
KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks

Michael Schwarz∗, Moritz Lipp∗, Daniel Gruss∗, Samuel Weiser∗,
Clémentine Maurice†, Raphael Spreitzer∗, Stefan Mangard∗

{michael.schwarz, moritz.lipp, daniel.gruss, samuel.weiser, raphael.spreitzer, stefan.mangard}@iaik.tugraz.at
clementine.maurice@irisa.fr

∗Graz University of Technology, Austria †Univ Rennes, CNRS, IRISA, France

Abstract—Besides cryptographic secrets, software-based side-
channel attacks also leak sensitive user input. The most accurate
attacks exploit cache timings or interrupt information to monitor
keystroke timings and subsequently infer typed words and sen-
tences. These attacks have also been demonstrated in JavaScript
embedded in websites by a remote attacker. We extend the state-
of-the-art with a new interrupt-based attack and the first Prime+
Probe attack on kernel interrupt handlers. Previously proposed
countermeasures fail to prevent software-based keystroke timing
attacks as they do not protect keystroke processing through the
entire software stack.

We close this gap with KeyDrown, a new defense mechanism
against software-based keystroke timing attacks. KeyDrown in-
jects a large number of fake keystrokes in the kernel, making the
keystroke interrupt density uniform over time, i.e., independent
of the real keystrokes. All keystrokes, including fake keystrokes,
are carefully propagated through the shared library to make
them indistinguishable by exploiting the specific properties of
software-based side channels. We show that attackers cannot
distinguish fake keystrokes from real keystrokes anymore and
we evaluate KeyDrown on a commodity notebook as well as on
Android smartphones. We show that KeyDrown eliminates any
advantage an attacker can gain from using software-based side-
channel attacks.

I. INTRODUCTION

Modern computer systems leak sensitive user information
through side channels. Among software-based side channels,
information can leak, for example, from the system or mi-
croarchitectural components such as the CPU cache [12] or the
DRAM [43]. Historically, side-channel attacks have exploited
these information leaks to infer cryptographic secrets [31],
[41], [58], whereas more recent attacks even target keystroke
timings and sensitive user input directly [17], [40], [43].

In general, keystroke attacks aim to monitor when a key-
board input occurs, which either allows inferring user input

† During the work the author was affiliated with Graz University of
Technology, Austria

directly or launching follow-up attacks [50], [60]. In particular,
mobile devices may expose this information through sensor
data, but practical mitigations [48] have already been proposed.
Furthermore, restrictions (on the procfs) have already been
implemented in Android O [14], [25] and are likely to be up-
streamed to the main Linux kernel. Consequently, attackers are
left with side channels to obtain keystroke timings. Especially
microarchitectural attacks allow monitoring memory accesses
with a granularity of single cache lines, and thus also allow
recovering keystroke timings with a high accuracy.

Keystroke timing attacks are hard to mitigate, compared
to side-channel attacks on cryptographic implementations. In-
deed, attacks on cryptographic implementations can be miti-
gated with changes in the algorithms, such as making execution
paths independent of secret data. On the contrary, user input
travels a long way, from the hardware interrupt through the
operating system and shared libraries up to the user space
application. In order to detect a keystroke, an attacker just
needs to probe a single spot in the keystroke path for activity.

In the general case, keystrokes are non-repeatable low-
frequency events, i.e., if the attacker misses a keystroke, there
is no way to repeat the measurement. However, an attacker
that explicitly targets a password field can record more timing
traces when the user enters the password again. While these
traces have variations in timing, due to the variance of the
typing behavior, it allows an attacker to combine multiple
traces and to perform a more sophisticated attack. This makes
attacks on password fields even harder to mitigate.

State-of-the art defense mechanisms [14], [25], [48] only
restrict access to the system interfaces providing interrupt
statistics [10], [60], and do not address all the layers involved
in keystroke processing. Therefore, these defenses do not
prevent all software-based keystroke timing attacks. We first
demonstrate two novel side-channel attacks to infer keystroke
timings, that work on systems where previous keystroke timing
attacks are mitigated [14], [25]. The first attack uses the
rdtsc instruction to determine the execution time of an
interrupt service routine (ISR), which is then used to determine
whether or not the interrupt was caused by the keyboard.
The second attack uses Multi-Prime+Probe on the kernel to
determine when a keystroke is being processed in the kernel.

Based on these investigations and state-of-the-art attacks,
we identify three essential requirements for successful elimi-
nation of keystroke timing attacks on the entire software stack.
In the presence of the countermeasure:

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23027
www.ndss-symposium.org

1) Any classifier based on a single-trace side-channel attack
may not provide any advantage over a random classifier.

2) The number of side-channel traces a classifier requires to
detect all keystrokes correctly must be impractically high.

3) The implementation of the countermeasure may not leak
information about its activity or computations.

Based on the identified requirements, we present
KeyDrown, a new defense mechanism against keystroke timing
attacks exploiting software-based side channels. KeyDrown
covers the entire software stack, from the interrupt source
to the user space buffer storing the keystroke, both on x86
systems and on ARM devices. We cover both the general case
where an attacker can only obtain a single trace, and the case
of password input where an attacker can obtain multiple traces.
KeyDrown works in three layers:

1) To mitigate interrupt-based attacks, KeyDrown injects a
large number of fake keyboard interrupts, making the
keystroke interrupt density uniform over time, i.e., inde-
pendent of the real keystrokes. Prime+Probe attacks on
the kernel module are mitigated by unifying the control
flow and data accesses of real and fake keystrokes such
that there is no difference visible in the cache or in the
execution time.

2) To mitigate Flush+Reload and Prime+Probe attacks on
shared libraries, KeyDrown runs through the same code
path in the shared library for all, fake and real, keystrokes.

3) To mitigate Prime+Probe attacks on password entry fields,
KeyDrown updates the widget buffer for every fake and
real keystroke.

We evaluate KeyDrown on several state-of-the-art attacks
as well as our two novel attacks. In all cases, KeyDrown
eliminates any advantage an attacker can gain from the side
channels, i.e., the attacker cannot deduce sensitive information
from the side channel.

We provide a proof-of-concept implementation, which can
be installed as a Debian package compatible with the lat-
est long-term support release of Ubuntu (16.04). It runs on
commodity operating systems with unmodified applications
and unmodified compilers. KeyDrown is started automatically
and is entirely transparent to the user, i.e., requires no user
interaction. Although our countermeasure inherently executes
more code than an unprotected system, it has no noticeable
effect on keystroke latency. Finally, we also define what
KeyDrown cannot protect against, such as word completion
lookups or immediate forwarding of single keystrokes over
the network.

Contributions. The contributions of this work are:

1) We present two novel attacks to recover keystroke tim-
ings, that work in environments where previous attacks
fail [14], [25].

2) We identify three essential requirements for an effective
countermeasure against keystroke attacks.

3) We propose KeyDrown, a multi-layered solution to miti-
gate keystroke timing attacks.1

4) We evaluate KeyDrown and show that it eliminates all
known attacks.

1The code and a demo video are available in a GitHub repository:
https://github.com/IAIK/keydrown.

Hardware

I/O APIC

redirection
table

1

2

Core #0

LAPIC

Core #1

LAPIC

IDT

3 4

ISR

5

6

Fig. 1. Linux interrupt handling on x86.

Outline. The remainder of the paper is organized as follows. In
Section II, we provide background information. In Section III,
we introduce our novel attacks and define requirements a
defense mechanism has to provide to successfully mitigate at-
tacks. In Section IV, we describe the three layers of KeyDrown.
In Section V, we demonstrate that KeyDrown successfully
mitigates keystroke timing attacks. In Section VI, we discuss
limitations and future work. We conclude in Section VII.

II. BACKGROUND

In this section, we provide background information on
interrupt handling as well as on software-based side channels
that leak keystroke timing information.

A. Linux Interrupt Handling

Interrupt handling is one of the low-level tasks of an
operating system and thus highly architecture and machine
dependent. This section covers the general design of how
interrupts and their handling within the Linux kernel work on
both x86 PCs and ARMv7 smartphones.

1) Interrupts on x86 and x86 64: Figure 1 shows a high-
level overview of interrupt handling on a dual-core x86 CPU.
Interrupts are handled by the Advanced Programmable In-
terrupt Controller (APIC) [22]. The APIC receives interrupts
from different sources: locally and externally connected I/O
devices, inter-processor interrupts, APIC internal interrupts,
performance monitoring interrupts, and thermal sensor inter-
rupts. On multi-core systems, every CPU core has a local APIC
(LAPIC) to handle interrupts. All LAPICs are connected to
one or more I/O APICs which handle the actual hardware
interrupts. The I/O APICs are part of the chipset and provide
multi-core interrupt management by distributing the interrupts
to the LAPICs as described in the ACPI system description
tables [37].

Interrupt-generating hardware, such as the keyboard, is
connected to an I/O APIC pin (1). The I/O APIC uses a
redirection table to redirect hardware interrupts and the raised
interrupt vector to the destination LAPIC (2) [21]. In the
case of multiple configured LAPICs for one interrupt, the I/O
APIC chooses a CPU based on task priorities in a round-robin
fashion [6].

The LAPIC receiving the interrupt vector fetches the corre-
sponding entry from the Interrupt Descriptor Table (IDT) (3)
which is set up by the operating system. The IDT contains an
offset to the Interrupt Service Routine (ISR) for every interrupt
vector. The CPU saves the current CPU flags and jumps to the
interrupt service routine (4) which then handles the interrupt.

2

https://github.com/IAIK/keydrown

Hardware

GIC

Distributor Core #0
interface

Core #1
interface

2

1

Core #0

Core #1

3

IVT

4

5

Interrupt
Handler

ISR

6

7

Fig. 2. Linux interrupt handling on ARM.

After processing, the interrupt service routine acknowl-
edges the interrupt by sending an end-of-interrupt (EOI) to
the LAPIC (5). It then returns using the iret instruction
to restore the CPU flags and to enable interrupts again. The
LAPIC forwards the EOI to the I/O APIC (6) which then
resets the interrupt line to enable the corresponding interrupt
again.

