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Abstract: The last decade created tremendous advances in new and unique thermoelectric gener-
ation materials, devices, fabrication techniques, and technologies via various global research and
development. This article seeks to elucidate and highlight some of these advances to lay foundations
for future research work and advances. New advanced methods and demonstrations in TE device
and material measurement, materials fabrication and composition advances, and device design and
fabrication will be discussed. Other articles in this Special Issue present additional new research
into materials fabrication and composition advances, including multi-dimensional additive manu-
facturing and advanced silicon germanium technologies. This article will discuss the most recent
results and findings in thermoelectric system economics, including highlighting and quantifying
the interrelationships between thermoelectric (TE) material costs, TE manufacturing costs and most
importantly, often times dominating, the heat exchanger costs in overall TE system costs. We now
have a methodology for quantifying the competing TE system cost-performance effects and impacts.
Recent findings show that heat exchanger costs usually dominate overall TE system cost-performance
tradeoffs, and it is extremely difficult to escape this condition in TE system design. In regard to
material performance, novel or improved enhancement principles are being effectively implemented.
Furthermore, in addition to further advancements in properties and module developments of rela-
tively established champion materials such as skutterudites, several high performance ZT ≈≥ 2 new
material systems such as GeTe, Mg3(Sb,Bi)2 have also been relatively recently unearthed and module
applications also being considered. These recent advancements will also be covered in this review.

Keywords: thermoelectric; power generation; thermoelectric materials; thermoelectric systems;
additive manufacturing; contact; modules; radioisotope thermoelectric generator; material optimization;
cost-performance optimization; energy harvesting

1. Introduction

One important aspect for sustainable future society and carbon neutral goals is to
develop new viable technologies for energy saving [1]. Additionally, technologies are
necessary which can dynamically harvest energy from surroundings to power the vast
number of sensors and devices necessary for Internet of Things (IoT) applications [2].
Thermoelectric materials represent the solid-state conversion of waste heat to electricity
and are promising to contribute to both goals [3–14]. To achieve these goals, it is vital
to accelerate the development of both materials and devices. Namely, the thermoelectric
performance, i.e., output power and conversion efficiency, of viable materials need to be
enhanced. Likewise, the effective design, construction, and total thermal management of
thermoelectric power generation devices also needs to be developed.
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This review attempts to cover some of the most recent advancements in both of these
important topics; thermoelectric materials and devices, which the authors are particularly
familiar with, and hopes to give some guide and insight on promising directions for further
efforts to bring thermoelectric power generation to mainstream fruition.

2. Advances in Thermoelectric Materials and Methods
2.1. Recent Advancements in Thermoelectric Property Enhancement Principles

Although thermoelectric modules and systems possess several distinct advantages being
solid state devices, such as being compact, potentially integratable, silent vibration-free
operation, being maintenance-free, etc., the conversion efficiency is still not particularly high.
The higher the efficiency, the possible applicative usages can be expected to expand. Therefore,
in addition to the module and system considerations which will be discussed later in this
review, there is an imperative need to further enhance the performance of the materials.

The conversion efficiency of thermoelectric (TE) materials is a monotonically increasing
function of the figure of merit, ZT. ZT = S2σT/κ, where S, σ, κ and T are the Seebeck
coefficient, electrical conductivity, thermal conductivity, and the absolute temperature,
respectively. The numerator of Z, S2σ, is called the power factor since it gives a measure
of the thermoelectric power output. There have been various reviews up to now dealing
with the various thermoelectric ZT enhancement principles [15–19]. Here, we will briefly
summarize several of the enhancement principles which have been newly developed or
improved recently.

2.1.1. Power Factor Enhancement

The Seebeck coefficient and electrical conductivity are typically in a tradeoff relation-
ship, and so beyond the carrier concentration optimization it is necessary to find principles
to enhance the Seebeck coefficient. Various band engineering methods have been proposed
and effectively applied. The most straightforward one and widely used is by tuning the
band gap via doping. For example, recently high power factors exceeding 10 mW/m/K2

which is several factors larger than Bi2Te3-type materials were obtained in full Heusler
Fe2VAl-type materials via band gap tuning [20]. Such a very large power factor has also
been obtained for the doped Half-Heusler FeNbSb [21]. Other band engineering principles
have been proposed such as resonance doping, where the Seebeck coefficient is enhanced
via the increased slope of the density of states near the Fermi level [22], and band conver-
gence, where S is enhanced via band degeneracy [23,24]. Modifying the band structure is
not always easy, and energy filtering has provided a more readily implemented enhancement
effect although not so clear in design. Namely, in composite materials in some cases, low-
energy carriers can be scattered by the potential barrier at a heterogeneous interface, so that
high-energy carriers selectively pass through, and the Seebeck coefficient increases [25].

As mentioned above, research related to the above principles has been reviewed [16–19],
and this review would like in particular to cover one renewed interest to utilize magnetism
as a method for enhancing the power factor. As an intuitive image, one aspect to increase
the Seebeck coefficient is by increasing the effective mass m* of carriers through interaction
with magnetism. As background, the Seebeck coefficient can be expressed as the following
equation in a simple SPB (single parabolic band) model,

S =
8π2k2

B
3eh2

( π

3n

)2/3
m∗T (1)

where n is the carrier concentration and in an inverse relation with S. The increase in
effective mass and thereby the Seebeck coefficient via drag effects has been known for
magnon drag resulting in a rise at low temperatures in some ferromagnetic metals at
early times [26], and also phonon drag [27,28], likewise at relatively low temperatures.
Recently, magnon drag has been proposed to be effective at higher temperatures near room
temperature for such materials like CuFeS2 chalcopyrite [29] and Fe2VAl Heuslers [30]
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resulting in power factors above 1 mW/m/K2, for these materials composed of relatively
light and abundant elements.

Such enhancement is shown recently to not just be limited to magnetically ordered
systems, but it has also been demonstrated that utilizing magnetic interactions in the
paramagnetic region, i.e., paramagnon drag, [31–33], has also been shown as an effective
strategy for enhancing the Seebeck coefficient and overall power factor. One example as
given in Figure 1 is the enhancement of the power factor of CuGeT2 via magnetic Mn ion
doping [31]. A strong coupling between the magnetic ion and carriers was realized as
evinced by the increase in effective mass. In further work, to remove any ambiguity from
simultaneous carrier concentration variation, isoelectronic Cr substitutional doping into
Bi2Te3, versus non-doping and same valence Ga doping. The Cr doping induces significant
magnetic interaction, exhibiting ferromagnetism at around 220 K, and the power factor is
almost doubled compared to the non-doped or non-magnetic element doped case [33].
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Figure 1. (a) Illustration of the paramagnon drag effect, (b) estimated power factor enhancement
effect via Mn magnetic ion doping in CuGaTe2, (c) dependence of carrier effective mass versus Mn
magnetic ion doping level [31].

Heremans and coworkers carried out a neutron diffraction study on the MnTe-based
thermoelectric material. As shown in Figure 2, they observe the existence of paramagnons
in the paramagnetic region. Additionally, as an important point, they also observe that the
paramagnon lifetime is longer than the electron-magnon scattering time [32]. This indicates
that the paramagnon is a viable entity to possess interaction with the charge carriers, resulting
in possible enhancement of the Seebeck coefficient as has been proposed above.

In addition to magnon drag and paramagnon drag, spin fluctuation was also recently
demonstrated to enhance the Seebeck coefficient in an itinerant ferromagnetic system [34]
leading to relatively high power factors at room temperature. Namely, application of mag-
netic field was observed to depress the Seebeck coefficient. Experimentally the applicable
magnetic field of 9 T only suppresses by a small margin, however, this is because of the
small energy scale of the magnetic field, and the spin fluctuation effect can be considered to
be suppressed only a little. The Seebeck coefficient for example at 400 K for the largest effect
sample, was 1.5 times that of the extrapolated diffusion limit (Figure 3), so spin fluctuation
may be contributing significantly to the Seebeck coefficient.
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skutterudites (SKDs) [35,36] and Bi2Te3-type materials [37,38], for example. Although the 
effects had initially mainly been discussed in terms of energy filtering, and thermal con-
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Figure 2. Neutron measurements revealing (a) the existence of paramagnons and (b) paramagnon
lifetime. Adapted from Science Advances 2019, 5, eaat9461 [32]. © The Authors, some rights reserved;
exclusive licensee AAAS. Distributed under a CC BY-NC 4.0 license http://creativecommons.org/
licenses/by-nc/4.0/ (accessed on 25 July 2022). Reprinted with permission from AAAS.
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Doping with magnetic nanoparticles has also led to enhancement of ZT in skutterudites
(SKDs) [35,36] and Bi2Te3-type materials [37,38], for example. Although the effects had initially
mainly been discussed in terms of energy filtering, and thermal conductivity reduction, a
magnetic effect such as described above, may also be contributing to the improvement.

The spin entropy in oxides for example with the mixed valency of Co have been
indicated to enhance the Seebeck coefficient [39,40]. Mixed valency of Sm in SmB66 was
considered to be the origin of the enhanced power factor compared to trivalent rare earth
counterparts [41]. The spin entropy effect to enhance S has also been observed in some
magnetic transition metal sulfides, illustrating that this is a general principle [42].

