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Abstract

The transition from pregnancy to lactation is a critical event in the
survival of the newborn since all the nutrient requirements of the
infant are provided by milk. While milk contains numerous
components, including proteins, that aid in maintaining the health
of the infant, lactose and milk fat represent the critical energy
providing elements of milk. Much of the research to date on
mammary epithelial differentiation has focused upon expression of
milk protein genes, providing a somewhat distorted view of alveolar
differentiation and secretory activation. While expression of milk
protein genes increases during pregnancy and at secretory
activation, the genes whose expression is more tightly regulated at
this transition are those that regulate lipid biosynthesis. The sterol
regulatory element binding protein (SREBP) family of transcription
factors is recognized as regulating fatty acid and cholesterol
biosynthesis. We propose that SREBP1 is a critical regulator of
secretory activation with regard to lipid biosynthesis, in a manner
that responds to diet, and that the serine/threonine protein kinase
Akt influences this process, resulting in a highly efficient lipid
synthetic organ that is able to support the nutritional needs of the
newborn.

Introduction
Over the past 12 years our understanding of the regulation of

milk protein gene expression has improved dramatically. One

important advance was the discovery of the Janus kinase

(JAK)/signal transducer and activator of transcription (STAT)

pathway; prolactin (PRL)-induced activation of JAK2 and

STAT5 is required to induce expression of most, if not all, milk

protein genes [1,2]. Recent advances suggest that the trans-

cription factor Elf5 and the ubiquitin ligase Socs2

(suppressor of cytokine signaling) are important mediators of

PRL action. Loss of Socs2, which negatively regulates the

PLR receptor (PRLR), or forced expression of the Elf5

transcription factor can restore lactation in mice that fail to

lactate due to the loss of one or both alleles encoding the

PRL receptor [3]. These findings led the investigators to

suggest that Elf5 is encoded by one of the master controller

genes that regulate alveolar differentiation (recently termed

the alveolar switch in a review by Oakes and colleagues [4] in

this series of reviews). Despite these advances, our under-

standing of the molecular changes that underlie alveolar

differentiation and secretory activation (the lactation switch)

is relatively unsophisticated. In this review we identify

changes that are known to occur in the mouse as a means to

identify questions and challenges for the coming decade and

suggest that sterol regulatory element binding protein

(SREBP)-1c and the serine/threonine protein kinase Akt1

play a major role in the lactational switch.

Morphological differentiation of the murine
mammary gland
The morphological changes that occur in the mammary gland

during puberty, pregnancy and lactation are well established

[5]. A rudimentary mammary ductal structure is established in
utero [6] and all subsequent developmental events occur

after birth. Ductal elongation and branching occur primarily

after the onset of puberty under the influence of estrogen,

epidermal growth factor, and insulin like growth factor (IGF)-1

[7,8]. The terminal end bud is the primary proliferative
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structure that directs ductal elongation, which appears to

occur maximally between three to six weeks of age. By ten to

twelve weeks of age the ducts have reached the margins of

the fat pad, the terminal end buds regress to form terminal

ducts, and ductal elongation ceases. In contrast to humans,

in which ten to fifteen branching ducts connect to the nipple,

in the mouse a single primary duct, which can be identified by

its proximity to the nipple and the thick sheath of connective

tissue, serves as a conduit for the passage of milk to the

suckling young. Secondary and tertiary ducts, which contain

a single layer of cuboidal luminal epithelial cells surrounded

by a layer of basal cells, are formed by branching off the

primary duct. Formation of lateral and alveolar buds occurs in

the post-pubertal mammary gland following initiation of the

estrous cycle [9,10]. These lateral buds are often termed side

branches and represent the origin of the alveoli that are the

milk producing cells in the lactating mammary gland [5].

In the post-pubertal phase, alveolar buds develop into

rudimentary alveolar structures consisting of a single layer of

luminal epithelial cells surrounding a circular luminal space. A

layer of flattened myoepithelial cells can be seen to surround

these structures if specific stains, such as rhodamine

phalloidin (an actin stain), are used. During post-pubertal

growth, PRL and progesterone are responsible for alveolar

bud formation [11-13]. Progesterone is thought to act

through the paracrine production of Wnt4 and Rank ligand

(RankL) by progesterone receptor-positive cells; these para-

crine factors in turn stimulate proliferation of progesterone

receptor-negative cells, leading to side branch formation [14].

RankL is thought to stimulate epithelial cell proliferation and

alveolar differentiation through activation of cyclin D1 via a

pathway that may involve NF-κB [15]. Germline deletion of

either RankL or its receptor results in reduced proliferation

and increased apoptosis of alveolar epithelial cells, a process

that could be modified by activation of Akt [15].

Alveolar differentiation, for example, the formation of lobulo-

alveolar structures capable of milk production, occurs during

pregnancy and is also stimulated by PRL [16,17].

Transcription profiling studies indicate that PRL stimulates

transcription of Wnt4 [18], RankL [18], and cyclin D1 via

induction of IGF-2 [19,20]. PRL also induces the expression

of two other transcription factors of note: the ETS

transcription family member Elf5 [3] and SREBP1 [21]. Harris

and colleagues [3] demonstrated that forced expression of

Elf5 in mammary epithelial cells from PRLR knockout mice is

able to restore morphological differentiation and production

of milk proteins. In these experiments it could not be

determined whether Elf5 induced a functional restoration

since the transfected mammary epithelial cells were

transplanted into a recipient host and lactation does not

occur in these mice due to the lack of ductal connections

with the teat. The role of SREBP1 will be discussed below as

it regulates the expression of a number of key lipid

metabolism genes [22].

Histological changes in mammary gland morphology in the

mouse during pregnancy and lactation are shown in Figure 1.

