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A growing body of neuroimaging research has documented that,

in the absence of an explicit task, the brain shows temporally

coherent activity. This so-called ‘‘resting state’’ activity or, more

explicitly, the default-mode network, has been associated with

daydreaming, free association, stream of consciousness, or inner

rehearsal in humans, but similar patterns have also been found

under anesthesia and in monkeys. Spatiotemporal activity patterns

in the default-mode network are both complex and consistent,

which raises the question whether they are the expression of an

interesting cognitive architecture or the consequence of intrinsic

network constraints. In numerical simulation, we studied the

dynamics of a simplified cortical network using 38 noise-driven

(Wilson–Cowan) oscillators, which in isolation remain just below

their oscillatory threshold. Time delay coupling based on lengths

and strengths of primate corticocortical pathways leads to the

emergence of 2 sets of 40-Hz oscillators. The sets showed synchro-

nization that was anticorrelated at <0.1 Hz across the sets in line

with a wide range of recent experimental observations. Systematic

variation of conduction velocity, coupling strength, and noise level

indicate a high sensitivity of emerging synchrony as well as

simulated blood flow blood oxygen level-dependent (BOLD) on the

underlying parameter values. Optimal sensitivity was observed

around conduction velocities of 1–2 m/s, with very weak coupling

between oscillators. An additional finding was that the optimal

noise level had a characteristic scale, indicating the presence of

stochastic resonance, which allows the network dynamics to re-

spond with high sensitivity to changes in diffuse feedback activity.

Recently, a large number of studies have focused attention on
spontaneous brain activity during rest (i.e., not associated with

any particular stimulus or behavior) (1–5). At the low-scale level of
a single cortical area, optical imaging measurements in anesthetized
cat visual cortex (V1) have shown how spontaneous activity is
clustered in spatiotemporal patterns of neurons with similar orien-
tation preferences (1). At the large-scale level of multiple cortical
areas, fMRI studies show that spontaneous blood oxygen level-
dependent (BOLD) signal during rest, is characterized by slow
fluctuations (�0.1 Hz) and is topographically organized into anti-
correlated distributed cortical networks, which are the same net-
works that are also typically seen during attentional tasks (6–8).
The neurophysiological origin of the BOLD signal fluctuations is
still unclear, with some evidence suggesting a link to fluctuations in
the neural activity and synchrony (9). Furthermore, It seems that
slow BOLD signal fluctuations are correlated with EEG power
variations of faster rhythms (10, 11), so that they cannot be
confounded with the peak frequency of the hemodynamic response
function.

Hence, spontaneous activity during rest is not random, but
highly organized into reproducible anticorrelated cortical net-
works. These spatiotemporal patterns have also been shown
recently in anesthetized monkeys, demonstrating that they do not
seem to be specific for the human, and they do not reflect a state
of consciousness (8). Thus, our hypothesis is that these orderly

dynamical resting states manifest the intrinsic characteristics of
the underlying brain structure.

To understand the mechanisms from which the slow fluctu-
ating and anticorrelated spatiotemporal patterns during rest
emerge is not a trivial problem. In complex dynamical systems
like the brain, it is very difficult to predict the resulting collective
dynamics of the system, even if the underlying topological
structure, the local cortical dynamics, and the cortical–cortical
interactions are perfectly known. On the other hand, a systematic
analysis of the mechanisms generating the collective dynamics of
the resting state will provide us with extremely useful informa-
tion about the intrinsic functional characteristics of the brain.

Existing models provide some important observations (12, 13).
In particular, they demonstrate the important role of the charac-
teristic ‘‘small-world’’ structure of the underlying connectivity ma-
trix between different brain areas in the monkey, using realistic
neuroanatomical information on the macaque cortex (CoCoMac,
see ref. 14), as well as between regions of human cortex (15).
Specifically, in ref. 13, it was proposed that the space–time structure
of coupling and time delays in the presence of noise defines a
dynamic framework for the emergence of the resting brain fluctu-
ations. The aim of this article is to extend the theoretical analysis of
the mechanistic origin of the experimentally observed large-scale
slow-fluctuating anticorrelated spatiotemporal patterns of the brain
at rest. In particular, we want to study the specific intrinsic dynam-
ical characteristics from which the resting patterns emerge. We will
investigate the role of connectivity topology, local dynamics, and
delays in corticocortical communication and, in particular, the role
of noise. We will show that the resting state dynamics strongly
depend on all these factors (see ref. 13). In particular, we will show
that the resting state results from a stochastic resonance phenom-
enon, suggesting that the presence of noise is essential for the
expression of the spatiotemporal patterns. We will also show how
fast local dynamics in the �-range (40 Hz) generates the slow 0.1-Hz
fluctuations at the global level, establishing a specific link between
local neuronal communication and global cortical dynamics.