2) Interrupts on ARM: Figure 2 shows a high-level
overview of interrupt handling on a dual-core ARMv7 CPU.
On ARM, interrupts are handled by the General Interrupt
Controller (GIC). The GIC is divided into two parts, the
distributor, and a CPU interface for every CPU core [3]. Every
interrupt-generating device is connected to the distributor of
the GIC (1). The distributor (2) schedules between CPU
interfaces according to the interrupt’s affinity mask.

When a CPU interface receives an interrupt, it signals
it to the corresponding CPU core (3). The core reads the
interrupt number from the interrupt acknowledge register to
acknowledge it. If the interrupt was sent to multiple CPU
interfaces, all other CPU cores receive a spurious interrupt,
as there is no more pending interrupt.

When receiving an interrupt, the CPU finishes executing
the current instruction, switches to IRQ mode, and jumps to the
IRQ entry of the Interrupt Vector Table (IVT) (4). The IVT
contains exactly one instruction to jump to a handler function
(5). In this handler function, the OS branches to the Interrupt
Service Routine (ISR) corresponding to the interrupt number
(6).

When the CPU is done servicing the interrupt, it writes the
interrupt number to the End Of Interrupt register (7) to signal
that it is ready to receive this interrupt again [2].

B. Microarchitectural Attacks

CPU caches are a small and fast type of memory, buffering
frequently used data to speed-up subsequent accesses. There
are typically three levels of caches in modern x86 CPUs, and
two levels in modern ARM CPUs. The last-level cache is
typically shared across cores of the same CPU, which makes
it a target for cross-core side-channel attacks. On Intel x86
CPUs, the last-level cache is divided into one slice per core.
The smallest unit managed by a cache is a cache line (typically
64B). Modern caches are set-associative, i.e., multiple cache
lines are considered a set of equivalent storage locations. A
memory location maps to a cache set and slice based on the
physical address [20], [34], [59].

Flush+Reload. Flush+Reload [18], [58] is a technique that
allows an attacker to monitor a victim’s cache accesses at a
granularity of a single cache line. The attacker flushes a cache
line, lets the victim perform an operation, and then reloads and
times the access to the cache line. A low timing indicates that
the victim accessed the cache line. While very accurate, it can
only be performed on shared memory, i.e., shared libraries
or binary code. Flush+Reload can neither be performed on
dynamic buffers in a user program nor on code or data in the
kernel. Gruss et al. [17] presented cache template attacks as
a technique based on Flush+Reload to automatically find and
exploit cache-based leakage in programs.

Prime+Probe. Prime+Probe [31], [41], [42] is a technique
that allows an attacker to monitor a victim’s cache accesses at
a granularity of a cache set. The attacker primes a cache set,
i.e., fills the cache set with its own cache lines. It then lets the
victim perform an operation. Finally, it probes its own cache
lines i.e., measures the access time to them. This technique
does not require any shared memory between the attacker
and the victim, but it is difficult due to the mapping between
physical addresses and cache sets and slices. As Prime+Probe
only relies on measuring the latency of memory accesses, it can
be performed on any part of the software stack. It is possible to
perform Prime+Probe on dynamically generated data [30] as
well as kernel memory [41]. Preventing Prime+Probe attacks
is difficult due to the huge attack surface and the fact that
Prime+Probe uses only innocuous operations such as memory
accesses on legitimately allocated memory, as well as timing
measurements.

DRAMA. Besides the cache, the DRAM design also
introduces side channels [43], i.e., timing differences caused
by the DRAM row buffer. A DRAM bank contains a row
buffer caching an entire DRAM row (8KB). Requests to the
currently active row are served from this buffer, resulting in
a fast access, whereas other requests are significantly slower.
DRAM side-channel attacks do not require shared memory
and work across CPUs of the same machine sharing a DRAM
module.

C. Keystroke Timing Attacks

Keystrokes from Keystroke Timing. Keystroke timing
attacks attempt to recover what was typed by the user by
analyzing keystroke timing measurements. These timings show
characteristic patterns of the user, which depend on several
factors such as keystroke sequences on the level of single
letters, bigrams, syllables or words as well as keyboard layout
and typing experience [44]. Existing attacks train probabilistic
classifiers like hidden Markov models or neural networks
to infer known words or to reduce the password-guessing
complexity [49], [50], [60].

Most keystroke timing attacks exploit the inter-keystroke
timing, i.e., the timing difference between two keystrokes, but
according to Idrus et al. [19] combinations of key press and key
release events could also be exploited. Pinet et al. [44] report
inter-keystroke interval values between 160ms and 200ms for
skilled typists. Lee et al. [27] define the values depending on
whether a text sequence was trained or entered for the first
time, resulting in inter-keystroke intervals between 125ms and
215ms with a variance between 43ms and 106ms, again for
trained and untrained text sequences.

3

Keystroke Timing from Software. A direct software
side channel for keystroke timings is provided through OS
interfaces, such as instruction pointer and stack pointer in-
formation leaked through /proc/stat, and interrupt statis-
tics leaked through /proc/interrupts [60]. As the in-
struction pointer and stack pointer information became too
unpredictable, Jana and Shmatikov [23] showed that CPU
usage yields much more reliable information on keystroke
timings. Diao et al. [10] demonstrated high-precision keystroke
timing attacks based on /proc/interrupts. However,
these attacks are not possible anymore in Android O [14],
[25], as access to these resources has been restricted.

Vila et al. [53] recovered keystroke timings from timing
differences caused by the event queue in the Chrome browser.
Based on the native attack we present in Section III-B,
Lipp et al. [29] implemented the same attack in JavaScript.
They recovered keystroke timings and identified user-typed
URLs. They also showed that users can be distinguished based
on this attack.

Gruss et al. [17] demonstrated that Flush+Reload allows
distinguishing specific keys or groups of keys based on key-
dependent data accesses in shared libraries. Ristenpart et al.
[46] demonstrated a keystroke timing attack using Prime+
Probe with a false-negative rate of 5% while measuring 0.3
false positive keystrokes per second. Pessl et al. [43] showed
that it is possible to use DRAM attacks to monitor keystrokes,
e.g., in the address bar of Firefox. However, this attack only
works if the target application performs a massive amount of
memory accesses to thrash the cache reliably on its own.

III. KEYSTROKE TIMING ATTACKS & DEFENSES

Due to the amount of code executed for every keystroke,
there are many different side channels for keystroke timings. In
this section, we introduce our two novel attacks and compare
them to state-of-the-art keystroke timing attack vectors, in
order to understand the requirements for effective countermea-
sures. Finally, we derive three requirements for countermea-
sures to be effective against keystroke timing attacks.

The requirements are defined based on precision and recall
of side-channel attacks. The precision is the fraction of true
positive detected keystrokes in all detected keystrokes. If
the precision is low, the side channel yields too many false
positives to derive the correct keystroke timings. The recall
is the fraction of true positive detected keystrokes in all real
keystrokes. If the recall is low, i.e., the side channel misses
too many true positives, inter-keystroke timings are corrupted
too. A standard measure of accuracy is the F-score, i.e., the
geometric mean of precision and recall. An F-score of 1
describes a perfect side channel. An F-score of 0 describes
that a side channel provides no information at all.

Note that there is only a limited number of keystroke
time frames that can be reliably distinguished by an attacker,
due to the typing speed and the variance of inter-keystroke
timing (cf. Section II-C). A keystroke timing attack providing
nanosecond-accurate timestamps is actually only providing the
binary information in which time frames a keystroke occurred.
Hence, we can compare side-channel-based classifiers to bi-
nary decision classifiers for these time frames.

TABLE I. STATE-OF-THE-ART SOFTWARE-BASED KEYSTROKE
TIMING ATTACKS AND THEIR TARGETS.

Kernel Shared library User process
Interface-based 3 [10], [23], [60] 7 7
Timing-based 3 ours 7 7
Flush+Reload 7 3 [17] 7
Prime+Probe on L1 3 [46] 3 [46] 3 [46]
Prime+Probe on LLC 3 ours 3 ours 3 ours
DRAMA 7 7 3 [43]

An always-zero oracle which never detects any event has
an F-score of 0. An always-one oracle which “detects” an
event in every possible time frame, i.e., a large number of
false positives, no false negatives, and no true negatives, is a
channel which provides zero information. Similarly, a random-
guessing oracle, which decides for every possible time frame
whether it “detects” an event based on an apriori probability,
also provides zero information. For 8 keystrokes and 100
possible time frames per second, the F-score for the always-
one oracle is 0.15 which is strictly better than the F-score
of the random-guessing oracle (0.14). An attacker relying on
any side-channel-based classifier with a lower F-score could
achieve better results by simply using an always-one oracle,
i.e., in such a case it would not make sense to use the side-
channel-based classifier in the first place. In the remainder of
the paper, we assume that an attacker wants to find the real 8
keystrokes in 100 possible time frames per second.

This attack model does not have the concept of processes
or windows. Indeed, this is an accurate representation, as
side-channel attacks on keystroke timings are system-wide
attacks on shared code, cache sets, or other shared parts of the
microarchitecture. This makes them very powerful but also
provides us a means to defeat them, i.e., an attacker cannot
distinguish real keyboard input in one process or window from
fake keyboard input in another process or window.

A. Keystroke Timing Attack Surface

Keystroke processing involves computations on all levels of
the software stack. Hence, targeted solutions like Cloak cannot
provide complete protection in this case [15]. The keyboard
interrupt is handled by one of the CPU cores, which interrupts
the currently executed thread. A significant amount of code
is executed in the operating system kernel and the keyboard
driver until the preprocessed keystroke event is handed over to
a user space shared library that is part of the user interface.
The shared library distributes the keystroke event to all user
interface elements listening for the event. Finally, the shared
library hands over the keyboard input to the active user
space process which further processes the input, e.g., store
a password character in a buffer. This abundance of code and
data that is executed and accessed upon a keystroke provides
a multitude of possibilities to measure keystroke timings.

