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Abstract. The use of ciyptographic hash functions like MD5 or SHA-1 for 
message authentication has become a standard approach in many applications, 
particularly Internet security protocols. Though very easy to implement, these 
mechanisms are usually based on ad hoc techniques that lack a sound security 
analysis. 
We present new, simple, and practical constructions of message authentication 
schemes based on a cryptographic hash function. Our schemes, NMAC and 
HMAC, are proven to be secure as long as the underlying hash function has 
some reasonable cryptographic strengths. Moreover we show, in a quantitative 
way, that the schemes retain almost all the security ofthe underlying hash function. 
The peiformance of our schemes is essentially that of the underlying hash function. 
Moreover they use the hash function (or its compression function) as a black box, 
so that widely available library code or hardwair can be used to implement them 
in a simple way, and replaceability of the underlying hash function is easily 
supported. 

1 Introduction 

1.1 Authenticity and MACs 

Verifying the integrity and authenticity of information is a prime necessity in computer 
systems and networks. In particular, two parties communicating over an insecure channel 
require a method by which information sent by one party can be validated as authentic 
(or unmodified) by the other. Most commonly such a mechanism is based on a secret key 
shared between the parties and takes the form of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMessage Authentication Code (MAC). 

(Other terms used include “Integrity Check Value” or “cryptographic checksum”). In 
this case, when party A transmits a message to party B, it appends to the message a 
value called the authentication tag, computed by the MAC algorithm as a function of 
the transmitted information and the shared secret key. At reception, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB recomputes the 
authentication tag on the received message using the same mechanism (and key) and 
checks that the value he obtains equals the tag attached to the received message. Only if 
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the values match is the information received considered as not altered on the way from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A to B? The goal is to preventforgery, namely, the computation, by the adversary, of a 
message (not sent by the legitimate parties) and its corresponding valid authentication 
tag. A precise definition of MACs and their security is in Section 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2 

MACs have most commonly been constructed out of block ciphers like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADES. (The most 
popular in this genre is the CBC MAC, analyzed in [6,  181.) More recently, however, 
there has been a surge of interest in the idea of constructing MACs from cryptographic 
hushfunctions like MD5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20] and SHA- 1 [2 I ] .  This is particularly visible in the Internet 
community, where the development of security protocols has led to the need for simple, 
efficient, and widely available MAC mechanisms. 

It is easy to see why people want to MAC with cryptographic hash functions: the 
popular hash functions are faster than block ciphers in software implementation; these 
software implementations are readily and freely available; and the functions are not 
subject to the export restriction rules of the USA and other countries. The more difficult 
question is how best to do it. These hash functions were not originally designed to be 
used for message authentication. (One of many difficulties is that hash functions are not 
keyed primitives, ie. do not accommodate naturally the notion of secret key.) So special 
care must be taken in using them to this end. In particular, although many constructions 
have been proposed, they lack a sound and realistic security analysis. Thus there is 
a need for constructions which maintain the efficiency of the hash functions but are 
backed by a more rigorous analysis of their security. This is what we provide. 

Section 1.5 describes some background and previous work on this subject. We now 
proceed to describe our work. 

MACing with cryptographic hash functions 

1.3 This work 

In this paper we present two (related) new schemes, NMAC (the Nested construction) 
and HMAC (the Hash based mac). They can utilize any cryptographic hash function 
of the iterated type, and enjoy several attractive security, efficiency, and practicality 
features. 

SECURITY. Our constructions enjoy a formal security analysis that relates the security of 
the new functions to basic properties of the underlying hash schetnes, like their resistance 
to collision finding. Our analysis considers any generic attack on MAC schemes (rather 
than showing security against a partial list of possible attacks) and shows that such an 
attack succeeds only if the underlying hash function is weak. Moreover, this relation 
between the assumed properties of the hash function and the security of the resultant 
MAC mechanism can be tightly quantified. 

In summary, what this analysis says is that if significant weaknesses are ever found 
in the MAC schemes proposed here, then not only does the underlying hash function 

More generally, MAC schemes can involve the use of state infoimation (e.g., a counter), use 
random nonces, or apply other mechanisms than just appending a tag. For concreteness we 
stick for now to simple MACs. 
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need to be dropped from these particular usages, but also it must be dropped from 
a wide range of other standard and popular usages to which these functions are now 
subject. Moreover, our constructions require from the hash function significantly weaker 
properties than standard collision-freeness. In particular, current successful methods for 
finding collisions in MD5 [9, 101 seem inapplicable to breaking our schemes when the 
hash function in use is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5. 

