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ABSTRACT

We introduce the key reinstallation attack. This attack abuses design

or implementation flaws in cryptographic protocols to reinstall an

already-in-use key. This resets the key’s associated parameters such

as transmit nonces and receive replay counters. Several types of

cryptographic Wi-Fi handshakes are affected by the attack.

All protected Wi-Fi networks use the 4-way handshake to gen-

erate a fresh session key. So far, this 14-year-old handshake has

remained free from attacks, and is even proven secure. However,

we show that the 4-way handshake is vulnerable to a key reinstalla-

tion attack. Here, the adversary tricks a victim into reinstalling an

already-in-use key. This is achieved by manipulating and replaying

handshake messages. When reinstalling the key, associated param-

eters such as the incremental transmit packet number (nonce) and

receive packet number (replay counter) are reset to their initial

value. Our key reinstallation attack also breaks the PeerKey, group

key, and Fast BSS Transition (FT) handshake. The impact depends

on the handshake being attacked, and the data-confidentiality pro-

tocol in use. Simplified, against AES-CCMP an adversary can replay

and decrypt (but not forge) packets. This makes it possible to hijack

TCP streams and inject malicious data into them. Against WPA-

TKIP and GCMP the impact is catastrophic: packets can be replayed,

decrypted, and forged. Because GCMP uses the same authentication

key in both communication directions, it is especially affected.

Finally, we confirmed our findings in practice, and found that

every Wi-Fi device is vulnerable to some variant of our attacks.

Notably, our attack is exceptionally devastating against Android 6.0:

it forces the client into using a predictable all-zero encryption key.

KEYWORDS

security protocols; network security; attacks; key reinstallation;

WPA2; nonce reuse; handshake; packet number; initialization vector

1 INTRODUCTION

All protected Wi-Fi networks are secured using some version of

Wi-Fi Protected Access (WPA/2). Moreover, nowadays even public

hotspots are able to use authenticated encryption thanks to the

Hotspot 2.0 program [7]. All these technologies rely on the 4-way

handshake defined in the 802.11i amendment of 802.11 [4]. In this
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work, we present design flaws in the 4-way handshake, and in

related handshakes. Becausewe target these handshakes, bothWPA-

and WPA2-certified products are affected by our attacks.

The 4-way handshake provides mutual authentication and ses-

sion key agreement. Together with (AES)-CCMP, a data-confiden-

tiality and integrity protocol, it forms the foundation of the 802.11i

amendment. Since its first introduction in 2003, under the name

WPA, this core part of the 802.11i amendment has remained free

from attacks. Indeed, the only currently known weaknesses of

802.11i are in (WPA-)TKIP [57, 66]. This data-confidentiality pro-

tocol was designed as a short-term solution to the broken WEP

protocol. In other words, TKIP was never intended to be a long-

term secure solution. Additionally, while several attacks against

protected Wi-Fi networks were discovered over the years, these did

not exploit flaws in 802.11i. Instead, attacks exploited flaws inWi-Fi

Protected Setup (WPS) [73], flawed drivers [13, 20], flawed random

number generators [72], predictable pre-shared keys [45], insecure

enterprise authentication [21], and so on. That no major weakness

has been found in CCMP and the 4-way handshake, is not surpris-

ing. After all, both have been formally proven as secure [39, 42].

With this in mind, one might reasonably assume the design of the

4-way handshake is indeed secure.

In spite of its history and security proofs though, we show that

the 4-way handshake is vulnerable to key reinstallation attacks.

Moreover, we discovered similar weaknesses in other Wi-Fi hand-

shakes. That is, we also attack the PeerKey handshake, the group

key handshake, and the Fast BSS Transition (FT) handshake.

The idea behind our attacks is rather trivial in hindsight, and can

be summarized as follows.When a client joins a network, it executes

the 4-way handshake to negotiate a fresh session key. It will install

this key after receiving message 3 of the handshake. Once the key

is installed, it will be used to encrypt normal data frames using a

data-confidentiality protocol. However, because messages may be

lost or dropped, the Access Point (AP) will retransmit message 3 if

it did not receive an appropriate response as acknowledgment. As

a result, the client may receive message 3 multiple times. Each time

it receives this message, it will reinstall the same session key, and

thereby reset the incremental transmit packet number (nonce) and

receive replay counter used by the data-confidentiality protocol.

We show that an attacker can force these nonce resets by collecting

and replaying retransmissions of message 3. By forcing nonce reuse

in this manner, the data-confidentiality protocol can be attacked,

e.g., packets can be replayed, decrypted, and/or forged. The same

technique is used to attack the group key, PeerKey, and fast BSS

transition handshake.

When the 4-way or fast BSS transition handshake is attacked,

the precise impact depends on the data-confidentiality protocol

being used. If CCMP is used, arbitrary packets can be decrypted.

In turn, this can be used to decrypt TCP SYN packets, and hijack

TCP connections. For example, an adversary can inject malicious

https://doi.org/10.1145/3133956.3134027
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content into unencrypted HTTP connections. If TKIP or GCMP is

used, an adversary can both decrypt and inject arbitrary packets.

Although GCMP is a relatively new addition to Wi-Fi, it is expected

to be adopted at a high rate in the next few years [58]. Finally,

when the group key handshake is attacked, an adversary can replay

group-addressed frames, i.e., broadcast and multicast frames.

Our attack is especially devastating against version 2.4 and 2.5 of

wpa_supplicant, aWi-Fi client commonly used on Linux. Here, the

client will install an all-zero encryption key instead of reinstalling

the real key. This vulnerability appears to be caused by a remark

in the 802.11 standard that suggests to clear parts of the session

key from memory once it has been installed [1, ğ12.7.6.6]. Because

Android uses amodified wpa_supplicant, Android 6.0 andAndroid

Wear 2.0 also contain this vulnerability. As a result, currently 31.2%

of Android devices are vulnerable to this exceptionally devastating

variant of our attack [33].

Interestingly, our attacks do not violate the security properties

proven in formal analysis of the 4-way and group key handshake.

In particular, these proofs state that the negotiated session key

remains private, and that the identity of both the client and Access

Point (AP) is confirmed [39]. Our attacks do not leak the session

key. Additionally, although normal data frames can be forged if

TKIP or GCMP is used, an attacker cannot forge EAPOL messages

and hence cannot impersonate the client or AP during (subsequent)

handshakes. Instead, the problem is that the proofs do not model

key installation. Put differently, their models do not state when a

negotiated key should be installed. In practice, this means the same

key can be installed multiple times, thereby resetting nonces and

replay counters used by the data-confidentiality protocol.

To summarize, our main contributions are:

• We introduce key reinstallation attacks. Here, an attacker

forces the reinstallation of an already-in-use key, thereby

resetting any associated nonces and/or replay counters.

• We show that the 4-way handshake, PeerKey handshake,

group key handshake, and fast BSS transition handshake are

vulnerable to key reinstallation attacks.

• We devise attack techniques to carry out our attacks in prac-

tice. This demonstrates that all implementations are vulner-

able to some variant of our attack.

• We evaluate the practical impact of nonce reuse for all data-

confidentiality protocols of 802.11.

The remainder of this paper is structured as follows. Section 2

introduces relevant aspects of the 802.11 standard. Our key reinstal-

lation attack is illustrated against the 4-way and PeerKey handshake

in Section 3, against the group key handshake in Section 4, and

against the fast BSS transition handshake in Section 5. In Section 6

we asses the impact of our attacks, present countermeasures, ex-

plain where proofs failed, and discuss lessons learned. Finally, we

present related work in Section 7 and conclude in Section 8.

2 BACKGROUND

In this section we introduce the 802.11i amendment, the various

messages and handshakes used when connecting to a Wi-Fi net-

work, and the data-confidentiality and integrity protocols of 802.11.

2.1 The 802.11i Amendment

After researchers showed thatWired Equivalent Privacy (WEP) was

fundamentally broken [30, 65], the IEEE offered a more robust solu-

tion in the 802.11i amendment of 802.11. This amendment defines

the 4-way handshake (see Section 2.3), and two data-confidentiality

and integrity protocols called (WPA-)TKIP and (AES-)CCMP (see

Section 2.4). While the 802.11i amendment was under development,

the Wi-Fi Alliance already began certifying devices based on draft

version D3.0 of 802.11i. This certification program was called Wi-Fi

Protected Access (WPA). Once the final version D9.0 of 802.11i was

ratified, the WPA2 certification was created based on this officially

ratified version. Because both WPA and WPA2 are based on 802.11i,

they are almost identical on a technical level. The main difference

is that WPA2 mandates support for the more secure CCMP, and

optionally allows TKIP, while the reverse is true for WPA.

Required functionality of both WPA and WPA2, and used by all

protected Wi-Fi networks, is the 4-way handshake. Even enterprise

networks rely on the 4-way handshake. Hence, all protected Wi-Fi

networks are affected by our attacks.

The 4-way handshake, group key handshake, and CCMP proto-

col, have formally been analyzed and proven to be secure [39, 42].

