKKS.Relin are used fewer than
those of MK-CKKS.Relin. However, the rotation operation
time of ReMK-CKKS is slightly increased compared to that
of MK-CKKS.
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FIGURE 4. Comparison of the size of multiplication and rotation key to be generated by one client for various parameter sets between
TMK-CKKS and ReTMK-CKKS.

FIGURE 5. Comparison of the time of the homomorphic evaluation for each parameter of TMK-CKKS and ReTMK-CKKS.

2) COMPARISON OF TMK-CKKS AND ReTMK-CKKS
Since TMK-CKKS and ReTMK-CKKS schemes operate like
a single-key HE, we simulate the case of two clients. In Fig. 4,
the size of the evaluation keys for the TMK-CKKS and
ReTMK-CKKS schemes are compared. The size of the mul-
tiplication key of ReTMK-CKKS can be reduced by 50%
compared to that of TMK-CKKS. Also, as in the comparison
of MK-CKKS and ReMK-CKKS, the size of rotation key
for two rotation indices of ReTMK-CKKS can be reduced
by 25% compared to that of TMK-CKKS. Fig. 5 compares
the time of the homomorphic evaluation operations. The
homomorphic evaluation operation time of ReTMK-CKKS
is slightly increased than that of TMK-CKKS.

VI. CONCLUSION
In this paper, we first proposed a variant of RLWE by
reusing the error defining the RLWE problem, called the
ReRLWE problem. To define this problem, we first defined
the ReRLWEdistribution. Second, we proved that there exists
a reduction from RLWE to ReRLWE, which means that
ReRLWE is also NP-hard. Under the ReRLWE assumption,
we proposed a modified MK-CKKS and TMK-CKKS with

reduced evaluation key sizes, called ReMK-CKKS and
ReTMK-CKKS. The sizes of the multiplication key of
ReMK-CKKS and ReTMK-CKKS were reduced by approx-
imately 66% compared to that of MK-CKKS and 50% com-
pared to that of TMK-CKKS, respectively. In addition, the
sizes of the rotation keys of ReMK-CKKS and ReTMK-
CKKS were reduced by 25% of those of MK-CKKS and
TMK-CKKS, respectively. Due to the reduced size of the
evaluation key, it is possible to perform the multi-key homo-
morphic operation even though client’s computer resources
are limited. In the future, the key size can be reduced by gen-
erating a more compact ReRLWE sample in a cryptographic
scheme that requires many RLWE samples. Additionally,
we will demonstrate whether the problem is difficult in the
case of continued error reuse.
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