Initial changes observed during pregnancy include an

increase in ductal branching and the formation of alveolar

buds (Figure 1a); this phase of differentiation is characterized

by the largest increase in DNA synthesis and cellular

proliferation during pregnancy [23]. The latter half of

pregnancy is characterized by the expansion of alveolar buds

to form clusters of lobuloalveolar units, followed by the differ-

entiation of these structures into pre-secretory structures. By

day 12 of pregnancy there is a readily apparent increase in

the size of the epithelial compartment compared to the

adipose compartment (Figure 1c), and expansion of the epi-

thelium continues until the epithelial compartment predominates

Figure 1

Histological features of the mammary gland of FVB mice during
pregnancy and lactation. Mammary glands were isolated from FVB
mice on (a,b) day 6 (P6), (c,d) day 12 (P12), and (e,f) day 18 (P18) of
pregnancy, and (g,h) day 2 (L2) and (i,j) day 9 (L9) of lactation, fixed in
neutral-buffered formalin, sectioned and stained with hematoxylin and
eosin. Scale bars in (a, c, e, g and i) represent 100 µm, while those in
(b, d, f, h and j) represent 10 µm.
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by late pregnancy (Figure 1e). The luminal space is clearly

evident by late pregnancy, filled with a proteinaceous

substance whose identity is not clear but may represent milk

proteins, glycoproteins such as Muc1, lactoferrin, and

possibily immunoglobulins (Figure 1f). Large lipid droplets are

also present in the cytoplasm of the alveolar epithelial cells

and, to some extent, in the luminal space (Figure 1f). Follow-

ing parturition, the secretory lobuloalveolar structures

become more apparent as the luminal space expands, and

the epithelial cell layer becomes more prominent against the

adipocytes (Figure 1g). The large lipid droplets, which were

present at day 18 of pregnancy, are not present, having been

replaced by small lipid droplets at the apical surface of the

epithelial cells (Figure 1h), and although the luminal space

may contain proteinaceous material when it has not been lost

during fixation and sectioning, it stains much more lightly than

during late pregnancy (Figure 1i versus 1b). By day nine of

lactation in the mouse, the mammary gland is producing

copious amounts of milk. Examination of the histology of the

mammary gland at this stage reveals prominent luminal

structures and ducts; however, few adipocytes are visible at

this time (Figure 1i). This change is thought to reflect

delipidation of adipocytes rather than a decrease in their

number [24].

Perhaps the most obvious histological change marking the

transition from pregnancy to lactation is the change in the

size and cellular distribution of lipid droplets. At mid-

pregnancy, small lipid droplets, referred to as cytoplasmic

lipid droplets (CLDs), can be seen within luminal mammary

epithelial cells. While these are readily apparent in standard

histological sections stained with hematoxylin and eosin, we

have found that they are better appreciated in sections that

are stained with an antibody to adipophilin, which is found at

the periphery of all lipid droplets within the alveolar cells (red

stain in Figure 2) where DAPI (blue stain in Figure 2) has

been used to stain the nuclei, and wheat germ agglutinin

(green stain in Figure 2) to identify the luminal surface of the
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Figure 2

The size and location of cytoplasmic lipid droplets (CLDs) changes upon secretory activation. Mammary glands were isolated from FVB mice on
pregnancy (P) days (a) 12, (b) 16, and (c) 18, and (d) day 2 of lactation (L2). Tissues were fixed in neutral-buffered formalin, stained with
anti-adipophilin (ADRP) antibody and Alexa Fluor 594 conjugated secondary antibody to outline the cytoplasmic lipid droplets (appearing in red),
Alexa Fluor 488-conjugated wheat germ agglutinin to outline the luminal surface of the luminal space of the secretory alveoli (appearing in green),
and 4′,6-diamino-2-phenylindole (DAPI) to stain the nuclei of mammary epithelial cells (appearing in blue). Idealized schematic drawings, not meant
to represent the micrographs shown in the top panel, illustrate the positions of the luminal space (labeled LU), nuclei (purple), and CLDs (labeled
red) at pregnancy days (e) 12, (f) 16, and (g) 18, and (h) day 2 of lactation. The scale bars in (a-d) represent 10 µm. Luminal space is indicated by
the letters ‘Lu’, and the white arrowheads indicate CLDs.



lobuloalveolar complexes (Figure 2). By the end of pregnancy

the CLDs have increased dramatically in size (Figure 2c,g).

Following parturition, CLDs are smaller and localized to the

apical surface of the alveolar epithelial cells (Figure 2d,h). It is

interesting to note that in many genetically engineered mice

that exhibit lactation failure, large CLDs remain after

parturition and can be observed on the first and sometimes

even the second day of lactation. In particular, we have

characterized lactation failure in transgenic mice that express

activated myr-Akt1 in the mammary gland [25]; prominent

CLDs are apparent following parturition, suggesting that

secretory activation has not occurred. The presence of large

CDLs post-partum is also noted in the following genetically

engineered mice: Src null mice (MM Richert and SM

Anderson, unpublished data); WAP-human protein C [26];

bovine oxytocin transgenic [27]; oxytocin knockout mice [28];

α-lactalbumin knockout mice [29]; butyrophilin knockout mice

[30]; and the xanthine oxidoreductase heterozygous knockout

mice [31].

Functional differentiation of the mammary
gland
Functional differentiation of the murine mammary gland is

divided into four phases: the proliferative phase of early

pregnancy; the secretory differentiation phase, which starts

during mid-pregnancy; secretory activation, which begins at

or around parturition, depending on the timing of the fall of

progesterone; and lactation. While markers for most of these

phases are recognized, the molecules that regulate the

transition between them are not well understood.

