
Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Keyframe Control of Smoke Simulations

Adrien Treuille

University of Washington

Antoine McNamara

University of Washington

Zoran Popović

University of Washington

Jos Stam

Alias|Wavefront

Figure 1: Single frame of a physically-based fluid animation spelling out letters.

Abstract

We describe a method for controlling smoke simulations through
user-specified keyframes. To achieve the desired behavior, a con-
tinuous quasi-Newton optimization solves for appropriate “wind”
forces to be applied to the underlying velocity field throughout the
simulation. The cornerstone of our approach is a method to effi-
ciently compute exact derivatives through the steps of a fluid sim-
ulation. We formulate an objective function corresponding to how
well a simulation matches the user’s keyframes, and use the deriva-
tives to solve for force parameters that minimize this function. For
animations with several keyframes, we present a novel multiple-
shooting approach. By splitting large problems into smaller over-
lapping subproblems, we greatly speed up the optimization process
while avoiding certain local minima.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Fluid Simulation, Inverse Control, Optimization

1 Introduction

In recent years, computer graphics researchers have made great
strides towards realistic simulation of complex fluid phenomena
[Fedkiw et al. 2001; Nguyen et al. 2002; Enright et al. 2002; Fos-
ter and Fedkiw 2001]. We can now produce animations of curl-
ing smoke and splashing water with striking visual realism. These
techniques are particularly appealing since fluid animations are ex-
tremely difficult to create by hand. However, just as with any other
simulation-based method, the user cannot freely design the behav-
ior of the animation. One may manipulate the initial specifications
of the simulation, such as viscosity, temperature, location and quan-
tity of smoke, but, unfortunately, these changes often alter the an-

imation in unpredictable ways, making it virtually impossible to
produce fluid simulations that achieve a specific goal. Yet, for many
applications, control of fluids would be tremendously useful. In
animation production, where creative control is of the utmost im-
portance, technical directors often require specific behavior from
animations of physical phenomena such as smoke, fire and water.

Ideally, in the domain of smoke simulation, animators could
specify a set of suggestive keyframes describing the desired behav-
ior. Instead of manually adding wind forces to the airfield, a system
would automatically solve for the control parameters to best meet
the specified goals. The resulting simulation would follow the laws
of fluid dynamics, not necessarily satisfying the constraints exactly,
instead producing a “smoke-like” interpretation of the keyframes.

Unfortunately, controlling complex PDEs is very hard. This is
particularly true for the Navier-Stokes equations that describe the
dynamics of fluids. In fact, the complexity and non-linearity of
these equations makes fluid simulations considerably harder to con-
trol than other dynamic phenomena such as rigid-body simulations,
elastic deformations or character dynamics. Fluid simulations are
also highly chaotic — slight changes in the simulation parameters
may produce drastically different animations.

This paper presents a first step towards the control of fluid simu-
lations. Specifically, we introduce a novel algorithm for controlling
smoke, extending the widely used framework introduced in [Stam
1999]. The animator controls the simulation by specifying smoke-
density and velocity keyframes and an optimization process deter-
mines the appropriate wind forces needed to satisfy the constraints.

In developing this framework, we present a method for comput-
ing exact derivatives through the fluid simulation (Sections 4 and
5). In addition, our keyframe paradigm leads to a formulation of
a smooth objective function for comparing discrete grids of smoke
densities based on blurring simulation states (Section 6). Lastly,
we contribute a “layered” variation of multiple shooting adapted
specifically for this domain (Section 8).

2 Related Work

Modeling the motion and appearance of fluid flows has long cap-
tivated the imagination of researchers in computer graphics. Early
models that relied on simple flow primitives or animating texture
maps achieved convincing effects typically by a long process of trial
and error. Methods based on the physics of fluids on the other hand
automatically generate convincing flows. Kajiya and Von Herzen
[1984] were the first in computer graphics to use physics-based
methods. However, the hardware at the time only allowed them

1

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

to use very small grids. No real progress was made in this area un-
til the works of Foster and Metaxas on modeling water [1996] and
gases [1997b]. They showed that impressive animations could be
created even on relatively coarse grids, though they require a strict
bound on the time step for their simulations to remain stable, re-
sulting in larger computation times. Related models were proposed
in [Chen et al. 1997] and [Witting 1999]. Shortly thereafter, Stam
[1999] introduced the Stable Fluids algorithm to address these lim-
itations, using a semi-Lagrangian treatment of advection combined
with an implicit solver for viscosity. Fluid solvers have been cou-
pled with level-set methods to create impressive simulations of wa-
ter [Foster and Fedkiw 2001; Enright et al. 2002] and fire [Nguyen
et al. 2002]. For smoke, to combat the numerical dissipation in-
herent in the stable solution of the equations, Fedkiw et al. [2001]
proposed to reinject the lost energy in the small vortices of the flow
using a confinement force. This smoke model is currently the state
of the art, and hence forms the basis of our work.

Much less attention has been devoted to the control of fluid flows.
Foster and Metaxas [1997a] propose alternate ways for the user to
control the forces by hiding the low level details. Later Foster and
Fedkiw [2001] propose to control the motion of the flow by setting
the velocity values at specific grid cells. The dynamics are therefore
ignored at those cells, except that they still force the flow to be in-
compressible for additional realism. None of these works, however,
allow the user to specify keyframes.

