
KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems?

André Platzer and Jan-David Quesel

University of Oldenburg, Department of Computing Science, Germany
{platzer|quesel}@informatik.uni-oldenburg.de

Abstract. KeYmaera is a hybrid verification tool for hybrid systems
that combines deductive, real algebraic, and computer algebraic prover
technologies. It is an automated and interactive theorem prover for a nat-
ural specification and verification logic for hybrid systems. KeYmaera
supports differential dynamic logic, which is a real-valued first-order
dynamic logic for hybrid programs, a program notation for hybrid au-
tomata. For automating the verification process, KeYmaera implements
a generalized free-variable sequent calculus and automatic proof strate-
gies that decompose the hybrid system specification symbolically. To
overcome the complexity of real arithmetic, we integrate real quantifier
elimination following an iterative background closure strategy. Our tool
is particularly suitable for verifying parametric hybrid systems and has
been used successfully for verifying collision avoidance in case studies
from train control and air traffic management.

Keywords: dynamic logic, automated theorem proving, decision pro-
cedures, computer algebra, verification of hybrid systems

Introduction. Formal verification becomes more and more important as com-
puterized control systems in safety-critical systems grow significantly in com-
plexity. In many applications, system states, like positions of vehicles, change
continuously according to differential equations and are affected by discrete con-
troller decisions. Hybrid systems [7] are a mathematical model for such systems
with interacting discrete and continuous dynamics. Model checkers [7, 5] verify
correctness properties by exploring the state space exhaustively, which provides a
good mechanism to find bugs or concrete counterexamples for specifications. Un-
fortunately, the state space of hybrid systems is uncountably infinite and cannot
be partitioned into finitely many relevant regions for deciding reachability [7].

As deductive methods [4, 2, 8, 1] are known for being capable of dealing with
infinite domains, we choose a proof-based approach. We present the verifica-
tion tool KeYmaera that uses a combination of automated theorem proving (for
symbolically decomposing and executing system models), real quantifier elimi-
nation [3] (for handling the arithmetic of hybrid systems), and symbolic com-
putations in computer algebra systems (for handling differential equations of

? This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

2 André Platzer and Jan-David Quesel

continuous evolutions). As the central concept, our tool implements an axioma-
tization of the transition behavior of hybrid systems in the form of the sequent
calculus for the differential dynamic logic dL [12, 13]. KeYmaera provides proof
strategies that automate the verification process to a large extent. In several
realistic applications, the proof construction is even completely automatic, e.g.,
for proving collision avoidance of trains or aircraft.

In addition, theorem proving in combination with the equivalence-transfor-
mations of quantifier elimination enables us to verify highly parametrized hybrid
systems and even to discover safety-critical parameter constraints. The traceabil-
ity gained by the deductive symbolic system decomposition enables the user to
use his system knowledge for projecting the obtained constraints on the free pa-
rameters of the system to the relevant cases. Since the underlying logic dL and
its compositional proof calculus are natural and intuitive, even computationally
intractable problems can be verified with selective user guidance in KeYmaera.

In this paper, we describe the theorem prover KeYmaera and the various
techniques that it combines for verifying hybrid systems. KeYmaera consists of
ca. 186, 000 lines of Java code and 141 optimized proof rules, including rules for
symbolic decomposition, propositional logic, first-order logic, and simplification.

KeYmaera Verification Tool for Hybrid Systems. KeYmaera is a deduc-
tive verification tool for hybrid systems. We have implemented KeYmaera as a
combination of the deductive theorem prover KeY [2] with the computer algebra
system Mathematica, see Fig. 1. KeY is an interactive theorem prover with a
user-friendly graphical interface for proving correctness properties of Java pro-
grams. We generalize KeY from discrete systems to hybrid systems by adding
support for the differential dynamic logic dL [12, 13], which is a dynamic logic [6]
that provides a natural way to formalize properties of the states reachable by fol-
lowing the dynamics of hybrid systems. With this, KeYmaera can prove correct-
ness, safety, controllability, reactivity, and liveness properties of hybrid systems.

