
Keying Hash Functions for Message Authentication* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mihir Bellare’ and Ran Canetti’ and Hugo Krawczyk3

Department of Computer Science and Engineering, Mail Code 01 14, University of California
at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUSA. E-mail: mihirCacs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ucsd. edu

; Web page: http://ww-cse. ucsd.edu/users/mihir

MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,

IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA. Email:

USA. Email: canettistheory.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcs .mit. edu

huqo@watson.ibm.com

Abstract. The use of ciyptographic hash functions like MD5 or SHA-1 for
message authentication has become a standard approach in many applications,
particularly Internet security protocols. Though very easy to implement, these
mechanisms are usually based on ad hoc techniques that lack a sound security
analysis.
We present new, simple, and practical constructions of message authentication
schemes based on a cryptographic hash function. Our schemes, NMAC and
HMAC, are proven to be secure as long as the underlying hash function has
some reasonable cryptographic strengths. Moreover we show, in a quantitative
way, that the schemes retain almost all the security ofthe underlying hash function.
The peiformance of our schemes is essentially that of the underlying hash function.
Moreover they use the hash function (or its compression function) as a black box,
so that widely available library code or hardwair can be used to implement them
in a simple way, and replaceability of the underlying hash function is easily
supported.

1 Introduction

1.1 Authenticity and MACs

Verifying the integrity and authenticity of information is a prime necessity in computer
systems and networks. In particular, two parties communicating over an insecure channel
require a method by which information sent by one party can be validated as authentic
(or unmodified) by the other. Most commonly such a mechanism is based on a secret key
shared between the parties and takes the form of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMessage Authentication Code (MAC).

(Other terms used include “Integrity Check Value” or “cryptographic checksum”). In
this case, when party A transmits a message to party B, it appends to the message a
value called the authentication tag, computed by the MAC algorithm as a function of
the transmitted information and the shared secret key. At reception, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB recomputes the
authentication tag on the received message using the same mechanism (and key) and
checks that the value he obtains equals the tag attached to the received message. Only if

* This version of otir paper has been ti-uncated due to page limits. The full veision is 131.

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 1-15, 1996. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Springer-Vcrlag Berlin Heidelberg 1996

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the values match is the information received considered as not altered on the way from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A to B? The goal is to preventforgery, namely, the computation, by the adversary, of a
message (not sent by the legitimate parties) and its corresponding valid authentication
tag. A precise definition of MACs and their security is in Section 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2

MACs have most commonly been constructed out of block ciphers like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADES. (The most
popular in this genre is the CBC MAC, analyzed in [6, 181.) More recently, however,
there has been a surge of interest in the idea of constructing MACs from cryptographic
hushfunctions like MD5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20] and SHA- 1 [2 I] . This is particularly visible in the Internet
community, where the development of security protocols has led to the need for simple,
efficient, and widely available MAC mechanisms.

It is easy to see why people want to MAC with cryptographic hash functions: the
popular hash functions are faster than block ciphers in software implementation; these
software implementations are readily and freely available; and the functions are not
subject to the export restriction rules of the USA and other countries. The more difficult
question is how best to do it. These hash functions were not originally designed to be
used for message authentication. (One of many difficulties is that hash functions are not
keyed primitives, ie. do not accommodate naturally the notion of secret key.) So special
care must be taken in using them to this end. In particular, although many constructions
have been proposed, they lack a sound and realistic security analysis. Thus there is
a need for constructions which maintain the efficiency of the hash functions but are
backed by a more rigorous analysis of their security. This is what we provide.

Section 1.5 describes some background and previous work on this subject. We now
proceed to describe our work.

MACing with cryptographic hash functions

1.3 This work

In this paper we present two (related) new schemes, NMAC (the Nested construction)
and HMAC (the Hash based mac). They can utilize any cryptographic hash function
of the iterated type, and enjoy several attractive security, efficiency, and practicality
features.

SECURITY. Our constructions enjoy a formal security analysis that relates the security of
the new functions to basic properties of the underlying hash schetnes, like their resistance
to collision finding. Our analysis considers any generic attack on MAC schemes (rather
than showing security against a partial list of possible attacks) and shows that such an
attack succeeds only if the underlying hash function is weak. Moreover, this relation
between the assumed properties of the hash function and the security of the resultant
MAC mechanism can be tightly quantified.

In summary, what this analysis says is that if significant weaknesses are ever found
in the MAC schemes proposed here, then not only does the underlying hash function

More generally, MAC schemes can involve the use of state infoimation (e.g., a counter), use
random nonces, or apply other mechanisms than just appending a tag. For concreteness we
stick for now to simple MACs.

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
need to be dropped from these particular usages, but also it must be dropped from
a wide range of other standard and popular usages to which these functions are now
subject. Moreover, our constructions require from the hash function significantly weaker
properties than standard collision-freeness. In particular, current successful methods for
finding collisions in MD5 [9, 101 seem inapplicable to breaking our schemes when the
hash function in use is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5.

EFFICIENCY. Our constructions use the cryptographic hash functions in a very simple
way. In particular, the performance degradation relative to the underlying hash scheme
is minimal. This is motivated by the use of these functions in basic applications like
IP (Internet Protocol) security [l , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 where the performance cost of such a function
influences the computational and network performance of many other applications.

