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Abstract Holistic face recognition algorithms are sensitive
to expressions, illumination, pose, occlusions and makeup.
On the other hand, feature-based algorithms are robust to
such variations. In this paper, we present a feature-based al-
gorithm for the recognition of textured 3D faces. A novel
keypoint detection technique is proposed which can repeat-
ably identify keypoints at locations where shape variation is
high in 3D faces. Moreover, a unique 3D coordinate basis
can be defined locally at each keypoint facilitating the ex-
traction of highly descriptive pose invariant features. A 3D
feature is extracted by fitting a surface to the neighborhood
of a keypoint and sampling it on a uniform grid. Features
from a probe and gallery face are projected to the PCA sub-
space and matched. The set of matching features are used
to construct two graphs. The similarity between two faces is
measured as the similarity between their graphs. In the 2D
domain, we employed the SIFT features and performed fu-
sion of the 2D and 3D features at the feature and score-level.
The proposed algorithm achieved 96.1% identification rate
and 98.6% verification rate on the complete FRGC v2 data
set.
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1 Introduction

The human face has emerged as one of the most promis-
ing biometrics due to the social acceptability and non-
intrusiveness of its measurement through imaging. It re-
quires minimal or no cooperation from the subject making it
ideal for surveillance and applications where customer satis-
faction is important. However, machine recognition of faces
is very challenging because the distinctiveness of facial bio-
metrics is quite low compared to other biometrics (e.g. fin-
gerprints and iris) (Jain et al. 2004). Moreover, changes
caused by expressions, illumination, pose, occlusions and
facial makeup (e.g. beard) impose further challenges on ac-
curate face recognition.

A comprehensive survey of basic face recognition algo-
rithms is given by Zhao et al. (2003) who categorize face
recognition into holistic, feature-based and hybrid match-
ing algorithms. Holistic matching algorithms basically ex-
tract global features from the entire face. Eigenfaces (Turk
and Pentland 1991) and Fisherfaces (Belhumeur et al. 1997)
are well known examples of holistic face recognition algo-
rithms. Feature-based matching algorithms extract local fea-
tures or regions such as the eyes and nose and then match
these features or their local statistics for recognition. One
example of this category is the region-based 3D matching
algorithm (Mian et al. 2007) which matches the 3D point-
clouds of the eyes-forehead and the nose regions separately
and fuse the results at the score-level. Another example is
face recognition using local boosted features (Jones and Vi-
ola 2003) which matches rectangular regions from facial im-
ages at different locations, scales and orientations. Hybrid
matching methods use a combination of global and local-
features for face recognition e.g. Huang et al. 2003).

One limitation of holistic matching is that it requires ac-
curate normalization of the faces according to pose, illu-
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mination and scale. Variations in these factors can affect
the global features extracted from the faces leading to in-
accuracies in the final recognition. Normalization is usu-
ally performed by manually identifying landmarks on the
faces which makes the whole process semi-automatic. Man-
ual normalization is also imperfect as it is commonly per-
formed on the basis of only a few landmarks (3 to 5) and
humans cannot identify landmarks with subpixel accuracy.
Replacing this manual process with an automatic landmark
identification algorithm usually deteriorates the final recog-
nition results. Moreover, global features are also sensitive to
facial expressions and occlusions. Feature-based matching
algorithms have an advantage over holistic matching algo-
rithms because they are robust to variations in pose, illumi-
nation, scale, expressions and occlusions.

Multimodal 2D-3D face recognition provides more ac-
curate results than either of the individual modalities alone
(Bowyer et al. 2006). An up to date survey of 3D and multi-
modal face recognition is given by Bowyer et al. (2006) who
argue that 3D face recognition has the potential to overcome
the limitations of its 2D counterpart. 3D data can assist in
the normalization as well as recognition of faces. For exam-
ple, 3D face data can be used for illumination normaliza-
tion (Al-Osaimi et al. 2006) and pose correction (Mian et al.
2006c) of 2D faces. In the recognition phase, additional fea-
tures can be extracted from the 3D faces and fused with the
2D features at the score or feature-level for greater accuracy.
Bowyer et al. (2006) stress upon the need for better 3D face
recognition algorithms which are more robust to variations.
However, they also agree that multiple algorithms or classi-
fiers can increase performance. For example, Gokberk et al.
(2005) reported an increase in recognition performance by
combining the results of multiple 3D face recognition algo-
rithms.