In discrete KeY, rule applications are comparably fast, but in KeYmaera,
proof rules that use decision procedures for real arithmetic can require a sub-
stantial amount of time to produce a result. To overcome this, we have imple-
mented new automatic proof strategies for the hybrid case that navigate among
computationally expensive rule applications.

We have implemented a plug-in architecture for integrating multiple imple-
mentations of decision procedures for the different fields of arithmetic handling,

Strategy

Rule Engine Proof

Input File

Rule
base

Mathematica

Orbital

KeYmaera Prover Solvers

Fig. 1. Architecture and plug-in structure of the KeYmaera Prover

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 3

Fig. 2. Screenshot of the KeYmaera user interface

cf. Fig. 1. We integrate arithmetical simplification and real quantifier elimination
support by interfacing Mathematica. Symbolic solutions of differential equations,
which can be used for handling continuous dynamics, are obtained either from
Mathematica or Orbital, a math library for Java developed by the first author.

Hybrid Systems, Hybrid Automata, and Hybrid Programs. Hybrid
systems [7] are mathematical models for systems with interacting continuous and
discrete state transitions. The standard description language for specifying the
operational behavior of hybrid systems is that of hybrid automata [7]. A hybrid
automaton is a finite automaton with real variables that evolve continuously in
the automaton locations as specified by differential equations. Additionally, state
variables can occur in transition guards and transitions can change the values
of the variables. The graph notation of hybrid automata is not compositional,
e.g., it is not sufficient to prove properties separately for each location to infer a
global system property, as the transition effects have to be taken into account.

Instead, we use a program notation for hybrid automata which is designed to
have a compositional semantics that we exploit for verifying systems by symbolic
decomposition. Hybrid programs [12, 13] are an extension of discrete regular pro-
grams [6] by continuous evolutions. An overview of the syntax and informal se-
mantics of hybrid programs is given in Tab. 1 (where F is a formula of first-order
real arithmetic). Hybrid automata can be embedded into hybrid programs [13].

Example 1. Consider the well-known bouncing ball example. A ball falls from
height h and bounces back from the ground (h = 0) after an elastic deformation.
The current speed of the ball is denoted by v, and t is a clock measuring the

4 André Platzer and Jan-David Quesel

h′= v
v′= −g
t′= 1
h≥ 0v:= −cv

t := 0

h = 0 ∧ t > 0 Ball ≡
`

(h′ = v, v′ = −g, t′ = 1, h ≥ 0);
if (h = 0 ∧ t > 0) then
c := ∗; ?0 ≤ c < 1; // add-on
v := −cv; t := 0

fi
´∗

Fig. 3. Hybrid automaton of a bouncing ball and corresponding hybrid program

falling time. We assume an arbitrary positive gravity force g and that the ball
loses energy according to a damping factor 0 ≤ c < 1. Fig. 3 depicts the hybrid
automaton, an illustration of the system dynamics, and the representation of
the system as a hybrid program. However, the automaton still enforces infinite
bouncing. In reality, the ball can come to a standstill when its remaining kinetic
energy is insufficient. To model this phenomenon without the need to have a
precise physical model for all involved forces, we allow for the damping factor
to change at each bounce. Line 4 of the hybrid program in Fig. 3 represents a
corresponding uncountably infinite nondeterministic choice for c, which is beyond
the modelling capabilities of hybrid automata.

Syntax and Semantics of Differential Dynamic Logic. For characterizing
states of hybrid systems, the foundation of the specification and verification logic
of KeYmaera is first-order logic over real arithmetic. For expressing correctness
statements about hybrid systems, this foundation is extended with parametrized
modal operators [α] and 〈α〉, for each hybrid program α. The resulting specifi-
cation and verification logic is called differential dynamic logic dL [12, 13].