BLACK BOX USAGE OF HASH FUNCTIONS. The constructions and analysis presented here
are free from any dependency on the peculiarities of the underlying hash function. We
only exploit the general structure of functions like MD5 and SHA-1, as being built
on top of a basic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompression function which works on fixed length messages, and is
then iterated multiple times in order to process variable length inputs (see Section 2).
Therefore, the underlying hash function (or the corresponding compression function)
can be seen as a module that can be easily replaced in case serious weaknesses are
found in the hash function, or when new (possibly, more secure or more efficient) hash
functions are designed. This replaceability property is fundamental given the limited
confidence earned so far by these function^.^

Besides the security advantage, there is a practical advantage to MAC schemes that
use the underlying hash functions as a “black-box” (ie. by applying the hash function, or
compression function,“as is”, without any modifications). Namely such schemes permit
the immediate use of existing and widely available library code that implements these
functions. They also permit use of hardware-based implementations of the underlying
hash scheme. Our NMAC construction uses the compression function as a black-box;
our HMAC construction, even more conveniently, uses only calls to the iterated hash
function itself.

1.4 A closer look

Before getting into the more technical aspects of the paper we further discuss our
approach and results.

KEYING HASH FUNCTIONS. The first obstacle that one faces when coming to design a
MAC scheme based on a cryptographic hash function (we limit ourselves, from now on,
to “MD5-like” iterated hash functions, as described above), is that the latter usually do
not use any cryptographic key. Rather, they are public functions that anyone can compute
without the involvement of keys and secrets. This is in sharp contrast to a MAC function,
which uses a secret key as an inherent part of its definition. Our approach to solve this

It is worth observing that in the case of message authentication, as opposed to encryption,
the breaking of a MAC does not compromise traffic authenticated in the past with the broken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MAC. One can avoid the vulnerabilities cleated by new attacks, by replacing the underlying
hash scheme as soon as this is broken.

problem is to key these hash functions through their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitial variable (IV) (for details
see Section 2). That is, the usually fixed IV defined by these functions is replaced by a
random (and secret) string which becomes the key to the MAC.

SECURE MACS FROM SECURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHASH i-UNCllONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more fundamental problem is how
to build the message authentication function in a way that the hardness of forging an
authenticated message can be related to the cryptographic strength of the underlying
hash function.

You can’t make good wine from bad grapes: obviously, some strengths must be
assumedof the hash function. On theother hand the assumptions shouldnot be too strong,
especially given that not enough confidence has been gathered in current candidates
like MD5 and SHA-1. (In particular, it would certainly be possible to come up with
“provably secure’’ MACs if one assumed the hash functions behaved like completely
random functions, but this is less useful.) Our goal is to design MACs that involve the use
of cryptographic hash functions in a simple way, yet their security can be argued on the
basis of reasonable security assumptions on the underlying hash function. Moreover, we
want this analysis to provide a quantitative relationship between the assumed strength
of the hash function and the proven strength of the MAC.

We achieve the above goals in a strong sense. We are able to present a relatively
simple analysis of our scheme which shows that an attacker that is able to forge our
MAC function can, with the same effort (time and amount of collected information),
bre,ak the underlying hash function in one of the following ways: (1) The attacker finds
collisions in the hash function even when the IV is random and secret, and the hash
value is not explicitly known; or, (2) The attacker is able to forge the secretly keyed
compression function viewed as a MAC function applied to fixed length and partially
unknown messages.

Consequently, existence of such attacks would contradict some of the basic assump-
tions about the cryptographic strength of these hash functions. Success in the first of the
above attacks means success in finding collisions, the prevention of which is the main
design goal of cryptographic hash functions. But in fact, even more is true: success in
the first attack above is even harder than finding collisions in the hash function, because
collisions when the IV is secret and the hash value is not explicitly known (as is the case
here) is far more difficult than finding collisions in the plain (fixed IV) hash function.
In particular, attacks when the IV is secret require interaction with the legitimate user
of the function, and disallows the parallelism of traditional birthday attacks. Thus, even
if the hash function is not collision-free in the traditional sense, our schemes could
be secure. The success of the second attack above would imply that the randomness
properties of the hash functions are very poor, and that all the bits of the hash output are
simultaneously predictable (even with a secret IV and partially unknown input).

We stress that our analyses use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexact analysis (no asymptotics involved), consider
generic rather than specific attacks, and establish a tight relationship between the secu-
rities of the MAC and the underlying hash function.

ACTUAL VERSUS PROVEN STRENGTHS. It is important to realize that our results are
guided by the desire to have simple to state assumptions and a simple analysis. In
reality, our constructions are even stronger than the analyses indicate, in the sense that
even were the hash functions found not to meet the stated assumptions. our schemes

5

might be secure. For example. even the weak collision resistance property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas we state is
an overkill, because in actuality, in our constructions, the attacker must find collisions
in the keyed function without seeing any outputs of this function, which is significantly
harder.

The later remark is relevant to the recently discovered collision attacks on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[101.
While these attacks could be adapted to attack the weak collision-resistance property of
MDS, they do not seem to lead to a breaking of NMAC or HMAC even when used with
MD5. (See Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for further discussion.) A more complex set of assumptions on the
hash functions can be formulated to capture these extra strengths of our constructions
but it is omitted here.