In regard to the above principles, utilizing magnetism in some cases can be relatively
easily implemented, such as for the paramagnetic drag, via doping of magnetic ions [31–33].
However, a necessary condition is the strong interaction between the magnetic moment and
electrical carrier. Power enhancement has been demonstrated for various material systems
like SnTe, Bi2Te3-type materials, etc. [43–46]. Magnetic semiconductors with relatively
high thermoelectric performance have also been newly unearthed [47]. The magnetism
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field is traditionally larger than the thermoelectric field and interdisciplinary efforts can be
expected to lead to further development of high performance thermoelectric materials.

Besides the various principles given above for Seebeck coefficient enhancement, ad-
ditional improvement of the electrical conductivity has also been attempted, beyond
simple carrier concentration increase which decreases the Seebeck coefficient in a trade-off.
Attempts to modify the grain boundaries to reduce the carrier scattering have yielded in-
creases in the PF [48–50]. A couple of notable examples will be given below in Section 2.2.2.
It has also been proposed that partially percolating metallic networks can lead to increased
power factor for some composites [51,52].

2.1.2. Low Thermal Conductivity Principles

The potential intrinsic thermoelectric output power of a material is determined by
the power factor, but possessing low thermal conductivity is critical for the tempera-
ture gradient to produce the thermopower, and therefore, for high efficiency. There are
two approaches to achieve this, namely, first of all utilizing extrinsic principles such as
nanostructuring to form in the materials, artificial structures which can selectively scatter
phonons. Second is to start from a material which has built-in mechanisms for intrinsic low
thermal conductivity.

There have been several early reports where nanostructuring was demonstrated to
achieve high performance, such as utilizing inclusions [53] and precipitations [54] to
enhance ZT of PbTe-based materials, and top-down methods such as utilizing ballmilling
to enhance SiGe [55], for example. Up to now there have been myriad examples of ZT
enhancement via nanostructuring for various thermoelectric materials. The understanding
of how different nanostructures/defects affect the phonon scattering has also become quite
refined [56,57]. Namely, the phonon frequency, ω, dependence of the phonon relaxation
time τ for example of point defects, such as vacancies, interstitials, alloyed atoms is

τPD
−1∝ω4

thereby effective to scatter high frequency phonons. Line defects, namely dislocations have

τLD
−1∝ω1, τDC

−1∝ω3

for dislocation strain fields, dislocation cores, respectively, thereby scattering mid-frequency
phonons in particular.

Two dimensional defects, namely, grain boundaries have

τGB
−1∝ω0

and thereby are effective to scatter low frequency phonons, while volume defects, such as
nanoprecipitates and nanovoids have

τVD
−1~ω0 + ω4

thereby scattering phonons over a wide range. In this way, if a high degree of control over
formation of such nanostructures/defects in a particular target material can be achieved,
the phonon scattering can be better designed to realize higher performance.

In particular, for compounds like GeTe in which defects are easy to form, various
control over the formation has been carried out to lead to high ZT~2. Several examples will
be given below in Section 2.2.1.

In addition to such extrinsic effects, several recent observations for unearthing intrinsic
low thermal conductivity materials are presented.

1. Example of utilizing materials informatics to find low thermal conductivity compounds
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First of all, it should be stressed that the utilization of materials informatics and data
mining, to try to find high performance thermoelectrics, not limited to the low thermal conduc-
tivity aspect, has become increasingly popular, with various results recently reported [58–62].

Here, we give one example that one of our groups has carried out to try to unearth
new promising thermoelectric materials (See Figure 4). The crystallographic parameter of
partial occupancy was focused on as a possible very important parameter for low thermal
conductivity. As a test compound, a sulfide Cu6Te3S was selected (See Figure 4) since it has
partial occupancy of the Cu site. Synthesis and measurement of this compound revealed
that it indeed possessed very low lattice thermal conductivity of 0.3 W/m/K at 300 K, room
temperature, with glass-like behavior in the temperature dependence [62]. Having this low
thermal conductivity as a basis, the electronic properties of Cu6Te3S were modified by doping
to achieve ZT~0.7, a high value for a sulfide, and thereby showing a successful example of
using this approach to find a relatively high performance new thermoelectric material.
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Figure 4. (a) Glass-like thermal conductivity of Cu6Te3S with partial occupancy (b) obtained database
of compounds with partial occupancy (c) low thermal conductivity compounds newly unearthed
and verified utilizing partial occupancy as a descriptor [62].

In addition, with a materials genome-type approach, using partial occupancy as a de-
scriptor, the Crystallography Open Database was screened and yielded candidates for low
thermal conductivity. Two previously uninvestigated compounds were synthesized to test
the efficacy of the predictions, and indeed both exhibited low lattice thermal conductivity
of ~0.6 W/m/K@300 K. With this approach, a new library of low thermal conductivity
materials could be presented (Figure 4) [62].

2. Example of thermal conductivity reduction effect due to mixed anions

The fact that bonding heterogeneity and anharmonicity can lead to very low thermal
conductivity has been demonstrated by various groups for different compounds [63–67].
A recent work particularly focused on the mechanism of the mixed anion effect on thermal
conductivity. It was revealed that the locally distorted crystal structure due to the mixed
anion of chalcohalide MnPnS2Cl (Pn = Sb, Bi) causes the peak splitting of the density of
states of phonons [67]. The peak splitting increases the phase space of phonon scattering,
promotes 3-phonon scattering, and greatly reduces the thermal conductivity. In fact, the
mixed anion MnPnS2Cl has a much lower lattice thermal conductivity value, 0.5 W/m/K,
compared to 3.5 W/m/K of the single anion CuTaS3, which has similar proportions of
heavy elements and similar crystal structure. Comparing the phonon densities of states
of these two compounds (Figure 5), there is a phonon gap in the single anion CuTaS3,
whereas in the mixed anion MnPnS2Cl, the gap disappears due to the aforementioned peak
splitting. Although it is a compound mainly composed of relatively light element species,
the heterogenous chemical bonding created by the mixed anion has a very strong thermal
conductivity reduction effect and should be further exploited [67].
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3. Lattice softening by doping

Some compounds, such as BiCuSeO, have weak lattice bonding to begin with [68,69],
but specific atomic doping was shown to particularly soften the lattice and significantly
reduce thermal conductivity. On single doping or co-doping Ti, Zr to SnTe, a red shift is
observed in Raman spectroscopy, and despite this being light element atomic substitution
and the lattice constant is also reduced, contrarily the bonding becomes weaker. The effect
of phonon scattering due to atomic substitution was also estimated, and it was shown
that the reduction in thermal conductivity due to the softening of the lattice is much more
effective in this case (Figure 6) [70].
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As a result of the lattice softening via doping, ZTav, which is an important parameter
for the application of thermoelectric power generation, was able to achieve some of the
highest reported performances in this Pb-free material system in the mid-range temperature
region below 723 K [70].

Recently, the experimental control and theoretical understanding of defect formation
has increased. In addition to enhancing traditional materials like Bi2Te3-type materials [71],
defect engineering in “hot” new materials like GeTe and Mg3(Sb,Bi)2, has also enabled
significant reduction in the lattice thermal conductivity and increases in power factor to
achieve high ZT, and several detailed examples will be discussed below in Section 2.2.

2.2. Several Notable Thermoelectric Material Systems
2.2.1. High, Mid-High Temperatures

Since the renewed interest in the development of high-performance thermoelectric
materials in the early 1990s, a relatively large number of inorganic materials have been
investigated, leading to a large number of review articles and publications on the topic
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in the last ~30 years. The research has primarily focused on high-temperature materials
for thermoelectric waste heat recovery. The materials investigated include advanced PbTe-
based alloys, clathrates, half-Heuslers, oxides, and SKDs. The research has not only focused
on the characterization and improvement of the materials’ thermoelectric performance but
also on the device integration aspects, including mechanical properties and metallization
of the thermoelectric materials. Although a quite impressive body of work has been
performed and claims of peak thermoelectric figure of merit greater than 1 (sometimes
largely greater than unity) have appeared in the literature, making the materials potentially
attractive for commercial applications, no devices/systems integrating these materials are
currently commercially available. There are several reasons for this, primarily technical but
also economical and this review article covers some of these economic reasons.

SKD materials have often been the materials selected for device integration/development
considering their relatively high thermoelectric performance and reasonable mechanical
robustness for a thermoelectric material. SKD materials belong to a rather large family of
compounds and solid solutions, whether filled or unfilled, offering many opportunities
to tune their electronic and thermal properties. They are optimal for thermoelectric ap-
plications in the 573–973 K temperature range with thermoelectric figure-of-merit peaks
greater than unity. Uher recently published a comprehensive review of SKD materials,
which provides a wealth of fascinating information and properties for these materials [72].
Two notable projects funded by the US Department of Energy, one led by General Motors
and the other by Gentherm, were initiated in about 2010 and aimed at developing a cost-
effective thermoelectric generator (TEG) to reduce automotive energy consumption and
CO2 emissions by generating usable electricity from exhaust gas waste heat. Both teams
selected the SKD materials for the TEG development. Significant technical progress was
achieved by both teams and the results were documented in two final reports [73,74]. The
technology was eventually not commercially implemented but the technical barriers were not
as significant as the economic barriers, some of which, again, will be analyzed in this article.