As suggested by its name, the proliferative phase is

characterized by the extensive proliferation of mammary

epithelial cells and begins with conception. In vivo labeling of

proliferating cells in the mammary gland with 3H-thymidine

revealed that 25% of the cells were labeled on day five of

pregnancy [23]. Proliferation decreases from this peak in

early pregnancy until the tissue reaches quiescence just

before parturition [23]. If one can use the changes in the

amount of cytokeratin 19 and claudin 7 RNA as a reflection of

the increase in the epithelial cell content of the gland, there

may be up to a thousand-fold increase in the number of

mammary epithelial cells [32,33]. While this increase in

epithelial cell markers could reflect an increase in the number

of epithelial cells, it might also reflect a change in the size of

these cells, or a change in the patterns of genes expressed in

these cells. Despite the massive proliferation that takes place,

the organization of the epithelium is exquisitely maintained.

While the growth factors that regulate the proliferative phase

are not clear, the expression patterns of three paracrine

growth factors expressed in the mammary gland suggest that

they might contribute to this process: RankL, Wnt4, and

amphiregulin. The roles of Wnt4 and RankL have been

discussed above; these paracrine growth factors appear to

be produced by either stromal cells or mammary epithelial

cells. Amphiregulin expression is reduced in PRLR null mice,

suggesting that its expression may be regulated by PRL [18],

and that it may play a role in alveologenesis, as indicated by

other studies [34].

Secretory differentiation, which in some literature is referred

to as lactogenesis stage I, is defined by several biochemical

changes that reflect a change to a pre-lactational state. An

increase in the activity of lipid synthetic enzymes was

reported in the rabbit mammary gland in a seminal paper by

Mellenberger and Bauman [35]. An increase in the expres-

sion of adipophilin protein and RNA were correlated with the

accumulation of CLDs in the alveolar epithelial cells [25,36],

indicating activation of the lipid synthesis function of these

cells. The production of milk appears to be blocked by the

high plasma concentration of progesterone during pregnancy

[37-40]. In fact, it has been suggested that progesterone

downregulates expression of the PRLR [41]. Evidence in

favor of this notion was obtained by Sakai and colleagues

[42], who ovariectomized mice on day 14 of pregnancy,

finding a dramatic increase in expression of the long form of

the PRLR; an increase in expression of β-casein RNA has

also been observed [43]. Ovariectomy on day 17 of

pregnancy results in tight junction closure [44] as measured

by the sucrose permeability of the epithelium.

Secretory activation, defined as the onset of copious

secretion of milk [45], is set in motion by the drop in the level

of serum progesterone around parturition [43,44,46,47].

Unlike humans, in which plasma PRL levels are high through-

out pregnancy, pituitary PRL secretion increases late in

pregnancy in the mouse and rat. At this time PRL appears to

stimulate maximal activation of the PRLR and STAT5, leading

to a further increase in the transcription of milk protein genes

[2,48]; however, unless progesterone action is inhibited, milk

secretion is not initiated [37-40]. It has been long

appreciated that there is a dramatic increase in the amount of

Golgi and endoplasmic reticulum in alveolar epithelial cells at

secretory activation [49], and it is generally assumed that

these changes are required to support the massive synthesis

and secretion of various milk components. While not a

functional definition, the absence of large lipid droplets in

alveolar epithelial cells provides evidence that this secretory

activation has occurred (Figure 2). Both butyrophilin knockout

(Btn-/-) and xanthine oxidoreductase heterozygous (XRO+/-)

mice accumulate large lipid droplets in the cytoplasm of

mammary epithelial cells due to defects in lipid droplet

secretion [30,31].

Lactation is defined as the continuous production of milk by

the dam. In most species there are two phases: a colostral

phase in which the milk contains large amounts of immuno-

globulins and other immune defense proteins [50], and the

mature secretion phase characterized by the production of

large volumes of milk that support the growth of the newborn.

Although the colostral phase has not been well-characterized

in the mouse, preliminary evidence from the Neville laboratory
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suggests that it is brief in this species (Neville MC,

unpublished data). Mouse milk contains about 12% proteins

(the different caseins, α-lactalbumin, whey acidic protein

(WAP), lactoferrin, secretory immunoglobulin A, and others),

30% lipid, and 5% lactose, a disaccharide that is unique to

milk. With the closure of the tight junctions there is no

transfer of sugars from the blood to the milk. Synthesis of

lactose takes place in the Golgi compartment, where the

required synthetic enzymes are located. In both mice and rats,

lactose is not detected in the mammary gland until the day

before parturition [51,52], and thus lactose synthesis may be

considered a marker of secretory activation. Furthermore, mice

with a null mutation of the gene for α-lactalbumin, an essential

co-factor for lactose synthesis, fail to lactate [53].

Milk fat is primarily triacylglycerides, made up of a glycerol

backbone and esterified fatty acids, which are either derived

from the diet, from adipose tissue stores, or synthesized de
novo in the gland. In mice that are maintained on standard

rodent chow, which contains about 8% of its caloric content

as fat, a large proportion of the free fatty acid is synthesized

in the mammary gland from glucose and, probably, amino

acid precursors. To support the synthesis of milk lipids as

well as lactose there must be a significant programming of

the physiology of alveolar epithelial cells to direct metabolic

precursors to the synthesis of these two compounds.