1.5 Related work

The exact security treatment of MACs began in [6] (where CBC-MAC is analyzed),
and we use their definitions. Further block cipher based constructions were provided
and analyzed in [5] .

MAC constructions based on cryptographic hash functions have been in use for a
few years (see Tsudik [23] for an early description of such constructions and Touch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[22] for a list of Internet protocols that use this approach). Preneel and van Oorschot
[18, 191 survey existing constructions and point out to some of their properties and
weaknesses; in particular, they present a detailed description of the effect of birthday
attacks on iterated constructions. (These attacks remain the best possible ones on our
schemes. But in practice they are infeasible. See Section 5 for more information.) They
also present a heuristic construction, the MDx-MAC, based on these findings. Kaliski
and Robshaw [131 discuss and compare various constructions. Performance issues are
discussed in [22,7] .

In this work we have initiated the first rigorous treatment of the subject and, in
particular, present the first constructions whose security can be formally analyzed,
without resorting to unrealistic assumptions such as the “ideality” of the underlying
hash functions.

In a companion work [4] we consider how to design “pseudo-random functions”
based on iterated compression functions. We show that if the compression function
is pseudo-random then so is its iteration. The notion of a pseudo-random function is
stronger than that of a MAC, and therefore that work can be viewed as making stronger
assumptions than us (namely that the compression function is pseudo-random) in order
to attain a stronger end (namely that the iterated construction too is pseudo-random).

Our HMAC construction was recently chosen as the mandatory to implement au-
thentication transform for Internet security protocols and for this purpose is described
in an Internet draft [141 and an upcoming RFC.

2 Basic Notions

MESSAGE AUTHENTICATION CODES (MACs). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA MAC is a function which takes the
secret key k (shared between the parties) and the message m to return a tag MACk(m).
The adversary sees a sequence (ml, ul) , (m2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2), . . . , (mq, u q) of pairs of messages

and their corresponding tags (that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= MACk (m,)) transmitted between the parties.
We consider chosen-message attacks, and think of the adversary as being able to choose
the messages for which she wants to see tags. The adversary breaks the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAC if she
can find a message m, not included among nl, . . . my, together with its corresponding
valid authentication tag a = MACk(m). (An adversary who finds the key certainly
breaks the scheme, but the scheme can also be broken by somehow combining a few
messages and corresponding checksums into a new message and its valid checksum.)
The success probability of the adversary is the probability that she breaks the MAC.

Following [6], we quantify security in terms of the success probability achievable
as a function of the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq of valid MAC examples seen by the adversary, and the
available time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt . (Note the success probability achievable for given t , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq depends on the
parameters of the MAC scheme, in particular its key length.) Then we say that MAC
is a (6 , t , q , L)-secure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAC if any adversary that is not given the key k, is limited to
spend total time (number of operations) t on the attack, and to request the value of the
function MACk in up to q messages m1? m2, . . . , mp of its choice, each of length at
most L, cannot break the scheme except with probability better than E .

As a convention we include in the time bound t the time it takes to compute the
function MACt ineach oftherequested queries. We also includein i t the size of thecode
of the adversary’s algorithm. (One can imagine an adversary who has pre-computed a
lot of information and put it into its code).

Notice that the above definition is stated in terms of a generic attacker; we do not
limit the attacker to any particular attacks or cryptanalytical techniques. Anything the
adversary can do under the given resource bounds (time and queries) is captured by this
definition. Also, notice the lack of asymptotics in this definition. Here t , q , and L can
be replaced by actual numbers.

resistant if it is hard to finddistinct points 2, y in its domain which have the same image
under the function. A cryptographic hash function takes messages of arbitrary length to
strings of some fixed length, and is usually designed to be collision-resistant.

The iterated construction methodology for the construction of collision-resistant
hash functions forms the basis of the design of the most common cryptographic hash
functions like MD5 and SHA- 1 . We start with a compressionfuncfion f which processes
fixed length inputs: it takes a chaining variable of length l and a block of data of length
b to return a l bit output. (For MD5 l = 128 and b = 512 while for SHA-I 1 = 160 and
b = 512. See 120, 211 for a detailed description of the compression functions of these
functions.)

The hash function is defined as follows. First, an b-bit value IV is fixed. Next an input
is hashcd by iterating the compression function. That is, if z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2, . . . , z, is the
input, where the z,’s are blocks of length beach and n is an arbitrary number of blocks,
the value of the iterated function F on z is h, where ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr IV and h, = f (h , - l , 2,)
for i = 1 ,2 , . . . ? tz.

Notice that a way to pad messages to an exact multiple of b bits needs to be defined,
in particular, MD5 and SHA-1 pad inputs to always include an encoding of their length.

The motivation for this iterative structure arises from the observation (of Merkle
[161 and Damg3rd [S]) that if the compression function is collision-resistant then so is
the resultant iterated hash function.

CRYFTOGRAPHIC HASH FUNCTIONS OF THE ITERATED KIND. A fUnCtiOn is COkSiOn-

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KEYED HASH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFUNCTIONS. Our approach to keying hash functions is to substitute the
secret key for the function’s fixed IV. Namely, instead of using a fixed and known IV as
defined by the original function, we replace it by a random and secret value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk known
only to the parties. As it turns out the latter approach has some significant analytical
advantages. It allows for a better modeling of keyed hash functions as needed for the
security analysis of these functions. We will also see that the secret IV effect can be
achieved through the use of keys padded and prepended to data (see Section 4).