B. New Attack Vectors

Software side channels through procfs interfaces can be
mitigated by restricting access to them [10], [60]. However,
such restrictions do not prevent keystroke timing attacks. We
demonstrate two new attacks to infer keystroke timings: the
first one exploits interrupt timings to detect keystrokes, and the
second one relies on Prime+Probe to attack a kernel module.
Table I compares the novel attacks we describe in the following

4

Algorithm 1: Recording interrupt timing
for i ∈ {1, . . . , N} do

tsc[i]← rdtsc();
if tsc[i]− tsc[i− 1] > threshold then

events[i]← tsc[i];
diff [i]← tsc[i]− tsc[i− 1];

1.01 1.02 1.03 1.04 1.05

·1011

0

100k

200k

g \n

d i 1 3s x a m n 2 \n

Time [cycles]

D
el

ta
[c

yc
le

s]

Fig. 3. Measured delta between continuous rdtsc calls while entering a
password. Keystroke events interrupt the attacker and thus cause higher deltas.
Background color illustrates the keystroke ground truth. Periodic interrupts at
1.025 and 1.049 have a different interruption time.

with the state-of-the-art attack vectors (cf. Section II-C) in
terms of attack techniques and the exploited attack surface.

Low-Requirement Interrupt Timing Attack. We propose
a new timing-based attack that only requires unprivileged sand-
boxed code execution on the targeted platform and an accurate
timing source, e.g., the rdtsc instruction or a counter thread.
The basic idea is to monitor differences in the execution
time of acquiring high-precision time stamps, e.g., the rdtsc
instruction, as outlined in Algorithm 1. While small differences
between successive time stamps allow us to infer the CPU
utilization, larger differences indicate that the measurement
process was interrupted. In particular, I/O events like keyboard
interrupts lead to clearly visible peaks in the execution time,
due to the interaction of the keyboard ISR with hardware and
the subsequent processing of keystrokes. Modern operating
systems have core affinities for interrupts, which generally do
not change until the system is rebooted, and core affinities for
threads. Hence, once a thread runs on the core for the keyboard
interrupt, it will continuously be interrupted by every keyboard
interrupt, making this attack surprisingly reliable. By starting
multiple threads an attacker can first run on all cores and after
detecting which thread receives keyboard interrupts, terminate
all threads but the one that is running on the right core.

Note that this attack does not benefit at all from attacker
process and victim process running on the same core. The
keyboard interrupt is scheduled based on its core affinity and
not based on the core affinity of any victim thread. Hence, the
attack works best if the attacker has a lot of computation time
on the interrupt-handling core, but not the victim core.

Figure 3 illustrates these observations in a timing trace
recorded while the user was typing a password. The bars
indicate actual keystroke events, which almost perfectly match
certain measurement points. Based on this plot, we can clearly
distinguish keyboard interrupts (around 60 000 cycles) from
other interrupts. For example, rescheduling interrupts can be
observed with a difference of about 155 000 cycles. In this
attack, we achieve a precision of 0.89 and a recall of 1,
resulting in an F-score of 0.94, which means a significant
advantage over an always-one oracle of +537.4%.

0 0.5 1 1.5 2 2.5

·1010

0

2

4

Runtime [cycles]

A
ct

iv
e

ca
ch

e
se

ts

Fig. 4. Multi-Prime+Probe attack on password input. Keystrokes cause higher
activity in more cache sets. Background color illustrates the keystroke ground
truth.

In our attack, we targeted the laptop keyboard of a Lenovo
ThinkPad T460s (i.e., a PS/2 keyboard), and touchscreens of
multiple smartphones (cf. Appendix). The attack might not
work on USB keyboards, as they are typically configured for
polling instead of interrupts. However, the defense mechanism
we present in Section IV protects USB keyboards as well.

A preliminary version of our attack was the basis for an
implementation without rdtsc in JavaScript embedded in
websites [29]. The authors used this attack to detect the URL
typed by the user with a high accuracy and even distinguish
different users typing on the same machine. Showing that the
attack even works in this much more constrained environment
underlines the practicality of our attack. It is not influenced by
foreground, background, or sandboxed operation.

Multi-Prime+Probe Attack on the Kernel. Our second
attack relies on Prime+Probe to attack the keyboard interrupt
handler within the kernel. More specifically, we target the code
in the keyboard interrupt handler that is executed each time a
key is pressed. Thereby, keystroke events can be inferred by
observing cache activity in the cache set used by the keyboard
interrupt handler.

To find the cache sets that are accessed by the keyboard
interrupt handler, we first need to find the physical addresses
where the code is located. We can use the TSX-based side
channel by Jang et al. [24] to locate the code within the kernel.
Kernel Address-Space-Layout Randomization was not enabled
by default until Ubuntu 16.10. Thus, an attacker can also
just use known physical addresses from an attacker-controlled
system.

To reduce the influence of system noise, we developed a
new form of Prime+Probe attack called Multi-Prime+Probe.
Multi-Prime+Probe combines the information from multiple
simultaneous Prime+Probe attacks on different addresses. Fig-
ure 4 shows the result of such a Multi-Prime+Probe attack on
the keyboard interrupt handler. In a post-processing step, we
smoothed the Multi-Prime+Probe trace with a 500 µs sliding
window. The keystroke events cause higher activity in the
targeted cache sets and thus produce clearly recognizable peaks
for every key event. Despite doubts that such an attack can be
mounted [16], our attack is the first highly accurate keystroke
timing attack based on Prime+Probe on the last-level cache.
More specifically, we achieve a precision of 0.71 and a recall
of 0.92, resulting in an F-score of 0.81, which is significantly
better than state-of-the-art Prime+Probe attacks.

5

C. Requirements for Elimination of Keystroke Timing Attacks

As demonstrated in the previous section, we are able to
craft new attacks with fewer requirements than state-of-the-
art attacks. Hence, countermeasures against keystroke timing
attacks must be designed in a generic way, in all affected layers
of the software stack, covering known and unknown attacks.

Attack Model. We assume that an attacker can run an
unprivileged program on the target machine, with a recently
updated system. As sensor-based attacks [7] are already ad-
dressed in [48], and Android O [14], [25] also mitigates various
procfs attacks, we consider them out of scope for this paper.

The attacker is able to continuously monitor a side channel
to obtain traces for all user input. We assume the (hypothetical)
countermeasure against keystroke timing attacks was already
installed when the attacker gained unprivileged access to the
machine. Consequently, the attacker cannot obtain keystroke
timing templates and thus cannot perform a template attack.

We assume that an attacker can generally obtain only a
single trace for any user input sequence, but multiple traces
for password input. In contrast to side-channel attacks on
algorithms, which can be repeated multiple times, user input
sequences are generally not (automatically) repeatable, and
thus an attacker cannot obtain multiple traces. An exception
are phrases that are repeatedly entered in the same way, such as
login credentials and especially passwords. A countermeasure
must address both cases.

To effectively eliminate keystroke timing attacks, we iden-
tify the 3 following requirements a countermeasure must fulfill.

R1: Minimize Side Channel Accuracy. As user in-
put sequences are in general not (automatically) repeatable,
keystroke timing attacks require a high precision and high
recall to succeed. To be effective, a countermeasure must
reduce the F-score enough so that the attacker does not gain
any advantage from using the side channel over an always-
one oracle. More specifically, the F-score of the side-channel
based classifier may not be above the F-score of the always-
one oracle (0.15). Ristenpart et al. [46] reported a false-
negative rate of 5% with 0.3 false positives per second. At an
average typing speed for a skilled typist of 8 keystrokes per
second [44], the F-score is thus 0.96, which is an advantage
over an always-one oracle of +545.3%. Gruss et al. [16], [17]
reported false-negative rates ≤ 8% with no false positives,
resulting in an F-score of > 0.96, which is an advantage
over an always-one oracle of +546.9%. Thus, we assume a
countermeasure is effective if it reduces the F-score of side
channels significantly, such that using the side channel gives
an advantage over an always-one oracle of ≤0.0%.

R2: Reduction of Statistical Characteristics in Password
Input. In the case of a password input, we assume that an
attacker can combine information from multiple traces, i.e.,
exploit statistical characteristics. A countermeasure is effective
if the attacker requires an impractical number of traces to reach
the F-score of state-of-the-art attacks, i.e., higher than 0.95.

Specifically, if the side-channel attack requires more traces
than can be practically obtained, we consider the side-channel
attack not practical. Studies [8], [9], [11], [47], [54] estimate
that most users have 1–5 different passwords and enter 5

Kernel

Real key Fake key

/dev/input/event*

Library
libgtk / libinput

Widget Hidden
Window

Application
Window

Fig. 5. Multi-layered design of KeyDrown.

passwords per day on average. It is also estimated that 56%
of users change their password at least once every 6 months.
Thus, even if we assume that we attack a user with a single
password that is entered 5 times per day, the expected number
of measurement traces that an attacker is able to gather after
6 months is 913. Assuming that attackers might come up with
new side-channel attacks, a generous security margin must be
applied. We consider a countermeasure effective if it requires
more than 1825 traces, i.e., traces for a whole year, to reach
an F-score of 0.95.

R3: Implementation Security. R1 and R2 define how the
countermeasure must be designed to be effective. However,
the implementation itself can indirectly violate R1 or R2
by leaking side-channel information on computations of the
countermeasure itself. Consequently, an attacker may be able
to filter the true positive keystrokes. We thus require that the
countermeasure may not have distinguishable code paths or
data access patterns to guarantee that it is free from leakage.

If the implementation does not leak by itself, an at-
tacker is only left with the low F-scores from R1 and R2.
If all requirements are met, classical password recovery at-
tacks like brute force and more sophisticated attacks using
Markov n-grams [33], [38], probabilistic context-free gram-
mars (PCFG) [52], [55], or neural networks [36], are more
practical than a side-channel attack in the presence of the
countermeasure.

In the following section, we describe the design of a
countermeasure that fulfills all three requirements.