The solution of this problem is also important in other areas
such as data assimilation and computational fluid control, where,
for example, a shape’s parameters are optimized to reduce air drag.
Therefore, it is not surprising that methods similar to ours have been
developed in the applied sciences [Bewley 2001]. Bewley et al.
[2001; 2002] develop a general theory to calculate the derivatives
of the fluid solver required by the optimizer. The idea behind these
approaches is to compute derivatives by first integrating forward in
time keeping the entire trace of the fluid state, and then integrating
the adjoint equations backward in time. Similar adjoint methods
were used for data assimilation in [Ghil et al. 1997]. This formula-
tion theory applies to many different solvers, but, since the deriva-
tives are exact only for a perfect integration of the fluid equations,
it isn’t suitable for use with the inaccurate solvers used in graph-
ics. We stress that while the precision of the solver is not crucial,
the accuracy of the derivatives is of utmost importance. For this
reason, we compute exact derivatives of the actual algorithm, not
those given by the more general continuous theory.

Our control formulation draws from work on interactive control
of rigid-body simulations [Popović et al. 2000; Popović 2001]. As
the animator specifies constraints at arbitrary points in time, the
simulation parameters that satisfy the constraints are computed in
realtime. These interactive speeds are achieved by rapid computa-
tion of derivatives through the rigid-body simulation process. Con-
trol of simulations can also be achieved by probabilistic sampling
methods [Chenney and Forsyth 2000]. As the space of control pa-
rameters is sampled, this algorithm constructs a probability distri-
bution of control parameters that achieve a specific goal. This ap-
proach is particularly useful when the cost function dependency on
control parameters is not smooth. In our framework, evaluating the
objective function is too costly to use this approach.

Multiple shooting methods have been used successfully to con-
trol complex dynamic system [Ascher et al. 1988; Stoer and Bu-
lirsch 1993] and recently in computer graphics for controlling rigid-
body simulations [Popović 2001]. This approach typically con-
sists of two iterating steps. The first step splits the problem into
smaller subproblems which are first solved separately. The second
step tries to interpolate boundary constraints for each subproblem
so that there is no discontinuity across the subproblems boundaries.
We use a novel variant of the multiple shooting technique that does
not require us to interpolate the boundary constraints.

3 Overview

Our system is based on the algorithm presented in [Stam 1999].
In this framework, a state q in a smoke simulation consists of a
grid ρ of densities and a grid v of velocity vectors. The simulation
is computed from an initial state q

0
by repeatedly applying a step

function S which advances the simulation by one unit of time. That
is, the state at time t is computed recursively:

qt = S(qt−1
).

A smoke simulation of n steps starts with the initial state
q

0
at time t = 0 and repeatedly calculates the subsequent states

q
1
,q

2
, ...,qn. The simulation S is then just the sequence of states:

S (q
0
) = (q

1
,q

2
, ...,qn).

3.1 Control

Often, animators desire to “control” a simulation, meaning that
there exist some properties beyond physical plausibility that would
be desirable. Perhaps one would like the smoke to follow a cer-
tain path or form a certain shape at a specific time. To achieve
this by hand, an animator might try to control the flow by apply-
ing external forces throughout the simulation, gently blowing the
smoke towards its goal. While this approach could generate realis-
tic looking smoke, it is incredibly difficult: the non-linear nature of
fluid movement makes tiny changes to forces in the beginning of the
simulation capable of large and unexpected changes in simulation
states further in time.

We propose a method to automate this task. In our system, the
animator specifies a set of keyframes that the smoke should achieve.
In this domain, a keyframe consists of a grid of smoke densities
ρ∗

t which the simulation’s density grid ρt should match as closely
as possible at time t, thus enabling the animator to “sketch” the
desired smoke movement. In addition, we allow velocity keyframes
v∗t which specify constraints on vt , allowing the animator to express
goals such as “at time t, the velocity field should be still.” Together,
these types of keyframes can be used to describe a motion path for
the smoke or a shape that it should try to achieve.

To influence the simulation, our system also needs a set of pa-
rameterized forces. For example, one force might apply a local
gust of wind at a specific time, and the parameters could include
the amount/direction of the wind force to be applied, and the loca-
tion of the wind. The forces may come from a generic template or
be hand-specified by the animator, but the control parameters are
not filled in explicitly. Instead, these form a vector u that controls
these aspects of the simulation. Any given value of u defines some
unique set of forces applied to the field, and hence a unique sim-
ulation S (q

0
,u). Our algorithm uses an optimization process to

solve for the control vector u which produces the simulation that
best matches the animator’s goal.

3.2 Matching Keyframes

In order to solve for u, we need a way to assess how well the simu-
lation matches the desired behavior. If we can express these desired
properties in an objective function ϕ which evaluates how well a
simulation meets our goals, we can rephrase the control problem as
a minimization of ϕ over u.