Let fk defined by fit (z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- f(k , z) be the keyed compression function, where I k I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ a / T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. Now we associate to any iterated hash construction (e.g., MD5, SHA-I)

a family of (keyed) functions (F k } k . Namely for z = z1. . . 2, define Fk(z) to be k,
where kt = fk,-l (2,) for i = 1,. . . , n and ko = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk . Notice that the space of keys is the
same for the keyed compression functions and for the keyed iterated hash functions: it
is the set of all the strings of length l . The original iterated hash function is obtained as
a particular member of the keyed family, namely, FTV.

We say that a family of keyed hash functions { F k } is (6, t , q , L)-weakly collision-
resistant if any adversary that is not given the key k , is limited to spend total time
t, and sees the values of the function Fk computed on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq messages rnl, m2, . . . , mq
of its choice, each of length at most L , cannot find messages m and rn’ for which
fk(m) = f k (r n ’) with probability better than€.

Notice that the above requirement is weaker than the traditional requirement of
collision-resistance from (key-less) hash functions. In the latter case, it is enough to find
collisions for a known and fixed IV. Also in the case of secretly keyed hash functions
the adversary needs to get its “examples” (the messages ml, m 2 , . . . , rnq in the above
definition) from the legal user itself who knows the key k. In the key-less case, the
attacker can work in finding collisions independently of any user or key. Moreover,
even brute force collision search attacks can become feasible for functions like MD5
due to the easiness of parallelization of these attacks (see [24]). In contrast, attacks on
secretly keyed hash functions cannot be parallelized as they require interaction with the
legal user.

Remark. We stress that recent results by Dobbertin [9,10] showing how to findcollisions
in MD4 and MD5 (when the IV is known) can be used to attack the weak collision
resistance of these functions as well (i.e., when the IV is secret). However, this requires
the ability to perform afxtension attacks on these functions which i s explicitly avoided
in our constructions. (This issue is further explained in section 5.)

3 The Nested Construction NMAC

We present our basic construction NMAC (for ‘Nested MAC’) and its analysis. In the
next section we describe a variant, HMAC, that is further geared towards practical
applications. Denote by fk and F k the keyed versions of a given compression function
and its iterated function, as described in Section 2.

Let k = (k l , ka) where k l and k~ are keys to the function F (i.e., random strings
of length each). We define a MAC function NMAC(z) which works on inputs 2 of

arbitrary length as

Notice that the outer function acts on the output of the iterated function and thus involves
only one iteration of the compression function. That is, this outer function is basically
the compression function f k l acting on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFk,(z) padded to a full block size (in some
standard way as defined by the underlying hash scheme F).

Notice the simplicity and efficiency of the construction. The cost of the internal
function is exactly the same as hashing the data with the basic (key-less) hash function.
The only additional cost is' the outer application which, as said, involves only one
iteration of the compression function.

The following result (tightly) relates the security of NMAC to the security of the
hash function as a keyed collision-resistant function and the security of the compression
function as a MAC on fixed length messages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 1. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe keyed compression function f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s an (E) 9 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt , b)-secure MAC on
messages of length b bits, and the keyed iteratedhash F is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c ~ , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqI t , L)-weukly collision-
resistant then the NMAC function is an (6) + E F , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq , t , L)-secure MAC.

The proof has been omitted due to page limits and can be found in the full version of
this paper [3].

Remurk. The weak-collision-freeness assumption made in the theorem can be replaced
by the much weaker assumption that the inner hash function is collision resistant to
adversaries that see the hash value only after it was hashed again with a different secret
key. This extra strength of NMAC is demonstrated by the fact that current methods for
finding collisions in MD5 and MD4 [9, 101 seem useless for attacking NMAC, even if
both the inner and the outer hash functions are either MD4 or MD5.

NMACk(2) Fk,(Fk2(2)).

Remark. Another aspect by which the result is more general than stated in the theorem
is as follows. Notice that although we use the same function for the inner and outer
application in NMACone could use totally different functions for these two applications.
In that case the above theorem would still hold given the MAC assumption on the outer
function, and the collision-resistance property of the internal function. This can lead
to hybrid approaches like using SHA- 1 (keyed through its 1V) for the internal iterated
function, and DES-MAC-CBC for the external, etc.

Remark. In spite of the use o f two different keys Icl and k2 , the security of the function
is given by each individual key (of length 1) and not by the combination (21) of their
lengths. For more details on this aspect see the divide and conquer attack in Section 5 .