EFFICIENCY. Our constructions use the cryptographic hash functions in a very simple 
way. In particular, the performance degradation relative to the underlying hash scheme 
is minimal. This is motivated by the use of these functions in basic applications like 
IP (Internet Protocol) security [ l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 where the performance cost of such a function 
influences the computational and network performance of many other applications. 

BLACK BOX USAGE OF HASH FUNCTIONS. The constructions and analysis presented here 
are free from any dependency on the peculiarities of the underlying hash function. We 
only exploit the general structure of functions like MD5 and SHA-1, as being built 
on top of a basic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompression function which works on fixed length messages, and is 
then iterated multiple times in order to process variable length inputs (see Section 2). 
Therefore, the underlying hash function (or the corresponding compression function) 
can be seen as a module that can be easily replaced in case serious weaknesses are 
found in the hash function, or when new (possibly, more secure or more efficient) hash 
functions are designed. This replaceability property is fundamental given the limited 
confidence earned so far by these  function^.^ 

Besides the security advantage, there is a practical advantage to MAC schemes that 
use the underlying hash functions as a “black-box” (ie. by applying the hash function, or 
compression function,“as is”, without any modifications). Namely such schemes permit 
the immediate use of existing and widely available library code that implements these 
functions. They also permit use of hardware-based implementations of the underlying 
hash scheme. Our NMAC construction uses the compression function as a black-box; 
our HMAC construction, even more conveniently, uses only calls to the iterated hash 
function itself. 

1.4 A closer look 

Before getting into the more technical aspects of the paper we further discuss our 
approach and results. 

KEYING HASH FUNCTIONS. The first obstacle that one faces when coming to design a 
MAC scheme based on a cryptographic hash function (we limit ourselves, from now on, 
to “MD5-like” iterated hash functions, as described above), is that the latter usually do 
not use any cryptographic key. Rather, they are public functions that anyone can compute 
without the involvement of keys and secrets. This is in sharp contrast to a MAC function, 
which uses a secret key as an inherent part of its definition. Our approach to solve this 

It is worth observing that in the case of message authentication, as opposed to encryption, 
the breaking of a MAC does not compromise traffic authenticated in the past with the broken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MAC. One can avoid the vulnerabilities cleated by new attacks, by replacing the underlying 
hash scheme as soon as this is broken. 



problem is to key these hash functions through their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitial variable (IV) (for details 
see Section 2). That is, the usually fixed IV defined by these functions is replaced by a 
random (and secret) string which becomes the key to the MAC. 

SECURE MACS FROM SECURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHASH i-UNCllONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more fundamental problem is how 
to build the message authentication function in a way that the hardness of forging an 
authenticated message can be related to the cryptographic strength of the underlying 
hash function. 

You can’t make good wine from bad grapes: obviously, some strengths must be 
assumedof the hash function. On theother hand the assumptions shouldnot be too strong, 
especially given that not enough confidence has been gathered in current candidates 
like MD5 and SHA-1. (In particular, it would certainly be possible to come up with 
“provably secure’’ MACs if one assumed the hash functions behaved like completely 
random functions, but this is less useful.) Our goal is to design MACs that involve the use 
of cryptographic hash functions in a simple way, yet their security can be argued on the 
basis of reasonable security assumptions on the underlying hash function. Moreover, we 
want this analysis to provide a quantitative relationship between the assumed strength 
of the hash function and the proven strength of the MAC. 

We achieve the above goals in a strong sense. We are able to present a relatively 
simple analysis of our scheme which shows that an attacker that is able to forge our 
MAC function can, with the same effort (time and amount of collected information), 
bre,ak the underlying hash function in  one of the following ways: ( 1 )  The attacker finds 
collisions in the hash function even when the IV is random and secret, and the hash 
value is not explicitly known; or, (2) The attacker is able to forge the secretly keyed 
compression function viewed as a MAC function applied to fixed length and partially 
unknown messages. 

Consequently, existence of such attacks would contradict some of the basic assump- 
tions about the cryptographic strength of these hash functions. Success in the first of the 
above attacks means success in finding collisions, the prevention of which is the main 
design goal of cryptographic hash functions. But in fact, even more is true: success in 
the first attack above is even harder than finding collisions in the hash function, because 
collisions when the IV is secret and the hash value is not explicitly known (as is the case 
here) is far more difficult than finding collisions in the plain (fixed IV) hash function. 
In particular, attacks when the IV is secret require interaction with the legitimate user 
of the function, and disallows the parallelism of traditional birthday attacks. Thus, even 
if the hash function is not collision-free in the traditional sense, our schemes could 
be secure. The success of the second attack above would imply that the randomness 
properties of the hash functions are very poor, and that all the bits of the hash output are 
simultaneously predictable (even with a secret IV and partially unknown input). 