Results

Brain’s Intrinsic Properties. The main aim of our investigation is to
establish what particular intrinsic properties of brain networks play
an essential role in the generation of the most typical aspects of
brain dynamics at rest, namely slow oscillations and the emergence
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of anticorrelated subnetworks. In particular, we will consider 3
different intrinsic properties: (i) neuroanatomical connectivity
structure, (ii) delays in the transmission of information between
different brain nodes, and (iii) role of noisy fluctuations.

All simulations and analyses were performed by using a realistic
connectivity matrix of the primate brain based on the CoCoMac
neuroinformatics tool (14). Kötter and Wanke (16) proposed a
coarse parcellation of cerebral cortex into 38 regions, which delib-
erately reflected broad and rather uncontroversial divisions so that
a rough mapping to the human brain appeared feasible. For
subsequent activation studies the regional map comprised in addi-
tion 2 subcortical thalamic regions, the pulvinar and anterior
thalamic nucleus. Connectivity data from tracer studies collated in
CoCoMac were transformed to the regional map by using the ORT
procedure as described by Stephan et al. (17).

In addition, the center coordinates of the 38 cortical areas were
calculated and their distances obtained from the geometry defined
in the AAL cortical surface template of a human hemisphere (18).
Assuming a uniform velocity of transmission v, we derived approx-
imate delays. The velocity v is one of the free parameters that we
consider in our parameter space study. The second parameter that
we consider is the global coupling strength � between connected
nodes (See Methods and SI for details).

The level of noisy fluctuation was also studied parametrically in
the next section. We modeled random fluctuations using uncorre-
lated Gaussian noise that perturbed the population dynamics of
each cortical node. Mathematically, this meant we simulated cor-
tical activity by integrating stochastic differential equations based
on a simple Wilson–Cowan model of population activity (see
below). The origin of this noise could have different sources (see ref.
19). One realistic assumption might be spiking noise. Spiking
fluctuations make a significant contribution, because this noise is a
significant factor in a network with a finite (i.e., limited) number of
neurons. It is important to note that these statistical fluctuations
influence, on each trial, the dynamical characteristics of the out-
come and not just its time course.

Collective Neurodynamics. We consider in our simulations a very
simple neurodynamic model for each node. We assume that each
node’s dynamics can be captured by a mean-field-like rate model
expressing the coupling between excitatory and inhibitory neurons.
In particular, we consider the Wilson–Cowan model, which is tuned
such that each independent node, if disconnected, is silent (low-
activity regime); but because their working point is very near to a
Hopf bifurcation, when coupled, each node starts to oscillate. In
particular, we choose a working point such that the oscillation of
each node, which arises because of coupling, was in the �-band-
range of 40 Hz (see Methods and SI for details).

The reason for this choice is that we would like to keep the single
node dynamics as simple as possible (oscillatory dynamics) and to
concentrate our study on the emergence of a complex collective
brain dynamics because of the intrinsic properties mentioned above.
Furthermore, by considering simple 40-Hz fast oscillations at the
single-node dynamics, we are able to investigate the link between
fast local dynamics and slow global fluctuations (10, 11).

First, we study the appropriate working point for our network,
i.e., we study the dependence of the collective dynamics as a
function of the global coupling strength � and the delays through
the velocity parameter v. In particular, because we are interested in
cluster synchronization as a possible mechanism for generating the
underlying anticorrelated subnetworks typical of the resting state,
we first identified a division of the network in clusters using a
modularity algorithm (22) (see Methods and SI for details). We
found that the network can be subdivided in 2 communities (shown
in Fig. 1). We note that these 2 communities are highly similar to
the ones found in ref. 12.