Remurk. Preneel and van Oorschot [181 recommend outputting only half of the bits of
the hash output as the authentication tag. This recommendation is motivated by the fact
that forgery attacks are anyway doable with complexity 2c/2 through birthday attacks
(see Section 5) , and that by outputting only half of the bits these attacks require more
chosen messages. Carrying this recommendation to our constructions would require
the assumption that the compression function with truncated output (e.g., only the 1 / 2
most significant bits of output) constitutes a secure MAC. Whether this is acceptable or

9

not depends on the assumed properties of the particular compression function in use.
(The tradeoff here is that by outputting less bits the attacker has less bits to predict in a
MAC forgery but, on the other hand, the attacker also learns less about the output of the
compression function from seeing the authentication tags computed by the legitimate
parties.) Applications for which a saving in the MAC length is important can adopt our
constructions with a reduced output of (at least) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl / 2 bits. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark. One can ask how much our assumptions on the underlying hash function can
be further weakened and still have a simple construction of a secure MAC. Although
we cannot answer this question in a formal way (e.g., secure MAC functions can be
built from the weaker assumption that the compression function is a one-way function,
but the known constructions to achieve that are totally impractical), we can point out to
two facts. First, by just assuming that the compression function is a MAC one cannot
guarantee that the iterated function is a MAC. That is clearly shown by the extension
attacksdiscussed in Section 5. In particular, this shows that one cannot just omit the outer
application of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF k l in NMAC and still get a secure MAC. As for basing the construction
in collision-resistance only, we stress that this property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso is insufficient to make the
function a secure MAC. Indeed, one can construct examples of strong collision-resistant
functions that are easily forgeable as MAC. Moreover, one can show this to hold for
specific proposals of MAC functions based on hash schemes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 HMAC: A fixed IV variant

Due to the wide availability of free library code for existing hash functions (especially
MD5), it is a practical advantage to build MAC mechanisms that use these functions
as a black-box, so that the MAC can be implemented by simply calling the existing
function. The NMAC construction presented in Section 3 requires direct access to code
for the compression function (rather than for the overall hash function), in order to key
the IV. Such a change is trivial for functions with well-structured code like MD5 (see
[20]). However, in some cases one would still like to avoid even those minimal changes,
and use the code (or hardware implementation) as is. Here we present an adaptation of
NMAC that achieves this goal. As an additional advantage, this construction involves
a single !-bit long key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk as opposed to two different keys as in NMAC. This has
some advantages at the level of key management. With an additional assumption on the
underlying compression function one can show the applicability of the NMAC analysis
to HMAC.

Let F be the (iterated and key-less) hash function initialized with its usual fixed 1V.

The function HMAC works on inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz of arbitrary length and uses a single random
string k of length I as its key:

IIMACk(2) - F (k -y opad, F(k! tw ipad, z))

where k is the completion by adding 0’s of k to a full b-bit block-size of the iterated hash
function, opad and ipad are two fixed b-bits constants (the 3” and “0” are mnemonics
for inner and outer), @ is the bitwise Exclusive Or operator, and the commas represent
concatenation of the information. opad is formed by repeating the byte x’36’ as many

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
times as needed to get a 6-bit block, and ipad is defined similarly using the byte x’5c’.
(For example, in the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD5 and SHA-1 these bytes are repeated 64 times).

The security of HMAC is based on the security of NMAC. The main observation
for relating these two functions and their security is that by defining Icl = f (k @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopad)

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlez = f (H @I ipad), we get that HMACk(z) = NMAC(k,,ks)(t). In other words, the
above transformation on the key makes HMAC a particular case of NMAC, where the
keys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk~ and Ic:! are “pseudorandomly” derived from Ic using the compression function
f . Since the analysis of NMAC assumes that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk l and k 2 are random and independently
chosen keys, then in order to apply this analysis to HMAC one needs to assume that
Ic1 and k~ derived using f cannot be distinguished by the attacker from truly random
keys. This represents an additional assumption on the quality of the function f (keyed
through the inpur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI %) as a pseudorandom function. We require a relatively weak form of
pseudorandomness since the adversary trying to learn about possible dependencies of
Ic1 and Ic:! does not get to see directly the output of the pseudorandom function on any
input. To sum things up, attacks that work on HMAC and not on NMAC are possible, in
prindple. However, such an attack would reveal major weaknesses of the pseudorandom
properties of the underlying hash function.

It is important to note that in practice most keys are chosen pseudorandomly rather
than as truly random strings; in particular, it is plausible that even if one uses NMAC,

implementations will choose to derive k1 and kz using a pseudorandom generator. In the
case of HMAC such a pseudorandom generator is “built-in” through the definition of the
function using the function f and the above defined pads. This use for pseudorandom
generation of functions like MD5 or SHA- 1 is very common in practical implementations
(in fact, the designers of SHA-I recommended using this function for pseudorandom
derivation of various quantities in the DSS standard [1 I]) .

The above particular values of opad and ipad were chosen to have a very simple
representation (to simplify the function’s specification and minirnizc the potential of
implementation errors), and to provide a high Hamming distance between thepads. The
latter is intended to exploit the mixing properties attributed to the compression function
underlying the hash schemes in use. These properties are important in order to provide
computational independence between the two derived keys.

Finally, we note that the use of a singlet-bit long key as opposed to two (independent)
keys does not represent a weakening of the function relative to exhaustive search of
the key, since even when chosen independently the keys k.1 and k2 can be individually
searched through a divide and conquer attack as described in Section 5.

5 Attacks and Comparison to other Proposals

In Section 3 we have established a tight and general relationship between the security
of the function NMAC and the underlying hash function, in a way not known to hold Tor
any other similar construction. We are thus assured that if a “good cryptographic hash
function is used then all attacks against our schemes will fail to be practical. Nonetheless
it is instructive to actually see what known attacks achieve, and cross-check that indeed
they don’t work. We also compare our construction to other proposals.