2.2 Authentication and Association

When a client wants to connect to a Wi-Fi network, it starts by

(mutually) authenticating and associating with the AP. In Figure 2

this is illustrated in the association stage of the handshake. However,

when first connecting to a network, no actual authentication takes

places at this stage. Instead, Open System authentication is used,

which allows any client to authenticate. Actual authentication will

be performed during the 4-way handshake. Real authentication is

only done at this stage when roaming between two APs of the same

network using the fast BSS transition handshake (see Section 3).

After (open) authentication, the client associates with the net-

work. This is done by sending an association request to the AP.

This message contains the pairwise and group cipher suites the

client wishes to use. The AP replies with an association response,

informing the client whether the association was successful or not.

2.3 The 4-way Handshake

The 4-way handshake provides mutual authentication based on a

shared secret called the Pairwise Master Key (PMK), and negotiates

a fresh session key called the Pairwise Transient Key (PTK). During

this handshake, the client is called the supplicant, and the AP is

called the authenticator (we use these terms as synonyms). The

PMK is derived from a pre-shared password in a personal network,

and is negotiated using an 802.1x authentication stage in an enter-

prise network (see Figure 2). The PTK is derived from the PMK,

Authenticator Nonce (ANonce), Supplicant Nonce (SNonce), and

the MAC addresses of both the supplicant and authenticator. Once

generated, the PTK is split into a Key Confirmation Key (KCK), Key

Encryption Key (KEK), and Temporal Key (TK). The KCK and KEK

are used to protect handshake messages, while the TK is used to

protect normal data frames with a data-confidentiality protocol. If

WPA2 is used, the 4-way handshake also transports the current

Group Temporal Key (GTK) to the supplicant.
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header replay counter nonce RSC MIC Key Data

encrypted82 bytes variable

Figure 1: Simplified layout of an EAPOL frame.

Every message in the 4-way handshake is defined using EAPOL

frames. We will briefly discuss the layout and most important fields

of these frames (see Figure 1). First, the header defines which mes-

sage in the handshake a particular EAPOL frame represents. Wewill

use the notation message n and MsgN to refer to the n-th message

of the 4-way handshake. The replay counter field is used to detect

replayed frames. The authenticator always increments the replay

counter after transmitting a frame. When the supplicant replies

to an EAPOL frame of the authenticator, it uses the same replay

counter as the one in the EAPOL frame it is responding to. The

nonce field transports the random nones that the supplicant and

authenticator generate to derive a fresh session key. Next, in case

the EAPOL frame transports a group key, the Receive Sequence

Counter (RSC) contains the starting packet number of this key. The

group key itself is stored in the Key Data field, which is encrypted

using the KEK. Finally, the authenticity of the frame is protected

using the KCK with a Message Integrity Check (MIC).

Figure 2 illustrates the messages that are exchanged during the

4-way handshake. In it, we use the following notation:

MsgN(r, Nonce; GTK)

It represents message N of the 4-way handshake, having a replay

counter of r , and with the given nonce (if present). All parameters

after the semicolon are stored in the key data field, and hence are

encrypted using the KEK (recall Figure 1).

The authenticator initiates the 4-way handshake by sending mes-

sage 1. It contains the ANonce, and is the only EAPOL message that

is not protected by a MIC. On reception of this message, the sup-

plicant generates the SNonce and derives the PTK (i.e., the session

key). The supplicant then sends the SNonce to the authenticator in

message 2. Once the authenticator learns the SNonce, it also derives

the PTK, and sends the group key (GTK) to the supplicant. Finally,

to finalize the handshake, the supplicant replies with message 4 and

after that installs the PTK and GTK. After receiving this message,

the authenticator also installs the PTK (the GTK is installed when

the AP is started). To summarize, the first two messages are used to

transport nonces, and the last two messages are used to transport

the group key and to protect against downgrade attacks.

Note that in an existing connection, the PTK can be refreshed

by initiating a new 4-way handshake. During this rekey, all 4-way

handshake messages are encrypted by the data-confidentiality pro-

tocol using the current PTK (we rely on this in Section 3.4).

2.4 Confidentiality and Integrity Protocols

The 802.11i amendment defines two data-confidentiality protocols.

The first is called the Temporal Key Integrity Protocol (TKIP). How-

ever, nowadays TKIP is deprecated due to security concerns [74].

The second protocol is commonly called (AES-)CCMP, and is cur-

rently the most widely-used data-confidentiality protocol [69]. In

2012, the 802.11ad amendment added a new data-confidentiality

protocol called the Galios/Counter Mode Protocol (GCMP) [3]. This

Supplicant (client) Authenticator (AP)

Authentication Request

Authentication Response

(Re)Association Request

(Re)Association Response

as
so
ci
at
io
n
st
ag
e

optional 802.1x authentication

Msg1(r, ANonce)

Derive PTK
Msg2(r, SNonce)

Derive PTK
Msg3(r+1; GTK)

Msg4(r+1)

Install PTK & GTK Install PTK

4-
w
ay

h
an
d
sh
ak
e

encrypted data frames can now be exchanged

Refresh GTK

Encx
ptk

{ Group1(r+2; GTK) }

Enc
y

ptk
{ Group2(r+2) }

Install GTK Install GTK

g
ro
u
p
k
ey

h
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ak
e

Figure 2:Messages exchangedwhen a supplicant (client) con-

nects with an authenticator (AP), performs the 4-way hand-

shake, and periodically executes the group key handshake.

amendment also adds support for short-range communications in

the 60 GHz band, which requires a fast cipher such as GCM [3].

Right now, 802.11ad is being rolled out under the name Wireless

Gigabit (WiGig), and is expected to be adopted at a high rate over

the next few years [58]. Finally, the 802.11ac amendment further

extends GCMP by adding support for 256-bit keys [2].

When TKIP is used, the Temporal Key (TK) part of the session

key (PTK) is further split into a 128-bit encryption key, and two

64-bit Message Integrity Check (MIC) keys. The first MIC key is

used for AP-to-client communication, while the second key is used

for the reverse direction. RC4 is used for encryption, with a unique

per-packet key that is a mix of the 128-bit encryption key, the sender

MAC address, and an incremental 48-bit nonce. This nonce is incre-

mented after transmitting a frame, used as a replay counter by the

receiver, and initialized to 1 when installing the TK [1, ğ12.5.2.6].

Message authenticity is provided by the Michael algorithm. Unfor-

tunately, Michael is trivial to invert: given plaintext data and its

MIC value, one can efficiently recover the MIC key [66, 69].

The CCMP protocol is based on the AES cipher operating in

CCM mode (counter mode with CBC-MAC). It is an Authenticated

Encryption with Associated Data (AEAD) algorithm, and secure as

long as no Initialization Vector (IV) is repeated under a particular
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key1. In CCMP, the IV is the concatenation of the sender MAC

address, a 48-bit nonce, and some additional flags derived from

the transmitted frame. The nonce is also used as a replay counter

by the receiver, incremented by one before sending each frame,

and initialized to 0 when installing the TK [1, ğ12.5.3.4.4]. This

is supposed to assure that IVs do not repeat. Additionally, this

construction allows the TK to be used directly as the key for both

communication directions.

The GCMP protocol is based on AES-GCM, meaning it uses

counter mode for encryption, with the resulting ciphertext being

authenticated using the GHASH function [28]. Similar to CCMP, it

is an AEAD cipher, and secure as long as no IV is repeated under a

particular key. In GCMP, the IV is the concatenation of the sender

MAC address and a 48-bit nonce. The nonce is also used as a replay

counter by the receiver, incremented by one before sending each

frame, and initialized to 0 when installing the TK [1, ğ12.5.5.4.4].

This normally assures each IV is only used once. As with CCMP,

the TK is used directly as the key for both communication direc-

tions. If a nonce is ever repeated, it is possible to reconstruct the

authentication key used by the GHASH function [43].

To denote that a frame is encrypted and authenticated using a

data-confidentiality protocol, we use the following notation:

Encn
k
{·}

Here n denotes the nonce being used (and thus also the replay

counter). The parameter k denotes the key, which is the PTK (ses-

sion key) for unicast traffic. For group-addressed traffic, i.e., broad-

cast and multicast frames, this is the GTK (group key). Finally, the

two notations

Data(payload)

GroupData(payload)

are used to represent an ordinary unicast or group-addressed data

frame, respectively, with the given payload.

2.5 The Group Key Handshake

The authenticator periodically refreshes the group key, and dis-

tributes this new group key to all clients using the group key hand-

shake. This handshake was proven to be secure in [39], and is

illustrated in the last stage of Figure 2. The authenticator initiates

the handshake by sending a group message 1 to all clients. The

supplicant acknowledges the receipt of the new group key by reply-

ing with group message 2. Depending on the implementation, the

authenticator installs the GTK either after sending group message 1,

or after receiving a reply from all connected clients (see Section 4).

Finally, group message 1 also contains the current receive replay

counter of the group key in the RSC field (see Figure 1).

Both messages in the group key handshake are defined using

EAPOL frames, and are represented using Group1 and Group2 in

Figure 2. Note that group message 1 stores the new group key in

the Key Data field, and hence is encrypted using the KEK (recall

Figure 1). Since at this point a PTK is installed, the complete EAPOL

frame is also protected using a data-confidentiality protocol.