PbTe is a well-known high performance mid-high temperature thermoelectric
material [75,76], previously utilized in RTGs at an early time. Because Pb is a restricted toxic
element, for terrestrial applications, there has been effort carried out to develop related
Pb-free materials.

SnTe is such a Pb-free related material and various efforts have been carried out to
enhance the ZT, utilizing principles such as were described in the previous Section 2.1.
For example, In doping has been found to function as a resonance level and various other
doping also carried out for band engineering approaches [77].

Magnetic ion Mn doping in SnTe was indicated to successfully realise interaction
between the magnetism and charge carriers, and also resulted in enhancement of power
factor [43]. Various nanostructuring such as listed in Section 2.1 has also been extensively
applied to SnTe and coupled with the other tuning, high values of ZTmax exceeding 1 have
been obtained [78]. However, these high values are limited to a narrow range above 823 K,
and ZTav is not particularly high. Lattice softening via certain doping resulted in a high
ZTav in the range 323 K to 723 K as described above in Section 2.1 [70].

GeTe is also a recently very extensively studied system with a base higher ZT than
SnTe. As noted in Section 2.1, the defects in GeTe have been particularly utilized to obtain
high performance and coupled with band engineering, ZT ≈ 2 or higher has been reported
by various groups [79–82].

A few examples of the utilization of defect engineering in GeTe will be given. It was
discovered that Cr doping in GeTe had the serendipitous effect to lower the formation
energy of Ge defects. This led to creation of homogenously distributed Ge precipitations
and Ge vacancies, which effectively selectively scattered phonons, and coupled with
typical band convergence doping to enhance the power factor, resulted in high ZT~2
(Figure 7a) [81]. Focusing on the correlation of crystal structure and defects, and their
effects on charge transport, led to high power factors and high ZTav~1.2 from 300 K to
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723 K for Pb-free GeTe [82]. Compositing approaches leading to strong phonon coupling
increases ZT, and very high ZT > 2 has been reported for some GeTe composites [79,80].
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doping for firt stable n-type in GeTe [83].

One applicative issue of GeTe is that it is predominantly p-type and for typical module
applications, an n-type counterpart is necessary. A high entropy doping approach of
AgInTe2 alloying into GeTe was carried out. High entropy tends to stabilize the phase with
higher symmetry and as a result, this doping stabilized the cubic phase. The cubic phase of
GeTe forms defects more readily, and thereby it became possible to dope the electron donor
Bi in larger amounts, leading to the first stable n-type conduction in GeTe as illustrated in
Figure 7b [83].

The performance of GeTe is geared toward mid-high temperatures, however, one
interesting approach reported that quenching of GeTe in the synthesis process, shifted
the ZT peak of GeTe to lower temperature to approach the performance of Bi2Te3-type
materials [84]. From a cost standpoint, GeTe is significantly more expensive than Bi2Te3-
type materials, so the impetus to use it as a replacement material is not strong, however,
this appears to be another good example of physical properties control.

A striking high performance of ZT = 2.6 was reported for doped AgSbTe2 at the rela-
tively low temperature of 573 K by some tuning of the properties via atomic disorder [85].

2.2.2. Low Temperature Region

Bi2Te3-type materials have been the long-time champion thermoelectric materials in the
low temperature region from RT to 563 K. There have been many reviews written on Bi2Te3-
type materials [86–88], so we will not cover them here, rather focusing on new developments.

The thermoelectric properties of Mg3Sb2-type compounds were studied at an early
time [89], and these materials gained renewed attention when Kanno and coworkers and
Iverson and coworkers, respectively, focused on the band degeneracy aspect (Section 2.1)
and doping tuned the materials to obtain high performance [90,91]. Recent further advance-
ments have been made, for example, via alloying with Mg3Bi2 [92] and various dopings [93]
to control the band structure and scattering of thermal conductivity to achieve significant
enhancement of ZT. These and other developments have been reviewed well [94].

As a very recent result, a striking dual effect of Cu minor doping in Mg3Sb2 was
revealed (See Figure 8). These can in a wide view considered to be a type of defect
engineering. The doped Cu atom is thought to enter two different places in the material.
First, interstitial Cu doping was indicated to lower the phonon group velocity of high-
frequency optical phonons which generally make a large contribution to the thermal
conductivity in Mg3Sb2. Secondly, Cu doping into the grain boundaries promoted grain
growth and importantly, suppressed the scattering of charge carriers by modifying the
structure and composition near the grain boundaries. As a result, very high mobilities
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similar to single crystals were achieved, while being a polycrystalline material with low
thermal conductivity [95].
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By adjusting the processing conditions, namely the spark plasma sintering (SPS) tempera-
ture, and shifting the composition to Bi-rich, there was success in improving the performance of
the Mg3(Sb,Bi)2-type material in the low temperature range near room temperature [96].

As summarized above, the Mg3Sb2-type compounds show n-type high performance at
relatively low temperatures, and as another non-tellerium system, for the p-type, MgAgSb
compound has emerged. As a pioneering work on MgAgSb, processing and doping were
optimized to achieve a high low temperature ZT of ~1.4 at 450 K [97].

Relatively high performing modules of these new materials have been constructed
and tested and will be detailed below in Section 3.3.

3. Advances in Thermoelectric Device Design and Fabrication
3.1. SKD-Based Thermoelectric Converters Development at NASA Jet Propulsion Laboratory

As previously mentioned, the intense search for higher performance thermoelectric
materials over the last ~30 years have unfortunately not led to any new, commercially
available devices/systems. However, in several areas, where, for example, cost is not nec-
essarily the primary driver for implementation such as defense or space applications, some
device/system development has occurred. An example of this is the potential use of SKD
materials to retrofit the flight-proven Multi-Mission Radioisotope Thermoelectric Generator
(MMRTG) that is currently used on Mars to power the Curiosity and Perseverance rovers.

The NASA Jet Propulsion Laboratory (JPL) proposed the enhanced Multi-Mission
Radioisotope Thermoelectric Generator (eMMRTG) concept in late 2013. It is based on
retrofitting the flight-proven MMRTG that uses PbTe/TAGS thermoelectric couples with
higher-efficiency thermoelectric (TE) couples based on SKD TE materials developed at
the Jet Propulsion Laboratory (JPL) while keeping the balance of the system virtually
unchanged. A multi-organization team composed of Teledyne Energy Systems, Inc. (TESI),
Aerojet Rocketdyne (AR), and the Jet Propulsion Laboratory (JPL) have collaborated to
develop and mature the SKD-based thermoelectric converter technology and to establish
the potential for the SKD-MMRTG to deliver a minimum of 77 We after 17 years.

The flight-proven MMRTG is composed of sixteen, 48-couple modules composed
of PbTe/TAGS thermoelectric couples packaged in fibrous insulation and is operated
under inert gas in a hermetically sealed environment that contains O2 and H2 getters. The
MMRTG uses the decay of PuO2 fuel as thermal input for the 48-couple modules and
produces about 110 We at the beginning-of-life (BOL). The potential eMMRTG is nearly
identical to the MMRTG except for substituting the upgraded 48-couple SKD modules for
the PbTe/TAGS 48-couple modules.

The SKD materials under consideration for the SKD-MMRTG are based on CoSb3 for
the n-type materials and Ce0.9Fe3.5Co0.5Sb12 for the p-type materials. Figure 9 illustrates the
differences between the heritage MMRTG and eMMRTG couples. The length of the couple
is identical to preserve the same spring-loading of the modules in the generator. However,
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due to manufacturing constraints, the cross-section of the SKD couples is square instead of
circular like the MMRTG couples. The p-leg of the SKD couple is segmented to optimize the
mechanical robustness and TE performance. The cross-sections are optimized to achieve an
optimal hot-junction temperature for the thermoelectric that balances degradation over time
and power output. Several iterations of SKD couple development have been completed
with evolving configurations to achieve a robust design with the potential to achieve the
eMMRTG life performance goals.
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Figure 9. Illustration of the MMRTG and eMMRTG thermoelectric couples.

Figure 10 shows pictures of the current eMMRTG couple design and the 1st 48-couple
module that was fabricated. Beginning-of-life performance testing of these couples demon-
strates that their power output is within a few percent of the predicted values. In the
48 couple-module, the couples are connected in series-parallel to augment redundancy.
A combination of critically dried SiO2-based aerogel and bulk fibrous insulation (Promalight®)
encapsulates the individual couples in the module. The critically dried aerogel, adjacent
to the legs, is cast around the legs establishing intimate contact with the couple legs. This
level of encapsulation provides a sublimation barrier to keep the antimony sublimation to
an acceptable level for long-term operation. In combination with the SiO2-based aerogel,
the bulk fibrous insulation provides a low thermal conductance path around the couples to
maximize the heat input into the TE legs. As a result, the generator has a thermal efficiency
of about 90%. Since the development of PbTe/TAGS and SiGe-based RTGs in the 1950s
and 1970s, respectively, the SKD 48-couple module represents the first development of an
RTG thermoelectric converter in over 50 years!
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1st SKD 48-couple module (bottom view showing the cold-side interconnects).