We stress that our analyses use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexact analysis (no asymptotics involved), consider 
generic rather than specific attacks, and establish a tight relationship between the secu- 
rities of the MAC and the underlying hash function. 

ACTUAL VERSUS PROVEN STRENGTHS. It is important to realize that our results are 
guided by the desire to have simple to state assumptions and a simple analysis. In 
reality, our constructions are even stronger than the analyses indicate, in the sense that 
even were the hash functions found not to meet the stated assumptions. our schemes 
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might be secure. For example. even the weak collision resistance property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas we state is 
an overkill, because in actuality, in our constructions, the attacker must find collisions 
in the keyed function without seeing any outputs of this function, which is significantly 
harder. 

The later remark is relevant to the recently discovered collision attacks on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101. 
While these attacks could be adapted to attack the weak collision-resistance property of 
MDS, they do not seem to lead to a breaking of NMAC or HMAC even when used with 
MD5. (See Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for further discussion.) A more complex set of assumptions on the 
hash functions can be formulated to capture these extra strengths of our constructions 
but it is omitted here. 

1.5 Related work 

The exact security treatment of MACs began in [6] (where CBC-MAC is analyzed), 
and we use their definitions. Further block cipher based constructions were provided 
and analyzed in [ 5 ] .  

MAC constructions based on cryptographic hash functions have been in use for a 
few years (see Tsudik [23] for an early description of such constructions and Touch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[22] for a list of Internet protocols that use this approach). Preneel and van Oorschot 
[18, 191 survey existing constructions and point out to some of their properties and 
weaknesses; in particular, they present a detailed description of the effect of birthday 
attacks on iterated constructions. (These attacks remain the best possible ones on our 
schemes. But in practice they are infeasible. See Section 5 for more information.) They 
also present a heuristic construction, the MDx-MAC, based on these findings. Kaliski 
and Robshaw [ 131 discuss and compare various constructions. Performance issues are 
discussed in [22,7] .  

In this work we have initiated the first rigorous treatment of the subject and, in 
particular, present the first constructions whose security can be formally analyzed, 
without resorting to unrealistic assumptions such as the “ideality” of the underlying 
hash functions. 

In a companion work [4] we consider how to design “pseudo-random functions” 
based on iterated compression functions. We show that if the compression function 
is pseudo-random then so is its iteration. The notion of a pseudo-random function is 
stronger than that of a MAC, and therefore that work can be viewed as making stronger 
assumptions than us (namely that the compression function is pseudo-random) in order 
to attain a stronger end (namely that the iterated construction too is pseudo-random). 

Our HMAC construction was recently chosen as the mandatory to implement au- 
thentication transform for Internet security protocols and for this purpose is described 
in an Internet draft [ 141 and an upcoming RFC. 

2 Basic Notions 

MESSAGE AUTHENTICATION CODES (MACs). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA MAC is a function which takes the 
secret key k (shared between the parties) and the message m to return a tag MACk(m). 
The adversary sees a sequence (ml, ul ) ,  (m2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2), . . . , (mq, u q )  of pairs of messages 



and their corresponding tags (that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= MACk (m,)) transmitted between the parties. 
We consider chosen-message attacks, and think of the adversary as being able to choose 
the messages for which she wants to see tags. The adversary breaks the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAC if she 
can find a message m, not included among nl, . . . my, together with its corresponding 
valid authentication tag a = MACk(m). (An adversary who finds the key certainly 
breaks the scheme, but the scheme can also be broken by somehow combining a few 
messages and corresponding checksums into a new message and its valid checksum.) 
The success probability of the adversary is the probability that she breaks the MAC. 

Following [6], we quantify security in terms of the success probability achievable 
as a function of the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq of valid MAC examples seen by the adversary, and the 
available time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt .  (Note the success probability achievable for given t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq depends on the 
parameters of the MAC scheme, in particular its key length.) Then we say that MAC 
is a ( 6 ,  t ,  q ,  L)-secure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAC if any adversary that is not given the key k, is limited to 
spend total time (number of operations) t on the attack, and to request the value of the 
function MACk in up to q messages m1? m2, . . . , mp of its choice, each of length at 
most L, cannot break the scheme except with probability better than E .  

As a convention we include in the time bound t the time it takes to compute the 
function MACt ineach oftherequested queries. We also includein i t  the size of thecode 
of the adversary’s algorithm. (One can imagine an adversary who has pre-computed a 
lot of information and put it into its code). 

Notice that the above definition is stated in terms of a generic attacker; we do not 
limit the attacker to any particular attacks or cryptanalytical techniques. Anything the 
adversary can do under the given resource bounds (time and queries) is captured by this 
definition. Also, notice the lack of asymptotics in this definition. Here t ,  q ,  and L can 
be replaced by actual numbers. 

resistant if it is hard to finddistinct points 2, y in its domain which have the same image 
under the function. A cryptographic hash function takes messages of arbitrary length to 
strings of some fixed length, and is usually designed to be collision-resistant. 