Finally, if a client transmits a broadcast or multicast frame, she

first sends it as a unicast frame to the AP. The AP then encrypts

1Note that we deviate from official 802.11 terminology, where what we call the nonce
is called the packet number, and what we call the IV is called the nonce.

PTK-INIT
PMK = shared master secret

PTK-START
Calculate SNonce
TPTK = CalcPTK(PMK, ANonce, SNonce)

Send Msg2(SNonce)

PTK-NEGOTIATING
PTK = TPTK
Send Msg4()

PTK-DONE
MLME-SETKEYS.request(PTK)

MLME-SETKEYS.request(GTK)

802.1X::portValid = TRUE

Enter 4-way handshake stage

Msg1 Received

Msg3 Received && MIC-Verified &&

!ReplayedMsg

Msg1 Received

unconditional Msg3 Received &&

MIC-Verified &&

!ReplayedMsg

Msg1 Received

Figure 3: Supplicant 4-way handshake state machine as de-

fined in the 802.11 standard [1, Fig. 13-17]. Keys are installed

for usage by calling the MLME-SETKEYS.request primitive.

the frame using the group key, and broadcasts it to all clients. This

assures all clients within the range of the AP receive the frame.

3 ATTACKING THE 4-WAY HANDSHAKE

In this section we show that the state machine behind the 4-way

handshake is vulnerable to a key reinstallation attack. We then

demonstrate how to execute this attack in real-life environments.

3.1 Supplicant State Machine

The 802.11i amendment does not contain a formal state machine de-

scribing how the supplicant must implement the 4-way handshake.

Instead, it only provides pseudo-code that describes how, but not

when, certain handshake messages should be processed [4, ğ8.5.6].2

Fortunately, 802.11r slightly extends the 4-way handshake, and does

provide a detailed state machine of the supplicant [1, Fig. 13-17].

Figure 2 contains a simplified description of this state machine.

When first connecting to a network and starting the 4-way hand-

shake, the supplicant transitions to the PTK-INIT state (see Figure 3).

Here, it initializes the Pairwise Master Key (PMK). When receiving

message 1, it transitions to the PTK-START stage. This may hap-

pen when connecting to a network for the first time, or when the

session key is being refreshed after a previous (completed) 4-way

handshake. When entering PTK-START, the supplicant generates a

random SNonce, calculates the Temporary PTK (TPTK), and sends

its SNonce to the authenticator using message 2. The authenticator

will reply with message 3, which is accepted by the supplicant if

2Strangely, this pseudo-code is only present in the original 802.11i amendment. Later re-
visions of the 802.11 standard, which are supposed to combine all existing amendments
into one updated document, no longer contain this pseudo-code.
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the MIC and replay counter are valid. If so, it moves to the PTK-

NEGOTIATING state, where it marks the TPTK as valid by assigning

it to the PTK variable, and sends message 4 to the authenticator.

Then it immediately transitions to the PTK-DONE state, where the

PTK and GTK are installed for usage by the data-confidentiality

protocol using the MLME-SETKEYS.request primitive. Finally, it

opens the 802.1x port such that the supplicant can receive and send

normal data frames. Note that the state machine explicitly takes

into account retransmissions of either message 1 or 3, which occur

if the authenticator did not receive message 2 or 4, respectively.

These retransmissions use an incremented EAPOL replay counter.

We confirmed that the state machine in 802.11r matches the orig-

inal state machine, that was “definedž in 802.11i using textual de-

scriptions scattered throughout the amendment. Most importantly,

we verified two properties which we abuse in our key reinstallation

attack. First, 802.11i states that the AP retransmits message 1 or 3 if

it did not receive a reply [4, ğ8.5.3.5]. Therefore, the client must han-

dle retransmissions of message 1 or 3, matching the state machine

of 802.11r. Additionally, 802.11i states that the client should install

the PTK after processing and replying to message 3 [4, ğ8.5.3.3].

This again matches the state machine given in 802.11r.

3.2 The Key Reinstallation Attack

Our key reinstallation attack is now easy to spot: because the sup-

plicant still accepts retransmissions of message 3, even when it is

in the PTK-DONE state, we can force a reinstallation of the PTK.

More precisely, we first establish a man-in-the-middle (MitM) posi-

tion between the supplicant and authenticator. We use this MitM

position to trigger retransmissions of message 3 by preventing

message 4 from arriving at the authenticator. As a result, it will

retransmit message 3, which causes the supplicant to reinstall an

already-in-use PTK. In turn, this resets the nonce being used by the

data-confidentiality protocol. Depending on which protocol is used,

this allows an adversary to replay, decrypt, and/or forge packets.

In Section 6.1 we will explore in detail what the practical impacts

of nonce reuse are for each data-confidentiality protocol.

In practice, some complications arise when executing the attack.

First, not all Wi-Fi clients properly implement the state machine. In

particular, Windows and iOS do not accept retransmissions of mes-

sage 3 (see Table 1 column 2). This violates the 802.11 standard. As

a result, these implementations are not vulnerable to our key rein-

stallation attack against the 4-way handshake. Unfortunately, from

a defenders perspective, both iOS and Windows are still vulnera-

ble to our attack against the group key handshake (see Section 4).

Additionally, because both OSes support 802.11r, it is still possible

to indirectly attack them by performing a key reinstallation attack

against the AP during an FT handshake (see Section 5).

A second minor obstacle is that we must obtain a MitM posi-

tion between the client and AP. This is not possible by setting up

a rouge AP with a different MAC address, and then forwarding

packets between the real AP and client. Recall from Section 2.3

that the session key is based on the MAC addresses of the client

and AP, meaning both would derive a different key, causing the

handshake and attack to fail. Instead, we employ a channel-based

MitM attack [70], where the AP is cloned on a different channel

Table 1: Behaviour of clients: 2nd column shows whether re-

transmission of message 3 are accepted, 3rd whether plain-

text EAPOL messages are accepted if a PTK is configured,

4th whether it accepts plaintext EAPOLmessages if sent im-

mediately after the first message 3, and 5th whether it is af-

fected by the attack of Section 3.4. The last two columns de-

note if the client is vulnerable to a key reinstallation attack

against the 4-way or group key handshake, respectively.

Implementation R
e.
M
sg
3

P
t.
E
A
P
O
L

Q
u
ic
k
P
t.

Q
u
ic
k
C
t.

4-
w
ay

G
ro
u
p

OS X 10.9.5 ✓ ✗ ✗ ✓ ✓ ✓

macOS Sierra 10.12 ✓ ✗ ✗ ✓ ✓ ✓

iOS 10.3.1 c ✗ N/A N/A N/A ✗ ✓

wpa_supplicant v2.3 ✓ ✓ ✓ ✓ ✓ ✓

wpa_supplicant v2.4-5 ✓ ✓ ✓ ✓a ✓a ✓

wpa_supplicant v2.6 ✓ ✓ ✓ ✓b ✓b ✓

Android 6.0.1 ✓ ✗ ✓ ✓a ✓a ✓

OpenBSD 6.1 (rum) ✓ ✗ ✗ ✗ ✗ ✓

OpenBSD 6.1 (iwn) ✓ ✗ ✗ ✓ ✓ ✓

Windows 7 c ✗ N/A N/A N/A ✗ ✓

Windows 10 c ✗ N/A N/A N/A ✗ ✓

MediaTek ✓ ✓ ✓ ✓ ✓ ✓

a Due to a bug, an all-zero TK will be installed, see Section 6.3.
b Only the group key is reinstalled in the 4-way handshake.
c Certain tests are irrelevant (not applicable) because the im-

plementation does not accept retransmissions of message 3.

with the same MAC address as the targeted AP. This assures the

client and AP derive the same session key.

The third obstacle is that certain implementations only accept

frames protected using the data-confidentiality protocol once a PTK

has been installed (see Table 1 column 3). This is problematic for our

attack, because the authenticator will retransmit message 3 without

encryption. This means the retransmitted message will be ignored

by the supplicant. Although this would seem to foil our attack, we

found a technique to bypass this problem (see Section 3.4).

In the next two Sections, we will describe in detail how to ex-

ecute our key reinstallation attack against the 4-way handshake

under various conditions. More precisely, we first explain our attack

when the client (victim) accepts plaintext retransmissions of mes-

sage 3 (see Table 1 column 3). Then we demonstrate the attack when

the victim only accepts encrypted retransmissions of message 3 (see

Table 1 column 4). Table 1 column 6 summarizes which devices are

vulnerable to some variant of the key reinstallation attack against

the 4-way handshake. We remark that the behaviour of a device

depends both on the operating system, and the wireless NIC being

used. For example, although Linux accepts plaintext retransmis-

sions of message 3, the Wi-Fi NICs used in several Android devices
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reject them. However, Android phones with a different wireless

NIC may in fact accept plaintext retransmissions of message 3.