Microarray studies have allowed us to examine temporal

changes in mammary gene expression during secretory

differentiation and activation in some detail [33]. The results

are summarized in Figure 3, which shows mean relative

expression levels for a number of classes of proteins through

pregnancy and lactation to involution. During pregnancy,

adipocyte genes decline about seven-fold, representing

dilution by the growing alveoli, with a two-fold drop at the

onset of lactation as the alveoli expand further. The overall

expression level of milk protein genes increases about five-

fold during pregnancy, with a further three- to four-fold

increase at parturition. However, these mean values hide a

good deal of variation in individual genes within these groups,

as discussed in the next section. The other categories shown

in Figure 3 remain relatively constant during pregnancy, with a

sharp increase (genes for fatty acid and cholesterol

synthesis) or decrease (genes for fatty acid degradation and

the proteasome) at secretory activation. Examination of

numerous mouse models that exhibit lactation failure tends to

suggest that, if secretory activation does not occur properly,

the mammary gland rapidly undergoes involution [54].

Milk protein synthesis and secretion
Figure 4 shows a summary of array data obtained in both the

Neville laboratory [33] and the Gusterson laboratory [55],

with expression levels of the 14 major milk proteins plotted as

a ratio to their expression on day 17 of pregnancy. Changes

in mRNA expression fall into two categories: The first group

of proteins is shown in the inset in Figure 4; and the mRNA

expression of this group increases 3- to 50-fold during preg-

nancy. This category includes most of the caseins,

Westmeade DMBA8 nonmetastatic cDNA1 (WDNM1), milk

fat globule-EGF-factor-8 (MFGM-E8), WAP and adipophilin.

Expression of the mRNA for these proteins is upregulated no

more than two-fold at secretory activation. Most of the

caseins are expressed in early pregnancy at 30% of the level

on day 17 of pregnancy; on the other hand, the expression

levels of WAP and WDNM1 mRNAs appear to be

insignificant in early pregnancy, turning on between P7 and

P12. Despite these differences, expression of most of these

proteins has been shown to be regulated by PRL [37] acting

through phosphorylation of STAT-5 [56-59]. During preg-

nancy in the rodent, when PRL levels are known to be low, it

is likely that differentiated expression levels respond to

placental lactogens [37]. The levels of PRL rise late in

pregnancy; however, as noted above, the effect of PRL is

suppressed by the high serum levels of progesterone

[37-40]. This being the case, synthesis of these proteins, as

opposed to transcription of their genes, must be regulated at

a level upstream of mRNA transcription. Indeed, in very

elegant work in the laboratories of Rhoads and Barash

[60,61], both polyadenylation of β-casein mRNA and amino

acid availability appear to be involved in the translational

regulation of milk protein synthesis. It is tempting to speculate
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Figure 3

Summary of gene expression during pregnancy and lactation by
functional class. Adipocyte specific genes decline throughout
pregnancy and early lactation while milk protein genes as a class
increase over the same time period. The expression of other classes is
stable during pregnancy, possibly representing expression in both the
adipose and epithelial compartment and increases two- to three-fold
(fatty acid and cholesterol synthesis) or decreases about two-fold (fatty
acid and protein degradation) at parturition. Adipocyte genes, red; β-
oxidation genes, navy blue; proteosome genes, teal; milk protein
genes, brown; fatty acid biosynthesis genes, light brown; cholesterol
biosynthetic genes, pink.



that, since the expression of Akt1 increases at secretory

activation, Akt could stimulate translation of milk proteins

through its ability to phosphorylate 4E-BP1, a negative

regulator of translation [62]; however, no evidence exists to

support this speculation. Likewise the Akt-dependent

activation of mammalian target of rapamycin (mTOR) could

stimulate translation through S6 kinase and eEF2 [63,64].

The second category includes a heterogeneous group of

proteins whose expression increases up to 20-fold between

day 17 of pregnancy and day 2 of lactation, shown in the

main graph in Figure 4. Many of these proteins, including α-

lactalbumin (lactose synthesis), butyrophilin and xanthine

oxidoreductase (lipid secretion), and parathyroid hormone

related protein (calcium secretion) turn on secretory

processes. In addition, a major milk mucin, MUC1, and one of

the caseins, ∆-casein, are significantly upregulated at this

time. We understand very little about the regulation of most of

these proteins. MUC1, which has been implicated as a

signaling molecule [65], is known to be repressed by the

ErbB2 pathway acting through the Ras, Raf and

phosphatidylonisitol 3′-kinase pathways [66,67]. Parathyroid

hormone related protein secretion has been shown to be

regulated by calcium availability acting through the calcium

sensing receptor [68]. Xanthine oxidase is upregulated in

response to hypoxia in some tissues; however, it is not clear

that its upregulation at secretory activation is related to

changes in the oxidative state. Despite the importance of α-

lactalbumin and butryrophilin to synthesis of lactose and

secretion of lipid, respectively, little work has been done on

the regulation of these genes - a fertile field for investigation.

Diversion of glucose for lactose synthesis
The synthesis of lactose from glucose and UPD-galactose is

unique to mammary alveolar cells. The reaction is catalyzed

by lactose synthase, a combination of β-1,4 galatosyl

transferase and the essential cofactor α-lactalbumin in the

Golgi compartment (Figure 5). α-Lactalbumin is limiting for

lactose synthesis so the very low gene expression during

pregnancy (Figure 4) prevents inappropriate lactose forma-

tion. The Km for glucose in the lactose synthase reaction is in

the millimolar range so it is important that the glucose

concentration in the alveolar cells be higher than usual, and,

indeed, one of the characteristic features of the lactating

mammary alveolar cell is its high cytoplasmic glucose

concentration. Most cells maintain glucose concentrations in

the range 0.1 to 0.4 mM. As first shown in rats [69] and later

in women [70], the concentration of glucose in the milk is

thought to be the same as that of the mammary alveolar cell.