Many 3D face recognition approaches are based on the
Iterative Closest Point (ICP) algorithm (Besl and McKay
1992) or its modified versions (Mian et al. 2007). There are
two major advantages of ICP based approaches. Firstly, per-
fect normalization of the faces is not required as the algo-
rithm iteratively corrects registration errors while matching.
Secondly, a partial region of a face can be matched with
a complete face. The latter advantage has been exploited
to avoid facial expressions (Mian et al. 2006a, 2007) and
to handle pose variations by matching 2.5D scans to com-
plete face models (Lu et al. 2006). On the downside, the
major disadvantage of ICP is that it is an iterative algorithm
and is therefore computationally very expensive. Moreover,
ICP does not extract any feature from the face which rules
out the possibilities of feature-level fusion and indexing to
speed up the matching process. Unless another classifier
and/or modality is used to perform indexing or prior rejec-
tion of unlikely faces from the gallery (Mian et al. 2006c),
ICP based algorithms must perform a brute force matching

thereby making the recognition time linear to the gallery
size. Matching expression insensitive regions of the face is
a potentially useful approach to overcome the sensitivity of
ICP to expressions. However, deciding upon such regions
is a problem worth exploring as such regions may not only
vary between different persons but between different expres-
sions as well.

Our literature review leads us to the following conclu-
sions: (1) Local features are more robust compared to global
features; (2) Multimodal 2D-3D face recognition is more ac-
curate than either of the individual modalities; (3) The face
recognition literature can always benefit from not only bet-
ter but more number of face recognition algorithms because
their combination is likely to improve performance; (4) Un-
like ICP, it is more advantageous to extract features from the
3D face in order to facilitate feature-level fusion and index-
ing.

Based on the above motivations, we propose an algorithm
for textured 3D face recognition using local features ex-
tracted separately from the 3D shape and texture of the face.
In the 3D domain, a novel approach for keypoint detection is
proposed. The identification of keypoints is repeatable and
allows for the extraction of highly descriptive 3D features at
the keypoints. Features are extracted with reference to local
object-centered 3D coordinates which are uniquely defined
at each keypoint using its neighboring surface. The repeata-
bility of the keypoint locations and reference frames pro-
vides pose invariance to the 3D features. Each feature is ex-
tracted by fitting a surface to the neighborhood of a keypoint
and sampling it on a uniform grid. In order to achieve robust-
ness to noise, approximation is used for surface fitting rather
than interpolation. Multiple features are extracted from each
gallery face and projected to the PCA subspace. The dimen-
sionality of the feature vectors is reduced by considering
only the most significant components. During recognition,
features are extracted at keypoints on the probe. These fea-
tures are also projected to the PCA subspace and matched
with those in the gallery. The set of matching features from
a probe and gallery face are individually meshed to form
graphs. A spatial constraint is used to remove false matches
and the remaining ones are used to calculate the similarity
measure between the two faces. The similarity measure is
not only based on the average error between the correspond-
ing features but also takes into account the error between the
two graphs and the total number of correct matches between
the faces.

We also employed the SIFT features in the 2D domain
and fused the two modalities at the score and feature-level.
In the former case, the two feature sets (2D and 3D) are
extracted and matched independently and their similarity
scores are fused. In the latter case, both the 2D and 3D fea-
tures are extracted at the same keypoints on the face and
projected to their respective PCA subspaces. The dimen-
sionality of each feature is reduced and each feature vector
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is normalized so that its variance along every dimension is
equal. Finally, the feature vectors are normalized to a unit
magnitude and concatenated to form a multimodal (2D-3D)
feature vector. The same algorithm as described above is
also used for matching the multimodal features. The pro-
posed algorithm was tested on the FRGC v2 (Phillips et al.
2005) data set and achieved identification rates of 99.38%
and 92.11% for probes with neutral and non-neutral expres-
sions, respectively. The verification rates at 0.001 FAR for
the same were 99.85% and 96.62%.

Preliminary results of our algorithm have been published
in (Mian et al. 2006d). However, a number of extensions
have been made since then which resulted in a signifi-
cant improvement in the accuracy (from 89.5% to 99.38%
3D face identification rate) and efficiency of the algorithm.
These extensions include a keypoint detection algorithm, 3D
coordinate basis derivation from single keypoints, projection
of the features to PCA subspace, feature-level fusion, using
a more sophisticated graph matching approach and perform-
ing experiments on the complete FRGC v2 data set.