At the generator-level following conditions: Tfin root = 430 K, QBOL (PuO2) initial
thermal inventory) = 1952 W, and Vload (bus voltage) = 34 V, the hot-junction of the couple
legs is nominally at 848 K. With the radioisotope fuel decaying over time, the hot-junction
temperature will decrease by approximately 30 K over 17 years. However, potential
mission environments may result in higher hot-junction temperatures. Therefore, it is
necessary to test above and below 848 K to characterize the couple’s degradation rate as
a function of time and temperature. When higher temperatures do not introduce new
degradation mechanisms, testing can be considered accelerated testing. Accelerated testing
can contribute to establishing a 17-year performance prediction for the generator with
more confidence. JPL and TESI have been conducting testing SKD couples at 823, 848,
858, 873, 898, and 908 K. These test articles were started at different times and therefore
have different cumulative test durations with a longest of over 20,000 h. Figure 11 shows
the normalized power for couples as a function of time and temperature. The generator-
level life-performance prediction model used couple-level data to establish degradation
parameters. Figure 12 shows the normalized measured and predicted power output for the
48-couple module. The measured data is in excellent agreement with the prediction with
up to approximately 9000 h of data.

The end-of-design-life (EODL) power requirement is verified using a combination of
couple life test data acquired from thermoelectric couples/devices and a physics-based life
performance prediction model. Figure 13 shows the current best eMMRTG and MMRTG
17-year power output prediction estimate. The predictions are a function of beginning-
of-life fuel inventory (Q), generator fin root temperature (Tfr), and load voltage (V). The
typical load voltage for the Mars Science Laboratory (MSL) and M2020 MMRTGs is about
30 V. At equivalent conditions, the eMMRTG could deliver at least 38% more power than
the MMRTG. This significant improvement could enable more science for a spacecraft or
rover using an eMMRTG compared to an MMRTG.
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There have also been significant advances in high-temperature TE module design
and fabrication for aircraft and commercial industrial energy recovery applications at
mid-range temperatures near 773 K. Jet Propulsion Laboratory focused their research and
development in 2015–2019 on designing and implementing SKD materials technology into
these applications. Jet Propulsion Laboratory (JPL) in 2018 developed and tested the first
high-performance, SKD-material-based module that demonstrated the highest TE module
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conversions efficiency (i.e., 10%) at that time (2018), operating at hot-side temperatures
of about 703 K and cold side temperatures of about 293 K. This module design could
easily operate up to hot-side temperatures of 798 K. Figure 14 shows this high-performance
TE module and its overall footprint dimensions and layout. In addition to JPL testing,
this performance was ultimately verified at the Army Research Laboratory, Adelphi, MD.
This advanced TE module also demonstrated the highest power output in a SKD-based
module, measured at approximately 20 We at the temperature conditions stated above,
and the highest reported power density, approximately 3.8 W/cm2 at the module level,
of any TE module worldwide at that time [98]. This TE module also had the highest TE
element fill factor (~41%) reported at that time. This represented a major advance in SKD
TE module technology and still serves as a major stepping stone and critical reference
design in SKD-based TE module technology.
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3.2. Low Temperature Module Directions

Another aspect of thermoelectric power generation modules is their potential to act as
a power source for IoT sensors and devices, at lower temperatures near room temperature.
It has been said a trillion sensors are necessary to support future society, and the periodical
replacement of batteries of such are not feasible. Therefore, some dynamical technology to
continuously harvest energy from surroundings is necessary, and thermoelectrics is one of
the candidates [2,10–14].

Regarding the form of module, various formats have been proposed. Foremost, are
flexible material-based modules which have the potential to be wearable. Various modules
of polymer materials, organic-inorganic hybrid materials have been proposed and reviewed
extensively [10,13,99–103].

The ductile inorganic Ag2S material has also been raised as a candidate for flexible
applications [104]. The unusual ductile nature for an inorganic material is attractive. In the
case of thermoelectrics, several applicative issues need to be solved. Namely, one perceived
advantage of the polymer-based module is the relatively inexpensive synthesis and/or
module fabrication, and potential for fabricating relatively large area devices. However, the
performance of polymer-based materials and modules is generally significantly lower than
the best inorganic materials and modules. Additionally, the temperature difference which
can be obtained from wearable application is relatively small, so the output power is small,
and highest performance from the materials themselves is desirable. Another issue is that
it has been pointed out that many of the polymer-based modules ultimately use expensive
metal (e.g., silver, gold) pastes as contacts, so are actually not inexpensive and different
approaches may also be necessary to consider [105,106]. In the case of Ag2S or Ag2Se- based
materials, they have relatively high performance, however, the materials with silver as the
major component are quite costly, and inexpensive module fabrication methods also need
to be developed. However, it has been pointed out that in general, glassy chalcogenides
have advantages in rapid synthesis and shaping [104,107–109]. Utilizing Bi2Te3-type
materials on flexible substrates has also been considered and developed [110,111], with
higher performance than polymer-based counterparts, but not all the fabrication methods
are industrial, and sustainability of using Bi2Te3 for ubiquitous applications also needs to
be considered.

The overall economical strategies of thermoelectric will be discussed below in Section 4.
In terms of materials costs, it is not just the cost of the raw materials, but inexpensive and
up-scalable synthesis methods are also critical [112]. It should also be mentioned that the IoT
applicative direction is not as cost sensitive as higher temperature energy saving applications.

For IoT powering modules, recent efforts have also picked up regarding constructing
thermoelectric power generation modules utilizing semiconductor fabrication technologies.
The obvious benefits of this, is the compatibility with industrial processes, and also possible
miniaturization, and/or integration with semiconductor devices. Earlier efforts have
been reviewed in [10]. For example, micro electro mechanical systems (MEMS) standard
processes were utilized to construct several different modules, e.g., based on Ni-Cu-based
thermocouples [113], n-type and p-type poly Si [114].

More recently, Nomura and coworkers fabricated a poly Si-based CMOS TEG, with
an important improvement that they addressed the issue of the problem of such devices
having difficulty applying temperature difference on the thermoelectric material elements.
Namely, the Si membrane was nanopatterned based on the thermal phonon mean free path
spectrum to significantly lower the thermal conductivity and enhance output voltage and
power density [115]. p- and n- Si nanowire based planar thermoelectric generator has also
been constructed by CMOS technology [116]. The power output of these new modules are
still relatively small, with a maximum of 12 nW/cm2 with DT = 40 K and 1.4 nW/cm2 with
DT = 20 K, for the CMOS poly Si and Si nanowire modules, respectively.

An organic thermoelectric power generation module was constructed using industrial
technologies of photolithography, fulfilling, and electrode deposition [117]. In total, 250 mV
of output voltage was generated, however, the extremely high contact resistance resulted



Energies 2022, 15, 7307 16 of 35

in a total resistance of 13 MW for the module, highlighting the issue of the electrode contact
in organic/polymer-based modules.

As a different approach from the Si-based CMOS devices mentioned above, an in-
plane miniaturized inorganic thermoelectric device using a Mg2Sn-type thin film [118] was
constructed utilizing microfabrication techniques of photolithography and dry etching
(Figure 15) [119]. The microfabricated devise displayed a relatively high output voltage
of 0.58 V and an output power of 0.6 mW, corresponding to a comparatively high output
power density of 21 mW·cm−2, only considering the active material. However, the sapphire
substrate had a thickness close to 2000 times the thickness of the Mg2Sn-type thin film, and
therefore, temperature difference on the thermoelectric material was difficult to be applied.
Namely 110 K was applied to the whole construct including the thick substrate, to obtain
the modest output described above. Reducing the substrate contribution is an immediate
improvement in design which should be undertaken.
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(b) schematic, (c) cross-section view at a π junction (p-type Mg2Sn0.8Sn0.2/metal electrode/n-type
Bi), (d) microscopy image around the π junctions [115].

To summarize, much effort is recently being made to fabricate a wide variety of
modules for possible IoT application. While material development trying to find higher
performance polymer-based thermoelectric materials including hybrids, and Bi2Te3-type
replacement materials should continue, the module design and fabrication is a critical issue.
The challenges for the different types of module have been simply raised. It is hoped these
activities can lead to viable usages of thermoelectric power generation for the myriad IoT
sensors and devices.

3.3. Module Fabrication of New Materials

There have been several test modules fabricated for the most recent new generation of
thermoelectric materials described above, such as for GeTe and Mg3(Sb,Bi)2-type.

First of all, for the mid-high temperature GeTe, very high performance for a single leg
has been reported, indicating the high potential of the material system [120]. A realistic for
application 8-pair module was constructed using p-type GeTe and a SKD for n-type. As
mentioned in Section 2.2.1, GeTe is predominantly p-type. A maximum conversion efficiency of
7.8% was measured with a hot temperature side of Th = 800 K and DT = 500 K [121].