In women, glucose concentration in milk increases from about

0.34 mM to 1.5 mM during secretory activation [71,72] and

decreases in proportion to milk volume during gradual

weaning [70]. Comparison of fluxes of stable isotopes of

glucose between full lactation and weaning suggested

changes in the activity of a glucose transporter in the basal

membrane; however, there was no effect of insulin on any

milk parameters, including glucose concentration under

conditions of a euglycemic clamp [73]. These findings in

humans are consistent with the presence of a non-insulin

dependent glucose transporter in the plasma membrane and,

as described next, subsequent animal work has shown this

transporter to be glucose transporter (GLUT)1 [74-76].

As shown in Figure 5b, mRNA for GLUT1 is upregulated

significantly at parturition in the mouse, with a 280% increase

in its amount. Studies have shown that this finding is

reflected in the level of the protein as well and immuno-

histochemical results suggest localization to both basal and

Golgi membranes. Treatment of lactating rats with bromocrip-

tine to inhibit the production of PRL by the pituitary caused a

37% decrease in the level of GLUT1, while a combination of

bromocriptine plus anti-growth hormone antibody suppres-

sed the levels of GLUT1 by 90% [77]. Thus, GLUT1 is the

major glucose transporter in the basal membrane and its

expression is regulated by PRL at secretory activation when

the demand for glucose for synthesis of lactose is greatly

amplified.

The expression of hexokinase (HK)I was found to be

constitutive in the rat mammary gland [78] whereas HKII was

found to be present only at lactation. We have recently

confirmed this finding at the protein level in the murine

mammary gland (SM Anderson, unpublished data). While the

differential functions of HKI and HKII are not completely
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Figure 4

Expression patterns of milk protein genes. The main graph shows
genes whose expression increases more than two-fold at parturition.
The inset shows genes with casein-like expression patterns whose
mRNA increases mainly during pregnancy. All data are normalized to
the level of expression at day 17 of pregnancy (P17). ADPH,
adipophilin; MFGM, milk fat globule-EGF-factor; PTHrP, parathyroid
hormone related protein; WAP, whey acidic protein; WDNM1,
Westmeade DMBA8 nonmetastatic cDNA1; xanthine DH, xanthine
oxidoreductase.



understood [79], the Km for glucose of HKI is 0.03 mM while

that for HKII is 0.3 mM. The lower affinity of HKII would allow

it to operate in the higher glucose environment of the

lactating mammary cell and might contribute to the higher

cytoplasmic glucose concentration necessary for lactose

synthesis. Furthermore, HKII appears to have two catalytic

sites with differential sensitivity to the feedback inhibition by

glucose-6-PO4, possibly allowing it to function under

conditions inhibitory to HKI [80]. HKI is thought by Wilson

[79] to be best positioned for the catabolic role of intro-

ducing glucose-6-PO4 into the glycolytic chain for generation

of ATP in organs like the brain. The type 2 enzyme is thought

to be better suited for an anabolic role, being present in

insulin sensitive tissues like skeletal muscle and adipose

tissue as well as in the liver and lactating mammary gland

[78]. In the last three tissues, glucose-6-PO4 is directed into

the pentose phosphate shunt to provide NADPH for lipid

synthesis. Thus, the putative switch from HKI as the sole

enzyme for glucose phosphorylation to the presence of both

HKI and HKII may lead to both an increase in free glucose for

lactose synthesis and increased activity of the pentose

phosphate shunt.

Milk lipid synthesis and secretion
The mouse mammary gland is quite a unique lipid

biosynthetic organ: the FVB mouse has about 2 g of

mammary tissue estimated to secrete 5 ml of milk containing

approximately 30% lipid, or 1.5 g of lipid per day. Over the

course of a 20 day period of lactation, therefore, the dam

secretes nearly 30 g of milk lipid, which is equivalent to her

entire body weight! Over 98% of the fat in milk is triglyceride,

which is synthesized by the condensation of fatty acids with

glycerol derived from the plasma as free glycerol or from

glucose through the synthesis of dihydroxyacetone phos-

phate (DHAP) (Figure 6). Fatty acids are either transported

from the plasma or derived from the de novo synthesis of

medium chain fatty acids from glucose in the epithelial cells

[81,82]. Importantly, these functions are regulated both at

secretory activation (Figure 3) and by the availability of

exogenous lipid from either the diet or breakdown of adipose

triglyceride (Figure 6). In the fed state under high fat diet

conditions, dietary lipid is transferred to the mammary alveolar

cell in the form of chylomicrons. The triglyceride in these

particles is broken down by lipoprotein lipase into glycerol

and fatty acids, both of which are taken up into the alveolar
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Figure 5

Regulation of glucose entry and utilization in the lactating mammary alveolar cell. (a) Glucose enters the cell via glucose transporter (GLUT)1, a
non-insulin sensitive transporter. Free glucose enters the Golgi via GLUT1 where it is combined with UDP-galactose, also derived from glucose to
make lactose. Since the Golgi membrane is not permeable to disaccharides, lactose draws water osmotically into the Golgi compartment. Glucose
is also converted to glucose-6-PO4 by hexokinase. The glucose-6-PO4 can be isomerized by glucose-6-PO4 isomerase to fructose-6-PO4 from
whence it is made into pyruvate or glycerol-3-PO4. Glucose-6-PO4 may also enter the pentose phosphate shunt, a major source of NADPH for lipid
synthesis. Pyruvate enters the mitochondrion where two major products are ATP, which provides energy to synthetic processes in the cell, and
citrate. Citrate has two fates: it serves as the substrate for fatty acid synthesis by conversion to malonyl-CoA and it can be converted to pyruvate
through the malate shunt, which provides additional NADPH. NADPH, glycerol-3-PO4, and pyruvate all contribute to triglyceride (TAG) synthesis.
(b) Profile of GLUT1, citrate synthase, the citrate transporter, ATP citrate lyase, and glucose phosphate isomerase showing upregulation of the first
four and down regulation of the last. (c) Profile of enzymes whose mammary expression is downregulated by a high fat diet. (d) Profile of enzymes
that lead to synthesis of polyunsaturated, long chain fatty acids in the mouse mammary gland. P17, day 17 of pregnancy.



cell to be used for triglyceride synthesis. The process is

augmented by synthesis of dihydroxyacetone phosphate, a

precursor of glycerol-3-PO4, and fatty acids from glucose.