IV. KeyDrown MULTI-LAYER DESIGN

We designed KeyDrown as a multi-layered countermea-
sure.2 Each layer builds up on the layer beneath and adds addi-
tional protection. Figure 5 shows how the layers are connected
to each other. The first layer implements a protection mecha-
nism against interrupt-based attacks and timing-based attacks
by artificially injecting interrupts. Any real keyboard interrupt
only replaces one fake keyboard interrupt within a multitude of
fake interrupts, i.e., it perfectly blends in the stream of random
fake keyboard interrupts. The implementation ensures that it
makes the keystroke interrupt density uniform over time and
thus, independent of the real interrupts. Figuratively speaking,
plotting the number of keystroke interrupts over time will yield
a line which has no deviations at the points in time where real
keystrokes occur.

2The code and a demo video are available in a GitHub repository:
https://github.com/keydrown/keydrown.

6

https://github.com/keydrown/keydrown

Hook IRQStart timer

Eventis real? Inject IRQ

Inject timer interrupt

Randomly delay ISR

Fetch IRQ handler

Send eventRestart timer

TimerIRQ

Yes

N
o

Fig. 6. General flowchart of the kernel module.

KeyDrown exploits that keystroke timing side channels
do not provide the information which process or window is
receiving the keystroke. These side channels are system-wide
attacks on shared code, shared cache sets, or other shared
parts of the microarchitecture. While this makes them very
powerful (cross-core, cross-user attacks), it is also the basis
for our defense mechanism. An attacker cannot distinguish real
keyboard input in one process or window from fake keyboard
input in another process or window. KeyDrown exploits this
technicality and sends the fake keyboard input through the
entire software stack into a special process and window. All
keystrokes, i.e., real keystrokes and fake keystrokes, are passed
to the library in a way which is indistinguishable for an
attacker. The only difference is the key code value as well as
the target process and window, which both cannot be obtained
in keystroke timing side channels.

The second layer protects the library handling the user
input against Flush+Reload attacks, including cache template
attacks, and Prime+Probe attacks. For every keystroke event
received from the kernel, a random keystroke is sent to a
hidden window. The library cannot distinguish between real
and fake keystrokes and thus both have the same execution
path. Note that this also triggers screen redraw events, hence,
the screen-redraw interrupt side channel is also covered by
KeyDrown.

In the third layer, the actual password entry field is pro-
tected against Prime+Probe attacks by accessing the underlying
buffer whenever a real or a fake keystroke is received.

Combining the three layers, the system-wide set of cache
lines that are touched by the code paths through the entire
software stack for real and fake keystrokes, are identical. As
there is no difference, this voids any advantage an attacker
could have gained from a cache side channel.

A. First Layer

Basic Concept. Figure 6 shows the program flow for the
kernel part of KeyDrown for both x86 and ARM. We use a non-
periodic one-shot timer interrupt with a random delay to inject
a fake keystroke.3 This leads to a uniform random distribution
of keystrokes over time.

The kernel module handles two types of events: Hardware
interrupts from the input device, and the timer interrupts. If the

3Timer interrupts are often known as periodic interrupts triggering reg-
ular operations, e.g., scheduling. However, on modern systems there are
significantly more features to timer interrupts, such as non-periodic one-shot
timers [22]. One-shot timers are architectural features that can be used through
legitimate kernel interfaces and have no side effects on any system timers.

do_IRQ() handle_irq()
generic_handle_\
irq_desc()

handle_irq()
IRQ 0x31 / 362

handle_irq()
IRQ n

...

i8042_interrupt()
irq_touch_handler()

Hook

serio_interrupt()
input_*()

KeyDrown
fetch

INT 0x31

msmgpio
interrupt 5

Fig. 7. Linux kernel module design for x86 and the Snapdragon SoC.
Snapdragon specific functions are marked in blue.

kernel module receives one of our timer interrupts, it injects
a keyboard interrupt. If it receives a keyboard interrupt, it
injects a non-periodic one-shot timer interrupt. Thus, for real
and fake keystrokes both interrupts occur. To minimize the
effect of the real keyboard interrupt on the interrupt density, the
upcoming non-periodic one-shot timer interrupt is canceled.
Note that the time between the fake keyboard interrupt and
the user pressing a key was also a random delay. KeyDrown
acts as if this random delay was planned for the fake keyboard
interrupt all along. That is, the real keyboard interrupt takes the
place of our fake keyboard interrupt. Hence, the real keyboard
interrupt has no additional influence on the keystroke interrupt
density function. This guarantees that overall, the keystroke
interrupt density remains uniform and real keystrokes cannot
be distinguished from fake keystrokes.

For the fake keystrokes, the kernel uses a typically unused
key value. The kernel does not have varying code paths and
data accesses based on the key value, hence, the same code
is executed for both real and fake keystrokes. In both cases,
the keystroke handler is delayed by a small random delay to
hide timing differences from interrupt runtimes. Finally, all
keystrokes are passed to the library through the same data
structures (cf. Figure 5). Consequently, the attacker cannot use
a Prime+Probe or Multi-Prime+Probe attack on the kernel to
distinguish real and fake keystrokes.

Implementation Details. The first layer of KeyDrown is
implemented as a Linux kernel module that aims to prevent
interrupt-based attacks on keystrokes. We do not require a
custom kernel or any patches to the Linux kernel itself, but
only the Linux kernel header files for the running kernel. All
functionality is implemented in one generic kernel module
that can be loaded into any Linux kernel from version 3.4 to
4.10, the newest release at the time of writing. The interrupt
hardware and handling mechanism is compatible with all
personal computers; thus, there is no further limitation on PC
hardware or Linux distributions.

Figure 7 shows the implementation details of the KeyDrown
kernel module. The non-periodic one-shot timer interrupts
are implemented using the Linux platform-independent high-
resolution timer API [32]. On Linux, a driver can register
an interrupt handler for a specific interrupt which is called
whenever the CPU receives the interrupt. The interrupt service
routine do_IRQ calls the general handle_irq function
which subsequently calls generic_handle_irq_desc to
execute the correct handler for every interrupt. To receive all
hardware interrupts, we change the input device’s interrupt
handler to a function within our kernel module. Afterwards,

7

we forward the interrupt to the actual input device driver (i.e.,
i8042_interrupt on x86, and irq_touch_handler
on the Nexus 5 (ARM)). Every time the kernel receives one of
the non-periodic timer interrupts or a real hardware interrupt,
we restart the non-periodic timer with a new random delay to
maintain the uniform random distribution over time.

The kernel module triggers a hardware interrupt for every
non-periodic timer interrupt. On x86, we can simply execute
the int assembly instruction with the corresponding interrupt
number. This spurious keyboard interrupt travels up until the
point where the keyboard driver tries to read the scancode
from the hardware. As the driver does not execute the entire
i8042_interrupt function for spurious interrupts, we
access the remaining function to fetch it into the cache as if it
was executed. In contrast, for real keys, we access the code that
injects the keys to fetch it into the cache as if it was executed.
From an attacker’s point of view, there is no difference in cache
activity between a data fetch and a code fetch, i.e., a Prime+
Probe attack cannot determine the difference.

We inject a scancode of a typically unused key, such
as F16 or a Windows multimedia key using the standard
serio_interrupt interface. Thus, from this point on
the only difference between real and fake keystrokes is the
scancode. Finally, all scancodes are sent to the upper software
layers and run through the same execution path.

On the ARM platform, hardware interrupts and device
drivers are hardware dependent. We decided to implement our
proof-of-concept on the widespread Qualcomm Snapdragon
Mobile Station Modem (MSM) SoC [45].

ARM processors generally do not provide an assembly
instruction to generate arbitrary interrupts from supervisor
mode. Instead, we have to communicate with the interrupt
controller directly. The Snapdragon MSM SoC implements
its own intermediate I/O interrupt controller. All interrupt
generating hardware elements are connected to this interrupt
controller and not directly to the GIC. Therefore, if we want
to inject an interrupt, we write the interrupt state of the
touchscreen interrupt via memory mapped I/O registers to the
MSM I/O interrupt controller. The remaining execution path
is analogous to the x86 module. When the driver aborts due
to a spurious interrupt, we fetch the irq_touch_handler
to produce the same cache footprint as if it was executed. We
inject an out-of-bounds touch event using the input_event,
input_report_abs, and input_sync functions, which
is then handed to the upper layers.

B. Second Layer

Basic Concept. The second layer countermeasure ensures
that the control flow within the key-handling library is exactly
the same for both real and injected keystrokes. The fundamen-
tal idea of the second layer is that real and injected keystrokes
should have the same code paths and data accesses in the
library. We rely on the events injected in the first layer to
propagate them further through the key-handling library. The
injected keys sent by our first layer are valid, but typically
unused keys, thus they travel all the way up to the user space
to the receiving user space application. However, these unused
keys might not have the exact same path within the library.

Gruss et al. showed that an attacker can build cache tem-
plate attacks based on Flush+Reload [17] to detect keystrokes
and even distinguish groups of keys. This cache leakage
can also be measured with Multi-Prime+Probe. Both attacks
exploit the cache activity of certain functions that are only
called if a keystroke is handled, i.e., varying execution paths
and access patterns [17]. We mitigate these attacks by dupli-
cating every key event (cf. Figure 5) running through multiple
execution paths and access sequences simultaneously. The key
value of the duplicated key event is replaced by a random key
value, and the key event is sent to a hidden window. Hence, the
two key events, the real and the duplicated one, are processed
simultaneously by the remainder of the library and the two
applications. This introduces a significant amount of noise on
cache template attacks on the library layer.

The real key event at this point may still be a fake keystroke
from the kernel. However, we duplicate the key event in order
to trigger key value processing and key drawing in the library
and the hidden window for both fake and real keystrokes.
Consequently, we cannot distinguish real and fake keystrokes
on the library layer using a side channel anymore.

Implementation Details. One of the most popular user
interface libraries for Linux is GTK+ [57]. The GTK+ library
handles the user input for many desktop environments and is
included in most Linux distributions [51]. As we cannot hide
cache activity, we generate artificial cache activity for the same
cache lines that are active when handling real user inputs.

The kernel provides all events, such as keyboard inputs,
through the /dev/input/event* pseudo-files to the user
space. The X Window System uses these files to provide all
events to the GTK+ event queue.