In designing the objective function, we have two goals. First,
we would like the smoke simulation to match the keyframes as
closely as possible. We express this as a function ϕ

k
(S (u,q

0
)) that

takes the simulation, and measures the “difference” between the
user-specified keyframes and the corresponding simulation states.
Second, we would like the system to use as little force as possi-
ble to achieve these keyframes. We therefore add a term ϕs(u) that

2

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

measures the amount of force added to the system. Our objective
function ϕ becomes a linear combination of these two terms:

ϕ = ϕ
k
+ϕs.

The goal is now to solve for the control vector u that minimizes ϕ:

argmin
u

ϕ(S (q
0
,u),u).

We use a gradient-based technique to solve this problem. The
derivative dϕ/du is dependent on the pair of derivatives dϕ

k
/du

and dϕs/du. The latter is straightforward, the former less so. Be-
cause ϕ

k
depends on S , its derivative depends on dS /du: how the

simulation states are affected by changing each control parameter.
The derivative dS /du is crucial to our approach. We therefore

devote Sections 4 and 5 to its analytic formulation.

3.3 Computing Exact Derivatives

There are several approaches one could take to calculate dS /du.
An approximation using finite differences is easy to implement,
but is inaccurate and inefficient. Instead, one could start from the
derivatives of the continuous Navier-Stokes equations. Unfortu-
nately, while the semi-Lagrangian fluid algorithm produces physi-
cally plausible movement, it can vary tremendously from the actual
analytic solution, and so even perfect derivatives of the continuous
model would not be an accurate indicator of dS /du. Instead, we
propose a method of calculating exact derivatives of S by simu-
lating the entire process in a space consisting not only of a den-
sity and velocity field, but also of their derivatives. This technique
was motivated by a similar approach taken in controlling rigid-body
simulations [Popović et al. 2000; Popović 2001].

To calculate the simulation derivatives, we augment the state q
with its derivatives with respect to each control:

q̂t =

(

qt ,
dqt

du
1

, . . . ,
dqt

duc

)

.

Similar to standard fluid simulation, these augmented states are
computed recursively using a step function Ŝ:

q̂t = Ŝ(q̂t−1
),

q̂
0

=
(

q
0
,0, . . . ,0

)

.

To define Ŝ we must look more closely at the fluid simula-
tion process. Recall that S advances the simulation state by one
timestep. In standard fluid solvers, S is composed of a series of
smaller operations, each performing a specific transformation of the
state. In particular, we use:

S = M ◦Aρ ◦P◦D◦Av ◦F .

F applies forces to the velocity field, either from the simulation
(e.g., applying forces upwards in areas of high density to make hot
smoke rise) or user-specified control forces. Av advects the velocity
using a semi-Lagrangian method, D performs diffusion on the ve-
locity field using a simple implicit solver and finally P projects the
resulting field to be divergence-free. Aρ advects the smoke densi-
ties through this newly updated velocity field. Finally, M is a mass
preservation step to combat dissipation.

To calculate derivatives through this process, each of these op-
erations induces a corresponding operation in our system taking
state to state and derivative to derivative. For example, the mass-
preservation step M becomes

M̂ =

(

M,
dM

du
1

, . . . ,
dM

duc

)

and similarly for Âρ , P̂, D̂, Âv, and F̂ . Therefore, a step Ŝ in our
framework becomes:

Ŝ = M̂ ◦ Âρ ◦ P̂◦ D̂◦ Âv ◦ F̂ .

By simultaneously calculating the states, qt , and their deriva-
tives, dqt/du, we can evaluate both ϕ and dϕ/du in a single pro-
cess. While the derivative calculation does substantially increase
the simulation time, it is remarkably easy to implement: for most
of the steps, the derivative calculation is very similar, if not identi-
cal, to the normal state calculation.

4 Derivatives

As described above, our technique requires the derivative dS /du
at each timestep. We compute these in parallel with S : every step
of the fluid simulation has a corresponding step in the derivative
calculation. We now present these derivatives, both as a guide to
the implementor and to emphasize the role of the control vector u
in our formulation, but we reassure the reader that the specifics of
each derivative are not essential to understanding our approach.

4.1 Projection and Diffusion

The projection step P forces the velocity field to be divergence-
free. Diffusion D accounts for the effects of viscosity. Both of
these are linear operators. Therefore, their derivatives with respect
to an arbitrary control parameter u

k
are:

dP

du
k

(v) = P

(

dv

du
k

)

and
dD

du
k

(v) = D

(

dv

du
k

)

.

In other words, the derivative of the projection step is the projec-
tion of the derivative, and likewise for diffusion. This means that
we can use the identical algorithm in the derivative computation
step as in the fluid simulation. This result holds regardless of the
boundary condition on the fluid.

4.2 Advection

To advect a scalar field σ through a velocity field v, we back-
trace through v and then update σ with the value at the back-
traced point. We present the derivation below using first-order Euler
steps, though these equations could be generalized to higher-order
schemes. If I(σ ,p) is the evaluation of a field σ at position p using
linear interpolation, the advection step becomes:

A(v,σ ,p
0
) = I(σ ,ps)

pi = pi−1
−∆tI(v,pi−1

).