The iterated construction methodology for the construction of collision-resistant 
hash functions forms the basis of the design of the most common cryptographic hash 
functions like MD5 and SHA- 1 .  We start with a compressionfuncfion f which processes 
fixed length inputs: it takes a chaining variable of length l and a block of data of length 
b to return a l bit output. (For MD5 l = 128 and b = 512 while for SHA-I 1 = 160 and 
b = 512. See 120, 211 for a detailed description of the compression functions of these 
functions.) 

The hash function is defined as follows. First, an b-bit value IV is fixed. Next an input 
is hashcd by iterating the compression function. That is, if z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2, .  . . , z, is the 
input, where the z,’s are blocks of length beach and n is an arbitrary number of blocks, 
the value of the iterated function F on z is h, where ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr IV and h, = f (h , - l ,  2,) 
for i = 1 ,2 ,  . . . ?  tz. 

Notice that a way to pad messages to an exact multiple of b bits needs to be defined, 
in particular, MD5 and SHA-1 pad inputs to always include an encoding of their length. 

The motivation for this iterative structure arises from the observation (of Merkle 
[ 161 and Damg3rd [S]) that if the compression function is collision-resistant then so is 
the resultant iterated hash function. 

CRYFTOGRAPHIC HASH FUNCTIONS OF THE ITERATED KIND. A fUnCtiOn is COkSiOn- 
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KEYED HASH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFUNCTIONS. Our approach to keying hash functions is to substitute the 
secret key for the function’s fixed IV. Namely, instead of using a fixed and known IV as 
defined by the original function, we replace it by a random and secret value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk known 
only to the parties. As it turns out the latter approach has some significant analytical 
advantages. It allows for a better modeling of keyed hash functions as needed for the 
security analysis of these functions. We will also see that the secret IV effect can be 
achieved through the use of keys padded and prepended to data (see Section 4). 

Let fk defined by fit (z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- f( k ,  z) be the keyed compression function, where I k I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ a /  T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. Now we associate to any iterated hash construction (e.g., MD5, SHA-I) 

a family of (keyed) functions ( F k } k .  Namely for z = z1. . . 2, define Fk(z) to be k, 
where kt = fk,-l (2,) for i = 1,. . . , n and ko = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk .  Notice that the space of keys is the 
same for the keyed compression functions and for the keyed iterated hash functions: it 
is the set of all the strings of length l .  The original iterated hash function is obtained as 
a particular member of the keyed family, namely, FTV.  

We say that a family of keyed hash functions { F k }  is (6, t , q ,  L)-weakly collision- 
resistant if any adversary that is not given the key k ,  is limited to spend total time 
t, and sees the values of the function Fk computed on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq messages rnl, m2, . . . , mq 
of its choice, each of length at most L ,  cannot find messages m and rn’ for which 
fk(m) = f k ( r n ’ )  with probability better than€. 

Notice that the above requirement is weaker than the traditional requirement of 
collision-resistance from (key-less) hash functions. In the latter case, it is enough to find 
collisions for a known and fixed IV. Also in the case of secretly keyed hash functions 
the adversary needs to get its “examples” (the messages ml, m 2 , .  . . , rnq in the above 
definition) from the legal user itself who knows the key k. In the key-less case, the 
attacker can work in finding collisions independently of any user or key. Moreover, 
even brute force collision search attacks can become feasible for functions like MD5 
due to the easiness of parallelization of these attacks (see [24]). In contrast, attacks on 
secretly keyed hash functions cannot be parallelized as they require interaction with the 
legal user. 

Remark. We stress that recent results by Dobbertin [9,10] showing how to findcollisions 
in MD4 and MD5 (when the IV is known) can be used to attack the weak collision 
resistance of these functions as well (i.e., when the IV is secret). However, this requires 
the ability to perform afxtension attacks on these functions which i s  explicitly avoided 
in our constructions. (This issue is further explained in section 5.) 

3 The Nested Construction NMAC 

We present our basic construction NMAC (for ‘Nested MAC’) and its analysis. In the 
next section we describe a variant, HMAC, that is further geared towards practical 
applications. Denote by fk and F k  the keyed versions of a given compression function 
and its iterated function, as described in Section 2. 

Let k = ( k l ,  ka) where k l  and k~ are keys to the function F (i.e., random strings 
of length each). We define a MAC function NMAC(z) which works on inputs 2 of 



arbitrary length as 

Notice that the outer function acts on the output of the iterated function and thus involves 
only one iteration of the compression function. That is, this outer function is basically 
the compression function f k l  acting on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFk,(z) padded to a full block size (in some 
standard way as defined by the underlying hash scheme F). 