On x86, the second layer is a standalone GTK+ application.
On system startup, we create a hidden window containing
a text field. The application uses poll to listen to the
/dev/input/event* interface to get notified whenever a
keyboard event occurs. This allows KeyDrown to have a very
low performance overhead, as the application is not using
CPU time as long as it is waiting inside the poll function.
Whenever we receive a keystroke event from the kernel, we
create an additional GTK+ keystroke event with a random key
that is associated with the text field of the hidden window.
For every keystroke — regardless of whether it is a printable
character or not — that comes from the kernel, the same path
is active within the library. Thus, an attacker cannot distinguish
an injected keystroke from a real keystroke anymore.

The second layer has no knowledge of an event’s source.
Thus, it cannot violate R3, as the information whether a
keystroke is real or injected is not present in the second layer.

On Android, the handling of input events is considerably
simpler. The injected events travel directly to the foreground
application without going to any non-Android library. Thus,
all events have exactly the same execution path, and it is
only necessary to drop our fake event immediately before
the registered touch event handler is called. To not leak any
information through the non-executed touch handler, we access
the cache lines in the same way as if the touch handler was
executed.

8

C. Third Layer

Basic Concept. While the first layer protects against
interrupt-based attacks and the second layer prevents attacks
on the library handling the user inputs, the buffer that stores the
actual secret is not protected and can still be monitored using
a Prime+Probe attack. The fake keystrokes sent by the kernel
are unused key codes, which do not have any effect on the
user interface element or the corresponding buffer. We mitigate
cache attacks on this layer by generating cache activity on
the cache lines that are used when the buffer is processed for
any key code received from the kernel. More specifically, we
access the buffer every time the library receives a keystroke
event from the kernel. This ensures that the buffer is cached
for both real and fake keystrokes.

An attacker who mounts a Flush+Reload attack against
the library, or a Prime+Probe attack directly on the buffer,
sees cache activity for both real and injected events. This
is also the case for cache template attacks, as the injected
events induce a significant amount of noise in both the profiling
and the exploitation phase. Therefore, the third layer protects
against attacks that are mounted against the Android keyboard
as shown by Lipp et al. [30], or Multi-Prime+Probe attacks
directly on the input field buffer (cf. Section III-B).

Implementation Details. In GTK+, the GtkEntry widget
implements the GtkEditable interface, which describes a
text-editing widget, used as a single-line text and password
entry field. By setting its visibility flag, entered characters are
shown as a symbol and, thus, hidden from the viewer.

Implementing the countermeasure directly in the GTK+
library would require rebuilding the library and all of its de-
pendencies. As this is highly impractical, we chose a different
approach: LD_PRELOAD allows listing shared objects that are
loaded before other shared objects on the execution of the
program [28]. By using this environment variable, we can
overwrite the gtk_entry_new function that is called when
a new object of GtkEntry should be created. In our own
implementation, we register a key press event handler for the
new entry field. This event handler is called on both real and
injected keys and accesses the underlying buffer.

On Android, the basic concept is the same. It is, however,
implemented as part of the keyboard and not the library. The
keyboard relies on the inotifyd command to detect touch
events provided by the kernel. If a password entry field is
focused, the keyboard accesses the password entry buffer on
every touch event by calling the key handling function with a
dummy key. This ensures that both the buffer as well as the
keyboard’s key handling functions are active for every event.

V. EVALUATION

We evaluate KeyDrown with respect to the requirements
R1, R2, R3 as well as discuss the performance of our imple-
mentation. We evaluate the x86 version of KeyDrown on a
Lenovo ThinkPad T460s (Intel Core i5-6200U) and the ARM
version on both an LG Nexus 5 (ARMv7) and a OnePlus
3T (ARMv8). A large comparison table can be found in the
appendix. As the results are very similar for all architectures,
we provide the results for the LG Nexus 5 (ARMv7) and
the OnePlus 3T (ARMv8) in the appendix. We evaluate four

TABLE II. OVERVIEW WHICH ATTACKS WORK (), PARTLY WORK ()
AND DO NOT WORK () WITH ENABLED (3) AND DISABLED (7) KeyDrown.

Android < 8 Android ≥ 8 Linux
KeyDrown 7 3 7 3 7 3

Interface-based [10], [23], [60]
Interrupt-based (rdtsc, [53])

Prime+Probe on L1 [46]
Prime+Probe on LLC

Multi-Prime+Probe
Flush+Reload [17]

DRAMA [43]

different side channels with and without KeyDrown: procfs,
rdtsc, Flush+Reload (including cache template attacks), and
Prime+Probe on the last-level cache. We discuss Prime+Probe
attacks on the L1 cache and DRAMA side-channel attacks.
Table II gives an overview of all known and new attacks and
whether KeyDrown prevents them.

To evaluate KeyDrown, we chose a uniform key-injection
interval [0ms, 20ms]. Note that this is not a constant interrupt
rate but quite the opposite. Any real keystroke replaces the
currently scheduled key injection. Real keystrokes are much
rarer and when splitting time into 20ms intervals, the distri-
bution of real keystrokes in these 20ms intervals is uniform,
identical to the uniform distribution of our key-injection delay.
Hence, based on the time a keystroke arrives there is no side
channel leaking whether it was a fake one, or a real one. This
leads to a uniform interrupt density function with 100 events
per second, independent of the real keystrokes.

As described in Section III, we compare our results to an
always-one oracle and a random-guessing oracle. A random-
guessing oracle, which chooses randomly — without any
information — for every 10ms interval whether there was a
keystroke based on an apriori probability, would achieve an F-
score of 0.14. The always-one oracle performs slightly better,
as it has a higher true positive rate of 100%, but it also has
a false positive rate of 100%, i.e., the oracle neither uses nor
provides any information. The F-score of the always-one oracle
is 0.15 and thus, higher than the F-score of a random-guessing
oracle. If a side channel yields an F-score of this value or
below, the attacker gains no advantage over the always-one
oracle from this side channel.

For all evaluated attacks, we provide the precision of the
attack with and without KeyDrown, based on the best threshold
distinguisher we can find. KeyDrown does not influence the
recall, as it does not reduce the number of true positives and it
also does not increase the number of real keystrokes. However,
we provide the recall for all attacks with a recall below 1. The
harmonic mean of precision and recall — the F-score — gives
an indication how well the countermeasure works. We provide
the advantage over the always-one oracle as a direct indicator
on whether it makes sense to use the side channel or not.

A. Requirement R1

We evaluate KeyDrown with respect to R1, the elimination
of single-trace attacks. R1 defines that a side channel may
not provide any advantage over an always-one oracle, i.e.,
the advantage measured in the F-score must be ≤0.0%. We
show that KeyDrown fulfills this requirement by mounting
state-of-the-art attacks with and without KeyDrown. Table III
summarizes the F-scores for all attacks with and without

9

TABLE III. F-SCORE WITHOUT AND WITH KeyDrown AND ADVANTAGE
OVER ALWAYS-ONE ORACLE FOR STATE-OF-THE-ART ATTACKS. KeyDrown

ELIMINATES ANY SIDE-CHANNEL ADVANTAGE.

Side Channel no KeyDrown (∆ always-one) KeyDrown (∆ always-one)
procfs 1.00 (+575.0 %) 0.15 (+0.0 %)
rdtsc 0.94 (+537.4 %) 0.14 (−3.8 %)
Flush+Reload 0.99 (+569.3 %) 0.09 (−40.2 %)
LLC Prime+Probe 0.81 (+440.0 %) 0.11 (−27.7 %)

0 0.5 1 1.5 2 2.5 3

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

Fig. 8. Flush+Reload attack on address 0x381c0 of libgdk-3.so.
Injected keystrokes (N) and real events (•) are not distinguishable when
KeyDrown is active (before dotted line).

KeyDrown. In all cases, KeyDrown eliminates any advantage
that can be gained from the side channel, when considering
single-trace attacks only. In some cases, the numerous false
positives and false negatives lead to an even worse F-score.

Flush+Reload. Flush+Reload allows an attacker to monitor
accesses to memory addresses of a shared library with a very
high accuracy. Figure 8 shows the result of such an attack
against the gdk_keymap_get_modifier_mask function
at address 0x381c0 of libgdk-3.so (v3.20.4 on Ubuntu
Linux), the shared library isolating GTK+ from the windowing
system. This function is executed on every keystroke to re-
trieve the hardware modifier mask of the windowing system.
The attacker measures cache hits on the monitored address
whenever a key is pressed and, thus, can spy on the keystroke
timings very accurately. While KeyDrown is active, the attacker
measures additional cache hits on every injected keystroke and
cannot distinguish between real and fake keystrokes. When
KeyDrown is not active, the attack is successful.

For other addresses found using cache template attacks,
we made the same observation. Without KeyDrown, both
profiling and exploiting vulnerable addresses is possible. With
KeyDrown, we still find all addresses that are loaded into
the cache upon keystrokes, however, as we cannot distinguish
between real and fake keystrokes we cannot exploit this
anymore. Without KeyDrown, the precision is 1.00 and the F-
score is 0.99, which is a +569.3% advantage over an always-
one oracle. If KeyDrown is active, the precision is lowered
to 0.05 and, thus, the resulting F-score is 0.09, which is a
(negative) advantage of −40.2% over the always-one oracle.

Prime+Probe. If an attacker cannot use Flush+Reload, a
fallback to Prime+Probe is possible. The disadvantage of a
Prime+Probe attack on the last-level cache is the amount of
noise that increases the false-positive rate. Prior to this work,
there was no successful keystroke attack using Prime+Probe
on the last-level cache. We perform the Multi-Prime+Probe
attack presented in Section III-B to attack keystroke timings.

Figure 9 shows the results of inferring keystrokes by
detecting the keyboard interrupt handler’s cache activity using
Multi-Prime+Probe. We monitored 5 cache sets in parallel for
a higher noise robustness. Without KeyDrown, the precision is

0 0.2 0.4 0.6 0.8 1

·109

0

2

4

6

Runtime [cycles]

A
ct

iv
e

ca
ch

e
se

ts

Fig. 9. Multi-Prime+Probe attack on the 5 cache sets from 0x2514250
to 0x2514390 of i8042_interrupt. Injected keystrokes (N) and real
events (•) are not distinguishable with KeyDrown (before dotted line).