3.3 Plaintext Retransmission of message 3

If the victim still accepts plaintext retransmissions ofmessage 3 after

installing the session key, our key reinstallation attack is straight-

forward. First, the adversary uses a channel-based MitM attack

so she can manipulate handshake messages [70]. Then she blocks

message 4 from arriving at the authenticator. This is illustrated in

stage 1 of Figure 4. Immediately after sending message 4, the victim

will install the PTK and GTK. At this point the victim also opens

the 802.1x port, and starts transmitting normal data frames (recall

Section 2.3). Notice that the first data frame uses a nonce value

of 1 in the data-confidentiality protocol. Then, in the third stage

of the attack, the authenticator retransmits message 3 because it

did not receive message 4. The adversary forwards the retransmit-

ted message 3 to the victim, causing it to reinstall the PTK and

GTK. As a result, it resets the nonce and replay counter used by the

data-confidentiality protocol. Note that the adversary cannot replay

an old message 3, because its EAPOL replay counter is no longer

fresh. We ignore stage 4 of the attack for now. Finally, when the

victim transmits its next data frame, the data-confidentiality pro-

tocol reuses nonces. Note that an adversary can wait an arbitrary

amount of time before forward the retransmitted message 3 to the

victim. Therefore, we can control the amount of nonces that will

be reused. Moreover, an adversary can always perform the attack

again by deauthenticating the client, after which it will reconnect

with the network and execute a new 4-way handshake.

Figure 4 also shows that our key reinstallation attack occurs

spontaneously if message 4 is lost due to background noise. Put

differently, clients that accept plaintext retransmissions of mes-

sage 3, may already be reusing nonces without an adversary even

being present. Inspired by this observation, an adversary could also

selectively jam message 4 [70], resulting in a stealthy attack that is

indistinguishable from random background interference.

We now return to stage 4 of the attack. The goal of this stage

is to complete the handshake at the authenticator side. This is not

trivial because the victim already installed the PTK, meaning its last

message 4 is encrypted.3 And since the authenticator did not yet

install the PTK, it will normally reject this encrypted message 4.4

However, a careful inspection of the 802.11 standard reveals that

the authenticator may accept any replay counter that was used in

the 4-way handshake, not only the latest one [1, ğ12.7.6.5]:

“On reception of message 4, the Authenticator verifies

that the Key Replay Counter field value is one that it

used on this 4-way handshake.ž

In practice, we found that several APs indeed accept an older replay

counter. More precisely, some APs accept replay counters that were

used in a message to the client, but were not yet used in a reply

from the client (see column 2 in Table 2 on page 8). These APs

will accept the older unencrypted message 4, which has the replay

3The 802.11 standard says that a retransmitted message 4 must be sent in plaintext in
the initial 4-way handshake [1, ğ12.7.6.5], but nearly all clients send it using encryption.
4 Similar to fixes in [63, 64], a non-standard implementation may already install the
PTK for reception-only after sending message 3. We found no AP doing this though.

Supplicant (victim) Adversary (MitM) Authenticator

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK)Msg3(r+1; GTK)

Msg4(r+1)

1○

Install PTK & GTK

Enc1
ptk

{ Data(. . . ) }2○

Msg3(r+2; GTK)Msg3(r+2; GTK)

Enc2
ptk

{ Msg4(r+2) }

Reinstall PTK & GTK

3○

Enc2
ptk

{ Msg4(r+2) }

Msg4(r+1)

Install PTK ?

4○

next transmitted frame(s) will reuse nonces

Enc1
ptk

{ Data(. . . ) } Enc1
ptk

{ Data(. . . ) }
5○

Figure 4: Key reinstallation attack against the 4-way hand-

shake, when the supplicant (victim) still accepts plaintext

retransmissions of message 3 if a PTK is installed.

counter r + 1 in Figure 4. As a result, these AP will install the PTK,

and will start sending encrypted unicast data frames to the client.

Although Figure 4 only illustrates nonce reuse in frames sent by

the client, our attack also enables us to replay frames. First, after

the client reinstalls the GTK in stage 3 of the attack, broadcast and

multicast frames that the AP sent after retransmitting message 3

can be replayed. This is because replay counters are also reset when

reinstalling a key. Second, if we can make the AP install the PTK,

we can also replay unicast frames sent from the AP to the client.

We confirmed that the attack shown in Figure 4 works against

MediaTek’s implementation of the Wi-Fi client, and against certain

versions of wpa_supplicant (see Section 6.3). How we attacked

other implementations is explained in the next section.

3.4 Encrypted Retransmission of message 3

We now describe how we can attack clients that, once they installed

the PTK, only accept encrypted retransmissions of message 3. To

accomplish this, we exploit an inherent race condition between the

entity executing the 4-way handshake, and the entity implementing

the data-confidentiality protocol.

As a warm-up, we first attack Android’s implementation of the

supplicant. Here we found that Android accepts plaintext retrans-

missions of message 3 when they are sent immediately after the

original message 3 (see column 4 of Table 1). Figure 5 shows why
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Main CPU Wireless NIC Adversary (MitM)

Supplicant (victim)

Msg1(r, ANonce)Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)
1○

Msg3(r+1; GTK)

Msg3(r+2; GTK)
Msg3(r+1; GTK)

Msg3(r+2; GTK)

2○

Msg4(r+1)
Msg4(r+1)

Install-keys command

Install PTK & GTK

3○

Msg4(r+2)
Enc1

ptk
{ Msg4(r+2) }

Install-keys command

Reinstall PTK & GTK

4○

next transmitted frame will reuse nonce 1

Data(. . . )
Enc1

ptk
{ Data(. . . ) }

5○

Figure 5: Key reinstallation attack against the 4-way hand-

shake, when the victim accepts a plaintext message 3 re-

transmission if sent instantly after the first one. We assume

encryption and decryption is offloaded to the wireless NIC.

this happens, and how it can be exploited. Note that the AP is not

drawn in this figure: its actions are clear from context. In our attack,

we first let the client and AP exchange Message 1 and 2. However,

we do not forward the first message 3 to the client. Instead we wait

until the AP retransmits a second message 3. In stage two of the

attack, we send both message 3’s instantly after one another to the

client. The wireless NIC, which implements the data-confidentiality

protocol, does not have a PTK installed, and hence forwards both

messages to the packet receive queue of the main CPU. The main

CPU, which implements the 4-way handshake, replies to the first

message 3 and commands the wireless NIC to install the PTK. In

stage 4 of the attack, the main CPU of the client grabs the second

message 3 from its receive queue. Although it notices the frame

was not encrypted, Android and Linux allow unencrypted EAPOL

frames as an exception, and therefore the main CPU will process

the retransmitted message 3. Because the NIC has just installed the

PTK, the reply will be encrypted with a nonce value of 1. After this,

it commands the wireless NIC to reinstall the PTK. By doing this,

the NIC resets the nonce and replay counter associated to the PTK,

meaning the next transmitted data frame will reuse nonce 1.

Main CPU Wireless NIC Adversary (MitM)

Supplicant (vitcim)

initial 4-way or FT handshake

Install PTK & GTK
1○

pairwise rekey in progress

Encx
ptk

{ Msg3(r+1; GTK) }

Encx+1
ptk

{ Msg3(r+2; GTK) }

Msg3(r+1; GTK)

Msg3(r+2; GTK)

2○

Msg4(r+1)
Enc

y

ptk
{ Msg4(r+1) }

Install-keys command

Install PTK′ & GTK

3○

Msg4(r+2)
Enc1

ptk′
{ Msg4(r+2) }

Install-keys command

Reinstall PTK′ & GTK

4○

next transmitted frame will reuse nonce 1

Data(. . . )
Enc1

ptk′
{ Data(. . . ) }

5○

Figure 6: Key reinstallation attack against the 4-way hand-

shake, when the victim only accepts encrypted message 3

retransmissions once a PTK is installed. We assume encryp-

tion and decryption is offloaded to the wireless NIC.

We now show how to attack OpenBSD, OS X, and macOS (see

Table 1 column 5). These devices only accept encrypted retransmis-

sions of message 3. Similar to the Android attack, we abuse race

conditions between the wireless NIC and main CPU. However, we

now target a 4-way handshake execution that refreshes (rekeys) the

PTK. Recall from Section 2.3 that all messages transmitted during a

rekey undergo encryption by the data-confidentiality protocol.

Figure 6 illustrates the details of the attack. Note that the AP is

not draw in this figure: its actions are clear from context. Again the

adversary uses a channel-based MitM position [70]. She then lets

the victim and adversary execute the initial 4-way handshake, and

waits until a second 4-way handshake is initiated to refresh the PTK.

Even though she only sees encrypted frames, messages in the 4-way

handshake can be detected by their unique length and destination.