During fasting, if adipose stores are replete with fat, fatty

acids are transferred from adipose tissue bound to albumin

and are available for transport into the mammary alveolar cell.

Very low density lipoprotein (VLDL) from the liver also

transports fatty acids to the mammary gland; however, the

quantitative significance of this process is not well

understood. Under conditions of a low fat diet, the type

routinely encountered by lactating mice, at least under

laboratory conditions, glucose becomes a most important

substrate for both glycerol and fatty acid synthesis. In addition,

a massive increase in amino acid transport suggests that

certain amino acids could also enter the fatty acid synthetic

pathway via the citric acid cycle. Milk lipid content data from

cows infused with extra methionine support this notion [83].

The expression of several key enzymes for fatty acid synthesis

is altered at the mRNA level at secretory activation, suppor-

ting the increased formation of fatty acids for triglyceride

synthesis [84]. Notably, these findings are supported by a

secondary analysis of data from a similar time course study by

Stein and colleagues [55]. First, glucose-6-PO4 isomerase is

downregulated (Figure 5b) and the enzymes for substrate

entry into the pentose phosphate shunt are upregulated such

that glucose-6-PO4 is shunted toward NADPH production,

an essential reducing agent required for fatty acid synthesis.

In early biochemical studies the increased activity of the

pentose phosphate shunt at the onset of lactation was found

to be a major contributor to increased lipogenesis at the

onset of lactation [85]. As stated above, the presence of HKII

may contribute to this increase. Second, a special form of

aldolase, aldolase C, is upregulated to facilitate glycerol

formation, similar to the myelinating brain. Expression of this

gene product has been shown to be PRL sensitive [86].

Third, at least a portion of mitochondrial activity is subverted

by the continued high expression of both pyruvate

carboxylase and pyruvate dehydrogenase, leading to the

synthesis of large quantities of citrate, which is then exported

to the cytoplasm by the mitochondrial citrate transporter,

whose expression is also significantly upregulated

(Figure 5b). Fourth, increased expression of ATP citrate lyase

(Figure 5b) facilitates the formation of acetyl CoA, used both

for malonyl CoA synthesis and in the so-called malate shuttle,

which leads to additional production of NADPH. Fifth,

malonyl-CoA is utilized by fatty acid synthase in a sequence

of seven reactions, each requiring two molecules of NADPH

to produce fatty acids [87]. Finally, many of the genes that

determine the nature of the fatty acids in the triglyceride are

upregulated in the mouse mammary gland at secretory

activation, including the sterol CoA dehydrogenase (SCD)

types 1 and 2, the ∆5 desaturase, and elongase (Figure 5c,d)

[84].

Breast Cancer Research    Vol 9 No 1 Anderson et al.

Page 8 of 14
(page number not for citation purposes)

Figure 6

Sources of substrate for milk lipid synthesis. The substrate for triacylglycerol synthesis depends on plasma sources of substrate. In the high fat fed
animal, such as the usual lactating women who consumes up to 40% of her calories as lipid, fatty acids and glycerol for the synthesis of milk
triglycerides (TAGs) originate in the chylomicra and very low density lipoprotein (VLDL) of the liver, whereas only about 10% of TAGs are derived
from glucose. During a fasting state, fatty acids continue to be derived from the plasma, but now are transported to the mammary gland directly
from the adipose tissue bound to albumin or indirectly as VLDL derived from the liver. In the animal fed a low fat diet, such as the laboratory mouse
on the usual chow, a much larger proportion of the fatty acids for TAG synthesis are derived from glucose via the fatty acid synthetic pathways
shown in Figure 4. BM, basement membrane; DHAP, dihydroxyacetone phosphate; ER, endoplasmic reticulum; FA, fatty acid; FABP, fatty acid
binding protein; GLUT, glucose transporter; LPL, lipoprotein lipase.



Many of these same genes have been found to be down-

regulated in other tissues in response to high fat diets [88]. In

particular, those genes that responded to a high fat diet in the

mammary gland include citrate synthase, the citrate

transporter, ATP citrate lyase, malic enzyme and SCD 1 and

2; their profiles are shown in Figure 5b,c. As we shall see

below, the transcription factor SREBP1c is an important

regulator of this effect.

A study by Naylor and colleagues [21] employed three

different mouse models that each exhibit failed lactation

(PRLR-/- mice, Galanin-/- mice, and mice treated with a

phosphomemic mutant of PRL (S179D), which inhibits

lactogenesis and lactation), and identified 35 probe sets

whose expression was altered in all three models. Consistent

with our contention that regulation of lipid synthesis is an

important part of secretory activation, a number of lipid

synthesis genes were downregulated in this study, including

ATP citrate lyase, aldolase C, SCD2, and an elongase, Elov5,

suggesting that these genes are very sensitive to the lactation

state of the animals, as might have been predicted from

studies of their activation during the onset of lactation.