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

2

4

Runtime [cycles]

A
ct

iv
e

ca
ch

e
se

ts

Fig. 10. Multi-Prime+Probe attack on the 5 cache sets corresponding to a
password field’s buffer within a demo application. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before dotted line).

already at a quite low value of 0.71 with a recall of only
0.92, yielding an F-score of 0.81, which is an advantage
over an always-one oracle of +440.0%. Memory accesses
to one of the cache sets by any other application cannot
be distinguished from a cache set access by the keyboard
interrupt handler, causing a high number of false positives.
If we enable KeyDrown, the precision drops to 0.06, as the
attacker additionally measures the noise generated by the
injected keystrokes. The F-score is then 0.11, which is a
(negative) advantage over an always-one oracle of -27.7%.

Figure 10 shows the results of mounting a Multi-Prime+
Probe attack on the buffer of a password field within a GTK+
application. Although there is more noise visible in the traces,
we achieve the same precision and F-score as for the attack on
the kernel module when KeyDrown is disabled. If we enable
KeyDrown, the precision drops to 0.05, which is a bit lower
than the precision on the kernel, resulting in an F-score of
0.10, which is again no advantage over an always-one oracle.

Interrupts. KeyDrown also protects against interrupt-based
attacks, including our new timing-based attack. For the attacks
based on the procfs interface [10], [23], we measure an
average reading interval of 980 cycles. With our new attack
based on rdtsc, we can measure every 95 cycles on average,
resulting in a probing frequency one order of magnitude higher.

Figure 11 and Figure 12 illustrate the effect of our
countermeasure on the procfs-based interrupt attack and
the rdtsc-based attack, respectively. Without KeyDrown, we
achieve a precision of 1.00 for the procfs-based attack and
a precision of 0.89 for the rdtsc-based attack, resulting in
an F-score of 1.00 and 0.94 respectively. Enabling KeyDrown
reduces the precision to 0.08 and 0.07 respectively. Thus, the
resulting F-score is 0.15, which is exactly the same as the
always-one oracle, for the procfs-based attack, and 0.14 for
the rdtsc-based attack, which is a (negative) advantage over
an always-one oracle of -3.8%.

10

0 0.2 0.4 0.6 0.8 1

·109

0

10

20

30

Runtime [cycles]

pr
oc

fs
IR

Q
co

un
t

Fig. 11. procfs-based attack. Injected keystrokes (N) and real events (•)
are not distinguishable when KeyDrown is active (after dotted line).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·109

0

100k

200k

300k

Runtime [cycles]

D
el

ta
[c

yc
le

s]

Fig. 12. rdtsc-based attack. Injected keystrokes (N) and real events (•) are
not distinguishable when KeyDrown is active (after dotted line).

B. Requirement R2

KeyDrown reduced the F-score of all state-of-the-art attacks
such that using the side channel gives an advantage over an
always-one oracle of ≤0.0%. An attacker might still be able
to combine multiple traces from the same user and build a
binary classifier, if the user predictably and repeatedly types
the same character sequence. Such a classifier may achieve
a higher precision and a higher F-score, as long as there is
actually meaningful information in the corresponding traces.
However, there is a practical limit on the number of traces an
attacker can gather from the user, which R2 estimates to be
1825 traces.

In our attack scenario, we model a powerful attacker who
can take advantage of the following properties:

1) Noise-free side channel: The used side channel is noise-
free, i.e., only real and fake keystrokes are recorded, no
other system noise.

2) Perfect (re-)alignment: The attacker can detect when
a password input starts with a variance as low as the
variance of a single inter-keystroke interval. Additionally,
the attacker has an alignment-oracle providing perfect re-
alignment for the traces after each guessed keystroke. This
leads to the same variance for every key instead of an
accumulated variance.

3) Known length: The attacker knows the exact length of
the password and expects exactly as many keystrokes.

This attacker is far stronger than any practical attacker.

We generate simulated traces that fulfill the properties
above and calculate the average of the perfectly (re-)aligned
traces. As our attacker knows the length n of the password, he
finds the n most likely positions where a Gaussian distribution
with the known inter-keystroke interval variance matches. If
the expected value µ of each Gaussian curve is within the
variance of the real keystroke, we assume that the number
of traces was sufficient to extract the positions of the real
keystrokes.

We set the simulated typing variance to ±40ms which is
a bit less than the value reported by Lee et al. [27] for trained
text sequences. In total, we generated 300 000 simulated traces,
each containing 8 keystrokes within 2 s. From this set of
simulated traces, we evaluated how many randomly chosen
traces we have to combine to extract the correct positions of the
keystrokes. We found that an attacker requires an average of
2458 traces to extract the correct positions. This is significantly
more than the 1825 traces deemed to be secure in R2.

C. Requirement R3

As KeyDrown fulfills R1 and R2, we can be assured that the
underlying technique is a working countermeasure. However,
as the implementation of a countermeasure itself can leak
information, we need to ensure that KeyDrown does not create
a new software-based side channel in order to satisfy R3.

First Layer. The first layer runs in the kernel and can
thus only be attacked using Prime+Probe. Figure 7 shows
that, in general, we have the same execution flow and data
accesses. For the few deviations, we prevent any potential
cache leakage from non-executed code paths by performing
the same memory accesses as if they were executed. As an
attacker cannot distinguish if a cache activity is caused by an
execution or a memory read, the module’s cache activity does
not leak additional information to an attacker. We investigated
the cache activity on the cache sets used by the KeyDrown
kernel module in a Prime+Probe attack and found no leakage
from our module.

Second Layer. To make use of the same noise as in the first
layer, the second layer listens to the /dev/input/event0
pseudo-file containing all keyboard events. This file is not
world-readable but only readable by members of the input
group. Thus, this layer runs as a separate keydrown user with
default limited privileges and additional access to this file.

As the second layer is a user space binary, an attacker
could theoretically mount a Flush+Reload attack against the
second layer. However, attacking the second layer does not
result in any additional information. The second layer does not
know whether an event is generated from a real or an injected
keystroke. For every event, a random printable character is sent
to the hidden window. Thus, the execution path for printable
characters is always active, and the attacker cannot learn any
additional information from attacking the second layer. The
same is also true for Prime+Probe, even a successful attack
does not provide additional information. We investigated the
cache activity of the KeyDrown shared library parts and the
KeyDrown user space binary using a template attack and did
not find any leakage.

Third Layer. The third layer builds upon the second layer,
and thus the same argumentation as for the second layer holds.
An attacker cannot distinguish real and injected keystrokes in
the second layer as all events are merged within the kernel. As
the third layer relies on the same source as the second layer,
there is also no leakage from the third layer. Thus, any attack
on the third layer does not give an attacker any advantage
over any other attack. We investigated the cache activity of
the control flow and data accesses up to the point where the
input is stored in the buffer in a Prime+Probe attack and found
no leakage.

11

D. Performance

On the x86 architecture, we evaluate the performance
impacts of running our KeyDrown implementation on standard
Ubuntu 16.10. We use lmbench [35], a set of micro benchmarks
for performance analysis of UNIX systems, and PARSEC
3.0 [5], a benchmark suite intended to simulate a realistic
workload on multicore systems.

The lmbench results for the latency benchmarks show a
performance overhead of 6.9%. However, as the execution
time of the lmbench benchmarks is in the range of microsec-
onds to nanoseconds, the overhead does not allow for definite
conclusions about the overall system performance. Still, we
can see that the injected interrupts have only a small impact
on the kernel performance.

To measure the overall performance, we run the PARSEC
3.0 benchmark with different numbers of cores. The average
performance overhead over all measurements for any number
of cores is 2.5%. For workloads that do not use all cores,
the performance impact is only 2.0% for one core and 2.5%
for two cores. Only if the CPU is under heavy load, we
observe a higher performance impact of 3.1% when running
the benchmarks on all cores.

On ARM, we evaluate the battery consumption of
KeyDrown. We measure the power consumption in three differ-
ent scenarios, always over the timespan of 5min. First, if the
screen is off, our fake interrupts are completely disabled, and
thus, KeyDrown does not increase the power consumption if
the mobile phone is not used. Second, if the screen is turned
on, but the keyboard is not shown, KeyDrown increases the
power consumption slightly by 3.9%. Third, if the keyboard
is shown, the power consumption with KeyDrown increases
by 15.6%. However, as most of the time, the keyboard is not
shown, KeyDrown does not have great impacts on the overall
power consumption. In total, KeyDrown reduces the battery
life time of an average user by 4.6%.4

Note that all the performance measurements were done
using the proof-of-concept. We expect that the proof-of-
concept can be considerably improved in terms of performance
overhead and battery usage by not injecting the fake interrupts
all the time but only while the user is actually entering text.

E. Other Attacks

While we already demonstrated that the most powerful
side-channel attacks are mitigated, we discuss three other
attacks subsequently. The Prime+Probe side channel results
from the victim program evicting a cache line of the attacker.
As the last-level cache is inclusive, any eviction from the last-
level cache also evicts this line from the L1 cache. However,
if a cache line is evicted from the L1 cache it may still be
in the last-level cache. In this case, the attacker would miss
the eviction and thus the targeted event. In our evaluation, we
find that the recall is very close to 1 in all cases. This means
that we do not miss any events. Hence, there is no additional

4For an average user, with a screen-on-time of 145 minutes, 2617 touch
actions [56], and 1 charge per day (21.7 hours standby time) [26], an average
typing speed of 20 words per minute [4] and hence, 100 characters per
minute [39], we can assume a keyboard-shown time of 26 minutes per battery
charge. For modern devices, screen-on consumes approximately 33 times more
battery than standby [13].

information that an attacker could gain from a Prime+Probe
attack on the L1 cache. Consequently, evaluating Prime+Probe
on the last-level cache is sufficient to conclude that Prime+
Probe on the L1 cache does not leak additional information.

The DRAMA side-channel attack presented by Pessl et al.
[43] results from a massive number of secret-dependent mem-
ory accesses that lead to heavy cache thrashing, i.e., the victim
program accesses lots of memory locations that are mapped
to the same cache lines. It is therefore unclear whether or
not KeyDrown protects against DRAMA. In particular, it does
not protect against the specific attack against keystrokes in the
Firefox address bar (cf. Section VI). However, we observe that
KeyDrown adds significant amounts of noise to the attack.