At this point, the attack is analogous to the Android case. That is,

in stage 2 of the attack, the adversary does not instantly forward

the first message 3. Instead, she waits until the AP retransmits

message 3, and then forwards both messages right after one another

to the victim (see Figure 6 stage 2). The wireless NIC will decrypt
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both messages using the current PTK, and forwards them to the

packet receive queue of the main CPU. In the third stage of the

attack, the main CPU of the victim processes the first message 3,

replies to it, and commands the NIC to install the new PTK. In

the fourth stage, the main CPU picks the second message 3 from

the receive queue. Since a PTK is installed, OpenBSD, OS X, and

macOS (here called the main CPU) will mandate that the message

was encrypted. However, they do not check under which key the

message was encrypted. As a result, even though the message was

decrypted under the old PTK, the main CPU will process it. The

message 4 sent as a reply is now encrypted under the new PTK

using a nonce value of 1. After this, the main CPU commands the

NIC to reinstall the PTK, thereby resetting the nonce and replay

counters. Finally, the next data frame that the victim transmits

will again be encrypted using the new PTK with a nonce of 1. We

confirmed this attack against OpenBSD 6.1, OS X 10.9.5, and macOS

Sierra 10.12.

OpenBSD is only vulnerable if encryption is offloaded to the wire-

less NIC. For example, the iwn driver and associated devices support

hardware encryption, and therefore are vulnerable. However, the

rum driver performs software encryption in the same entity as the

4-way handshake, and is not vulnerable (see Table 1 column 5).

This attack technique requires us to wait until a rekey of the

session key occurs. Several APs do this every hour [66], some exam-

ples being [24, 26]. In practice, clients can also request a rekey by

sending an EAPOL frame to the APwith the Request and Pairwise

bits set. Coincidently, Broadcom routers do not verify the authentic-

ity (MIC) of this frame, meaning an adversary can force Broadcom

APs into starting a rekey handshake. All combined, we can assume

a rekey will eventually occur, meaning an adversary can carry out

the key reinstallation attack.

3.5 Attacking the PeerKey Handshake

The PeerKey handshake is related to the 4-way handshake, and

used when two clients want to communicate with each other di-

rectly in a secure manner. It consists of two phases [1, ğ12.7.8]. In

the first phase, a Station-To-Station Link (STSL) Master Key (SMK)

handshake is performed. It negotiates a shared master secret be-

tween both clients. In the second phase, a fresh session key is

derived from this master key using the STSL Transient Key (STK)

handshake. Although this protocol does not appear to be widely

supported [49], it forms a good test case to gauge how applicable

our key reinstallation technique is.

Unsurprisingly, the SKM handshake is not affected by our key

reinstallation attack. After all, the master key negotiated in this

handshake is not used by a data-confidentiality protocol, meaning

there are no nonces or replay counters to reset. However, the STK

handshake is based on the 4-way handshake, and it does install a

key for use by a data-confidentiality protocol. As a result, it can

be attacked in precisely the same manner as the 4-way handshake.

The resulting attack was tested against wpa_supplicant. To carry

out the test, we modified another wpa_supplicant instance to send

a second (retransmitted) message 3. This confirmed that an unmod-

ified wpa_supplicant will reinstall the STK key when receiving a

retransmitted message 3 of the STK handshake. However, we did

Table 2: Behaviour of Access Points. The 2nd column shows

whether it accepts replay counters it used in amessage to the

client, but did not yet receive in a reply, or if it only accepts

the latest used counter. Column 3 shows whether the GTK

is installed immediately after sending groupmessage 1, or if

this is delayed until all clients replied with groupmessage 2.

Implementation Replay Check GTK Install Time

802.11 standard not yet received delayed

Broadcom latest only immediate

Hostapd not yet received delayed

OpenBSD latest only delayed

MediaTek latest only immediate

Aironet (Cisco) latest only immediate

Aerohive not yet received delayed

Ubiquiti not yet received delayed

macOS Sierra 10.12 latest only a immediate

Windows 7 latest only The group key is

never refreshedWindows 10 latest only

a Retransmitted handshake messages do not use a new re-

play counter, so at all times there is only one allowed value.

not find other devices that support PeerKey. As a result, the impact

of our attack against the PeerKey handshake is rather low.

4 BREAKING THE GROUP KEY HANDSHAKE

In this section we apply our key reinstallation technique against the

group key handshake. We show all Wi-Fi clients are vulnerable to

it, enabling an adversary to replay broadcast and multicast frames.

4.1 Details of the Group Key Handshake

Networks periodically fresh the group key, to assure that only re-

cently authorized clients posses this key. In the most defensive case,

the group key is renewed whenever a client leaves the network. The

new group key is distributed using a group key handshake, and this

handshake has been formally proven as secure in [39]. As shown

in Figure 2, the handshake is initiated by the AP when it sends a

group message 1 to all clients. The AP retransmits this message if

it did not receive an appropriate reply. Note that the EAPOL replay

counter of these retransmitted messages is always incremented

by one. In our attack, the goal is to collect a retransmitted group

message 1, block it from arriving at the client, and forward it to

the client at a later point in the time. This will trick to client into

reinitializing the replay counter of the installed group key.

The first prerequisite of our attack, is that clients will reinitialize

the replay counter when installing an already-in-use group key.

Since clients also use the MLME-SETKEYS.request primitive to

install the group key, this should be the case. We confirmed that in

practice all Wi-Fi clients indeed reinitialize the replay counter of

an already-in-use group key (see Table 1 column 7). Therefore, all

Wi-Fi clients are vulnerable to our subsequent attacks.
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The second prerequisite is that we must be able to collect a group

message 1 that the client (still) accepts, and that contains a group

key that is already in use by the AP. How to achieve this depends

on when the AP starts using the new group key. In particular, the

AP may start using the new group key immediately after sending

the first group message 1, or it may delay the installation of the

group key until all clients replied using group message 2. Table 2,

column 3, summarizes this behaviour for several APs. Note that

according to the standard, the new group key should be installed

after all stations replied with a group message 2, i.e., the GTK

should be installed in a delayed fashion [1, Fig. 12-53]. When the

AP immediately installs the group key, our key reinstallation attack

is straightforward. However, if the AP installs the group key in a

delayed fashion, our attack becomes more intricate. We will discuss

both these cases in more detail in Section 4.2 and 4.3, respectively.

Recall from Section 2.3 that only the AP will transmit real broad-

cast and multicast frames (i.e., group frames) which are encrypted

using the group key. Since our key reinstallation attack targets the

client, this means we cannot force nonce reusing during encryption.

However, the client resets the replay counter when reinstalling the

group key, which can be abused to replay frames towards clients.

Most APs refresh the group key every hour. Some networks even

refresh this key whenever a client leaves the network. Additionally,

clients can trigger a group key handshake by sending an EAPOL

frame having the flags Request and Group [1, ğ12.7.7.1]. Again,

Broadcom routers do not verify the authenticity of this message,

meaning an attacker can forge it to trigger a group key update. All

combined, we can assume most networks will eventually execute a

group key update, which we can subsequently attack.

4.2 Attacking Immediate Key Installation

Figure 7 illustrates our key reinstallation attack when the AP imme-

diately installs the group key after sending group message 1 to all

clients. Notice that the group key handshakes messages themselves

are encrypted using the data-confidentiality algorithm under the

current PTK. On receipt of group message 1, the client installs the

new GTK, and replies with group message 2. The adversary blocks

this message from arriving at the AP. Hence, the AP will retransmit

a new group message 1 in stage 2 of the attack. We now wait until

a broadcast data frame is transmitted, and forward it to the victim.

After this, we forward the retransmitted group message 1 from

stage 2 to the victim. As a result, the victim will reinstall the GTK,

and will thereby reinitialize its associated replay counter. This al-

lows us to replay the broadcast data frame (see stage 5). The client

accepts this frame because its replay counter was reinitialized.

It is essential that the broadcast framewe replay is sent before the

retransmission of group message 1. This is because group message 1

contains the group key’s current value of the replay counter (recall

Section 2.5). Therefore, if it is sent after the broadcast frame, it

would contain the updated replay counter and therefore cannot be

abused to reinitialize the replay counter of the victim.

We confirmed this attack in practice for APs that immediately

install the group key after sending group message 1 (see Table 2 col-

umn 3). Based on our experiments, all Wi-Fi clients are vulnerable

to this attack when connected to an AP behaving in this manner.

Supplicant (victim) Adversary (MitM) Authenticator

initial 4-way or FT handshake

Refresh GTK

Encx
ptk

{ Group1(r; GTK) } Encx
ptk

{ Group1(r; GTK) }

Install GTK Install GTK

Enc
y

ptk
{ Group2(r) }

1○

Encx+1
ptk

{ Group1(r+1; GTK) }2○

Enc1
gtk

{ GroupData(. . . ) }Enc1
gtk

{ GroupData(. . . ) }3○

Encx+1
ptk

{ Group1(r+1; GTK) }

Reinstall GTK

4○

Enc1
gtk

{ GroupData(. . . ) }5○

Figure 7: Key reinstallation attack against the group key

handshake, when the authenticator (AP) immediately in-

stalls the GTK after sending a GroupMessage 1 to all clients.

4.3 Attacking Delayed Key Installation

Attacking the group key handshake when the AP installs the GTK

in a delayed fashion is more tedious. Note that the previous attack

would fail because the broadcast frame transmitted in stage 3 of

Figure 7 would still be encrypted under the old group key. Indeed,

at this point the AP did not yet receive group message 2 from the

client, meaning it is still using the old group key. This is problematic

because group message 1 (re)installs the new group key, and hence

cannot be abused to reset the replay counter of the old group key.