11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BETHDAY ATTACKS. As shown i n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[181 and our companion work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], birthday attacks,
that are the basis to finding collisions in cryptographic hash functions, can be applied to
attack also keyed MAC schemes based on iterated functions (including also CBC-MAC,
and other schemes). These attacks apply to our new constructions as well. In particular,
they constitute the best known forgery attacks against both the NMAC and HMAC
constructions. Consideration of these attacks is important since they strongly improve
on naive exhaustive search attacks. However, their practical relevance against these
functions is negligible given the typical hash lengths like 128 or 160, since these attacks
require knowledge of the MAC value (for a given key) on about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2L/2 messages (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L! is the length of the hash output). For values of L! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 128 the attack becomes totally
infeasible? In contrast to the birthday attack on key-less hash functions, the new attacks
require interaction with the key owner to produce the MAC values on a huge number of
messages, and then allow for no parallelization. For example, when using MD5 such an
attack would require the authentication of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA264 blocks (or 273 bits) of data using the same
key. On a 1 Gbit/sec communication link, one would need 250,000 years to process
all the data required by such an attack. This is in sharp contrast to birthday attacks on
key-less hash functions which allow for far more efficient and close-to-realistic attacks

Notice that these attacks produce forgery of the MAC function but not key recovery.
In [191, however, it is shown that in some versions of the envelope method (the case
where the same key is used to prepend and append and no block alignment of the
appended key is performed), the birthday attacks can be further enhanced to provide fu l l
key recovery in time much shorter than required by full exhaustive search. Since these
attacks require at least the complexity mentioned above for forgery based on birthday
attacks, they cannot be considered as practical ones. Yet, it is interesting to note that
they do not apply to either of our constructions, since here the alignment issue exploited
by these attacks is no applicable.

The forms of birthday attacks that apply to our constructions can become feasible
only if very significant weaknesses in the collision probability of the underlying hash
function are discovered. However, in such a case the basic use of such a function
as collision-resistant (as originally intended) would be strongly compromised, and the
function should be dropped for cryptographic use. Finally, wemention that these birthday
attacks (at least in their straightforward form) can be avoided by randomizing the MAC

construction in a per-message basis. We refer to [4] for further details.

COLLISION ATTACKS ON THE KEY-LESS HASH FUNCTION. Consider the “append-only’’

We illustrate the birthday attack against NMAC (it similarly applies against HMAC). Other
vaiiations are possible. The attacker collects the value of NMACk on a number of equal-
length messages until it finds two different messages ml and 77x2 for which NMACk(mr) =
NMACk(m2). Subsequently,it requests the valueofNMACk on a messagem; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ml, B) , for
some block B (Le., mi equals ml concatenatedwith the block B; the issue of length padding is
omitted here as it can be easily handled). The attacker then outputs a forgery for mi = (m2, B)
using the authentication tag NMACk(m;). If the collision NMACh(ml) = NMACh(m2) was
due to a collision in the internal function F k 2 (m l) = Fh2(m2) then the forgery is successful.
Only after collecting about 2c/2 messages the probability of such an attack to succeed is
significant.

~ 4 1 .

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
construction: MACk(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF (z , I c) . Assume that two strings z and E’ are known for
which F (c) = F (z ’) (this collision corresponds to the key-less hash function). Then,
regardless of the key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlc in use, one knows that MACk(r) = MACk(z’) (actually,
that is true for extensions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and z‘ as well). Finding a collision pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 2’ for the
function F is far easier than attacking NMAC through collisions in Fk, where k is
unknown. As showed in the above discussion on birthday attacks, while the latter is
totally infeasible even for hash lengths of k? = 128, finding collisions to the plain
hash function through birthday attacks approaches feasibility (see [24]). ‘The reason is
that such a collision attack on the plain hash function can be performed off-line and
independently of any secret key (and thus requires no interaction with the legitimate
owner of k), and it is strongly parallelizable. None of these advantages for the attacker
exist when attacking NMAC. In addition, as the recent experience teaches us, it is much
easier to find collisionsvia analytical methods (e.g., [9, lo]) against the key-less function
than breaking our schemes. We finally note that a variant of NMAC where the outer
function is keyed but not the internal (i.e., F k (F (z))) is susceptible to the same attack
through plain collisions as the append-only construction, and is significantly weaker
than NMAC.

TlIE EXTENSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAATTACK. Consider the “prepend-only” construction: MA& (z) =
F(E, z) (i.e., the key L is prepended to the data z and the hash function - with the
fixed IV - computed on the concatenated information). Because of the iterative struc-
ture of F it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis easy to see that if one knows the value of MACk (3) where a contains an
integral number of blocks, then one can compute the value of M A G on any extension
y of z (i.e., any string y that contains E as a prefix) by just using the result of MA& (z)
as an intermediate value of the chaining variable in the computation of MACk(9). This
attacks needs no knowledge of or direct attack on the key E . In NMAC this attack is
prevented through the outer application of Fkl , which avoids the exposure of the result
of the iterated function Fk2.