To our surprise, we found that KeyDrown also mitigates
the keystroke timing attack based on the event queue of the
Chrome browser by Vila et al. [53] (USENIX Sec’17). They
state that the leakage is due to the time it takes Chrome to
enqueue and dispatch every keystroke event. However, we
investigated their attack and were able to reproduce it on
MacOS systems reliably, but not on other operating systems,
indicating that this effect is not purely Chrome-specific, but
also has other influences. We believe that their attack exploits
multiple effects in combination: the Chrome event queue
and the interruption by the hardware interrupts as in our
rdtsc-based attack, which is additionally amplified by the
significantly higher I/O latency caused by the atypical MacOS
design for interrupt handling [1].5

A preliminary version of our rdtsc-based interrupt timing
attack was the basis for the same attack in JavaScript [29].
They were able to identify the user typed URL, and distinguish
different users based on this attack. As they report, KeyDrown
successfully mitigates their attack in JavaScript as well.

KeyDrown has a significant effect on the attack by
Jana et al. [23], exploiting CPU utilization spikes. The fake
keystrokes introduce similar small CPU utilization spikes
making their attack impractical. Similarly, KeyDrown triggers
screen redraws through the hidden window (cf. Section IV).
Hence, KeyDrown also makes the screen-redraw-based attack
by Diao et al. [10] impractical.

VI. LIMITATIONS AND FUTURE WORK

KeyDrown mitigates software-based side-channel attacks
on keystrokes and keystroke timings in general. This includes
even the application layer without changing an existing appli-
cation if either:

• the input is processed only after the user finished entering
the text (e.g., pressing a button on a login form), and there
is no immediate action when a key is pressed (e.g., as with
password fields or simple text input fields),

• or the application is designed to remove side-channel
information.

5Interrupt handlers on MacOS only enqueue the task to handle an interrupt
in a queue, taking almost zero time. This queue is processed by an interrupt
service thread, doing the actual interrupt handling. This additional step
increases the total computation time compared to traditional interrupt handling.
As the attack is not influenced by which thread does the actual interrupt
handling, this increased interruption time amplifies the side channel.

12

Otherwise, the application layer might still leak timing infor-
mation when performing intense computations for every single
keystroke, e.g., autocomplete or live search features [43].

Song et al. [50] demonstrated keystroke timing attacks
performed by a malicious observer on the same network.
Zhang et al. [60] speculated that this attack vector could
also be exploited through /proc/net, which might still
be available in Android O. However, this is not a local
software-based attack but a side channel for a remote attacker.
Hence, dedicated countermeasures beyond KeyDrown should
be implemented to prevent this attack.

Some software-based side channel attacks may be unaf-
fected by KeyDrown, e.g., the sensor-based attacks exploiting
the accelerometer [7], but these attacks can be thwarted by
introducing noise [48].

KeyDrown protects against software-based attacks on
keystrokes as well as touch events. However, swipe movements
are not protected as their interrupt rate is too high. While this is
not a problem in the case of a password input — if a password
can be swiped and thus pasted from a dictionary, there is little
to protect — it is future work to investigate how to extend
KeyDrown to protect swipe movements.

Furthermore, our novel side channels emphasize the neces-
sity to deploy KeyDrown widely. Multi-Prime+Probe attacks
provide a significantly higher accuracy than previous Prime+
Probe attacks on dynamic memory and kernel memory. It
is likely that Multi-Prime+Probe works similarly in cloud
systems and thus allows highly accurate attacks like keystroke
timing attacks across virtual machine boundaries.

Our current proof-of-concept is not optimized for usabil-
ity. For most of the system, the real and fake keystrokes
are indistinguishable, the keystrokes are just led to different
windows. Known limitations are that fake keystrokes interrupt
key repetition and may interfere with input methods in modern
computer games. However, these limitations can be overcome
by adapting how key repetition is implemented.

VII. CONCLUSION

Keystrokes are processed on many different layers of the
software stack and are thus not entirely covered by previ-
ously proposed defense mechanisms. In this article, we pre-
sented KeyDrown, a novel defense mechanism that mitigates
keystroke timing attacks. KeyDrown injects a large number of
fake keystrokes on the kernel level and propagates them —
through all layers of the software stack — up to the user
space application. A careful design and implementation of
this countermeasure ensures that all software routines involved
in the processing of a keystroke are loaded, irrespective of
whether a real or a fake keystroke is processed. Thereby,
KeyDrown mitigates interrupt-based attacks, Prime+Probe at-
tacks, and Flush+Reload attacks on the entire software stack.
With KeyDrown, an attacker cannot distinguish fake from
real keystrokes in practice anymore. Our evaluation shows
that KeyDrown eliminates any advantage an attacker can gain
from side channels, i.e., ≤0.0% advantage over an always-one
oracle, thus, it successfully mitigates keystroke timing attacks.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their valuable feedback and Johannes Winter for insights on
ARM interrupt handling. This work has been supported by
the Austrian Research Promotion Agency (FFG) via the K-
project DeSSnet, which is funded in the context of COMET –
Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402). This project has
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No
644052 (HECTOR). This work was partially supported by the
TU Graz LEAD project ”Dependable Internet of Things in
Adverse Environments”.

REFERENCES

[1] “Performance considerations,” Apple Inc., 2013. [Online]. Available:
https://developer.apple.com/library/content/documentation/Darwin/
Conceptual/KernelProgramming/performance/performance.html

[2] ARM, “Application Note 176 – How a GIC works,” 2007.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dai0176c/ar01s03s02.html

[3] ——, “ARM Generic Interrupt Controller Architecture version 2.0,”
2013.

[4] P. Bao, J. Pierce, S. Whittaker, and S. Zhai, “Smart phone use by
non-mobile business users,” in Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and
Services, 2011.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[6] D. P. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly
Media, Inc., 2005.

[7] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in USENIX Workshop on Hot Topics
in Security – HotSec, 2011.

[8] CSID, “Consumer Survey: Password Habits,” 2012. [On-
line]. Available: http://www.csid.com/wp-content/uploads/2012/09/CS
PasswordSurvey FullReport FINAL.pdf

[9] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.” in NDSS’14, 2014.

[10] W. Diao, X. Liu, Z. Li, and K. Zhang, “No Pardon for the Interruption:
New Inference Attacks on Android Through Interrupt Timing Analysis,”
in S&P’16, 2016.

[11] S. Gaw and E. W. Felten, “Password management strategies for online
accounts,” in SOUPS’06, 2006.

[12] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” Journal of Cryptographic Engineering, pp. 1–27, 2016.

[13] N. Gondhia, “Samsung galaxy s7 battery life review,” 2016.
[Online]. Available: http://www.androidauthority.com/samsung-galaxy-
s7-battery-life-review-683968/

[14] Google, “Android o prevents access to /proc/stat,” Jun. 2017. [Online].
Available: https://issuetracker.google.com/issues/37140047

[15] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in USENIX Security Symposium, 2017.

[16] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA’16, 2016.

[17] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security
Symposium, 2015.

13

https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgramming/performance/performance.html
https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgramming/performance/performance.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0176c/ar01s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0176c/ar01s03s02.html
http://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf
http://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf
http://www.androidauthority.com/samsung-galaxy-s7-battery-life-review-683968/
http://www.androidauthority.com/samsung-galaxy-s7-battery-life-review-683968/
https://issuetracker.google.com/issues/37140047

[18] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P’11, 2011.

[19] S. Idrus, E. Cherrier, C. Rosenberger, and P. Bours, “Soft Biometrics for
Keystroke Dynamics: Profiling Individuals While Typing Passwords,”
Computers & Security, vol. 45, pp. 147–155, 2014.

[20] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache Attacks Enable Bulk Key Recovery on the Cloud,” in CHES’16,
2016.

[21] Intel, “82093AA I/O Advanced Programmable Interrupt Controller
(IOAPIC),” 1996.

[22] ——, “Intel R© 64 and IA-32 Architectures Software Developer′s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide,” 2014.

[23] S. Jana and V. Shmatikov, “Memento: Learning Secrets from Process
Footprints,” in S&P’12, 2012.

[24] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in CCS’16, 2016.

[25] N. Kralevich, “Honey, i shrunk the attack surface,” in Black Hat 2017
Briefings, 2017.

[26] D. G. B. Lab, “Global app power consumption report 2016, h1,”
2016. [Online]. Available: https://medium.com/@DU Global Battery
Lab/e7f9b845bed

[27] P.-M. Lee, W.-H. Tsui, and T.-C. Hsiao, “The Influence of Emotion
on Keyboard Typing: An Experimental Study Using Auditory Stimuli,”
PLOS ONE, vol. 10, pp. 1–16, 2015.

[28] “ld.so(8) Linux Programmer’s Manual,” Linux man-pages project, 2016.
[Online]. Available: http://man7.org/linux/man-pages/man8/ld.so.8.html

[29] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Man-
gard, “Practical keystroke timing attacks in sandboxed javascript,” in
ESORICS’17, 2017, (to appear).

[30] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in USENIX Security
Symposium, 2016.

[31] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P’15, 2015.

[32] LWN, “The high-resolution timer API,” Jan. 2006. [Online]. Available:
https://lwn.net/Articles/167897/

[33] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in S&P’14, 2014.

[34] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Complex Addressing Using Performance
Counters,” in RAID’15, 2015.

[35] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for performance
analysis.” in USENIX ATC’96, 1996.

[36] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks,” in USENIX Security Symposium,
2016.

[37] Microsoft, “Acpi system description tables,” Jul. 2016. [Online].
Available: https://msdn.microsoft.com/en-us/windows/hardware/drivers/
bringup/acpi-system-description-tables#madt

[38] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in CCS’05, 2005.

[39] P. Norvig, “English letter frequency counts: Mayzner revisited,” 2013.
[Online]. Available: http://norvig.com/mayzner.html

[40] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications,” in CCS’15, 2015.

[41] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA, 2006.