To study the collective dynamics, we study the level of cluster
synchronization in each community as a function of our free

parameters. Two hundred forty seconds of the whole network
dynamics were simulated, by employing an optimized Matlab
routine (DDESD) based on Runge–Kutta’s algorithm. Fig. 2 shows
the level of synchronization in each of the 2 extracted communities
[i.e., the figure plots the maximum of the Kuramoto indices (defined
in Methods and SI) of both communities]. The figure shows that for
a critical coupling �, there is a transition from a collective silent
state (all nodes show low activation) to a synchronized global
regime. Nevertheless, the synchronization is relatively low for most
of the parameters combinations. However, there are 2 regions of
parameter space that show elevated levels of synchronization that
correspond to the increase of synchronization in either one of the
community clusters: The left bump corresponds to one of the
communities and the right bump to the other community. We fix
our working point P (indicated Fig. 2 by a black asterisk) between
the 2 synchronization bumps (� � 0.007 and v � 1.65 m/s). The
reason is that we expect that in this region, we would find maximal
cluster synchronization caused by fluctuations between the syn-
chronization states of the 2 clusters.

Fig. 1. Anatomical plot of the 2 extracted communities. Shown is a plot of the

macaque cortical surface in Caret coordinates (36) with the 2 main clusters

indicated in the connection matrix labeled in green and yellow. The green cluster

consists mostly of visual areas (with the exception of V2) as well as prefrontal

areas. The yellow cluster consists mainly of sensorimotor and premotor areas.
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Fig. 2. Parameter analysis of the collective brain network dynamics. The

parameters studied are the global coupling � (ordinate) and the delays expressed

by the internode communication velocity v (abscissa). The color code is the

Kuramotosynchronization index.Theblackasterisk indicates thechosenworking
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nization in one or the other extracted community. The warm colors represent
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represent synchronization in the sensorimotor–premotor community.
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Fig. 3A Left shows that this working point can reproduce the typical
collective brain dynamics found at rest conditions. The black and red
curves, respectively, plot the level of synchronization for each of the 2
communities as measured by the Kuramoto order parameter (see
Methods and SI). The blue curve indicates the differences between the
level of synchronization in the 2 clusters. Fig. 3A Right shows the power
spectrum of the signal given by differences between the level of
synchronization between both communities. The figure illustrates that
at the chosen optimal working point, both slow 0.1-Hz oscillations of the
synchronization signal and anticorrelation of the level of synchroniza-
tion between the communities occur. However, each community does
not show individually a 0.1-Hz modulation of their neural population
activity, which underscores the relevance of neural synchronization as
a mechanism for the emergence of the ultraslow fluctuations in the
BOLD signal. In this figure, the level of noise is optimal (��2� � 0.1), as
we will see in the next section. In all these figures, we normalized the
results to relative variations with respect to the mean (i.e., z � (z �
�z�)/�z�). Note that this normalization is done with respect to the mean

of the particular time series of the community under consideration and
not with respect to the global brain activity, which may cause artifactual
anticorrelation. In other words, the anticorrelation patterns that we find
are genuine and not a product of a normalization with respect to the
global activity of the whole brain (23).

To study the relevance of the different intrinsic properties of the
network we perform the same simulations but with a different level
of noise (��2� � 2) (Fig. 3B), eliminate the delays (Fig. 3C, note the
different scaling of the y axis), and choose different working points
(Fig. 3D shows just only 1 case given for � � 0.007 and v � 3.5 ms,
but similar results were obtained for different working points).
These results demonstrate that all these 3 factors are extremely
relevant for obtaining the resting-state dynamics. In particular, the
velocity parameters are probably constrained by the fact that the
relevant emergent resting-state effects result from the equilibrated
coordination between the fast local dynamics and the delays in the
network. In our case, for the realistic 40-Hz range, we obtained the
optimal synchronization level at the above selected working point P.
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Fig. 3. Synchronization analysis of simulated neuroelectric activity. (Left) Level of synchronization for each of the 2 individual communities as measured by the

Kuramoto order parameter (community 1, black; community 2, red; difference, blue). (Right) Power spectrum of the signal given by differences between the level of

synchronization between both communities. (A) The results obtained by selecting the optimal working point P (see Fig. 2). (B) Simulations with a different level of noise