The backtrace for each grid cell starts at a fixed point p
0

(imply-
ing dp

0
/du

k
= 0) and generates a sequence of s new positions by

repeatedly evaluating v and taking steps in those directions scaled
by the step size ∆t. The advection is then an interpolation of σ
at the final generated position ps. The derivative of this step is
straightforward, assuming we can calculate the derivative of linear
interpolation, dI/du

k
:

dA

du
k

(v,σ ,p
0
) =

dI

du
k

(σ ,ps)

dpi

du
k

=
dpi−1

du
k

−∆t
dI

du
k

(v,pi−1
).

3

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

We must now formalize I and dI/du
k
, which we present in 2D

for simplicity though the equations are equivalent in 3D. The inter-
polation I of a field σ at position p = [px, py]T is:

I(σ ,p) = (1−α)(1−β)σ
l,m

+α(1−β)σ
l+1,m

+(1−α)βσ
l,m+1

+αβσ
l+1,m+1

where

l = ⌊px⌋, m = ⌊py⌋, α = px− l, β = py−m.

Taking the derivative of this linear interpolation function using
the chain rule gives us:

dI

du
k

=
∂ I

∂σ

dσ

du
k

+

(

∂ I

∂α

dα

d px

d px

du
k

+
∂ I

∂β

dβ

d py

d py

du
k

)

.

The first term is a linear interpolation of dσ/du
k

at p. In addition,
the floor function is locally constant, so dα/d px = dβ/d py = 1.
Therefore, this derivative can be rewritten:

dI

du
k

= I(
dσ

du
k

,p)+

(

∂ I

∂α

d px

du
k

+
∂ I

∂β

d py

du
k

)

.

Note that the floor function is discontinuous at integer values, lead-
ing to derivative discontinuities at voxel faces. In practice we did
not find this to be an issue.

Since the first term in this derivative is an interpolation itself, a
substantial portion of the code can be reused from the standard fluid
solver. The only quantities that need to be computed are the partial
derivatives of I with respect to the residual values α and β . These
are straightforward; for example, the first of these derivatives is:

∂ I

∂α
=−(1−β)σ

l,m
+(1−β)σ

l+1,m
−βσ

l,m+1
+βσ

l+1,m+1

As mentioned above, using this formulation for I and dI/du
k
,

we could derive the advection for higher order integrators, such as
Runge-Kutta. In practice, however, we found that taking only a
single Euler step was sufficient.

4.3 Mass Preservation

In theory, advecting the smoke density through a divergence free
field should preserve mass; however, in practice, the smoke mass
slowly dissipates over the semi-Lagrangian advection. We address
this by renormalizing the density field to the correct mass.

The “mass” of the smoke is given by the sum of its density over
all grid points ∑ρ . Suppose the field should have mass m. We
project ρ to the density field ρ ′ with proper mass as follows:

ρ ′ = ρ
m

∑ρ
.

Therefore, the derivative with respect to any parameter u
k

is:

dρ ′

du
k

=
dρ

du
k

m

∑ρ
−ρ

m

(∑ρ)2 ∑
dρ

du
k

.

4.4 Forces

In the force step, F , we add incremental velocities to the field v:

F(v) = v+ f, dF
duk

(v) = dv

duk
+ df

duk
.

In practice, f consists of various forces, including heat forces fτ ,
vorticity confinement fχ , and the set of forces fu parameterized by
the control vector u:

f = fτ + fχ +∑ fu.

The derivatives of each of these forces with respect to u
k

must be
computed and added to dv/du

k
. For example, the heat force causes

smoke to rise along the y-axis proportionally to its density:

f y
τ

= kτ ρ ,
d f y

τ

duk
= kτ

dρ

duk
.

The vorticity confinement force is more complicated. We offer a
novel derivation of this force and its derivative in appendix A. We
discuss the control forces in the subsequent section.

5 Control Parameters

The above framework is independent of the actual control parame-
ters used in the simulation, and will work so long as the derivatives
can be calculated. Here we present two possible types of control
forces. The force parameters make up the control vector u.

Figure 2: Control forces discretized onto a velocity grid. Wind
forces (left), and vortex forces (right).

5.1 Wind Forces

Our basic control force fω is a single vector applied to the grid,
scaled by a Gaussian falloff function, creating a localized “wind.”
In 2D, if w is the wind direction and c is the center of the Gaussian:

(fω)i, j = Gi, jw

where ∆c = [i, j]T −c, Gi, j = e−a|∆c|2 , and a determines the “width”

of the Gaussian.
For fixed Gaussians, our system optimizes over the vector w.

That is, the components of w would be part of the control vector u.
We must therefore take the derivative with respect to w:

(

dfω

dw

)

i, j

= Gi, j .

In some circumstances, we allow the system to optimize over the
location of this force. In this case, the center c becomes a control
parameter, and we need the derivative:

(

dfω

dc

)

i, j

= 2aGi, jw(∆c)T .

These equations extend easily to the three dimensional case.

5.2 Vortex Forces

To create user-controlled vortices in the air field, we employ a sim-
ilar Gaussian falloff approach. A single parameter r controls the
amount of rotational force applied:

4

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Figure 3: The effect of state blurring on an objective function for
a two-dimensional control vector. Blurring (right) helps guide the
optimization to a minimum by removing flat regions.