One way to deal with this problem is illustrated in Figure 8. The

first two stages of this attack are similar to the previous one. That is,

the AP generates a new group key, transports it to the victim, and

the adversary blocks group message 2 from arriving at the AP. This

makes the AP retransmit group message 1 using an incremented

EAPOL replay counter of r + 1. In stage 3 of the attack, however,

we forward the older group message 2 with replay counter value r

to the AP. Interestingly, the AP should accept this message even

though it does not use the latest replay counter value [1, ğ12.7.7.3]:

On reception of [group] message 2, the AP verifies

that the Key Replay Counter field value matches one

it has used in the group key handshake.

The standard does not require that the replay counter matches the

latest one that the AP used. Instead, it must match one that was

used in the group key handshake, that is, one used in any of the

(re)transmitted group message 1’s. In practice we discovered that

several implementations indeed accept this older not-yet-received

replay counter (see Table 2 column 2). As a result, the AP installs the
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Supplicant (victim) Adversary (MitM) Authenticator

initial 4-way or FT handshake

Refresh GTK

Encx
ptk

{ Group1(r; GTK) } Encx
ptk

{ Group1(r; GTK) }

Install GTK
1○

Enc
y

ptk
{ Group2(r) }

Encx+1
ptk

{ Group1(r+1; GTK) }2○

Enc
y

ptk
{ Group2(r) }

Install GTK
3○

Enc1
gtk

{ GroupData(. . . ) }Enc1
gtk

{ GroupData(. . . ) }4○

Encx+1
ptk

{ Group1(r+1; GTK) }

Reinstall GTK

5○

Enc1
gtk

{ GroupData(. . . ) }6○

Figure 8: Key reinstallation against the group key hand-

shake, when the AP installs the GTK after accepting replies

with a non-yet-received replay counter from all clients.

new group key. From this point on, the attack proceeds in a similar

fashion as the previous one. That is, we wait until a broadcast frame

is transmitted, perform the group key reinstallation in stage 5 of

the attack, and then replay the broadcast frame in stage 6.

Again it is essential that the broadcast frame we want to replay

is sent before the retransmission of group message 1. Otherwise it

includes the updated replay counter of the group key.

We tested this attack against APs that install the GTK in a delayed

fashion, and that accept replay counters it has used in a message to

the client, but did not yet receive in a reply (recall Table 2 column 2).

Note that we already know that all Wi-Fi clients reset the replay

counter when reinstalling a GTK, and hence are all vulnerable.

Finally, an OpenBSD AP is not vulnerable because it installs the

GTK in a delayed fashion, and only accepts the latest replay counter.

5 ATTACKING THE 802.11R FT HANDSHAKE

In this section we introduce the Fast BSS Transition (FT) handshake,

and show that implementations of it are also affected by our key

reinstallation attack.

5.1 The Fast BSS Transition (FT) Handshake

Amendment 802.11r added the Fast Basic Service Set (BSS) Transi-

tion (FT) handshake to 802.11 [5]. Its goal is to reduce the roaming

time when a client moves from one AP, to another one of the same

protected network (i.e. of the same Basic Service Set). Traditionally,

this required a handshake that includes a new 802.1x and 4-way

handshake (recall Figure 2). However, because the FT handshake

relies on master keys derived during a previous connection with

the network, a new 802.1x handshake is not required. Additionally,

it embeds the 4-way handshake stage in the authentication and

reassociation frames.

A normal FT handshake is shown in stage 1 of Figure 9. Observe

that unlike the 4-way handshake, the FT handshake is initiated

by the supplicant. The first two messages are an Authentication

Request (AuthReq), and an Authentication Response (AuthResp).

They are functionality equivalent to Message 1 and 2 of the 4-way

handshake, respectively, and carry randomly generated nonces that

will be used to derive a fresh session key. After this, the client

sends a Reassociation Request (ReassoReq), and the AP replies

with a Reassociaton Response (ReassoResp). They are similar in

functionality to Message 3 and 4 of the 4-way handshake, finalize

the FT handshake, and transport the GTK to the client.

Only the two reassociation messages are authenticated using a

MIC (see Figure 9). Additionally, none of the messages in the FT

handshake contain a replay counter. Instead, the FT handshake re-

lies on the random SNonce and ANonce to provide replay protection

between different invocations of the handshake [1, ğ13.5.2].

According to the standard, the PTK must be installed after the

authentication response is sent or received [1, ğ13.9]. This is illus-

trated by the gray boxes in stage 1 of Figure 9. Additionally, the

802.1x logical port is only opened after sending or receiving the reas-

sociation request. This assures that, even though the PTK is already

installed while the handshake is still in progress, the AP and client

only transmit and accept data frames once the handshake com-

pleted. Combined, this implies that the FT handshake, as defined

in the 802.11r amendment, is not vulnerable to a key reinstallation

attack. However, through experiments and code inspections, we

found that most implementations actually install the PTK, as well as

the GTK, after sending or receiving the reassociation response. This

behaviour is illustrated by the black boxes in stage 1 of Figure 9. As

a result, in practice most implementations of the FT handshake are

vulnerable to a key reinstallation attack.

5.2 A Key Reinstallation Attack against the AP

Since the AP installs the PTK in response to a reassociation request,

our goal will be to replay this frame. We remark that, in practice,

APs must accept retransmissions of reassociation requests. This is

because the reassociation response of the AP may be lost due to

background noise, making the client send a new request.

Figure 9 shows the resulting key reinstallation attack against the

FT handshake. Note that we do not require a man-in-the-middle

position. Instead, being able to eavesdrop and inject frames is suffi-

cient. In the first stage of the attack, we let the client and AP execute

a normal FT handshake. We then wait until the AP has transmitted

one or more encrypted data frames. At this point, we replay the

reassociation request to the AP. Because it does not contain a re-

play counter, and has a valid MIC, the AP will accept and process

the replayed frame. As a result, the AP will reinstall the PTK in

stage 3 of the attack, thereby resetting the associated nonce and

replay counter. Finally, the next data frame sent by the AP will be

encrypted using an already used nonce. Similar to our previous key
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Supplicant (client) Adversary Authenticator (victim)

AuthReq(SNonce)

AuthResp(ANonce, SNonce)

Install PTK ?Install PTK ?

ReassoReq(ANonce, SNonce, MIC)

ReassoResp(ANonce, SNonce, MIC; GTK)

Install PTK & GTK Install PTK

1○

Enc1
ptk

{ Data(. . . ) }2○

ReassoResp(A/Snonce, MIC; GTK)

ReassoResp(ANonce, SNonce, MIC; GTK)

Reinstall PTK

3○

next transmitted frame(s) will reuse nonces

Enc1
ptk

{ Data(. . . ) }4○

Figure 9: Key reinstallation attack against the Fast BSS Tran-

sition (FT) handshake. Note that a MitM position is not re-

quired, only the ability to eavesdrop and replay frames.

reinstallation attacks, this also enables an attacker to replay old

data frames sent by the client to the AP. We remark that our attack

is particularly devastating against the FT handshake because its

messages do not contain replay counters. This enables an adver-

sary to replay the reassociation request continuously, each time

resetting both the nonce and replay counter used by the AP.

We tested this attack against all our three APs supporting 802.11r.

The first is the open source hostapd implementation, the second is

MediaTek’s implementation for home routers running on a Linksys

RE7000, and the third is a professional Aerohive AP. All three were

vulnerable to the above key reinstallation attack.

Note that if the reassociation response is lost due to background

noise, the client will retransmit the reassociation request sponta-

neously, causing the AP to reinstall the key. That is, without an

adversary being present, APs may already be reusing nonces.

Note that messages in the FT handshake never undergo (addi-

tional) protection using a data-confidentiality protocol. In particular,

Management Frame Protection (MFP) does not protect authentica-

tion and reassociation frames [1, ğ12.6.19]. Hence, key reinstallation

attacks against the FT handshake are trivial even if MFP is enabled.

5.3 Abusing BSS Transition Requests

An FT handshake is only performed when a station roams from one

AP to another. This limits when an attack can take place. However,

we can force a victim to perform an FT handshake as follows. First,

assume a client is connected to an AP of a network that supports

802.11r. Then, if no other AP of this network is within range of

the client, we clone a real AP of this network next to the client

using a wormhole attack [41]. This makes the client think another

AP of the targeted network is nearby. Finally, we send a BSS Tran-

sition Management Request to the client. This frame is used for

load balancing [1, 11.24.7] and commands the client to roam to

another AP. It is an unauthenticated management frame, and hence

can be forged by an adversary. Consequently, the client accepts this

frame, and roams to the (wormholed) AP using an FT handshake.

We tested this against clients supporting 802.11r. This confirmed

that wpa_supplicant, iOS [8], and Windows 10 [52] accept the

transition request, and roam to another AP using an FT handshake.