The rest of this paper is organized as follows. Section 2
gives details of the keypoint identification algorithm. Sec-
tion 3 explains the extraction of local 3D features. Sec-
tion 4.1 gives a brief overview of the SIFT features. Feature-
level fusion is described in Sect. 4.2. Details of the matching
algorithm are given in Sect. 5. Results are reported in Sect. 6.
Finally, discussion and conclusions are given in Sects. 7
and 8, respectively.

2 Keypoint Detection

The aim of keypoint detection is to determine points on a
surface (a 3D face in our case) which can be identified with
high repeatability in different range images of the same sur-
face in the presence of noise and pose variations. In addition
to repeatability, the features extracted from these keypoints
should be sufficiently distinctive in order to facilitate ac-
curate matching. The keypoint identification technique pro-
posed in this paper is simple yet robust due to its repeatabil-
ity and the descriptiveness of the features extracted at these
keypoints.

The input to our algorithm is a point cloud of a face
F = [xi yi zi]T , where i = 1, . . . , n. The input face is sam-
pled at uniform (x, y) intervals (4 mm in our case) and at
each sample point p, a local surface is cropped from the
face using a sphere of radius r1 centered at p. The value
of r1 decides the degree of locality of the extracted feature
and offers a trade off between descriptiveness and sensitivity
to variations e.g. due to expressions. The smaller the value
of r1, the less the sensitivity of the local feature to variations
and vice versa. However, on the downside a small value of r1

will also decrease the descriptiveness of the feature.

Let Lj = [xj yj zj ]T (where j = 1, . . . , nl) be the points
in the region cropped by the sphere of radius r1 centered
at p. The mean vector m and the covariance matrix C of L
are given by

m = 1

nl

nl∑

j=1

Lj , and (1)

C = 1

nl

nl∑

j=1

Lj LT
j − mmT , (2)

where Lj is the j th column of L. Performing Principal
Component Analysis on the covariance matrix C gives the
matrix V of eigenvectors

CV = DV, (3)

where D is the diagonal matrix of the eigenvalues of C. The
matrix L can be aligned with its principal axes using (4),
known as the Hotelling transform (Gonzalez and Woods
1992):

L′
j = V(Lj − m) {j = 1, . . . , nl}. (4)

Let L′
x and L′

y represent the x and y components of the point
cloud L′ i.e.

L′
x = xj and L′

y = yj where {j = 1, . . . , nl}, (5)

δ = max(L′
x) − min(L′

x) − (max(L′
y) − min(L′

y)). (6)

In (6), δ is the difference between the first two principal
axes of the local region. The value of δ will be zero if L′ is
planar or spherical. However, if there is unsymmetrical vari-
ation in the depth of L′, then δ will have a non-zero value
proportional to the variation. This depth variation is an indi-
cation that L′ contains descriptive information.

The value of δ is always non-negative and if it is greater
than a threshold (i.e. δ ≥ t1), p is taken as a keypoint, other-
wise it is rejected. The threshold t1 governs the total number
of keypoints. Taking t1 = 0 will result in every point end-
ing up as a keypoint and as the value of t1 increases the
total number of keypoints will decrease. There are only two
thresholds in the keypoint detection namely r1 and t1 which
are empirically chosen as r1 = 20 mm and t1 = 2 mm. How-
ever, the algorithm is not sensitive to these parameters and
small changes in these values will not have a significant ef-
fect on its performance. The values of r1 and t1 depend on
the scale of human faces. This keypoint detection technique
is generic and can be extended to other 3D shapes and ob-
jects. However, the values of r1 and t1 will change accord-
ingly relative to the scale of the objects to be recognized.

Figure 1 shows some examples of keypoints identified on
three different range images each of four individuals. We can
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Fig. 1 Illustration of keypoint
repeatability. Each column
contains three range images of
the same individual. Notice that
the keypoints are repeatably
identified at the same
neighborhoods for the same
individual. The height of range
images is 160 mm which is why
the keypoints appear very close

see that the keypoints are repeatably identified at the same
locations for a given individual. Moreover, the keypoints
vary between individuals because they have different facial
shapes. For example, in the first column, the keypoints clus-
ter mostly on the nose. In the second column, the keypoints
cluster on the sides of the nose as well. In the third column,
some keypoints are also detected on the cheek bones. The
difference between keypoint locations on the faces of dif-
ferent individuals enhances the accuracy of the recognition
phase.