Regarding Mg3(Sb,Bi)2-type materials, which are predominantly n-type for the high
performance materials, relatively early demonstrations were made for Peltier modules
with (Bi,Sb)2Te3-type materials used for p-type. Comparative cooling performance to
Bi2Te3-type was demonstrated by Mao et al. for a single pair [122]. Recently, for a 7 pair
Mg3(Sb,Bi)2-type/(Bi,Sb)2Te3-type module, a maximum cooling DT of 76 K with Th of
350 K, which is comparable to Bi2(Te,Se)3-type/(Bi,Sb)2Te3-type modules [123].
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For power generation with Mg3(Sb,Bi)2-based modules, the Cu minor doped material
described in the materials development, enhancement principles in Section 2.2.2 yielded
high performance (See Figure 16). Differing from above, for the p-type material also, a
new non-(Bi,Sb)2Te3-type material was used, i.e., similarly Cu minor doped and enhanced
AgMgSb [95]. The 8-pair realistic module composed of new n- and p-type materials exhib-
ited an efficiency of 7.3% (Th = 593 K). This performance rivals the best Bi2Te3-type modules
which have been champion for more than half a century [95]. The conversion efficiency
estimated from the material performance is close to 11%, and further improvement in
performance can be expected in the future. The electrode contact resistance and moreso the
process by which the electrodes are fused on to the thermoelectric material are points for
improvement. This is a good example where the materials development, i.e., application of
enhancement principles, lead to a high performance thermoelectric material and module
composed of new materials.
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Figure 16. The measured conversion efficiency of eight pairs thermoelectric module of minor Cu-
doped Mg3(Sb,Bi)2-type/MgAgSb-type as a function of hot-side temperature (cold side 278 K) [95].

Furthermore, attempt to shift the high performance of these materials and module
to near room temperature was also carried out. As described in the previous Section,
by adjusting the processing conditions and composition, the performance in the low
temperature range near room temperature was enhanced [96]. The power generation
performance of an 8 pair module was evaluated to yield a conversion efficiency of 2.8%
with low temperature side of 278 K and high temperature side of 373 K (See Figure 17).
This performance is comparable to the Bi2Te3-type modules. Moreover, in the evaluation of
the cooling performance in which the high temperature side was fixed at 323 K, the maximum
temperature difference reached 56.5 K, and it was shown that the cooling performance was also
high (See Figure 17). These results show that even an initial module using the almost Te-free
and significantly more abundant-element-composed newly developed thermoelectric materials,
has shown performance comparable to the Bi2Te3-type modules even near room temperature.
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commercial Bi2Te3-type module [96].

Other modules or single pair using the Mg3(Sb,Bi)2-type material have been con-
structed and tested [124,125].

There is also a renewed focus also on developing better electrode materials than Fe
for Mg3(Sb,Bi)2-type, such as Mg2Cu alloy [123] and Fe7Mg2Cr/Ti alloys [126]. Several
application issues have recently been discussed in the following review [127]. These
activities show the high expectation for Mg3(Sb,Bi)2-type to become the long-awaited
Bi2Te3-type replacement material.

4. Thermoelectric System Economics

This article and Special Issue discusses several applications ranging from low-power
IoT power generation, requiring mW’s up to 1 We powering monitoring sensors and vari-
ous network electronics, up to high-power waste energy recovery (WHR) power generation,
producing 100’s We up to 1–3 kWe. In the low-power IoT applications the cost per power
[i.e., $/We] are not as important as it does not matter too much whether the TE system cost
per power is $1/We or $10/We. This is a growing field with much promise for small, com-
pact, highly reliable TEG systems for IoT monitoring and response networks. In contrast,
high-power thermoelectric power systems, particularly those targeting waste heat recovery
applications, require cost-performance optimized designs with high thermal and thermo-
electric (TE) performance and low costs to surmount common commercialization barriers
controlling the acceptance of TEG systems. Past TEG system designs and applications have
struggled with and been ladened with the perception and reality that TEG systems are
high-cost for the relatively low power produced compared to other power systems. Recent
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TEG systems in waste energy recovery applications have been investigated, designed and
prototypically demonstrated in a few applications worldwide [8,128–132]. These investi-
gations and prototype demonstrations generally emphasized characterizing one or more
key design factors: (a) TE power output, (b) TE system voltage and current performance,
(c) TE system electrical resistance, (d) resistance matching, and (e) TE power outputs from
a few tens of watts to 700 We. However, they generally did not consider and were not
driven by TEG system cost considerations. TEG system cost optimization is a crucial to
governing final decisions on commercialization of high-power TE energy recovery systems
in all terrestrial applications; cost often more critical than power density or efficiency in the
adoption of waste energy recovery (WHR) TEG systems. In general, integrated TEG system
cost-performance analysis has only recently been rigorously investigated by Hendricks
et al. [6,7,133–135], LeBlanc et al. [135] and Yee et al. [136]. Critical foundations and critical
mathematics and relationships have been developed through these works, allowing one to
understand crucial complex interrelationships and dependencies governing TEG system
integrated cost-performance optimization. Integrated cost-performance analyses have
focused on a generalized system-level thermal/electrical circuit shown in Figure 18.
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Most recently Geffroy et al. [137] have investigated the temperature and power criteria
required to make waste heat recovery (WHR) engines of any type economical using techno-
economic analysis and thermodynamic and heat transfer arguments. Their work indicates
that WHR (i.e., waste energy recovery) applications must have available temperatures
above 150 ◦C and power generation above 100 kW. This offers added emphasis and moti-
vation for investigating the thermoelectric systems economics (TSE) of only high-power
thermoelectric systems, those that could be employed in industrial processing, aircraft
engine energy recovery, or perhaps marine and ocean vessel systems. Much discussion
in waste energy recovery circles has centered on the topic of what cost per energy levels
are acceptable and must be achieved by thermoelectrics systems. Geoffroy et al. [137]
point out that organic Rankine power systems that could be used in waste energy recov-
ery generally have cost per power values of $0.375/We and modern geothermal energy
recovery plants operate at about $1.2/We. Hendricks [134] further pointed out that modern
solar photovoltaic systems cost out at ≤$1/We. This all points toward the need for WHR
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thermoelectric systems to cost out as close to $1/We as possible and this will serve as
a reference comparative criteria used in following cost-performance discussions.

Recent TSE research by Hendricks [6,7,134,138] has established new integrated cost-
performance relationships elucidating new design paradigms in cost optimization
(i.e., minimizing [$/We]) of TEG systems. New integrated cost-performance relationships
show critical tradeoffs between the key TEG component costs (heat exchangers, TE materi-
als, and TE manufacturing costs) and performance, allowing one to differentiate magnitudes
of competing cost and performance effects. New design paradigms and relationships demon-
strate a holistic approach providing enhanced understanding and crucial interrelationships
between heat exchanger design parameters, TEG component costs, TE design parameters
and material properties, and interfacial heat flux in minimizing TEG system costs. This work
herein now extends that integrated holistic cost-performance analysis to include critical ther-
mal and electrical interface contact resistance effects into the cost-performance relationships,
and incorporates and extends insight into the effects of manufacturing cost-sensitivities to
TE element design, thereby providing even broader in-depth insight into cost-optimized TE
design to further complete and expand the new TSE paradigms. Hendricks [134] has most
recently expanded this integrated cost-performance relationships, showing the relationship
between optimum fill factor and optimum cost per watt, to include the effects of thermal
and electrical contact resistances and their inherent impacts on cost effectiveness of TEG
systems. Equation (2) through (4) highlight and summarize these latest relationships, with
Equations (5) and (6) providing crucial peripheral relationships involved in the integrated
cost-performance optimization and key parameter interdependencies.
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Additionally,
∆T = (Texh − Tamb) = ∆TH + ∆TTE + ∆TC (5)

where:
∆TH = Hot-Side Heat Exchanger Temperature Differential [K}
∆TTE = Thermoelectric Device Temperature Differential [K}
∆TC = Cold-Side Heat Exchanger Temperature Differeial [K}

q
′′
H =

KH ·∆TH
AHEX

(6)

Equations (3) and (4) demonstrate that optimum thermoelectric system cost, Gopt,
depends on complex interactions and interdependencies of six 6 thermal and thermoelectric
design parameter groups:

• [κTE LTE/KH]—Non-dimensional parameter tied to TE Device/Heat Exchanger interfa-
cial design parameters

• [Fopt AHEX/LTE
2]—Non-dimensional parameter tied to TE device design

where: [κTE LTE/KH]·[Fopt AHEX/LTE
2 ] = [κTE Fopt AHEX/KH LTE] in first term on right-

hand side of Equation (4)
• [CHEX UAU]/[(C′′′ LTE/C′′ + 1)C′′AHEX Fopt]—Non-dimensional parameter tied to the

ratio of heat exchanger costs to TE device costs
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• [κTE AHEX/(KH LTE)]—Non-dimensional parameter tied directly to interfacial heat flux

•
[

2ρcon
LTE ·ρave

+ 1
]
·
[
1 + 2·r· lcon

LTE

]2
—Non-dimensional parameter tied directly to thermal

and electric interface contact resistance effects as discussed in Hendricks [133] and
Min and Rowe [137,139]

• 1/[(Spn∆T)2·σ·LTE]—Thermoelectric power factor tied directly to TE properties

These two relationships demonstrated the complex dependences governing thermoelectric
system cost-performance in high-power thermoelectric energy recovery discussed herein.