(��2� � 2. (C) Without delays. (D) For a different working point (� � 0.007 and � � 3.5).
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We also calculated the BOLD-signal using the Balloon–
Windkessel hemodynamic model of Friston et al. (24), which
specifies the coupling of perfusion to the BOLD signal, with a
dynamical model of the transduction of neural activity into perfu-
sion changes. Fig. 4A Left plots the BOLD signal calculated from
the model at the optimal working point P. The figure shows that the
model can reproduce both the slow 0.1-Hz oscillations and the an-
ticorrelation of the BOLD signals of both communities. The black
and red curves plot, respectively, the BOLD signal for each of the
2 single communities. The blue curve represents the difference
between the BOLD level in the 2 clusters. Fig. 4A Right shows the
power spectrum of the BOLD signal given by the differences
between the level of BOLD signal in the 2 communities. In all these
figures, we normalized the results to relative variations with respect
to the mean (i.e., z � (z � �z�/�z�) (again, note that the normalization
is with respect to the mean value of the particular time series, i.e.,
community under consideration, and not with respect to the whole
brain activity). Fig. 4B contrasts the relationship between the
BOLD signal (black curves) and the level of synchronization (blue
curves) on both communities. The curves show that a peak in the
Kuramoto synchronization parameter computed from fast voltage–
time data reliably precede peaks in the simulated BOLD response.
The relationship is offset by a 1- to 3-s hemodynamic delay. Let us
note that Honey et al. (12) have also detected a relationship
between fluctuations in synchrony and BOLD response, although
in the absence of time delays, which is crucial for the mechanism
presented here. In conclusion, the 0.1-Hz slow oscillations resulting
from alternancy in the level of synchronicity of the 2 communities

is the origin of the observed 0.1-Hz slow oscillations of the BOLD
signal.

The fact that synchronization predicts BOLD activity is not
trivial. This is because the drive to the hemodynamic responses
reflects mean population activity and not its synchronization. Our
results, therefore, mean that there is a coupling between the degree
of synchronization and neural activity that is manifest in elevated
BOLD signals. This coupling has been studied in the context of
evoked responses (25) and in terms of endogenous fluctuations
(26). These analyses of simulated spike trends and local field
potentials show that in nearly every domain of parameter space,
mean activity and synchronization are tightly coupled, allowing us
to conclude that indices of brain activity that are based purely on
synaptic activity (e.g., functional magnetic resonance imaging) may
also be sensitive to changes in synchronous coupling. Thus, our
simulations explain why BOLD might be particularly sensitive to
slow fluctuations in fast synchronized dynamics.

Role of Fluctuations: Stochastic Resonance. To study the role and
relevance of noise on the collective dynamics of the brain networks,
we simulated systematically the behavior of the brain network for
different levels of noise. We fixed all parameters according to the
optimal working point P (� � 0.007 and v � 1.65 m/s) defined in
the previous section and performed the simulations for 240 s. Fig.
5A plots the dependence of the maximum of the power spectrum
peak of the signal given by differences between the level of
synchronization between both communities (measured at the neu-
ronal level as specified above) versus the noise level (variance of the
stochastic fluctuations). This gives us a measure of the level of
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Fig. 4. Sychronization analysis of simulated BOLD data. (A) (Left) BOLD signal for each of the 2 single communities (community 1, black; community 2, red; difference,

blue). (Right) Power spectrum of the BOLD signal given by the differences between the level of BOLD signal between both communities. (B) (Left) Level of

synchronization (blue curves) and BOLD signals (black curves) for each of the single communities. The black curves are identical to the black and red curves of A. (Right)

Respective cross-temporal correlations between synchronization and BOLD signals. Note the typical hemodynamics-based delay between 1 and 3 s.
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fluctuation that has a maximum effect on the emergence of global
oscillations. In all plots, points (diamonds) correspond to numerical
simulation results, whereas the lines correspond to a nonlinear
least-squared fitting by using an �-function. As the figure shows,
there is a stochastic resonance effect, i.e., there is a specified level
of noise for which the optimum is reached. Lower or higher levels
of noise attenuate the global 0.1-Hz oscillations. Fig. 5B plots the
dependence of the location (in frequency domain) of the maximum
in the power spectrum of the signal given by differences between the
level of synchronization between both communities versus the noise
level. This measure specifies the position of the maximum of the
global oscillation. The figure shows again a stochastic resonance
effect for the same level of noise. Furthermore, at this optimal level
of noise, the maximum of the spectrum is given by 0.1-Hz global
slow oscillations. Finally, Fig. 5C plots the level of correlation
between the level of synchronization between both communities
versus the noise level. Stochastic resonance at the same level of
noise reveals a maximum of the anticorrelation between the 2
subnetworks, consistent with the experimental data. It is important
to remark that not only the essential role of fluctuations, as
documented by the presence of a stochastic resonance effect, but
also the fact that the optimum level of fluctuations is given
simultaneously for the emergence of 0.1-Hz global slow oscillations
and the emergence of anticorrelated spatiotemporal patterns for
both communities.