(fν)i, j = rGi, jR∆c where R =

[

0 −1
1 0

]

is the matrix that rotates by π/2 and Gi, j is defined as above. We

take the derivatives of this vortex force with respect to the possible
control parameters, the spin r and the vortex center c:

(

dfν

dr

)

i, j

= Gi, jR∆c,

(

dfν

dc

)

i, j

= rGi, jR(2a∆c(∆c)T − I).

6 Objective Function

In the preceding sections, we formulated analytic derivatives of the
controlled fluid simulation. This allows us to compute exactly how
the objective function changes with respect to each control param-
eter.

Recall that the objective function ϕ is composed of two terms:
a smoothness term ϕs and a keyframe-matching term ϕ

k
. The

smoothness term measures how much control force was added dur-
ing the simulation. Let ft be the grid of incremental velocities added
to vt by the control forces at time t. We define

ϕs = ks

n

∑
t=0

|ft |2

where ks is a scaling constant, n is the number of timesteps, and
|x|2 = x · x is the sum of squared values taken over each grid cell.
Therefore, the derivative with respect to an arbitrary control u

k
is:

dϕs

du
k

= 2ks

n

∑
t=0

ft ·
dft

du
k

.

The other term of the objective function ϕ
k

measures how well
the simulation matches the keyframes. That is, ϕ

k
measures the

“error” between each keyframe and the corresponding state of the
simulation. Suppose the density grid ρt at time t should match the
corresponding density keyframe ρ∗

t . An obvious metric is given by

|ρt −ρ∗
t |2. Unfortunately, this will not work for our purposes.

The problem is that this function is extremely flat with respect to
u unless the state happens to be close to the target. Imagine a state
and a keyframe with smoke densities that do not overlap: slightly
perturbing the smoke does not change this error value at all. This
is problematic, since we hope to use the gradient of this function
to direct us towards a solution. To resolve this issue, we blur both
the state and the keyframe before evaluation (Figure 3). Each time
we converge, we reduce the amount of blurring. Since blurring dis-
tributes over addition, our metric becomes |B(ρt −ρ∗

t)|2. We also
perform blurring for each velocity keyframe v∗t . Combining these
gives us the keyframe-matching term of the objective function:

ϕ
k
= k

d ∑
t∈Kd

|B(ρt −ρ∗
t)|2 + kv ∑

t∈Kv

|B(vt −v∗t)|2.

Here, K
d

and Kv are the sets of timesteps with density and velocity
keyframes, respectively. The scaling terms k

d
and kv are described

in Appendix B. The derivative of this term becomes

dϕ
k

du
k

= 2k
d ∑

t∈Kd

B(ρt−ρ∗
t)·B

(

dρt

du
k

)

+2kv ∑
t∈Kv

B(vt−v∗t)·B
(

dvt

du
k

)

.

Notice the dependency on the derivatives dρt/du
k

and dvt/du
k

of the simulation. This shows explicitly why we had to compute
derivatives through the entire fluid simulation.

Having computed the derivative of these two terms with respect
to each control parameter u

k
we can combine them to form:

dϕ

du
=

dϕ
k

du
+

dϕs

du

which tells us exactly how the objective function will change with
respect to a change in any control parameter. This information will
allow us find a smoke animation that matches the animator’s desired
behavior by iterating towards a minimum of the objective function.

7 Optimization Framework

The above definition of the objective function and its derivative pro-
vide us with all the elements needed to phrase the keyframe control
of smoke as a function minimization of ϕ over u. There are numer-
ous standard numerical methods for solving the function minimiza-
tion problem. We use a limited memory quasi-Newton optimization
technique [Zhu et al. 1994] which approximates the second deriva-
tive (the Hessian matrix) from a small set of most recent gradients.
This technique has near-quadratic convergence with comparatively
few evaluations of the function and gradient.

The quasi-Newton optimization requires us to evaluate ϕ and its
gradient dϕ/du for any value of the control parameters u. In the
preceding sections we derived these expressions mathematically.
We now present an algorithm for computing these values. The func-
tion EVALUATE in Figure 4 takes u and computes both the objective
and its gradient in parallel through a fluid simulation. Note that it is
presented to help clarify the technique, not necessarily to describe
an ideal implementation.

We include this pseudo-code to emphasize the parallels between
the fluid simulation and the derivative calculation. Notice that we
call identical functions for the linear steps PROJECT and DIFFUSE.
Furthermore, the non-linear ADVECT and ADVECTDERIV func-
tions can share interpolation code, as discussed in Section 4.2. Also
note that at time t, we only calculate derivatives for the active con-
trols, that is, parameters controlling forces that have already af-
fected the simulation. All other controls have zero derivative.

The optimization process repeatedly calls EVALUATE, sampling
the control space and iterating towards a local minimum. Each time
this process converges, we decrease the blurring factor in the objec-
tive function and repeat, using the previous solution for u as the new
starting point. The final optimization proceeds with no blurring at
all, and we return this solution as the final control vector.