Equations (4)–(6) elucidate a critically important tradeoff in thermoelectric system
energy recovery design, that being the key tradeoff between the overall ∆T that the TE
system operates across, that portion that is across only the TE device, ∆TTE, and that portion
across only the hot-side heat exchanger, ∆TH. This point is highlighted here to clearly
reveal that, although one generally wants as high a ∆T as possible in any given WHR
application (i.e., high ∆T applications favor low-cost systems through Equation (4)), there
is an important tradeoff in thermoelectric design between the ∆TTE and ∆TH. High ∆TTE is
generally desirable to achieve high TE device power conversion efficiencies, while high
∆TH is often desirable to increase the hot-side heat flux through Equation (6). Therefore,
there is this critically important interplay between the ∆TTE portion and ∆TH portion of the
overall ∆T given in Equation (5) when seeking and achieving optimized cost-performance
TE system designs.

4.1. Hot-Side Heat Flux Effects in TEG Cost-Performance Optimization

A critically important effect and interdependency discovered from Equation (4) is the
significant impact of TE hot-side heat flux on TE system-level costs. Sensitivity studies
of this relationship was performed as follow-on work to Hendricks [6] by first assuming
thermal and electrical contact interfaces were near ideal, or r = 0 and ρcon = 0, in Equation (4).
This allows one to focus on the impact of hot side heat flux represented by Equation (6) on
the optimized TEG system cost, Gopt, in Equation (4).

Figure 19 demonstrates the resulting relationship between system hot-side heat flux,
heat exchanger costs, and TE material costs and overall TEG system cost derived from
Equations (3), (4) and (6) for an illustrative exemplary TE system cost-performance analysis
case (waste heat recovery application) where Texh = 830 K, Th = 700 K, Tamb = 253 K, and
∆T = (Texh—Tamb) = 577 K. Thermoelectric properties and thermoelectric materials costs
were representative of advanced SKD materials being developed by JPL and are taken from
Fleurial et al. [140], Hendricks [6,7], and other internal Jet Propulsion Laboratory data and
internal conversations [141]. Computations use κTE = 2.41 W/m/K and AHEX ~ 0.0137 m2

(although this design parameter was varied slightly around this value) consistent with
Jet Propulsion Laboratory TE materials and heat exchanger designs [142]. Although SKD
materials were assumed herein, it should be recognized that the techniques and equations
herein can be applied to any set of new, advanced TE materials and TE material families with
the proper material-dependent inputs above. This can add a richness and added dimensions to
any cost-performance evaluation demonstrating critical tradeoffs of future TE materials and
material families in potential power generation applications. Future research should focus on
this research topic area in concert with evaluating and quantifying typical TE performance and
properties in developing new TE materials and material families.
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Overall TEG System Cost Minimization.

The purpose of this illustrative analysis was to determine the nature of hot-side heat
flux impact on TEG system costs, the magnitude of the hot-side heat flux impact on TEG
cost, and determine a relative comparison with the impacts of TE materials costs and TE
manufacturing costs on overall TEG costs. A range of low-to-high thermoelectric costs
were assumed in this analysis. Low values of SKD TE materials costs were represented
by cost metrics C′′′ = 8.857 × 104 $/m3 (i.e., basic TE volumetric materials costs) and
C′′ = 168.3 $/m2 (i.e., TE manufacturing costs). High values of SKD TE materials costs
were represented by cost metrics C′′′ = 8.857 × 105 $/m3 and C′′ = 1683 $/m2. This range
of TE material volumetric costs approximately covers the range of costs of SKDs to bismuth
telluride to lead telluride TE materials, and is therefore representative of many TE materials
commonly considered in WHR applications. The analysis was done for a range of TE
element lengths from 2 mm to 4 mm so that the impact of basic TE material geometry,
which is coupled to basic TE material costs could be assessed and compared against other
driving impacts on TEG system cost. A range of heat exchanger costs was assumed in the
analysis from $0.25/(W/K) to $1.0/(W/K) to extract any impact of heat exchanger costs on
the heat-flux-cost relationship in this TE system cost-performance analysis. TE hot-side
heat fluxes were varied from approximately 4 W/cm2 to 18 W/cm2.



Energies 2022, 15, 7307 23 of 35

Figure 19 shows various interrelated impacts on the TEG system cost ($/W). There are
three groups of Cost-Heat Flux relationships shown, one each for heat exchanger costs of
$1.0/(W/K), $0.5/(W/K), and $0.25/(W/K), respectively. Within each heat exchanger cost
grouping there are four conditions: (a) 2 mm TE element height, low TE costs, (b) 2 mm
TE element height, high TE costs, (c) 4 mm TE element height, low TE costs, and 4 mm
TE element height, high TE costs. Within each heat exchanger cost grouping, the 4 mm
TE-element-height, high-TE-cost case generates the highest overall TEG system cost ($/W)
within that grouping, and the 2 mm TE-element-height, low-TE-cost case generates the
lowest overall TEG system cost within that grouping. The other case analyses fall within
those cases—these high-to-low cost cases within each grouping therefore providing good
reference cases for following the color coding in the figure legend. Other WHR design
cases will have similar relationships and dependencies shown in Figure 19. Figure 19
elucidates the major impact that system hot-side heat flux and heat exchanger costs have
on lowering the overall TEG system cost; that impact actually being much larger than the
impact of TE material and device manufacturing costs on lowering system costs. Figure 19
results demonstrate that there are basically two approaches to achieving low-cost TEG
systems, either: (1) Implementing low-cost heat exchangers in the TEG system design, or
(2) Designing the TEG system with sufficiently high hot-side heat fluxes.

In addition to these findings above, it was also discovered that optimum, cost-effective
thermoelectric designs for high power WHR applications also generally require that
Fopt > 0.65. This represents a major paradigm shift from current thermoelectric power
system design where F~0.2 and certainly highlights a major TE device design challenge
in achieving low-cost, high-power TEG systems in WHR applications. This new revelation
basically goes hand-in-hand with requirements for high hot-side heat fluxes, and emphasizes
the requirement for much tighter TE element packing than current-day standards to achieve
low-cost TEG designs. These two related requirements for low-cost TEG systems are quite
analogous to design requirements for cost-effective solar photovoltaic systems, where a similar
analogous solar cell design packing factors are > 0.90 and the requirement for high solar irradi-
ance fluxes is well-known. The solar photovoltaic industry has generally solved this challenge
in achieving cost-effective solar PV designs and the TEG industry must do this as well if TEG
energy recovery systems are to achieve significant commercialization potentials.

4.2. Thermal and Electrical Contact Resistance Effects on TEG Cost-Performance Optimization

Thermal and electrical interface design and performance, and their impact on TEG
system performance, is inherently and intimately tied to TE manufacturing costs. Higher
manufacturing costs to create and reproduce high-performance thermal and electrical
interfaces can directly lead to higher TEG system performance. The question is how much
manufacturing cost is sufficient and what manufacturing cost threshold does one want to
incur or absorb to attain that higher performance. The TEG system cost-performance analy-
sis technique discussed herein can be adapted to address this question. In this aspect of work,
one can generally include thermal and electrical contact resistance effects by analyzing r 6= 0
and ρcon 6= 0 conditions using Equations (3) and (4). One can use generally recognized values
for these quantities [139,141,143–146] to explore design sensitivities, critical design challenges,
and potential design barriers to achieving cost-effective TEG systems.

TE manufacturing costs are generally dependent on many factors, with one of the
major specific drivers being TE element lengths used in any particular design because in
any optimized TE device design the TE element area (therefore element interface area) is
coupled to the TE element length. TE manufacturing techniques that are relatively straight-
forward, reproducible, and cost effective at one length can be fraught with uncertainty,
difficult if not impossible to use in a process flow, and create questionable reproducibility
at smaller lengths; due to handling issues, electrical interface control issues, bonding and
adhesion issues, and fundamental material structural stress issues, just to name a few.
The impact on TE manufacturing costs can be problematic to quantify and hard to project
and allocate to system-level cost impacts. As one tries to bound and quantify TE element
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length effects on manufacturing costs in order at least to estimate trends and impacts, one
can hypothesize that the manufacturing cost parameter in this study is mathematically
influenced by TE element length. A parametric mathematical approach was implemented
using the relationship given Equation (7) below to estimate length effects and establish
quantifiable bounds and impacts of TE element-length-induced variations in manufacturing
costs at the TEG system-level:

C′′∗ =
C′′(

LTE
0.004 m

)n (7)

The fundamental cost parameter C” (i.e., manufacturing costs per TE element area)
is customized as inversely proportional to a normalized TE length term to the nth power,
where n can be regarded as a cost influence factor. If n = 0, then TE element length has no
influence or impact on TE manufacturing costs. If n > 0 and increases, TE element length
will have an increasing impact (influence) on TE manufacturing cost as TE element length
decreases. If n < 0, then TE element length has an increasing impact on TE manufacturing
cost as TE element length increases. Many manufacturing processes could be characterized
directly or indirectly by some unique value of n, which could be determined by detailed cost
analyses of any given manufacturing process. The length term is arbitrarily normalized by
0.004 m as this is a TE length where current TE processes are well suited, well-understood
and repeatable to the point that it is a good reference length to form a basis for conclusions
about cost effects. Other reference length values can be chosen to evaluate sensitivities in
specific applications, but this value is used here to demonstrate the parametric technique
and effects on TEG designs and TEG system-level costs. Equation (7) was implemented to
obtain the aforementioned objective to explore design and cost sensitivities of thermal and
electrical contact interface performance, resulting critical design challenges, and potential
design barriers to achieving cost-effective TEG systems.