Notice the simplicity and efficiency of the construction. The cost of the internal 
function is exactly the same as hashing the data with the basic (key-less) hash function. 
The only additional cost is' the outer application which, as said, involves only one 
iteration of the compression function. 

The following result (tightly) relates the security of NMAC to the security of the 
hash function as a keyed collision-resistant function and the security of the compression 
function as a MAC on fixed length messages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 1. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe keyed compression function f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  an ( E )  9 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  b)-secure MAC on 
messages of length b bits, and the keyed iteratedhash F is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqI t ,  L)-weukly collision- 
resistant then the NMAC function is an (6) + E F ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ,  t ,  L)-secure MAC. 

The proof has been omitted due to page limits and can be found in the full version of 
this paper [3]. 

Remurk. The weak-collision-freeness assumption made in the theorem can be replaced 
by the much weaker assumption that the inner hash function is collision resistant to 
adversaries that see the hash value only after it was hashed again with a different secret 
key. This extra strength of NMAC is demonstrated by the fact that current methods for 
finding collisions in MD5 and MD4 [9, 101 seem useless for attacking NMAC, even if 
both the inner and the outer hash functions are either MD4 or MD5. 

NMACk(2) Fk,(Fk2(2)). 

Remark. Another aspect by which the result is more general than stated in the theorem 
is as follows. Notice that although we use the same function for the inner and outer 
application in NMACone could use totally different functions for these two applications. 
In that case the above theorem would still hold given the MAC assumption on the outer 
function, and the collision-resistance property of the internal function. This can lead 
to hybrid approaches like using SHA- 1 (keyed through its 1V) for the internal iterated 
function, and DES-MAC-CBC for the external, etc. 

Remark. In spite of the use o f  two different keys Icl  and k2 ,  the security of the function 
is given by each individual key (of length 1) and not by the combination (21) of their 
lengths. For more details on this aspect see the divide and conquer attack in Section 5 .  

Remurk. Preneel and van Oorschot [ 181 recommend outputting only half of the bits of 
the hash output as the authentication tag. This recommendation is motivated by the fact 
that forgery attacks are anyway doable with complexity 2c/2 through birthday attacks 
(see Section 5 ) ,  and that by outputting only half of the bits these attacks require more 
chosen messages. Carrying this recommendation to our constructions would require 
the assumption that the compression function with truncated output (e.g., only the 1 / 2  
most significant bits of output) constitutes a secure MAC. Whether this is acceptable or 
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not depends on the assumed properties of the particular compression function in use. 
(The tradeoff here is that by outputting less bits the attacker has less bits to predict in a 
MAC forgery but, on the other hand, the attacker also learns less about the output of the 
compression function from seeing the authentication tags computed by the legitimate 
parties.) Applications for which a saving in the MAC length is important can adopt our 
constructions with a reduced output of (at least) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl / 2  bits. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark. One can ask how much our assumptions on the underlying hash function can 
be further weakened and still have a simple construction of a secure MAC. Although 
we cannot answer this question in a formal way (e.g., secure MAC functions can be 
built from the weaker assumption that the compression function is a one-way function, 
but the known constructions to achieve that are totally impractical), we can point out to 
two facts. First, by just assuming that the compression function is a MAC one cannot 
guarantee that the iterated function is a MAC. That is clearly shown by the extension 
attacksdiscussed in Section 5. In particular, this shows that one cannot just omit the outer 
application of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF k l  in NMAC and still get a secure MAC. As for basing the construction 
in collision-resistance only, we stress that this property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso is insufficient to make the 
function a secure MAC. Indeed, one can construct examples of strong collision-resistant 
functions that are easily forgeable as MAC. Moreover, one can show this to hold for 
specific proposals of MAC functions based on hash schemes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 HMAC: A fixed IV variant 

Due to the wide availability of free library code for existing hash functions (especially 
MD5), it is a practical advantage to build MAC mechanisms that use these functions 
as a black-box, so that the MAC can be implemented by simply calling the existing 
function. The NMAC construction presented in Section 3 requires direct access to code 
for the compression function (rather than for the overall hash function), in order to key 
the IV. Such a change is trivial for functions with well-structured code like MD5 (see 
[20]). However, in some cases one would still like to avoid even those minimal changes, 
and use the code (or hardware implementation) as is. Here we present an adaptation of 
NMAC that achieves this goal. As an additional advantage, this construction involves 
a single !-bit long key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk as opposed to two different keys as in NMAC. This has 
some advantages at the level of key management. With an additional assumption on the 
underlying compression function one can show the applicability of the NMAC analysis 
to HMAC. 