8 Layered Multiple Shooting

The framework described above works well for short simulations
with reasonable control forces, but scales poorly when extended to
lengthy problems. For one, the higher the dimensionality of the
control vector, the more the optimizer needs to sample the space.
Secondly, each sampling of the objective function increases in com-
plexity with the dimension of u. Since the derivatives for a specific
control only need to be calculated from the point that control affects
the simulation, more and more derivatives need to be computed

5

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

EVALUATE(u)
(ϕ,dϕ/du)← (0,0)
(ρ,v,dρ/du,dv/du)← (ρ

0
,v

0
,0,0)

for t ← 1 to n
– derivative calculation
for each active control u

k
df/du

k
← FORCEDERIV(t, dv/du

k
, u)

dv/du
k
← dv/du

k
+ df/du

k
dv/du

k
← ADVECTDERIV(v, v, dv/du

k
)

dv/du
k
← DIFFUSE(dv/du

k
)

dv/du
k
← PROJECT(dv/du

k
)

dρ/du
k
← ADVECTDERIV(v, ρ , dρ/du

k
)

dρ/du
k
← PRESERVEMASSDERIV(ρ , dρ/du

k
)

– fluid simulation
f← FORCE(t, u)
v← v + f
v← ADVECT(v, v)
v← DIFFUSE(v)
v← PROJECT(v)
ρ ← ADVECT(v, ρ)
ρ ← PRESERVEMASS(ρ)

– objective function
ϕ ← ϕ + OBJECTIVE(t, ρ , v, f)
for each active control u

k
dϕ/du

k
← dϕ/du

k
+ GRAD(t, ρ , dρ/du

k
, v, dv/du

k
, f, df/du

k
)

return (ϕ , dϕ/du)
Figure 4: Pseudo-code for evaluation of the objective and gradient.

each step. Consequently, if control forces are distributed evenly
over time, doubling the length of the simulation will approximately
quadruple the complexity of each derivative calculation. Lastly,
solving for long simulations with many keyframes is more likely
to get stuck in a local minimum of the cost function.

To resolve these issues, we use a novel form of multiple shooting
adapted for this domain. The central idea behind multiple shooting
is to temporally break a complex problem into a set of subprob-
lems, each of which can be solved locally. The solutions to each of
these segments are then used to inform its neighbors, propagating
knowledge back and forth as we iterate towards a global solution.

Standard multiple shooting approaches interpolate the bound-
aries to maintain continuity. However, meaningfully interpolating
smoke densities is not straightforward, and so we present a varia-
tion called “layered multiple shooting” that eliminates the need for
boundary interpolation by using overlapping sets of subproblems.

8.1 Overlapping Schedules

To begin, we split the simulation into a sequence of segments,
called the “initial schedule,” where each segment boundary lies on
a keyframe. In Figure 5, we label this sequence A, B, C, and D.
Each of these subproblems is solved locally using the framework
described above, optimizing only over the control parameters that
have a direct effect during that time interval. Merging these solu-
tions results in a poor guess for u that we must iteratively refine to
reach our desired minimum.

This is achieved through an “alternate schedule” of subproblems
(E, F , and G in Figure 5), whose segments overlap those in the
initial schedule. The start and end points of these segments are
culled from the intermediate states of the initial segments. In other
words, the state generated at the midpoint of each initial subprob-
lem is added to the end of each alternate subproblem as a “pseudo-

Figure 5: Multiple shooting schedules. Segments A, B, C, and D
form the initial schedule; E, F , and G form the alternate schedule.

keyframe,” shown as orange arrows. When solving these overlap-
ping subproblems, the optimizer attempts to hit both the pseudo-
keyframe at the end, and all the original keyframes along the way.
This updates u and propagates knowledge of non-local keyframes
across the boundaries of the initial schedule.

We alternate between the initial and alternate schedules, refin-
ing the control vector u and updating the pseudo-keyframes. The
subproblems in the initial schedule always keep their original tar-
get keyframes, but these are augmented with the velocities of the
overlapping segments’ solutions. In this way, each pass through the
initial schedule not only has a better starting value for u, it also has
an improved final target velocity for solving the later segments in
the schedule.

8.2 Parallel vs. Sequential Schedule Processing

In the process described above, each segment starts directly from
a keyframe or pseudo-keyframe. We term this the “parallel” ap-
proach, since each segment is completely independent of the other
subproblems (a multi-processor implementation could compute
these simultaneously). While optimizing the schedule in this fash-
ion will smoothly improve the overall solution, the endpoints of the
segments will never quite match up and error will build up when
applying the composed u to the entire simulation.

An alternative method for processing the segments in a schedule
is to begin each subproblem with the previous endpoint’s solution
(Figure 6). Initially, this sequential approach performs badly, since
each segment must counteract bad decisions made by the previous
segments. On the other hand, with a reasonable guess for u sequen-
tial processing converges much faster than the parallel technique.
In our multiple-shooting examples, we perform two sets of paral-
lel schedules to provide a good initial guess, followed by two sets
performed sequentially to converge quickly to the minimum.

9 Results

We have used our optimization framework to generate several ex-
amples of keyframed smoke animations and found it robust across
a broad range of constraints, in the sense that it produced “smoke-
like” animations that reasonably approximated the keyframes.