Discussion

In this article, we explored the sensitivity of a simple neural
population model of cortical areas with equal intrinsic properties
to free parameters in the interareal connectivity model. Al-
though the general connectivity structure was known from a very
extensive and systematic collection of anatomical tracer studies
in primates (14, 16), it was unclear what dynamics and functional
properties would emerge beyond what was known from previous
topological studies (13, 27). It turned out that the system of
coupled (Wilson–Cowan) oscillators was highly sensitive to
systematic variations in propagation velocity and coupling
strength. The latter is fully in line with a previous study by ref.
28, where a much simpler static model was updated in arbitrary
time steps. Of course, it is also important that the system is at an
appropriate working point to display its behavior. We chose both
propagation velocity and coupling efficiency such that the system
could easily go back and forth between 2 states, where sets of
areas synchronized temporarily and formed 2 anticorrelated

communities. This was possible on the basis of a subthreshold
level of noise that, by itself, would not be sufficient to induce
oscillations in individual nodes but only in the connected system.
In fact, this level of noise would then drive the coupled oscillators
to explore the multistable trajectory of the system.

What we found as the optimal values to put the system into this
sensitive state are plausible values implying a conductance velocity
of �1.5 m/s (projected to the size of the human brain), a low
coupling strength � of 0.007 (making up for the reduced sparseness
of a coarse connectivity matrix), and a noise level that does not
induce strong self-sustaining oscillatory states (as seen in epileptic,
conditions). These results are fully consistent with the parameter
ranges found in (13, 27), where the authors identified emergent
resting-state networks characteristic for these regimes. Beyond the
parametric study, we obtained insights into the functional organi-
zation of the cerebral cortex, using a matrix that comprises an entire
hemisphere. Similar to a previous study by ref. 12, we observed 2
synchronized communities of areas, which were anticorrelated. The
network of ref. 12, however, comprised only the visual and senso-
rimotor cortices, albeit at a higher resolution. There, the authors
identified similarly a dorsal and a ventral network with 2 connector
hubs (area 46, in the present nomenclature: PFCcl; and V4, here
part of VACv) that were involved in switching between them. In the
present study and in refs. 13 and 27, noise and the time delays via
signal propagation were essential to produce this behavior, whereas
in the former one by ref. 12, these complex dynamics occurred even
in the absence of noise and delays because of the intrinsic nonlin-
earity and chaotic nature of the mean-field model used.

Although several sources of noise are likely present in the brain
(e.g., spontaneous synaptic vesicle release, temperature-dependent
Brownian motion of molecules; stochastic opening of ion channels,
etc.), it is unlikely that noise is a robust signal that encodes
information. Nevertheless, the use of noise to enhance information
processing is implied in the current study employing a phenomenon
referred to as ‘‘stochastic resonance.’’ This phenomenon may help
to explain variations in processing within and between individuals,
and its mechanism may be related to more specific signals used in
so-called ‘‘top-down’’ or ‘‘feedback’’ modulation of signal process-
ing. There is now emerging experimental (29, 30) and computa-
tional (31, 32) evidence that those signals do actually play an
important role in cognition, and it will be important to explore their
more precise role in future more detailed models that implement
the different laminar characteristics of interarea projections.
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Fig. 5. Stochastic Resonance Effects. (A) Maximum of the power spectrum peak of the signal given by differences between the level of synchronization between both

communities versus the noise level (variance). (B) Maximum in the power spectrum of the signal given by differences between the level of synchronization between

both communities versus the noise level. (C) Correlation between the level of synchronization between both communities versus the noise level. Note the stochastic

resonance effect that for the same level of fluctuations reveals the optimal emergence of 0.1-Hz global slow oscillations and the emergence of anticorrelated