The analysis assumptions used herein were basically the same conditions as in the
previous Section 4.1 discussing high hot-side heat flux impacts on TEG system costs. Ad-
ditionally, based on work of Min and Rowe [139,143] with commercial TE devices, the
thermal interface performance and design parameter r was set at r = 0.1 and 0.2. The
thermal contact layer thickness, lc, was assumed to be 0.25 mm in this work, which
is consistent with common layer thicknesses for Jet Propulsion Laboratory materials.
Electrical contact resistances investigated were found from work by Caillat et al. [141],
Bjørk [144], Ouyang et al. [145] and Ziolkowski [146] and ρcon levels investigated varied
from 1.0 × 10−9 Ω-m2 to 1.0 × 10−12 Ω-m2. A ρcon = 1.0 × 10−8 to 1.0 × 10−9 Ω-m2 is
considered a generally reproducible achievable level by today’s manufacturing standards,
while ρcon = 1.0 × 10−12 Ω-m2 is considered a near-ideal level very difficult to reproducibly
achieve with current manufacturing processes.

The modified cost-performance relationship, Equation (4), is now expanded to include
the impact of thermal and electrical contact resistances on cost-performance optimization
as discussed in Hendricks [11]. The new cost-performance relationship now allows one to
account for small TE element height cases (<2 mm), where thermal and electrical contact
resistances then become more dominant in the thermal and electrical circuits of the TEG
design. An initial sensitivity analysis of Hendricks [134] determined the impact on overall
TEG system cost from variation in TE element height, LTE, across a range of LTE from
0.5 mm to 5 mm, while simultaneously accounting for LTE impacts on TE manufacturing
costs through Equation (7) discussed above. This is a new and unique utilization of the
Gopt relationship initially discussed by Hendricks [6,7].

Figure 20 exhibits results of this TEG system cost-performance sensitivity study for a
thermal interface contact resistance parameter, n = 0.2, a nominal value found by Min and
Rowe [139,143] for commercial TE devices. The (Gopt, LTE) results are shown plotted for 3
different values of n in Equation (7) (i.e., 0, 0.5, and 1), two different CHEX values and the
range of ρcon varied from 1.0 × 10−9 Ω-m2 to 1.0 × 10−12 Ω-m2. These results demonstrate
for a realistic value of ρcon = 1.0 × 10−9 Ω-m2 that driving toward low LTE first leads to an
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optimum-cost LTE, and then increasing the Gopt with further decreasing LTE as electrical
contact resistance (resistivity) effects become more dominant in controlling and reducing
TEG power output. The Gopt increases dramatically as these electrical contact resistances
(resistivities) dominate the TEG system cost picture. It is crucial to realize in Figure 20 that
there does exist an optimum cost LTE even if manufacturing costs are not sensitive to LTE
at all (i.e., n = 0 cases).
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When the electrical contact resistance decreases to near-ideal conditions with
ρcon = 1.0 × 10−12 Ω-m2, then and only then does Gopt decrease asymptotically as LTE
decreases. This asymptotic behavior in Gopt as LTE decreases is what early investigations
by Yee et al. [136] found when they too neglected electrical and thermal interface contact
resistance effects and did not account for heat exchanger cost-performance effects. This
work now shows a more comprehensive and more complete picture of the (Gopt, LTE)
relationship and that a true optimum-cost LTE does exist for different manufacturing cost
sensitivities in TEG energy recovery systems.

Figure 20 also demonstrates the strong impact that heat exchanger costs have on TEG
system costs as heat exchanger costs, CHEX, vary from $0.5/(W/K) to $1/(W/K). It does
not shift where the optimum cost LTE occurs too much, but higher CHEX case ($1/(W/K)
increases TEG system costs by almost 2 times at optimum cost LTE points. A major point
to make regarding these results is just the absolute magnitude of the Gopt values when
the heat exchanger costs get too high at $1/(W/K); even at optimum cost LTE points the
Gopt is > $2.5/W and increases substantially at low LTE values. This is well above the
reference comparative value established for competitive energy recovery power systems
and simply not a competitive cost level for TEG systems in energy recovery applications.
Once again demonstrating the absolute critical importance of heat exchanger costs in
driving the TEG system commercialization potential in energy recovery [6,7,134]. Heat
exchanger costs of $0.5/(W/K) produce TEG system costs closer to $1.5/W in this analysis,
which is more competitive with other energy conversion systems. It is obvious that low
heat exchanger costs, low electrical interface contact resistivities, and optimum cost LTE are
the critical keys—all three are required to achieve cost-competitive TEG systems.

Figure 20 also shows the TE manufacturing cost sensitivity to LTE in Equation (7)
influences the TEG system cost level and where the optimum cost LTE actually occurs. As
TE manufacturing costs are more sensitive to LTE, then optimum TEG costs tend to increase.
Simultaneously, the optimum cost LTE increases such that the TEG system design would
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like larger TE element heights as n increases from 0 (no LTE impact on TE manufacturing
costs) to n = 1 (much stronger LTE impact on TE manufacturing costs). In this analysis, the
optimum cost LTE increases from approximately 1.5 mm to 2.5 mm as n increases from 0 to 1
for either heat exchanger cost condition, generally showing that TE element lengths must be
closer to the reference LTE value as costs become more sensitive to LTE. This is generally due
to TE manufacturing costs reducing more in n = 1 cases, and thereby allowing TE element
dimensions to increase in the optimum cost designs. This magnitude of change in optimum
cost LTE has a dramatic effect on the overall TEG system design, thereby demonstrating the
importance of LTE influences on manufacturing costs in dictating optimum TEG system
costs. Although slightly counterintuitive, one must realize [$/W] is critical here and
this result highlights the paradigm that thermal and electrical interface performances are
controlling design parameters when thermal or electrical contact resistances are too high.

A final note is apparent from Figure 20. It is clear implementing thermal interface and
electrical interface contact resistances that are commonly quoted [139,141–143,145] does not
necessarily create cost-competitive, cost-effective TEG systems. This is one explanation that
tends to illuminate why TEG systems are commonly regarded and viewed as expensive.
This highlights the TEG design challenges to surmount and the new TE design paradigms
that must be adopted to achieve or even come close to achieving a more competitive $1/We
for TEG energy recovery designs.

Additional cost-performance analyses were performed for a lower thermal interface
contact resistance parameter, r = 0.1, and a lower electrical interface contact resistivity (resis-
tance), ρcon = 1.0× 10−10 Ω-m2, to better quantify and understand the magnitude of contact
resistance effects in the TEG system cost optimization. The purpose here was to quantify
what thermal and electrical interface resistance performance levels would be necessary
to achieve a TEG cost metric of near ~$1/W. Figure 21 shows the results of the analysis
and how much-higher-performance thermal and electrical interfaces can decrease the TEG
system cost ($/W) from that shown in Figure 20. The TEG system cost is near ~$2.25/W
at cost optimum LTE points when heat exchanger costs are $1/(W/K) and with high TE
material and manufacturing costs. The TEG system cost reduces further approaching
$1/W when heat exchanger costs are decreased to $0.5/(W/K) for the high-performance
thermal and electrical contact resistance conditions (r = 0.1 and ρcon = 1.0 × 10−10 Ω-m2).
It is noteworthy that this work shows these levels of thermal contact resistance and electrical
contact resistance appear sufficient to approach the critical TEG system cost level of $1/W. The
electrical interface contact resistance characterized by ρcon = 1.0 × 10−10 Ω-m2 creates TEG cost
results that are, in many cases, close to results at near-ideal electrical contact resistance conditions
characterized by ρcon = 1.0× 10−12 Ω-m2. This once again shows that low heat exchanger costs,
low electrical interface contact resistivities, and optimum cost LTE are the critical keys (all three
required) to achieve competitive TEG system costs approaching $1/W.