Figure 7 shows a 3D simulation on a 30x30x30 grid where a ball
of smoke is instructed to split in three directions. By restricting the

A
B
C
D

⇒

E
F
G

⇒

A
B
C
D

⇒ ·· ·

[A→ B→C→ D]⇒ [E→ F → G]⇒ ·· ·
Figure 6: Parallel vs. Sequential Processing. In parallel processing
(top), each segment is run independently, with boundaries defined
by keyframe information. In sequential processing, each segment
is processed in order, starting from the ending state of the previous.

6

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Figure 7: A ball of smoke splits in three directions.

control (20 wind forces) to the first time step of the simulation, we
are essentially solving for the initial velocity grid and letting the
rest of the simulation proceed unhindered. The optimization took
2 hours to run on a 2Ghz Pentium 4, though we have not made
significant efforts at efficiency and believe all the examples could
be achieved substantially more quickly, for example, by leveraging
the parallelism described in Section 8.2.

Figure 9 demonstrates complicated keyframe shapes that can
only be achieved with more fine-grain control (9 wind forces and 4
moving vortices, every 3 time steps). This example, though it only
had two keyframes, benefited from our multiple shooting strategy:
the 35 step simulation has 408 control parameters, far too many to
optimize at once. With multiple shooting, it ran for just under 24
hours and produced an extremely close match to both keyframes.

The letters in Figure 8 were achieved by running 5 separate sim-
ulations from identical initial states. The solution to each of these
50x50 simulations took 2-5 hours, at which point their resulting
states were merged into a single grid and further simulated to dis-
sipate into one another. Occasionally, the system would get stuck
in an unsatisfactory state (e.g., producing an “E” missing the center
bar). Inserting a suggestive intermediate keyframe usually guided
the system out of these local minima. This form of intuitive user
interaction greatly expanded the set of shapes the system could
achieve, without needing to increase the number of controls.

In other cases, the resulting animation matched the keyframes,
but felt “too controlled.” We refer the reader to our video for an
example of a ball of smoke splitting and orbiting itself; in this case,
the keyframes were meant more as a sketch of the overall animation
than as strict shapes to hit. After increasing the smoothness term in
the objective function and decreasing the controls to 9 wind forces
every 4 frames, the results became more physically plausible and
“smoke-like.” To keep the animation realistic, we often refined the
keyframes or adjusted their timing, resulting in a process which felt
remarkably similar to keyframing in traditional animation.

10 Discussion and Future Work

In this paper, we have presented a novel technique for controlling
smoke simulations through keyframing, allowing the user consid-

Figure 8: Smoke rising to form the letters “SMOKE.”

erable control over the animation while retaining the realism and
nuance of a fluid simulation. This idiom represents a significant
advance over previous methods of controlling fluids through direct
manipulation of simulation parameters.

In achieving these goals, we have developed an approach for
computing exact derivatives through the fluid simulation process
most widely used in graphics today. We presented a keyframe-
matching objective function with meaningful gradients for this do-
main. Lastly, we introduced a variant on multiple shooting which
doesn’t require interpolating boundary states.

In addition, we believe our approach generalizes to a wider range
of problems. Our formulation of derivatives is directly applicable
to the many applications already using this fluid solver. Moreover,
the approach to calculating exact derivatives could be applied to
any system of PDEs that can be solved as a composition of dif-
ferentiable functions. Finally, our staggered schedule approach to
multiple-shooting would be useful in many optimization processes
to avoid interpolating states.

Our current approach suffers from several drawbacks. It works
well for problems of similar size to the examples presented, but
becomes computationally prohibitive for large problems with fine-
grained control. In addition, the quasi-Newton optimization is ef-
ficient, but can get caught in local minima, especially if keyframes
are spaced far apart or if controls compete against one another. One
possible direction to explore is multi-resolution force frameworks,
solving the system repeatedly for increasingly fine control. This
could not only significantly improve computation time, but might
help avoid poor minima due to competing fine-grain control.

Another interesting avenue to pursue is the application of our
technique to paradigms other than keyframing. One such approach
would be to match fluid simulations to videos of real smoke. This
would be useful in effects production, where real pyrotechnic ele-
ments could be digitized to interact with a 3D environment.

In conclusion, we hope that the initial steps presented in this
paper and future work in controlling fluids will make simulation-
based techniques more useful and help bridge the gap in animation
between physical realism and artistic expression.

Acknowledgments. The authors would like to thank Siobhan
Quinn for providing voice-over for the accompanying video. This
work was supported by the UW Animation Research Labs, NSF
grant CCR-0092970, ITR grant IIS-0113007, Alias|Wavefront, Mi-
crosoft Research, Intel, Electronic Arts, and Sony.

A Vorticity Confinement Forces

To counteract the numerical dampening of the semi-Lagrangian ad-
vection step, we add a “vorticity confinement” force fχ . This force
prevents spinning vortices from dissipating too quickly.

Our computation of fχ is a variation of that found in [Fedkiw
et al. 2001]. Traditionally, vorticity confinement is defined in terms
of the norm function |x|=√x ·x whose derivative has a singularity
at x = 0. This is problematic because the differential field dv/du

k
often vanishes in practice. We address this by replacing the norm
with the pseudo-norm:

≀x≀= √

x ·x+ e
0

d ≀x≀
du

k

=

(

x · dx

du
k

)

/

≀x ≀ .