Regulation of lipid biosynthesis in the
mammary gland: a central role for SREPB1?
Figure 7 shows the expression of a number of genes known

to be involved in the regulation of lipid synthesis in liver,

adipose tissue and the mammary gland. Two expression

patterns emerge. Several factors, shown by the dotted lines

in Figure 7, are downregulated up to ten-fold or more during

pregnancy, consistent with the pattern of expression of

adipocyte genes shown in Figure 3. These include Akt2,

peroxisome-proliferator-activated receptor-gamma (PPAR-γ),

and liver X receptor-beta (LXR-β), all known to be involved in

regulation of lipid synthesis in adipose tissue. On the other

hand, Akt1, the long form of the PRLR, SREBP1, and a

protein thought to be important in the regulation of fatty acid

synthesis, SPOT 14 [89], are all significantly upregulated

between day 17 of pregnancy and day 2 of lactation. We

have shown that Akt1 is dramatically upregulated at both the

mRNA and protein levels during lactation [25,90] and have

previously described the lactation failure that occurs in

transgenic mice expressing constitutively activated myr-Akt1

in the mammary gland [25]. CLD formation occurs during

early pregnancy in these mice, and they produce milk with an

elevated lipid content (25% to 30% in normal FVB mice

versus 65% to 70% in the transgenic mice by creamatocrit, a

volume/volume method) [25]. Microarray studies comparing

myr-Akt1 transgenic mice to FVB control mice indicate that

expression of several key regulatory fatty acid biosynthetic

enzymes is elevated during pregnancy in these transgenic

mice, including SREBP1, Insig1, and Spot 14 (MC Rudolph,

MC Neville, and SM Anderson, unpublished data).

Real-time PCR measurements confirm the upregulation of

SREBP1 at the transition from pregnancy to lactation and

show that it is the SREBP1c form that is increased [84],

consistent with a role as a regulator of the expression of fatty

acid biosynthetic enzymes [22]. The SREBPs are shuttled by

the SREBP cleavage activating protein (SCAP), which binds

to them at the endoplasmic reticulum and escorts them to the

Golgi apparatus where they are proteolytically cleaved to

generate active transcription factors. The newly generated

fragment of SREBP1 is a member of the basic helix-loop-helix

transcription factor family capable of activating the

transcription of genes for the synthesis of fatty acids, while

SREBP2 activates cholesterol synthesis. SREBP1 is able to

activate its own transcription due to the presence of a sterol

response element in the promoter region of the gene

encoding SREBP1 [91,92]. Insig, an endoplasmic reticulum

resident binding protein for the SREPB1s also has a sterol

response element in its promoter; our finding that it is also

upregulated at secretory activation is additional evidence for

a role for SREBP1 at this time. The promoters for many of the

genes involved in fatty acid biosynthesis contain sterol

response elements in addition to binding sites for nuclear

factor (NF)-Y, upstream factor, specific factor (SP)1 and SP3

[93-98]. The exact roles of these transcription factors are not

understood but it is interesting to note that upstream factor 2

null mice have lowered production of milk that results in

diminished pup weight gain [99]. In these mice the fat

content of the milk is normal but the investigators observed a

reduction in mammary wet weight, epithelial alveolar luminal

area, expression of eukaryotic initiation factors 4E and 4G,

and decreased plasma oxytocin.
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Figure 7

Expression of regulatory genes during secretory differentiation and
activation. Dotted lines show genes that decrease at least ten-fold
during pregnancy, consistent with adipocyte localization. The solid
lines show genes that increase at least two-fold at the onset of
lactation with much smaller changes during pregnancy. These genes
are likely to be important in initiating metabolic changes at secretory
activation. LXR, liver X receptor; P17, day 17 of pregnancy; PPAR,
proliferator-activated receptor; PrlR, prolactin receptor; SREBP, sterol
regulatory element binding protein.



A potential role for regulation of SREBP by Akt was revealed

in a study that demonstrated activation of SREBP in cells

expressing activated Akt, resulting in the induction of 24

genes involved in sterol/fatty acid biosynthesis and a

statistically significant increase in saturated fatty acids in

these cells [100]. Akt-dependent induction of fatty acid

synthase, HMG-CoA synthase, and HMG-CoA reductase

required the presence of SREBPs since induction of gene

transcription was blocked by dominant negative mutants of

SREBPs or siRNAs directed against SREBP1a, SREBP1c or

SREBP2 [100]. Furthermore, we have observed that expres-

sion of SREBP is upregulated in the mammary glands of myr-

Akt1 mice (MC Rudolph, MC Neville, and SM Anderson,

unpublished data).

A mechanism by which Akt might regulate activation of

SREBPs has been suggested by the recent work of

Sundqvist and colleagues [101], who demonstrated that

degradation of SREBP is regulated by phosphorylation of

Thr426 and Ser430. These phosphorylation sites serve as

recognition motifs for the binding of the SCFFbw7 ubiquitin

ligase. Binding of SCFFbw7 to SREBP enhances the

ubiquitination and degradation of SREBP [101]; thus, phos-

phorylation of SREBP results in the negative regulation of

SREBP transcriptional activity, and the downregulation of

SREBP-dependent genes. Phosphorylation of Thr426 and

Ser430 is mediated by glycogen synthase kinse (GSK)-3

[101]; the link to Akt is provided by the fact that GSK-3 is the

first known substrate of Akt, and phosphorylation of it by Akt

inhibits its catalytic activity [102]. Therefore, expression of

activated Akt in cells should inhibit the catalytic activity of

GSK-3, leading to a decrease in the phosphorylation of

SREBP by it and a decrease in the resulting degradation of

SREBP; all of these changes should result in the increased

transcription of SREBP-dependent genes, as has been

observed in vitro [100]. Our model proposes that Akt plays a

similar function in the in vivo mammary gland, acting as a

major regulator of fatty acid synthesis at the onset of lactation

by stabilizing SREBPs (Figure 8).