As is typical in dynamic logic, dL integrates operational system models and
formulas within a single language. The dL formulas are generated by the fol-
lowing EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic
expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Table 1. Statements of hybrid programs

Statement Effect

α; β sequential composition, first performs α and then β afterwards
α ∪ β nondeterministic choice, following either α or β
α∗ nondeterministic repetition, repeating α n ≥ 0 times
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x`
x′1 = θ1, . . . , continuous evolution of xi along differential equation system

x′n = θn, F
´

x′i = θi, restricted to maximum domain or invariant region F
?F check if formula F holds at current state, abort otherwise
if(F) then α perform α if F holds, do nothing otherwise
if(F) then α else β perform α if F holds, perform β otherwise

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 5

The modal operators refer to states reachable by the hybrid program α and can
be placed in front of any formula. Formula [α]φ expresses that all states reachable
by the hybrid program α satisfy formula φ (safety). Formula 〈α〉φ expresses that
there is a state reachable by the hybrid program α that satisfies formula φ.

Example 2. The ball looses energy at every bounce, thus the ball never bounces
higher than the initial height. This can be expressed by the safety property
0 ≤ h ≤ H, where H denotes the initial energy level, i.e., the initial height
if v = 0. As a simple specification, which we generalize to the general parametric
case later on, we can verify the following property using KeYmaera:

(h = H ∧ v = 0 ∧ 0 ≤ H ≤ 4 ∧ 0 < g ≤ 2) → [Ball] (0 ≤ h ≤ H) (1)

This specification follows the pattern of Hoare-triples. It expresses that the
bouncing ball, when started in initial state h = H etc. always respects 0 ≤ h ≤ H.

The semantics of dL is a Kripke semantics [12, 13] where states correspond to
states of the hybrid system, i.e., assignments of real values to all system variables.

Verification by Symbolic Decomposition. Exploiting the compositional
semantics of dL, KeYmaera verifies properties of hybrid programs by proving
corresponding properties of their parts in a sequent calculus [12, 13]. For instance,
the proof for specification (1) splits into a case where the if-statement takes effect
and one where its condition gives false so that its body is skipped:

h = 0 ` [v := −cv]h ≤ H h 6= 0 ` h ≤ H
` [if h = 0 then v := −cv fi]h ≤ H

by dL rule
F ` [α]φ ¬F ` φ
` [if F then α fi]φ

Real Arithmetic and Computer Algebra. One challenge when verifying
hybrid systems is the handling of intricate arithmetic resulting from continuous
evolution along differential equations. If the computer algebra system does not
find a polynomial solution, we handle differential equations by their local dy-
namics using differential induction [11]. Otherwise, we substitute all occurrences
of the evolution variables by their solutions at position τ . There, the fresh vari-
able τ represents the evolution duration and is universally quantified for proving
[α]φ and existentially quantified for 〈α〉φ. Additionally, for all times in between 0
and τ the invariant must hold. Using the solution of the differential equation,
the property h ≤ H in the proof of Example 1 yields:

. . . ` ∀τ≥0
(
(∀τ̃ (0≤τ̃≤τ → −g

2
τ̃2 + τ̃ v + h ≥ 0))→ −g

2
τ2 + τv + h ≤ H

)
(2)

The inner quantifier checks if the invariant region h ≥ 0 is respected at all times
during the evolution. The symbolic decomposition rules of dL result in quanti-
fied arithmetical formulas like (2). KeYmaera handles them using real quantifier
elimination [3] as a decision procedure for real arithmetic, which is provided,
e.g., using a seamless integration of KeYmaera with Mathematica.

6 André Platzer and Jan-David Quesel

Automation and Iterative Background Closure. KeYmaera implements a
verification algorithm [10] that decomposes dL formulas recursively in the dL cal-
culus. For the resulting arithmetical formulas, real quantifier elimination can be
intractable in theory and practice. Experiments show that neither eager nor lazy
calls of background solvers are feasible [10]. Due to the doubly exponential com-
plexity of real quantifier elimination, eager calls seldom terminate in practice.
For lazy calls, instead, the proof splits into multiple sub-problems, which can be
equally computationally expensive.

1

2 2

4 4

8 8

16
16

16

∗

∗

16
8

4
2

1

Fig. 4. Incremental
timeouts in proof
search space

To overcome the complexity pitfalls of quantifier elim-
ination and to scale to real-world application scenarios,
we implement an iterative background closure strategy [10]
that interleaves background solver calls with deductive dL
rules. The basic idea is to interrupt background solvers af-
ter a timeout and only restart them after a dL rule has split
the proof. In addition, we increase timeouts for sub-goals
according to a simple exponential scheme, see Fig. 4. The
effect is that KeYmaera avoids splitting goals in the aver-
age case but is still able to split cases with prohibitive com-
putational cost along their first-order and propositional
structure.