[42] C. Percival, “Cache missing for fun and profit,” in Proceedings of
BSDCan, 2005.

[43] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security Symposium, 2016.

[44] S. Pinet, J. C. Ziegler, and F.-X. Alario, “Typing is writing: Linguistic
properties modulate typing execution,” Psychon Bull Rev, vol. 23, no. 6,
pp. 1898–1906, Apr. 2016.

[45] Qualcomm, “Snapdragon mobile processors and chipsets,” Jan. 2017.
[Online]. Available: https://www.qualcomm.com/products/snapdragon

[46] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds,” in CCS’09, 2009.

[47] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger pass-
word requirements: User attitudes and behaviors,” in SOUPS’10, 2010.

[48] P. Shrestha, M. Mohamed, and N. Saxena, “Slogger: Smashing
Motion-based Touchstroke Logging with Transparent System Noise,”
in WiSec’16, 2016.

[49] L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me While I Type:
Inferring Text Entered Through Gesture Typing on Android Keyboards,”
Proceedings on Privacy Enhancing Technologies, 2016.

[50] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes
and Timing Attacks on SSH,” in USENIX Security Symposium, 2001.

[51] The GTK+ Team, “GTK+ Features,” 2016. [Online]. Available:
https://www.gtk.org/features.php

[52] R. Veras, C. Collins, and J. Thorpe, “On semantic patterns of passwords
and their security impact,” in NDSS’14, 2014.

[53] P. Vila and B. Köpf, “Loophole: Timing attacks on shared event loops
in chrome,” in USENIX Security Symposium, 2017.

[54] R. Wash, R. Rader, R. Berman, and Z. Wellmer, “Understanding
password choices: How frequently entered passwords are re-used across
websites,” in SOUPS’16, 2016.

[55] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in S&P’09, 2009.

[56] M. Winnick and J. Mons, “Mobile touches: a study on humans and
their tech,” 2016. [Online]. Available: https://blog.dscout.com/mobile-
touches

[57] X.org Foundation, “xorg documentation,” 10 2014. [Online]. Available:
https://www.x.org/wiki/Documentation/

[58] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-
sium, 2014.

[59] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel
Last-Level Cache,” Cryptology ePrint Archive, Report 2015/905, pp.
1–12, 2015.

[60] K. Zhang and X. Wang, “Peeping Tom in the Neighborhood: Keystroke
Eavesdropping on Multi-User Systems,” in USENIX Security Sympo-
sium, 2009.

APPENDIX

We compare the accuracy of four different side channels
with and without KeyDrown (procfs, rdtsc, Flush+Reload,
and Prime+Probe on the last-level cache) on three different ar-
chitectures: a Lenovo ThinkPad T460s (Intel Core i5-6200U),
an LG Nexus 5 (ARMv7), and a OnePlus 3T (ARMv8). Ta-
ble IV summarizes the F-scores for all attacks with and without
KeyDrown. KeyDrown prevents keystroke timing attacks in all
cases when considering single-trace attacks only.

TABLE IV. F-SCORE WITHOUT AND WITH KeyDrown FOR
STATE-OF-THE-ART ATTACKS.

Device Side Channel unprotected KeyDrown
ThinkPad T460s procfs 1.00 0.15
LG Nexus 5 procfs 1.00 0.15
OnePlus 3T procfs 1.00 0.15
ThinkPad T460s Interrupt-timing (rdtsc) 0.94 0.14
LG Nexus 5 Interrupt-timing 0.94 0.14
OnePlus 3T Interrupt-timing 0.99 0.15
ThinkPad T460s Flush+Reload 0.99 0.09
LG Nexus 5 Flush+Reload 0.99 0.02
OnePlus 3T Flush+Reload 0.93 0.10
ThinkPad T460s Prime+Probe on LLC 0.81 0.11
LG Nexus 5 Prime+Probe on LLC 0.80 0.11
OnePlus 3T Prime+Probe on LLC 0.89 0.07

14

https://medium.com/@DU_Global_Battery_Lab/e7f9b845bed
https://medium.com/@DU_Global_Battery_Lab/e7f9b845bed
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://lwn.net/Articles/167897/
https://msdn.microsoft.com/en-us/windows/hardware/drivers/bringup/acpi-system-description-tables#madt
https://msdn.microsoft.com/en-us/windows/hardware/drivers/bringup/acpi-system-description-tables#madt
http://norvig.com/mayzner.html
https://www.qualcomm.com/products/snapdragon
https://www.gtk.org/features.php
https://blog.dscout.com/mobile-touches
https://blog.dscout.com/mobile-touches
https://www.x.org/wiki/Documentation/

0 0.2 0.4 0.6 0.8 1

·109

0
20
40
60

Runtime [ns]

IR
Q

co
un

t

Fig. 13. procfs-based attack on the Nexus 5. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before dotted line).

0 1 2 3 4

·109

0
2 · 106
4 · 106

Runtime [ns]

∆
cy

cl
es

Fig. 14. Timing-based attack on the Nexus 5. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before dotted line).

We performed our experiments on the touchscreen soft-
keyboard of the Nexus 5. With KeyDrown, the precision is
lowered to 0.01 and, thus, the resulting F-score of 0.02 means
a ≤−86.5% advantage over an always-one oracle.

Figure 13 and Figure 14 show a procfs-based interrupt
attack and a timing-based attack, both on the Nexus 5. Without
KeyDrown, we achieve a precision of 1.00 for the procfs-
based attack and 0.89 for the timing-based attack, resulting in
an F-score of 1.00 and 0.94 respectively. Enabling KeyDrown
reduces the precision to only 0.08 and 0.07 respectively. Thus,
the resulting F-score is 0.15 for the procfs-based attack, and
0.14 for the timing-based attack, which is an advantage of
≤0.0% over an always-one oracle.

Figure 15 shows the results of inferring keystrokes by
detecting the touchscreen interrupt handler’s cache activity
using Multi-Prime+Probe on the Nexus 5. We monitored 5
cache sets in parallel for noise robustness. Without KeyDrown,
the precision is 0.71 with a recall of only 0.92, as an access
to one of the cache sets by any other application cannot
be distinguished from a cache set access by the touchscreen
interrupt handler, resulting in a high number of false positives.
If we enable KeyDrown, the precision drops to 0.06, as the
attacker additionally measures the noise generated by the
injected keystrokes. Thus, the F-score is 0.11.

We performed our experiments on the OnePlus 3T touch-
screen soft-keyboard. Figure 16 shows a Flush+Reload attack
on libflinger.so. Without KeyDrown, the precision is
0.88 and the F-score is thus 0.93. If KeyDrown is active, the
precision is lowered to 0.05 and, thus, the resulting F-score of
0.10 means a ≤−32.5% advantage over an always-one oracle.

0 0.2 0.4 0.6 0.8 1 1.2

·109

0
2
4
6

Runtime [ns]

A
ct

iv
e

se
ts

Fig. 15. Multi-Prime+Probe attack on the 5 cache sets from 0x382659be
to 0x38265abe of touch_irq_handler on the Nexus 5. Injected
keystrokes (N) and real events (•) are not distinguishable when KeyDrown
is active (before dotted line).

0 2 4 6

·109

0
500

1,000
1,500

Runtime [ns]

L
at

en
cy

Fig. 16. Flush+Reload attack on address 0x28ec0 of libflinger.so
on the OnePlus 3T. Injected keystrokes (N) and real events (•) are not
distinguishable when KeyDrown is active (before dotted line).

0 0.5 1 1.5 2 2.5 3

·109

0
100
200

Runtime [ns]

IR
Q

co
un

t

Fig. 17. procfs-based attack on the OnePlus 3T. Injected keystrokes (N)
and real events (•) are not distinguishable with KeyDrown (before dotted line).

Figure 17 and Figure 18 show a procfs-based interrupt
attack as well as a timing-based attack, both on the OnePlus
3T. The attack has a precision of 1.00 (F-score of 1.00)
and 0.99 (F-score of 0.99) respectively. Enabling KeyDrown
reduces the precision to only 0.08 (F-score is 0.15) and 0.07
(F-score is 0.15) respectively, which is a 0.0% advantage over
an always-one oracle.

Figure 19 shows the results of inferring keystroke timings
by detecting the touchscreen interrupt handler’s cache activity
using Multi-Prime+Probe on the OnePlus 3T. We monitored
5 cache sets in parallel for a higher noise robustness. Without
KeyDrown, the precision is already at a quite low value of
0.80 with a recall of only 1.00, as access to one of the
cache sets by any other application cannot be distinguished
from a cache set access by the touchscreen interrupt handler.
Thus, this attack has a high number of false positives. If we
enable KeyDrown, the precision drops to 0.10, as the attacker
additionally measures the noise generated by the injected
keystrokes. Thus, the F-score is 0.07, which is a ≤−52.7%
advantage over an always-one oracle.

2 4 6 8

·109

0
1 · 106
2 · 106

Runtime [ns]

∆
cy

cl
es

Fig. 18. Timing-based attack on the OnePlus 3T. Injected keystrokes (N) and
real events (•) are not distinguishable with KeyDrown (before dotted line).

0.5 1 1.5 2

·109

0
2
4
6

Runtime [ns]

A
ct

iv
e

se
ts

Fig. 19. Multi-Prime+Probe attack on the 5 cache sets from 0x3fc0355c28
to 0x3fc0355d68 of msm_gpio_irq_handler of the OnePlus 3T.
Injected keystrokes (N) and real events (•) are not distinguishable when
KeyDrown is active (before dotted line).

15

	Introduction
	Background
	Linux Interrupt Handling
	Interrupts on x86 and x86_64
	Interrupts on ARM

	Microarchitectural Attacks
	Keystroke Timing Attacks

	Keystroke Timing Attacks & Defenses
	Keystroke Timing Attack Surface
	New Attack Vectors
	Requirements for Elimination of Keystroke Timing Attacks

	KeyDrown Multi-layer Design
	First Layer
	Second Layer
	Third Layer

	Evaluation
	Requirement R1
	Requirement R2
	Requirement R3
	Performance
	Other Attacks

	Limitations and Future Work
	Conclusion
	References
	Appendix