A recent study by Boxer and colleagues [103] indicated that

Akt1-/- mice, but not Akt2-/- mice, exhibit lactation failure. The

absence of Akt1 specifically resulted in a decrease in GLUT1

associated with the baso-lateral surface of mammary

epithelial cells during lactation [103]. Milk protein RNA and

proteins appeared to be the same in both wild-type and

Akt1-/- mice, although there was a marked reduction in total

milk volume. Microarray and quantitative RT-PCR analysis

revealed decreased expression of RNA for stearoyl-CoA

desaturase-2 and stearoyl-CoA desaturase-3 in the mammary

glands of Akt1-/- mice compared to wild-type control mice,

and an increase in diacylglycerol acyltransferase (DGAT)2

expression [103]. No changes in SREBP1a or SREBP1c

expression were detected [103]. These authors note that

ATP citrate lyase is an Akt substrate [104] and observed that

phosphorylation of ATP citrate lyase was decreased in the

Akt1-/- mice. Boxer and colleagues suggest that the

decreased phosphorylation results in a lower catalytic activity

of ATP citrate lyase to hydrolyze citrate to oxaloacetate and

acetyl-CoA; however, it has not been established that

phosphorylation of ATP citrate lyase by Akt has any effect

upon its catalytic activity [104]. We note in Figure 3 that a

decrease in the expression of genes involved in the β-

oxidation of fatty acids occurred at secretory activation, and

Boxer and colleagues noted that this decrease did not occur

in the Akt1-/- mice, suggesting that the failure to suppress

transcription of these genes could result in the increased

degradation of lipid at the same time that mammary epithelial

cells were synthesizing fatty acids for inclusion in the milk

[103]. The results of Boxer and colleagues [103] clearly

provide support for Akt1 playing an important role in

regulating glucose transport and at least some aspects of

lipid biosynthesis in mammary epithelial cells.

Future questions and conclusions
In characterizing mammary gland differentiation and lactation,

most investigators have focused upon the synthesis of milk

proteins, particularly the caseins, since they form a well-

defined set of molecules that can be readily examined at

either the RNA or protein level. Indeed, analysis of expression

of genes such as those encoding caseins and WAP led to

the discovery of the PRLR/JAK2/STAT5 signaling pathway

that regulates their expression. However, expression of these

genes is increased more during pregnancy than at the onset

of lactation. It should be clear from the information presented

in this review that the expression of another set of genes, a

set that includes genes for the enzymes of lipid and

cholesterol synthesis, glucose transport, and synthesis of

lactose, must be under a different type of regulation since

expression is increased only at secretory activation. We

suggest a model by which PRL-induced activation of the

PRLR in the absence of progesterone results in a dramatic

increase in the activation of Akt, which in turn activates a

number of milk synthetic programs, including activation and

stabilization of nuclear SREBP1c (Figure 8), resulting in the

increased expression of lipid biosynthetic enzymes. SREBP1c

may be upregulated by a significant increase in demand for

fatty acids at the onset of lactation, a demand that is not met

by the normal low fat chow (8% of calories as fat) fed to

mice. Thus, many of its downstream genes were down-

regulated in response to a high fat diet (40% of calories as

fat) [84]. A recent study shows a response to lipid feeding in

cows that is consistent with this interpretation [105]. It is not

clear whether PRL directly regulates expression of SREBP1

during secretory activation, or whether other factors such as

IGF-I contribute to this process. Although it does not appear

in the model shown in Figure 8, it will be important to

determine the role of Spot 14 in regulating lipid biosynthesis;

Spot 14 knockout mice exhibit a lactation defect and the milk

of these mice have less triglyceride, apparently resulting from

reduced de novo lipid synthesis [106]. Whether Spot 14 and

SREBP independently regulate different aspects of lipid
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biosynthesis or whether crosstalk exists between these

molecules remains to be examined.

PRL also stimulates the expression of GLUT1, and it may

stimulate the translocation of GLUT1 to various intracellular

compartments that support importation of glucose and the

subsequent synthesis of lactose. In transformed cells, Akt1

appears to stimulate translocation of GLUT1 to the plasma

membrane [107,108]; however, there is currently no indica-

tion of what signaling molecules regulate the translocation of

GLUT1 to the baso-lateral surface of mammary epithelial cells

and to the Golgi at secretory activation. While Akt1 could

control the translocation of GLUT1 to both of these cellular

locations, it is likely that other molecules, for example, IGF-1,

contribute to the differential translocation of GLUT1.

In our model, Stat5 regulates expression of milk protein

genes and Elf5 may do the same. Akt1 does not influence the

expression of the milk protein genes; however, we believe

that it could influence the translation of these genes and

possibly other lactose synthesis genes during lactation

through known substrates for mTOR and S6 kinase that lie

downstream of Akt1 (Figure 8). Such effects might account

for the reduction in total milk synthesis in the Akt null mouse

[103]. A nice experiment here could be to examine the effect

of Akt1 upon the loading of RNAs for milk proteins into

polysomes using the tetracycline-regulated expression of Akt1.

Our model predicts profound defects in lipid biosynthesis in

mammary epithelial cells from Akt1 null mice in the presence of

normal milk protein expression, a prediction that is consistent

with the recent analysis of lactation defects in the Akt1

knockout mouse [103]. While the analysis of these mice has

confirmed a significant role for Akt in milk lipid synthesis, many

questions remain, including how progesterone downregulates

milk synthesis during pregnancy, how diet and Spot 14

contribute to the regulation of lipid biosynthesis, how other

growth factors such as IGF-1 modulate secretory activation,

and how glucocorticoids contribute to the regulation of lipid

synthetic enzymes. Clearly, there is still much work to be done.
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