Interestingly, the recent results by Dobbertin [9, 101, that allow finding full collisions
inMD4andMD5,can becombined withextensions attacks(simi1ar to theonesdescribed
above) to find collisions in these functions even if the IV is secret (we exploit here the
property that Dobbertin’s techniques apply to known but arbitrary IVs). In this sense
the plain weak collision resistance of these particular hash functions is compromised.
However, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan attack is inapplicable against our MAC constructions since, as said,
in our case the outer application of the hash function prevents such extension attacks.

DIVIDE AND CONQUER ATTACKS. Consider the method, known as the “envelope” method,
that combines the above prepend and append constructions, namely, MACk,,k, (z) =
F(lc1, E , kz). Preneel and van Oorschot [181 observe that in an attack directed to recover
the whole key one does not need to work exponential time on the added length of keys Ll

and k2 but one can recover both keys in a total time which is exponential on the length of
one key. This is done by first finding collisions in the MAC function, and then searching
exhaustively for a key (Icl) that produces these collisions. Once we have the right kl it
is straightforward to find La by exhaustion. Although this attack is impractical, it serves
to illustrate the basic fact that the strength of the function comes from its individual
keys and not from their combined length.

A similar attack holds against NMAC. ‘rhis is in no contradiction with the analysis

13

of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 that shows the security of NMAC based on the strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the individual
underlying functions, i.e., the keyed compression function as a MAC and the keyed
iterated function as weakly collision-resistant. The divide and conquer attack shows
that one cannot replace in Theorem 1 the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEf + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACF by the much stronger
cf . E F . It also serves to show that the use of a single C-bit long key in HMAC does not
weaken the function against exhaustive search.

COMPARISON WITH THE CoNsTRucTtm OF [18]. In [18] a construction is proposed
which is also a variant of the envelope method. It uses a keyed IV and an appended key,
but in addition it uses a third key that is applied to influence the internal rounds of the
compression function in use. (All these keys are derived from a single underlying key.)
This is a heuristic measure intended to counter possible weaknesses of the compression
function in use, and no formal analysis of the construction is provided. We note that this
construction is more “intrusive” in the sense that it requires some more changes to the
existing hash functions, and it impacts performance in a moderate but noticeable way.

COMPARISON WrrH ~ ~ ~ 1 8 2 8 . The MAC scheme described in RFC1828 [I51 has been
proposed as a standard mechanism for message authentication in the context of 1P

(Internet Protocol) security. This function, which uses MD5 as the underlying hash
function, is based on the envelope method, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbut pads the prepended key to a full block
boundary. In addition, it uses the ,sume key for prepending and appending. The best
analysis known for this type of functions is given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] which show that when using
different and independent keys (for prepend and append) the security of the function
can be based on the pseudorandom properties of the underlying compression function.
The NMAC function presented in this paper enjoys a superior security analysis in two
important aspects: it requires weaker assumptions on the underlying hash function (since
the pseudorandomness of the compression function implies our assumptions), and the
security of the underlying hash function is preserved in a significantly stronger way (as
quantified in Theorem 1) than in the analysis in [4]. Another important difference is that
the HMAC variant deals betrer with the use of a single key than does the construction
of RFC1828; in the latter, the use of the same key for prepend and append makes the
analysis in [4] less applicable and, in particular, makes the scheme susceptible to the
above mentioned key recovery attack of [191.

HMAC has now replaced the RFC 1828 construction as the mandatory to implement
authentication transform for Internet security protocols [141.

6 Implementation considerations for HMAC

Here we point out to some implementation issues. Notice that HMAC results in a
slower function than NMAC since the former requires two extra computations of the
compression function (on the blocks (k @ o p a d) and (k @ ipad)) . This can have a
negligible effect when authenticating long streams of data but may be significant for
short data. Fortunately, an implementation can avoid this extra computation by “caching”
the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIcl and Ic2 (as defined in section 4). That is, these values are computed only
once when the key k is generated or shared the first time, and then stored as the actual
keys to the function NMAC. To use these separate keys the implementation needs to

14

be able to initialize the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1V’s of the hash function to these values before processing the
data. (As said before this is usually very easy to do.) In this way, HMAC serves those
implementations that require the use of the iterated hash function with no modification
(i.e., with the fixed IV), and at the same time it does not penalize implementations that
can key the function through the IV.

Notice that one can define the function HMAC to support variable length keys.
However, less than f2 bits for the key is not recommended since that would weaken
the strength of the keyed IV (i.e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk l and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk z) . On the other hand, longer than &bit
keys will not provide, in general, with added strength since the derived Icl and kz are
anyway of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (still, having a longer key k may help, depending on the properties
of the compression function f and the randomness of the key k, to have a stronger
pseudorandom effect on the generation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk1 and kz).

Finally, we stress that as in any cryptographic implementation, a secure key manage-
ment is essential for the security of functions like the ones proposed here. In particular,
a periodic refreshment of keys is advisable. Even if under currently known attacks (see
Section 5) one could use the same key for extremely long periods of time without crypt-
analytic compromise, implementation should limit the time and amount of information
processed with the same key.

Acknowledgments

We thank Burt Kaliski, Bart Preneel, Matt Robshaw, Adi Shamir and Paul van Oorschot
for helpful discussions on the subject of this paper. In particular we thank Adi Shamir
for suggesting the use of XOR pads instead of concatenated pads in our original design
of HMAC.