Setting e
0

to a small positive constant makes the pseudo-norm’s
derivative everywhere well defined, while preserving the qualitative
effects of vorticity confinement. The vorticity confinement equa-
tions therefore become:

ω = ∇×v, η = ∇ ≀ω ≀ ,
N = η/ ≀η ≀ , fχ = ε(N×ω).

7

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Figure 9: An animation of smoke forming “check” then “x.” The keyframes for this animation are inset.

This implies the following set of derivatives with respect to u
k
:

dω

du
k

= ∇× dv

du
k

dη

du
k

= ∇
d ≀ω≀
du

k

dN

du
k

=

(

dη

du
k

≀η ≀−η
d ≀η ≀
du

k

)

/

≀η ≀2

dfχ

du
k

= ε

(

dN

du
k

×ω +N× dω

du
k

)

.

B Objective Function Scaling Terms

In the objective function, we would like the constants k
d
, kv and ks

to scale appropriately with factors like the grid dimension and the
amount of mass. They can be defined as follows:

k
d

=
k′d

nkd m , kv =
k′v

4v2

M
nkvd

, ks =
k′s

f 2

M
n f d

where m is the mass of smoke (we re-normalize the mass each step
so this remains constant). vM is the desired upper bound on the
length of velocity vectors and fM is corresponding desired bound
on the vector added in the force step. n

kd
, n

kv
, n f are the number of

density key frames, velocity key frames, and frames with applied
forces, respectively. The constant d is the product of the grid di-
mensions, that is, the number of voxels in the simulation. This way,
k′d , k′v, and k′s can be adjusted to favor any one term, but they all
should be around 1.0 and should scale to different simulations.

References

ASCHER, U. M., MATTHEIJ, R. M. M., AND RUSELL, R. D.
1988. Numerical Solution of Boundary Value Problems for Or-
dinary Differential Equations. Prentice-Hall, Englewood Cliffs,
New Jersey.

BEWLEY, T. R., MOIN, P., AND TEMAM, R. 2001. Dns-based
predictive control of turbulence: an optimal benchmark for feed-
back algorithms. Journal of Fluid Mechanics 447, 179–225.

BEWLEY, T. R. 2001. Flow control: new challenges for a new
renaissance. Progress in Aerospace Sciences 37, 21–58.

BEWLEY, T. R. 2002. The emerging roles of model-based con-
trol theory in fluid mechanics. In Advances in Turbulence IX.
Proceedings of the Ninth European Turbulence Conference.

CHEN, J. X., DA VITTORIA LOBO, N., HUGHES, C. E., AND

MOSHELL, J. M. 1997. Real-Time Fluid Simulation in a Dy-
namic Virtual Environment. IEEE Computer Graphics and Ap-
plications (May-June), 52–61.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling Plausi-
ble Solutions to Multi-body Constraint Problems. In Computer
Graphics (SIGGRAPH 2000), ACM, 219–228.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and Rendering of Complex Water Surfaces. In Computer
Graphics (SIGGRAPH 2002), ACM, 736–744.

FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual Simulation
of Smoke. In Computer Graphics (SIGGRAPH 2001), ACM,
15–22.

FOSTER, N., AND FEDKIW, R. 2001. Practical Animation of Liq-
uids. In Computer Graphics (SIGGRAPH 2001), ACM, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic Animation of
Liquids. Graphical Models and Image Processing 58, 5, 471–
483.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid anima-
tion. Computer Graphics International, 178–188.

FOSTER, N., AND METAXAS, D. 1997. Modeling the Motion of
a Hot, Turbulent Gas. In Computer Graphics (SIGGRAPH 97),
ACM, 181–188.

GHIL, M., IDE, K., BENNETT, A. F., COURTIER, P., KIMOTO,
M., AND (EDS.), N. S. 1997. Data Assimilation in Meteorol-
ogy and Oceanography: Theory and Practice,. Meteorological
Society of Japan and Universal Academy Press.

KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray Tracing
Volume Densities. Computer Graphics (SIGGRAPH 84) 18, 3
(July), 165–174.

NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically
Based Modeling and Animation of Fire. In Computer Graphics
(SIGGRAPH 2002), ACM, 736–744.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND

WITKIN, A. 2000. Interactive Manipulation of Rigid Body Sim-
ulations. In Computer Graphics (SIGGRAPH 2000), ACM, 209–
218.

POPOVIĆ, J. 2001. Interactive Design of Rigid-Body Simulatons
for Computer Animation. PhD thesis, Carnegie Mellon Univer-
sity.

STAM, J. 1999. Stable Fluids. In Computer Graphics (SIGGRAPH
99), ACM, 121–128.

STOER, J., AND BULIRSCH, R. 1993. Introduction to Numerical
Analysis, 2nd ed. Springer.

WITTING, P. 1999. Computational Fluid Dynamics in a Traditional
Animation Environment. In Computer Graphics (SIGGRAPH
99), ACM, 129–136.

ZHU, C., BYRD, R., LU, P., AND NOCEDAL, J., 1994. Lbfgs-b:
Fortran subroutines for large-scale bound constrained optimiza-
tion.

8