spatiotemporal patterns for both communities. Points (diamonds) correspond to numerical simulations, whereas the line corresponds to a nonlinear least-squared

fitting using an �-function.
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A particular relevant contribution of this article is to show how
patterns of anticorrelation emerge in the global dynamics without
the use of long-range inhibition (which is generally absent between
brain areas). The key idea was to associate the patterns of anticor-
relation as reported in the fMRI literature with the level of
synchronization between different brain areas. We have shown that
the level of synchronization is directly associated with the BOLD-
signal. Furthermore, the anticorrelation patterns emerges as the
result of noise-driven transitions between different multistable
cluster synchronization states (in our case, each pattern correspond-
ing to maximal synchronization on each community). This multi-
stable state appears in coupled oscillators systems because of the
delay transmission times underwriting the importance of the space–
time structure of couplings in networks (see also ref. 27), where the
anatomical connectivity captures the spatial component and the
transmission time delays the temporal component thereof. We
believe that the particular dynamics of the intrinsic properties of the
brain are useful for keeping the system in a high competition state
between the different subnetworks that later are used during
different tasks. In this way, a relatively small external stimulation is
able to stabilize one or the other subnetwork giving rise to the
respective evoked activity. So, the anticorrelated fluctuating struc-
ture of the subnetwork patterns characteristic of the resting state is
particularly convenient for that. Metaphorically speaking, the rest-
ing state is like a tennis player waiting for the service of his
opponent. The player is not statically at rest, but rather actively
moving making small jumps to the left and to the right, because in
this way, when the fast ball is coming, he can rapidly react. In this
way, an active resting state (fluctuating between multistable states)
can be sensitive to external signals that can trigger the activation of
one of several available multistable states. This extends to the level
of global dynamics a principle that was demonstrated at the level of
local dynamics, where the competitive balance between excitation
and inhibition ensures the emergence of unified network states that
are important for local processing in attention, memory, and
decision making (33).

Methods
Connectivity Data on the Macaque Brain. To study the intrinsic properties of the
brain at rest, we performed all of the simulations and analyses using a connec-
tivity matrix for 1 macaque hemisphere based on data from the neuroinformatics
database CoCoMac (http://cocomac.org).

Network Dynamics. The collective dynamics of a network of identical neuronal
populations is determined only by the neuroanatomical connectivity matrix, if
the dynamics of the single nodes is simple (e.g., Kuramoto oscillators) and if the
transmission of information between different cortical nodes is instantaneous.
Honey et al. (12) have shown that a much richer and more complex behavior (like
theoneevidencedduringrestingstate) couldemerge if thesingle-nodedynamics
aremorecomplex (inparticular, theyusedamoreelaborateneuronalpopulation
dynamics that shows chaotic behavior). Another method to get a more complex
collective network dynamics is by using a simple dynamics for each node but
assuming realistic delay in the signal transmission between nodes in the network.

In this article, we concentrate on this last alternative. We assume realistic
delays and take a simple realistic dynamics given by a Wilson–Cowan oscillator
(35). The reason for this is that we would like to focus on the role of delays and,
at the same time, consider how the typical global slow oscillation at rest could
emerge from a network built up with simple fast oscillators (in the �-band of 40
Hz). The equations describing the dynamics are given in the SI.

Cluster Synchronization. Cluster synchronization is studied by defining a
Kuramoto order parameter for each community in a sliding time window of 500
ms shifted by steps of 50 ms. We first shift the excitatory (x) and inhibitory (y)
component of all nodes in a value �x and �y, respectively (i.e., x � x � �x and y �

y � �y), such that the oscillations are centered around the origin. In each time
window starting at time ti and ending at time tf, a measure of the degree of
synchronization in each community M is given by,

KM
� (t f) � � ��

n�M

xn(t) � ��
n�M

xn(t)� � ı̂��
n�M

yn(t) � ��
n�M

yn(t)� � � � [1]

where �� denotes average over time along the corresponding time window,
and ı̂ is the imaginary unit. In all cases, we plot the normalized Kuramoto
parameter normalized over all time windows along, i.e.

KM�tf	 �
KM

� �tf	 � �KM
� �tf	�

�KM
� �tf	�

[2]

where now the average is taken over all time windows.
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