Let F be the (iterated and key-less) hash function initialized with its usual fixed 1V. 

The function HMAC works on inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz of arbitrary length and uses a single random 
string k of length I as its key: 

IIMACk(2) - F ( k  -y opad, F(k! tw ipad, z)) 

where k is the completion by adding 0’s of k to a full b-bit block-size of the iterated hash 
function, opad and ipad are two fixed b-bits constants (the 3” and “0” are mnemonics 
for inner and outer), @ is the bitwise Exclusive Or operator, and the commas represent 
concatenation of the information. opad is formed by repeating the byte x’36’ as many 
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times as needed to get a 6-bit block, and ipad is defined similarly using the byte x’5c’. 
(For example, in the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5 and SHA-1 these bytes are repeated 64 times). 

The security of HMAC is based on the security of NMAC. The main observation 
for relating these two functions and their security is that by defining Icl  = f ( k  @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopad) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlez = f ( H  @I ipad), we get that HMACk(z) = NMAC(k,,ks)(t). In other words, the 
above transformation on the key makes HMAC a particular case of NMAC, where the 
keys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk~ and Ic:! are “pseudorandomly” derived from Ic using the compression function 
f .  Since the analysis of NMAC assumes that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk l  and k 2  are random and independently 
chosen keys, then in order to apply this analysis to HMAC one needs to assume that 
Ic1 and k~ derived using f cannot be distinguished by the attacker from truly random 
keys. This represents an additional assumption on the quality of the function f (keyed 
through the inpur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI % )  as a pseudorandom function. We require a relatively weak form of 
pseudorandomness since the adversary trying to learn about possible dependencies of 
Ic1 and Ic:! does not get to see directly the output of the pseudorandom function on any 
input. To sum things up, attacks that work on HMAC and not on NMAC are possible, in 
prindple. However, such an attack would reveal major weaknesses of the pseudorandom 
properties of the underlying hash function. 

It is important to note that in practice most keys are chosen pseudorandomly rather 
than as truly random strings; in particular, it is plausible that even if one uses NMAC, 

implementations will choose to derive k1 and kz using a pseudorandom generator. In the 
case of HMAC such a pseudorandom generator is “built-in” through the definition of the 
function using the function f and the above defined pads. This use for pseudorandom 
generation of functions like MD5 or SHA- 1 is very common in practical implementations 
(in fact, the designers of SHA-I recommended using this function for pseudorandom 
derivation of various quantities in the DSS standard [ 1 I ] ) .  

The above particular values of opad and ipad were chosen to have a very simple 
representation (to simplify the function’s specification and minirnizc the potential of 
implementation errors), and to provide a high Hamming distance between thepads. The 
latter is intended to exploit the mixing properties attributed to the compression function 
underlying the hash schemes in use. These properties are important in order to provide 
computational independence between the two derived keys. 

Finally, we note that the use of a singlet-bit long key as opposed to two (independent) 
keys does not represent a weakening of the function relative to exhaustive search of 
the key, since even when chosen independently the keys k.1 and k2  can be individually 
searched through a divide and conquer attack as described in Section 5. 

5 Attacks and Comparison to other Proposals 

In Section 3 we have established a tight and general relationship between the security 
of the function NMAC and the underlying hash function, in a way not known to hold Tor 
any other similar construction. We are thus assured that if a “good cryptographic hash 
function is used then all attacks against our schemes will fail to be practical. Nonetheless 
it is instructive to actually see what known attacks achieve, and cross-check that indeed 
they don’t work. We also compare our construction to other proposals. 
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BETHDAY ATTACKS. As shown i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 and our companion work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], birthday attacks, 
that are the basis to finding collisions in cryptographic hash functions, can be applied to 
attack also keyed MAC schemes based on iterated functions (including also CBC-MAC, 
and other schemes). These attacks apply to our new constructions as well. In particular, 
they constitute the best known forgery attacks against both the NMAC and HMAC 
constructions. Consideration of these attacks is important since they strongly improve 
on naive exhaustive search attacks. However, their practical relevance against these 
functions is negligible given the typical hash lengths like 128 or 160, since these attacks 
require knowledge of the MAC value (for a given key) on about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2L/2 messages (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L! is the length of the hash output). For values of L! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 128 the attack becomes totally 
infeasible? In contrast to the birthday attack on key-less hash functions, the new attacks 
require interaction with the key owner to produce the MAC values on a huge number of 
messages, and then allow for no parallelization. For example, when using MD5 such an 
attack would require the authentication of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA264 blocks (or 273 bits) of data using the same 
key. On a 1 Gbit/sec communication link, one would need 250,000 years to process 
all the data required by such an attack. This is in sharp contrast to birthday attacks on 
key-less hash functions which allow for far more efficient and close-to-realistic attacks 

Notice that these attacks produce forgery of the MAC function but not key recovery. 
In [ 191, however, it is shown that in some versions of the envelope method (the case 
where the same key is used to prepend and append and no block alignment of the 
appended key is performed), the birthday attacks can be further enhanced to provide fu l l  
key recovery in time much shorter than required by full exhaustive search. Since these 
attacks require at least the complexity mentioned above for forgery based on birthday 
attacks, they cannot be considered as practical ones. Yet, it is interesting to note that 
they do not apply to either of our constructions, since here the alignment issue exploited 
by these attacks is no applicable. 