6 EVALUATION AND DISCUSSION

In this section we evaluate the impact of nonce reuse for the data-

confidentiality protocols of 802.11, present example attack scenar-

ios, discuss implementation specific vulnerabilities, explain why

security proofs missed our attacks, and present countermeasures.

6.1 Impact of Nonce Reuse in 802.11

The precise impact of nonce reuse caused by our attacks depends on

the data-confidentiality protocol being used. Recall that this can be

either TKIP, CCMP, or GCMP. All three protocol use a stream cipher

to encrypt frames. Therefore, reuse of a nonce always implies reuse

of the keystream. This can be used to decrypt packets. We remark

that in our attack the replay counter of the victim is also reseted.

Therefore, all three protocols are also vulnerable to replay attacks.

When TKIP is used, we can also recover the MIC key as follows.

First, we abuse nonce reuse to decrypt a full TKIP packet, including

its MIC field. Then we attack the weak Michael algorithm: given

the plaintext frame and its decrypted MIC value, we can recover

the MIC key [66]. Because TKIP uses a different MIC key for each

communication direction (recall Section 2.4), this allows us to forge

frames in one specific direction. The origin of this direction is the

device targeted by the key reinstallation attack. Table 3 summarizes

this under the rows mentioning TKIP.

When CCMP is used, practical attacks are restricted to replay and

decryption of packets. Although there is some work that discusses

message forging attacks when nonces are repeated, the attacks are

theoretic and cannot be used to forge arbitrary messages [31].

When GCMP is used, the impact is catastrophic. First, it is pos-

sible to replay and decrypt packets. Additionally, it is possible to

recover the authentication key [43], which in GCMP is used to pro-

tect both communication directions (recall Section 2.4). Therefore,

unlike with TKIP, an adversary can forge packets in both directions.

Given that GCMP is expected to be adopted at a high rate in the next

few years under the WiGig name [58], this is a worrying situation.

In general an adversary can always replay, decrypt, or forge pack-

ets in a specific communication direction. The concrete direction

depends on the handshake being attacked. For example, because

the 4-way handshake attacks the client, it can be used to: (1) replay

unicast and broadcast/multicast frames towards the client; (2) de-

crypt frames sent by the client to the AP; and (3) forge frames from

the client to the AP. However, against the FT handshake we attack

the AP instead of the client, meaning we can replay, decrypt, and/or
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Table 3: Impact of our key reinstallation attack against the

4-way, FT, and group key handshake, in function of the data-

confidentiality protocol used. Each cell shows in which di-

rection frames can be replayed, decrypted, or forged.

Replay c Decrypt a Forge

4-way impact

TKIP AP→ client client→ AP client→ AP b

CCMP AP→ client client→ AP

GCMP AP→ client client→ AP client↔ AP b

FT impact

TKIP client→ AP AP→ client AP→ client

CCMP client→ AP AP→ client

GCMP client→ AP AP→ client AP↔ client b

Group impact

any AP→ client c

a With this ability, we can hijack TCP connections to/from an

Internet endpoint and inject data into them.
b With this ability, we can use the AP as a gateway to inject packets

towards any device connected to the network.
c This denotes in which direction we can replay unicast and group-

addressed frames. For the group key handshake, only group-

addressed frames can be replayed.

forge packets in the reverse directions. Table 3 in the Appendix

summarizes this, taking into account the handshake being attacked.

Finally, in various cases we can forge messages from the client

towards the AP (see Table 3). Interestingly, the AP is generally not

the final destination of a frame, and instead will forward the frame

to its real destination. This means we can forge packets towards

any device connected to the network. Depending on the AP, it is

even possible to send a frame that is reflected back to the client.

6.2 Example Attack Scenarios

Among other things, our key reinstallation attacks allow an ad-

versary to decrypt a TCP packet, learn the sequence number, and

hijack the TCP stream to inject arbitrary data [37]. This enables

one of the most common attacks over Wi-Fi networks: injecting

malicious data into an unencrypted HTTP connection.

The ability to replay broadcast and multicast frames, i.e., group

frames, is also a clear security violation. To illustrate how this could

impact real systems, consider the Network Time Protocol (NTP)

operating in broadcast mode. In this mode, the client first goes

through an initialization process, and then synchronizes its clock

by listening to authenticated broadcast NTP packets [53]. Malho-

tra and Goldberg have shown that if these broadcast frames are

replayed, victims get stuck at a particular time forever [48]. Using

our group key attack, we can replay these frames even if they are

sent over a protected Wi-Fi network. Note that manipulating the

time in this manner undermines the security of, for example, TLS

certificates [44, 54, 61], DNSSEC [47], Kerberos authentication [47],

and bitcoin [25]. Another example is the xAP and xPL home au-

tomation protocol. These generally use broadcast UDP packets to

send commands to devices [40]. We conjecture that our key rein-

stallation attack allows us to replay these commands. All combined,

these examples illustrate that the impact of replaying broadcast or

multicast frames should not be underestimated.

6.3 All-Zero Encryption Key Vulnerability

Our key reinstallation attack against the 4-way handshake uncov-

ered special behavior in wpa_supplicant. First, version 2.3 and

lower are vulnerable to our attacks without unexpected side-effects.

However, we found that version 2.4 and 2.5 install an all-zero en-

cryption key (TK) when receiving a retransmitted message 3. This

vulnerability appears to be caused by a remark in the 802.11 stan-

dard that indirectly suggests to clear the TK from memory once it

has been installed [1, ğ12.7.6.6]. Version 2.6 fixed this bug by only

installing the TK when receiving message 3 for the first time [50].

However, when patching this bug, only a benign scenario was con-

sidered where message 3 got retransmitted because message 4 was

lost due to background noise. They did not consider that an active

attacker can abuse this bug to force the installation of an all-zero

key. As a result, the patch was not treated as security critical, and

was not backported to older versions. Independent of this bug, all

versions of wpa_supplicant reinstall the group key when receiv-

ing a retransmitted message 3, and are also vulnerable to the group

key attack of Section 4.

Because Android internally uses a slightly modified version of

wpa_supplicant, it is also affected by these attacks. In particu-

lar, we inspected the official source code repository of Android’s

wpa_supplicant [32, 34], and found that all Android 6.0 releases

contain the all-zero encryption key vulnerability. Android Wear 2.0

also is vulnerable to this attack. Though third party manufacturers

might use a different wpa_supplicant version in their Android

builds, this is a strong indication that most Android 6.0 releases

are vulnerable. In other words, 31.2% of Android smartphones are

likely vulnerable to the all-zero encryption key vulnerability [33].

Finally, we also empirically confirmed that Chromium is vulnerable

to the all-zero encryption key vulnerability [68].

6.4 Limitations of the Security Proofs

Interestingly, our attacks do not violate the security properties

proven in formal analysis of the 4-way and group key handshake.

First, He et al. proved that the 4-way handshake provides key

secrecy and session authentication [39]. Key secrecy states that

only the authenticator and supplicant will posses the PTK. Since

we do not recover the PTK, this properly still holds. Session au-

thentication was proven using the standard notion of matching

conversations [39]. Intuitively, this says a protocol is secure if the

only way that an adversary can get a party to complete the proto-

col is by faithfully relaying messages [12]. Our attacks, including

the channel-based MitM position we employ, do not violate this

property: we can only make endpoints complete the handshake by

forwarding (retransmitted) messages.

Second, He et al. proved key ordering and key secrecy for the

group key handshake [39]. Key ordering assures that supplicants

do not install an old GTK. This remains true in our attack, since we

reinstall the current group key. Additionally, we do not learn the

group key, hence key secrecy is also not violated by our attacks.
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However, the proofs do notmodel key installation. Put differently,

they do not state when the key is installed for use by the data-

confidentiality protocol. In practice, this means the same key can

be installed multiple times, thereby resetting associated nonces

and/or replay counters used by the data-confidentiality protocol.

6.5 Countermeasures

Key reinstallation attacks can be mitigated at two layers. First, the

entity implementing the data-confidentiality protocol should check

whether an already-in-use key is being installed. If so, it should

not reset associated nonces and replay counters. This prevents our

attacks, at least if an adversary cannot temporarily trick an imple-

mentation into installing a different (old) key before reinstalling

the current one. In particular, when using this countermeasure it is

essential that the replay counter of received group key handshake

messages only increases. Otherwise, an adversary can use an old

group message 1 to make a victim temporarily install an old (differ-

ent) key, to subsequently reinstall the current group key using a

more recent group message 1.

A second solution is to assure that a particular key is only in-

stalled once into the entity implementing the data-confidentiality

protocol during a handshake execution. For example, the generated

session key in a 4-way handshake should only be installed once.

When the client receives a retransmitted message 3, it should reply,

but not reinstall the session key. This can be accomplished by adding

a boolean variable to the state machine of Figure 3. It is initialized to

false, and set to true when generating a fresh PTK in PTK-START. If

the boolean is true when entering PTK-DONE, the PTK is installed

and the boolean is set to false. If the boolean is false when entering

PTK-DONE, installation of the PTK is skipped. Note that this is

precisely what version 2.6 and higher of wpa_supplicant is doing.