Figure 21 results also demonstrate the same behavior in TEG system costs as a function
of TE element height, LTE, and dependence of TE manufacturing costs on LTE as in Figure 20
results. The important difference however is that the optimum cost LTE occurs at lower
values for these cases with higher-performance thermal and electrical contact resistance
performance. Once again Figure 21 results also demonstrate (as in Figure 20) that there
does exist an optimum cost LTE even if manufacturing costs are not sensitive to LTE at
all (i.e., n = 0 cases). In the $1/(W/K) heat exchanger case, the optimum cost LTE varies
between 1.0 mm to 1.75 mm depending on the level of sensitivity to LTE one assumes on
the TE manufacturing costs. In the $0.5/(W/K) heat exchanger case, the optimum cost
LTE varies between 1.0 mm and 1.5 mm depending on what level of sensitivity to LTE one
assumes on the TE manufacturing costs. As in Figure 20 results, the optimum TEG cost
increases and the optimum-cost LTE increases to the higher value in the quoted range as
TE manufacturing costs are more sensitive to decreasing LTE (n = 1 case vs. n = 0 case).
Sensitivity of TE manufacturing costs to TE element height LTE once again having an
important impact on optimum cost LTE and thereby the TEG system design.
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It is also crucial to realize in Figure 21 results that, once thermal and electrical con-
tact resistance effects are lowered to these levels, then the heat exchanger costs actually
dominate and create the largest reduction in TEG system costs. The sensitivity to TE
manufacturing cost dependence on LTE also diminishes significantly as the relationships
for n = 0 and n = 1 are tending to collapse on one another. This effect definitely benefits the
TE system design and provides more flexibility in TE system cost-performance tradeoffs,
which is helpful given the TE system’s strong dependence on heat exchanger costs and
performance in these cases.

Figure 21 results underscore the power and utility of Equation (4) relationship for
Gopt when trying to discern and differentiate the “impact magnitude” of the many TE
materials costs, TE manufacturing costs, heat exchanger costs and performance, hot-side
heat flux, and TE design parameters on TEG system costs. Equations (3) and (4) provide a
more complete and comprehensive picture of the complex design tradeoffs. The lack of
capability to discern and differentiate prior to this work has been a severe barrier to TEG
system commercialization up to now because the TE community has not known where
and how to focus their design and research and development thrusts. This work definitely
demonstrates that true TEG system cost-performance optimization is not only dependent
on the TE materials and their TE properties, but rather a complex mosaic of interdependent
thermal and TE design behavior and phenomenon. Equations (3) and (4) helps us to better
understand the mosaic, how to manipulate it, and elucidate the interdependencies.
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This work was performed using SKD TE material properties. However, the analysis
shown here could easily be applied to any of the TE materials discussed in Sections 2 and 3
using the mathematics and techniques presented herein. The behaviors and interdepen-
dences discussed herein would be similar, although the exact numerical results will differ.
Further research in TSE with other TE materials is strongly recommended.

5. Conclusions

Development of thermoelectric materials and modules is important as power gen-
eration for waste-heat energy-saving and IoT sensors. The performance, i.e., conversion
efficiency and maximum output power, of both materials and modules are critical for the
applicative success.

Here, in this review, first of all, we have reviewed some recent trends in material
development. Namely, the development of various enhancement principles for increase in
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the Seebeck coefficient/power factor and selective reduction in thermal conductivity. In
particular we have focused on the renewed interest to utilize magnetism to enhance the
Seebeck coefficient, e.g., magnon drag, paramagnon drag, spin fluctuation, spin entropy. We
have also selected several low thermal conductivity principles like utilization of materials
informatics, heterogeneous bonds, and large lattice softening effect via doping. Defect
engineering is a principle in various forms which has exhibited recent successes to achieve
particular high performance in some new materials. We have also reviewed the progress
in development of SKDs, and recent focused new materials like lead-free GeTe, SnTe, and
relatively abundant, and just about Te-free Mg3(Sb,Bi)2-type in particular as a promising
and long awaited Bi2Te3 replacement material candidate.

This review has also highlighted and discussed the fundamentals of thermoelectric
systems economics (TSE) as applied to high-power thermoelectric energy recovery appli-
cations. Several new paradigms are evident from this work. TE system economics and
cost is often the controlling and determining discriminator in the final business decision
to implement a TE energy recovery system. High-power TE systems must be close to
$1/We to be cost-competitive with other energy recovery and conversion systems, like
Rankine-based systems, Organic-Rankine systems, geothermal power systems, and solar
systems in solar system applications.

First, TSE analyses have demonstrated that cost-competitive, cost-effective high-power
TE systems must have high TE fill-factors, Fopt ≥ 0.65; much higher than commonly
implemented in current TE device and system design. This will require a major design
paradigm shift in TE design thinking, but this is similar to what has been successfully
solved and implemented in successful, cost-competitive solar cell and solar array designs in
the solar industry today. Second, the TSE analyses have also highlighted and emphasized
the importance of hot-side and cold-side heat exchanger costs in often controlling and
dominating the overall TE system economic costs. Heat exchanger costs are critically
important and this work has demonstrated cost-effective, cost-competitive TE systems in
energy recovery applications must either have: (1) high hot-side heat fluxes and this work
has shown >15 W/cm2 as a critical level to achieve, or (2) the heat exchangers must be very
low cost (<$0.25/(W/K)) or essentially “free” to the TE system in any particular energy
recovery application.

The TSE analysis and modeling has now been upgraded to include the critical effects
of thermal and electrical contact resistance. This new capability has demonstrated that
cost-effective, cost-competitive TE systems require optimum TE element lengths, LTE, to
minimize cost per watt metrics. These optimum TE element lengths are impacted greatly
by TE element manufacturing cost sensitivities to the TE element length. New techniques
have been developed and presented herein that allow the TE system designer to evaluate
and determine optimum TE element lengths leading to cost-effective, cost-competitive TE
system designs. How TE element lengths actually impact TE system costs depends on
how TE element dimensions (i.e., length and wide or radius dimension) impact the TE
manufacturing costs. The techniques demonstrated herein allow the TE system design
to evaluate a variety of scenarios; increasing LTE reducing TE manufacturing costs or
increasing LTE increasing TE manufacturing costs. The reader is referred to Section 4.2 for
the details on this topic.

Finally, TSE analyses have demonstrated that low thermal and electrical contact
resistances are also required to produce cost-effective, cost-competitive high-power TE
systems for energy recovery applications. This work generally demonstrated that electrical
contact resistances <1.0 × 10−9 ohm-m2 in concert with low heat exchanger costs are
required to create cost-competitive, high-power TE systems with costs approaching $1/W.
This is once again a new design paradigm for cost-competitive, high-power TE systems,
as this low level of electrical contact resistance or lower is extremely difficult to achieve.
Future research is required in this technical area to help high-power TE systems achieve
their full potential in energy recovery applications.
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Nomenclature

English
AHEX TE/Heat Exchanger Interface Area [m2]
ATE Thermoelectric Element Area [m2]
CTEG Thermoelectric Generator Cost [$]
CHEX Heat Exchanger Cost Parameter [$/(W/K)]
C′ ′ TE System Manufacturing/Fabrication Costs per Area [$/m2]
C′ ′ ′ TE Material Volumetric Costs per Volume [$/m3]
Cp Exhaust Flow Specific Heat [J/kg-K]
fQ Thermal Interface Function (Equation (2))
F Fill Factor
Fopt Optimum Cost Fill Factor
G Thermoelectric System Cost per Watt [$/W]
Gopt Optimum Thermoelectric System Cost at Fopt [$/W]
I Thermoelectric Device Current [A]
Kexh Heat Exchanger Conductance [W/K]
KH Hot Side Total Thermal Conductance [W/K]
KC Cold Side Total Thermal Conductance [W/K]
KHX Heat Exchanger Conductance Value [W/K]
KTE Effective Thermoelectric Conductance [W/K]
lc Thickness of thermal contact layer [m]
L Thermoelectric Element Length [m]
m Load resistance to TE device resistance ratio
.

mh Exhaust mass flow rate [kg/sec]
N Number of Thermoelectric Couples
n Cost influence factor in Equation (4–5)
q Thermal Flux [W/m2]
Q Thermal Transfer on Hot- or Cold-Side [W]
r Thermal Interface Contact Parameter—Thermal Conductivity Ratio [κTE/κcon]
Spn Total Seebeck Coefficient (= Sp + |Sn|) [V/K]
UAu Heat Exchanger UA Value [W/K]
V Thermoelectric Device Voltage [V]
T Temperature [K]
ZT Figure of merit (dimensionless)
ZTav Average Figure of merit (dimensionless)
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Greek
∆T (Texh − Tamb) [K]
ε Heat Exchanger Thermal Effectiveness
γ Thermoelectric Element Length to Area Ratio [m−1]
κ Thermal Conductivity (thermoelectric material unless otherwise specified) [W/m/K]
η Thermoelectric Conversion Efficiency
ρcon Electrical Contact Resistivity [Ohm −m2]
ρave Average Electrical Resistivity of p-type and n-type TE materials [Ohm −m]
σ Electrical Conductivity [S/m]
Subscripts
amb ambient environment
con contact interface
exh exhaust conditions
h or H Associated with TE hot-side parameter
c or C Associated with TE cold-side parameter
n Associated with TE n-type materials
p Associated with TE p-type materials
TE Thermoelectric parameter
HEX Heat Exchanger parameter
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