The forms of birthday attacks that apply to our constructions can become feasible 
only if very significant weaknesses in the collision probability of the underlying hash 
function are discovered. However, in such a case the basic use of such a function 
as collision-resistant (as originally intended) would be strongly compromised, and the 
function should be dropped for cryptographic use. Finally, wemention that these birthday 
attacks (at least in their straightforward form) can be avoided by randomizing the MAC 

construction in a per-message basis. We refer to [4] for further details. 

COLLISION ATTACKS ON THE KEY-LESS HASH FUNCTION. Consider the “append-only’’ 

We illustrate the birthday attack against NMAC (it similarly applies against HMAC). Other 
vaiiations are possible. The attacker collects the value of NMACk on a number of equal- 
length messages until it finds two different messages ml and 77x2 for which NMACk(mr) = 
NMACk(m2). Subsequently,it requests the valueofNMACk on a messagem; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ml, B) ,  for 
some block B (Le., mi equals ml concatenatedwith the block B;  the issue of length padding is 
omitted here as it can be easily handled). The attacker then outputs a forgery for mi = (m2, B )  
using the authentication tag NMACk(m;). If the collision NMACh(ml) = NMACh(m2) was 
due to a collision in the internal function F k 2  (m l )  = Fh2(m2) then the forgery is successful. 
Only after collecting about 2c/2 messages the probability of such an attack to succeed is 
significant. 

~ 4 1 .  
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construction: MACk(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ( z ,  I c ) .  Assume that two strings z and E’ are known for 
which F ( c )  = F ( z ’ )  (this collision corresponds to the key-less hash function). Then, 
regardless of the key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlc in use, one knows that MACk(r) = MACk(z’) (actually, 
that is true for extensions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and z‘ as well). Finding a collision pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 2’ for the 
function F is far easier than attacking NMAC through collisions in Fk, where k is 
unknown. As showed in the above discussion on birthday attacks, while the latter is 
totally infeasible even for hash lengths of k? = 128, finding collisions to the plain 
hash function through birthday attacks approaches feasibility (see [24]). ‘The reason is 
that such a collision attack on the plain hash function can be performed off-line and 
independently of any secret key (and thus requires no interaction with the legitimate 
owner of k), and it is strongly parallelizable. None of these advantages for the attacker 
exist when attacking NMAC. In addition, as the recent experience teaches us, it is much 
easier to find collisionsvia analytical methods (e.g., [9, lo]) against the key-less function 
than breaking our schemes. We finally note that a variant of NMAC where the outer 
function is keyed but not the internal (i.e., F k ( F ( z ) ) )  is susceptible to the same attack 
through plain collisions as the append-only construction, and is significantly weaker 
than NMAC. 

TlIE EXTENSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAATTACK. Consider the “prepend-only” construction: MA& (z) = 
F(E,  z) (i.e., the key L is prepended to the data z and the hash function - with the 
fixed IV - computed on the concatenated information). Because of the iterative struc- 
ture of F it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis easy to see that if one knows the value of MACk (3) where a contains an 
integral number of blocks, then one can compute the value of M A G  on any extension 
y of z (i.e., any string y that contains E as a prefix) by just using the result of MA& (z) 
as an intermediate value of the chaining variable in the computation of MACk(9). This 
attacks needs no knowledge of or direct attack on the key E .  In NMAC this attack is 
prevented through the outer application of Fkl ,  which avoids the exposure of the result 
of the iterated function Fk2. 

Interestingly, the recent results by Dobbertin [9, 101, that allow finding full collisions 
inMD4andMD5,can becombined withextensions attacks(simi1ar to theonesdescribed 
above) to find collisions in these functions even if the IV is secret (we exploit here the 
property that Dobbertin’s techniques apply to known but arbitrary IVs). In this sense 
the plain weak collision resistance of these particular hash functions is compromised. 
However, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan attack is inapplicable against our MAC constructions since, as said, 
in our case the outer application of the hash function prevents such extension attacks. 