Proving the correctness of the above countermeasure is straight-

forward: we modeled the modified state machine in NuSMV [23],

and used this model to prove that two key installations are always

separated by the generation of a fresh PTK. This implies the same

key is never installed twice. Note that key secrecy and session

authentication was already proven in other works [39].

We are currently notifying vendors about the vulnerabilities we

discovered, such that they can implement these countermeasures.

A full list of vendors that are known to be affected by some variant

of our attacks will be made available at [22].

6.6 Discussion

There are some important lessons that can be learned from our

results. First, the specification of a protocol should be sufficiently

precise and explicit. For example, when attacking the 4-way hand-

shake in Section 3.3, we observed that the 802.11 standard is am-

biguous as to which replay counter values should be accepted. A

more precise or formal specification would avoid any such potential

incorrect interpretations.

Second, it is not because a protocol has been formally proven

secure, that implementations of it are also secure. In our case, the

model of the 4-way handshake used in formal proofs did not fully

reflect reality. This is because it did not define when the negotiated

session key should be installed. As a result, there was no guarantee

that a session key is installed just once. Only by reading real code

did we realize the formal model did not match reality, and that keys

may be reinstalled. In this regard, formal proofs may in fact be coun-

terproductive: once a protocol is formally verified, the community

may become less interested in auditing actual implementations.

Interestingly, the observation that a model may be wrong, and

therefore does not accurately reflect reality, also applies to the proof

of our own countermeasure. Put differently, it is not because we

modeled the countermeasure in NuSMV, that all implementations

are now suddenly secure. In reality, our formal state machine may

not accurately reflect certain implementations, patches of vendors

may be flawed, or a vendor may be affected by as-of-yet unknown

variants of the attack. As a result, it is critical to keep auditing and

testing actual implementations.

Another lesson is that the data-confidentiality protocol should

provide some protection against nonce reuse. For example, with

GCMP the authentication key can be recovered in case of nonce

recuse, while this is not so for CCMP. More generally, a nonce

misuse-resistant encryption scheme should be used, examples being

AES-SIV, GCM-SIV, or HS1-SIV [16]. These reduce the impact of

nonce reuse, and hence also the impact of key reinstallation attacks.

7 RELATED WORK

In this section we explore the history of key reinstallation attacks,

and give an overview of other Wi-Fi and protocol security works.

7.1 Key Reinstallation Attacks

We are not aware of prior work on key reinstallation attacks. This

lack of prior work is likely one of the reasons why the cryptographic

Wi-Fi handshakes we investigated were still vulnerable to these

attacks. For example, only now did we discover that the 14-year-

old 4-way handshake is vulnerable to key reinstallation attacks.

Moreover, this flaw is not just present in implementations, but in

the protocol specification (standard) itself.

One somewhat related scenario that also leads to nonce reuse

are power failures. Here, after a power failure, the key is restored

from non-violate memory on boot, but the nonce will be reset to

its initial value. Suggested solutions to this problem are given by

Zenner [76]. However, unlike key reinstallation attacks, triggering

power failures cannot be done remotely over a network. Instead,

this requires physical access to the device being attacked. Moreover,

power failures do not affect the security of the protocols we studied,

since these handshakes are precisely used to avoid maintaining

state between old and new connections.

In [16], Bock et al. discovered that some TLS servers were using

static nonces. This was caused by a faulty implementation of the TLS

record layer protocol. That is, it was not caused by a reinstallation

of an already-in-use key. Additionally, some servers used randomly

generated nonces, which means in practice nonce reuse is likely to

occur due to the birthday paradox. In contrast, key reinstallation

attacks allow an adversary to force nonce reuse on demand by

replaying handshake message(s), and are caused by flaws in the

specification (or implementation) of the handshake protocol.

McGrew wrote a survey of best practices for generating IVs

and nonces, and summarizes how they are generated and used in

several protocols [51]. However, in the discussion of security risks,

(variations of) key reinstallation attacks are not mentioned.
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Another somewhat related work is that of Beurdouche et al. [14]

and that of de Ruiter and Poll [27]. They discovered that several

TLS implementations contained faulty state machines. In particular,

certain implementations wrongly allowed handshake messages to

be repeated. However, they were unable to come up with example

attacks that exploited the ability to repeat messages. We conjecture

that an adversary can repeat certain messages to trick an endpoint

into reinstalling the TLS session keys, i.e., a key reinstallation at-

tack might be possible. We consider it interesting future work to

determine whether this leads to practical attacks.

Reuse of IVs is also an issue in the broken WEP protocol [17, 18].

In particular, Borisov et al. discovered that certain wireless net-

work cards initialized the WEP IV to zero each time they were

(re)initialized. Consequently, keystreams corresponding to small

IVs are likely to be reused [18]. However, in contrast to key rein-

stallation attacks, these IV resets cannot be triggered remotely.

7.2 Wi-Fi and Network Protocol Security

In one of the first formal analysis of the 4-way handshake, He

and Mitchell discovered a denial-of-service vulnerability [38, 55].

This led to the standardization of a slightly improved 4-way hand-

shake [1]. In 2005, He et al. presented a formal correctness proof

of both the 4-way handshake and the group key handshake [39].

However, they did not explicitly model cipher selection and down-

grade protection. This enabled Vanhoef and Piessens to carry out a

downgrade attack against the 4-way handshake [72]. In their attack,

the AP is tricked into using RC4 to encrypt the group key when

it is transported in message 3. This attack is only possible if the

network supports WPA-TKIP, which was already known to be a

weak cipher [66, 69]. Additionally, the models employed in [39] do

not define when to install the negotiated session key or transported

group key. However, we showed this timing is in fact essential,

since otherwise key reinstallation attacks may be possible.

The FT handshake is based on the 4-way handshake [5], but there

are no formal security analysis of it. Instead, existing works focus

on the performance of the handshake, examples being [11, 46].

Several works study authentication mechanisms which negotiate

master keys (PMKs) [19, 21, 59, 75]. Some of these mechanisms rely

on first establishing a secure TLS session [9]. As a result, recent

attacks on TLS also affect these mechanisms, examples being [10, 14,

15, 27, 62]. In this paper we did not studymechanisms that negotiate

master keys, but instead focused on handshakes that derive fresh

session keys from such a negotiated or pre-shared master key.

Regarding data-confidentiality protocols, the first practical attack

on WPA-TKIP was found by Beck and Tews [66]. They showed

how to decrypt a small TKIP packet, recovered the MIC key, and

subsequently forged packets. Their attack was further improved

in several works [36, 67, 69, 70]. Researchers also attacked the

weak per-packet key construction of TKIP by exploiting biases in

RC4 [6, 57, 71]. Nowadays TKIP is deprecated by the Wi-Fi Alliance

due to its security issues [74].

Although CCMP received some criticism [60], it has been proven

to provide security guarantees similar to modes such as OCB [42].

In [31], Fouque et al. discusses theoretic message forging attacks

when nonces are repeated in CCMP.

The GCM cipher is known to be weak when short authentication

tags are used [29], and when nonces are reused [43]. Böck et al. em-

pirically investigate nonce reuse when GCM is used in TLS [16], and

discovered several servers that reuse nonces. Our attack on GCMP

in 802.11 is unique because we can control when an endpoint reuses

a nonce, and because GCMP uses the same (authentication) key in

both communication directions. Several cryptographers recently

referred to GCM as fragile [35, 56].

Finally, other works highlighted security issues in either Wi-Fi

implementations or surrounding technologies. For example, design

flaws were discovered in Wi-Fi Protected Setup (WPS) [73], vulner-

abilities were found in drivers [13, 20], routers were found to be

using predictable pre-shared keys [45], and and so on.

8 CONCLUSION

Despite the security proof of both the 4-way and group key hand-

shake, we showed that they are vulnerable to key reinstallation

attacks. These attacks do not violate the security properties of the

formal proofs, but highlight limitations of the models employed by

them. In particular, the models do not specify when a key should be

installed for usage by the data-confidentiality protocol. Addition-

ally, we showed that the PeerKey and fast BSS transition handshake

are vulnerable to key reinstallation attacks.

All Wi-Fi clients we tested were vulnerable to our attack against

the group key handshake. This enables an adversary to replay

broadcast and multicast frames. When the 4-way or fast BSS tran-

sition handshake is attacked, the precise impact depends on the

data-confidentiality protocol being used. In all cases though, it is

possible to decrypt frames and thus hijack TCP connections. This

enables the injection of data into unencrypted HTTP connections.

Moreover, against Android 6.0 our attack triggered the installation

of an all-zero key, completely voiding any security guarantees.

Rather worryingly, our key reinstallation attack even occurs

spontaneously if certain handshake messages are lost due to back-

ground noise. This means that under certain conditions, implemen-

tations are reusing nonces without an adversary being present.

An interesting future research direction is to determine whether

other protocol implementations are also vulnerable to key rein-

stallation attacks. Protocols that appear particularly vulnerable are

those that must take into account that messages may be lost. After

all, these protocols are explicitly designed to process retransmitted

frames, and are possibly reinstalling keys while doing so.
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