Parameter Discovery. Required parameter constraints can be discovered in
KeYmaera by selecting the appropriate parts obtained by symbolic decomposi-
tion and transformation by quantifier elimination. Essentially, equivalence-trans-
formations of quantifier elimination yield equivalent parameter constraints when
a proof does not succeed, which can be exploited for parameter discovery. See [12,
13] for details.

Example 3. To obtain a fully parametric invariant for Example 2, properties for
isolated modes like [h′′ = −g]h ≤ H can be analyzed in KeYmaera. By selecting
the relevant constraints from the resulting formula we obtain the invariant

v2 ≤ 2g(H − h) ∧ h ≥ 0

which will be used for verifying the nondeterministic repetition of the system in
Fig. 3. Assuming the invariant to hold in the initial state, we obtain a general
parametric specification for the bouncing ball which is provable using KeYmaera:

(v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0)→ [Ball] (0 ≤ h ≤ H)

Applications. KeYmaera can be used for verifying hybrid systems even in the
presence of parameters in the system dynamics. Its flexible specification logic dL
can be used for discovering the required parameter constraints. We have verified
several properties of the European Train Control System (ETCS) successfully in
KeYmaera, including safety, liveness, controllability, and reactivity, thereby en-
tailing collision freedom [14]. In addition, collision avoidance has been verified for
roundabout maneuvers in air traffic management [16], which involve challenging
continuous dynamics with trigonometric functions.

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems 7

Related Work. Davoren and Nerode [4] outline other uses of logic in hybrid sys-
tems. Theorem provers have been used for verifying hybrid systems in STeP [8] or
PVS [1]. However, they do not use a genuine logic for hybrid systems but compile
prespecified invariants of hybrid automata into an overall verification condition.
Further, by using background solvers and iterative background closure strate-
gies, we obtain a larger degree of automation than interactive proving in STeP [8]
or higher-order logic [1]. VSE-II [9] uses discrete approximations of hybrid au-
tomata for verification. In contrast, KeYmaera respects the full continuous-time
semantics of hybrid systems. PHAVer [5] is a model checker primarily for linear
hybrid automata. CheckMate [15] supports more complex continuous dynamics,
but still requires initial states and switching surfaces to be linear. KeYmaera
supports nonlinear constraints on the system parameters as required for train
applications or even the parametric bouncing ball.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems:
Formalization and proof rules in PVS. In: ICECCS, IEEE Computer (2001) 48–57

2. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS 4334. Springer (2007)

3. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3) (1991) 299–328

4. Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7) (July 2000)
5. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In

Morari, M., Thiele, L., eds.: HSCC. Volume 3414 of LNCS., Springer (2005) 258ff
6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press (2000)
7. Henzinger, T.A.: The theory of hybrid automata. In: LICS, IEEE Computer

Society (1996) 278–292
8. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In

Henzinger, T.A., Sastry, S., eds.: HSCC. Volume 1386 of LNCS., Springer (1998)
9. Nonnengart, A., Rock, G., Stephan, W.: Using hybrid automata to express realtime

properties in VSE-II. In Russell, I., Kolen, J.F., eds.: FLAIRS, AAAI Press (2001)
10. Platzer, A.: Combining deduction and algebraic constraints for hybrid system

analysis. In Beckert, B., ed.: VERIFY’07 at CADE’07, CEUR-WS.org (2007)
11. Platzer, A.: Differential algebraic dynamic logic for differential algebraic programs.

Submitted (2007)
12. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In

Olivetti, N., ed.: TABLEAUX. Volume 4548 of LNCS., Springer (2007) 216–232
13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning

(2008) To appear.
14. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis

in train control. In Egerstedt, M., Mishra, B., eds.: HSCC. LNCS, Springer (2008)
15. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification

of hybrid dynamical system using CheckMate. In: ADPM 2000: 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic Systems. (2000)

16. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:
a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4) (1998)