References

1. R. ATKINSON, “Security Architecture for the Inteinet Protocol”, ETF Network Working
Group, RFC 1825, August 1995.

2. R. ATKINSON, “1P Authentication Header”, ETF Network Working Group, RFC 1826,
August 1995.

3. M. BELLARE, R. CANETI A N D H. KRAWCZYK, “Keying hash functions for
message authentication,” (full version of the current paper) available at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
http://www-cse.ucsd.edu/users/rnihir or http://www.research.
ibm.com/security/keyed-md5.html.

4. M. BELLARE, R. CANETTI AND H. KRAWCZYK, “Pseudorandom functions re-
visted: the cascade constmction,” Available via http zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: //www . research.
ibm.com/security/ or http://www-cse. ucsd.edu/users/mihir/
papers/papers.htrnl.

5. M. BELLARE, R. G ~ R I N A N D P. ROGAWAY,”XOR MACs: New methods for message au-
thentication using finite pseudorandom functions,” Advances in Cryptology - Crypto 95
Proceedings, Lecture Notes in Computer Science Vol. 963, D. Coppersmith ed., Springer-
Verlag, 1995.

6. M. BELLARE, J. KIMAN AND P. ROGAWAY. “The security of cipher block chaining.” Ad-
vances in ciypfology - Crypto 94 Proceedings, Lecture Notes in Computer Science
VoI. 839, Y. Desmedt ed., Springer-Verlag, 1994.

15

7. A. BOSSELAERS, R. GOVAERTS, J. VANDEWALLE, “Fast hashing on the Pentium,” Ad-
vances in Ciyptology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Ciypro 96 Proceedings, Lecture Notes in Computer Science
Vol. ??, N. Koblitz ed., Springer-Verlag, 1996.

8. I. DAMCARD, “A design principle for hash functions,” Advances in Cryptology - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Crypt0 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed.,
Springer-Verlag, 1989.

9. H. DOBBERTIN, “MD4 is not collision-free,” Manuscript, September 1995. To appear in
Fast Software Enciyption Workshop, Cambridge, 1996.

10. H. DOBBERTIN, “MDS is not collision-free,” Manuscript, 1996.
11. NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY, “Digital Signature Standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(DSS)”, FederalRegister, Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50, No. 169, August, 1991
12. 0. GOLDREICH, S. GOLDWASSER AND S. MICALI, “How to construct random functions,”

Jouinal of the ACM, Vol. 33, No. 4,210-217, (1986).
13. B. KALISKI AND M. ROBSHAW, “Message Authentication with MD5”. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSA Labs’ C v p -

toBytes, Vol. 1 No. I , SpMg 1995.
14. H. KRAWCZYK, M. BELLARE AND R. CANETTI, Internet draft draft-ietf-ipsec-hmac-mds-

txt.OO. March 1996.
15. P. METZGER AND W. SIMPSON, “IP Authentication using Keyed MD5”, IETF Network

Working Group, RFC 1828, August 1995.
16. R. MERKLE, “One way hash functions and DES,” Advances in Cryptology - Ciypto 89

Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-
Verlag, 1989. (Based on unpublished paper from 1979 and his Ph. D thesis, Stanford,
1979).

17. J. NECHVATAL, “Public Key Ciyptography,”in Contemporary Cryptography, The Science
of Infoimation Integrity, G. Simmons ed., IEEE Press, 1992.

18. B. PRENEEL AND P. VAN OORSCHOT, “MD-x MAC and building fast MACs from hash
functions,” Advancesin Cryptolugy - Crypto 95 Proceedings, Lecture Notes in Computer
Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

19. B. PRENEEL AND P. VAN OORSCHOT, “On the security oftwo MAC algorithms,” Advances
in Cryptolugy --Euiocrypt 96Proceedings, Lecturc Nutes incomputer Science Vol. 1070,
U. Maurer ed., Springer-Verlag, 1996.

20. R. RIVEST, “The MD5 message-digest algorithm,” IETF Network Working Group,
RFC 1321,April 1992.

21. FIPS 180-1. Secure Hash Standard. Federal Information Processing Standard (FPS),
Publication 180-1, National Institute of Standards and Technology, US Department of
Commerce, Washington D.C., April 1995.

22. J . -lbUCH, “Performance Analysis of MD5”. Proceedings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASigcomm ’95, pp. 77-86.
(See also RFC 18 10).

23. G. TSUDIK, “Message authentication with one-way hash functions,” Proceedings of Info-
corn 92.

24. P. VAN OORSCHOT AND M. WIENER, “Parallel Collision Search with Applications to Hash
Functions and Discrete Logarithms”, Proceedings of the 2nd ACM Conf. Computer and
Communications Security, Fairfax, VA, November 1994.

25. ANSI X9.9, “American National Standard for Financial Institution Message Authentica-
tion (Wholesale),” American Bankers Association, 1981. Revised 1986.

	1 Introduction
	1.1 Authenticity and MACs
	1.2 MACing with cryptographic hash functions
	1.3 This work
	1.4 A closer look
	1.5 Related work

	2 Basic Notions
	3 The Nested Construction NMAC
	4 HMAC: A fixed IV variant
	5 Attacks and Comparison to other Proposals
	6 Implementation considerations for HMAC
	Acknowledgments
	References