DIVIDE AND CONQUER ATTACKS. Consider the method, known as the “envelope” method, 
that combines the above prepend and append constructions, namely, MACk,,k, (z) = 
F(lc1, E ,  kz). Preneel and van Oorschot [ 181 observe that in an attack directed to recover 
the whole key one does not need to work exponential time on the added length of keys Ll 

and k2 but one can recover both keys in a total time which is exponential on the length of 
one key. This is done by first finding collisions in the MAC function, and then searching 
exhaustively for a key (Icl) that produces these collisions. Once we have the right kl it 
is straightforward to find La by exhaustion. Although this attack is impractical, it serves 
to illustrate the basic fact that the strength of the function comes from its individual 
keys and not from their combined length. 

A similar attack holds against NMAC. ‘rhis is in no contradiction with the analysis 
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of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 that shows the security of NMAC based on the strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the individual 
underlying functions, i.e., the keyed compression function as a MAC and the keyed 
iterated function as weakly collision-resistant. The divide and conquer attack shows 
that one cannot replace in Theorem 1 the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEf + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACF by the much stronger 
cf . E F .  It also serves to show that the use of a single C-bit long key in HMAC does not 
weaken the function against exhaustive search. 

COMPARISON WITH THE CoNsTRucTtm OF [18]. In [18] a construction is proposed 
which is also a variant of the envelope method. It uses a keyed IV and an appended key, 
but in addition it uses a third key that is applied to influence the internal rounds of the 
compression function in use. (All these keys are derived from a single underlying key.) 
This is a heuristic measure intended to counter possible weaknesses of the compression 
function in use, and no formal analysis of the construction is provided. We note that this 
construction is more “intrusive” in the sense that it requires some more changes to the 
existing hash functions, and it impacts performance in a moderate but noticeable way. 

COMPARISON WrrH ~ ~ ~ 1 8 2 8 .  The MAC scheme described in RFC1828 [I51 has been 
proposed as a standard mechanism for message authentication in the context of 1P 

(Internet Protocol) security. This function, which uses MD5 as the underlying hash 
function, is based on the envelope method, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbut pads the prepended key to a full block 
boundary. In addition, it uses the ,sume key for prepending and appending. The best 
analysis known for this type of functions is given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] which show that when using 
different and independent keys (for prepend and append) the security of the function 
can be based on the pseudorandom properties of the underlying compression function. 
The NMAC function presented in this paper enjoys a superior security analysis in two 
important aspects: it requires weaker assumptions on the underlying hash function (since 
the pseudorandomness of the compression function implies our assumptions), and the 
security of the underlying hash function is preserved in a significantly stronger way (as 
quantified in Theorem 1) than in the analysis in [4]. Another important difference is that 
the HMAC variant deals betrer with the use of a single key than does the construction 
of RFC1828; in the latter, the use of the same key for prepend and append makes the 
analysis in [4] less applicable and, in particular, makes the scheme susceptible to the 
above mentioned key recovery attack of [ 191. 

HMAC has now replaced the RFC 1828 construction as the mandatory to implement 
authentication transform for Internet security protocols [ 141. 

6 Implementation considerations for HMAC 

Here we point out to some implementation issues. Notice that HMAC results in a 
slower function than NMAC since the former requires two extra computations of the 
compression function (on the blocks ( k  @ o p a d )  and ( k  @ ipad)) .  This can have a 
negligible effect when authenticating long streams of data but may be significant for 
short data. Fortunately, an implementation can avoid this extra computation by “caching” 
the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIcl and Ic2 (as defined in section 4). That is, these values are computed only 
once when the key k is generated or shared the first time, and then stored as the actual 
keys to the function NMAC. To use these separate keys the implementation needs to 
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be able to initialize the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1V’s of the hash function to these values before processing the 
data. (As said before this is usually very easy to do.) In this way, HMAC serves those 
implementations that require the use of the iterated hash function with no modification 
(i.e., with the fixed IV), and at the same time it does not penalize implementations that 
can key the function through the IV. 

Notice that one can define the function HMAC to support variable length keys. 
However, less than f2 bits for the key is not recommended since that would weaken 
the strength of the keyed IV (i.e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk z ) .  On the other hand, longer than &bit 
keys will not provide, in general, with added strength since the derived Icl and kz are 
anyway of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (still, having a longer key k may help, depending on the properties 
of the compression function f and the randomness of the key k, to have a stronger 
pseudorandom effect on the generation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk1 and kz). 

Finally, we stress that as in any cryptographic implementation, a secure key manage- 
ment is essential for the security of functions like the ones proposed here. In particular, 
a periodic refreshment of keys is advisable. Even if under currently known attacks (see 
Section 5) one could use the same key for extremely long periods of time without crypt- 
analytic compromise, implementation should limit the time and amount of information 
processed with the same key. 
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