Figure 2 shows the results of our keypoint repeatability
experiment performed on the 3D faces of the FRGC v2 data
(Phillips et al. 2005) i.e. 4007 three-dimensional scans of
466 individuals. The data was preprocessed for spike re-
moval using neighborhood thresholding. Holes in the face
data where then filled using cubic interpolation. Note that
the FRGC consists of real data and therefore ground truth
dense correspondence between the 3D faces is unavailable.
Ground truth correspondence is necessary to calculate the
error between the keypoints of different range images of the
same person. Two approaches can be taken to overcome this
problem. In the first approach which was also taken by Lowe
(2004), data with ground truth is synthetically generated.
This is done by adding synthetic changes like noise, rota-
tion, scaling etc. which makes it possible to precisely cal-
culate where each keypoint in an original image should ap-
pear in the transformed one. In the second approach, ground
truth is approximated by an accurate registration algorithm.

In this paper, we have adopted the latter approach because
it is more realistic i.e. repeatability is calculated using real
data. The 3D faces belonging to the same individual are au-
tomatically registered using a modified ICP algorithm (Mian
et al. 2007) and the errors between the nearest neighbors of
their keypoints (one from each face) are recorded. Figure 2
shows the cumulative percentage repeatability as a function
of increasing distance. The repeatability reaches 86% for
faces with neutral expression at an error of 4 mm. This is
comparable to the repeatability of SIFT (Lowe 2004). As
expected, the repeatability drops rapidly below 4 mm be-
cause this corresponds to the sampling distance (minimum
distance) between the keypoints. For non-neutral expression
faces, the repeatability at 4 mm drops to 75.6% because the
3D shape of the face changes with expressions. Note that
these repeatability values are sufficient as the matching al-
gorithm makes its decision on a subset of the total features
(see Sect. 5).

The strengths of our keypoint detection algorithm can be
summarized as follows. One, keypoint locations are repeat-
ably identified in the range images of the same individual.
Two, keypoints vary between different individuals. Three,
keypoints are identified at locations where the shape varia-
tion is high (i.e. nonplanar and nonspherical regions). Four,
the keypoint detection process also provides stable and re-
peatable local 3D coordinate frames for the computation of
local features.
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Fig. 2 Repeatability of keypoints

3 3D Feature Extraction

Once a keypoint has been detected, a local feature is ex-
tracted from its neighborhood L′. The proposed local 3D
feature is an extension of the tensor representation (Mian et
al. 2006b, 2006e) which quantizes local surface patches of
a 3D object into three-dimensional grids defined in locally
derived coordinate bases. In Mian et al. (2006b), the local
coordinate bases were derived from two points and their
corresponding normals. However, in a later work (Mian et
al. 2006d), the local coordinates were derived from a single
point and some further invariant information i.e. the SIFT
orientations or the location of the nose tip, in order to avoid
the Cn

2 combinatorial problem (Mian et al. 2006b). In this
paper, we use the principal directions of the local surface
patch L′ as the 3D coordinates to calculate the feature. This
avoids the Cn

2 combinatorial problem (Mian et al. 2006b)
without the knowledge of the nose tip (Mian et al. 2006d).
Since the keypoints are detected such that there is no ambi-
guity in the principal directions of the neighboring surface
patch, the derived 3D coordinate bases are stable and so are
the features.

A surface is fitted to the points in L′ using approximation
as opposed to interpolation. This way the surface fitting is
not sensitive to noise and outliers in the data. Each point in
L′ pulls the surface towards itself and a stiffness factor con-
trols the flexibility of the surface. The surface is sampled on
a uniform lattice. We use a 20×20 lattice in our experiments
to extract the feature. Figure 3b shows a surface fitted to the
neighborhood of a keypoint using a 20 × 20 lattice. In order
to avoid the effects of boundaries that appear on the flanks
of L′, we crop a larger region first using r2 (where r2 > r1)
and fit a surface to it. This surface is then sampled on a big-
ger lattice and only the central 20 ×20 samples covering the
r1 region are concatenated to form a feature vector of di-
mension 400. For surface fitting, we used publicly available
code (D’Erico 2006). However, any surface fitting algorithm
that uses approximation can be used for this purpose.

Keeping a constant value for the threshold t1 will result
in different numbers of keypoints identified for different in-
dividuals. However, we have put an upper limit on the total
number of local features that are calculated for a face in the
gallery. This is important in order to avoid the recognition
results being biased in favor of the gallery faces that have
more local features. For every face in the gallery, a total of
200 feature vectors are calculated. The 200 keypoints are se-
lected using a uniform random distribution. A dimension of
400 is quite large for a feature vector that describes a local
surface. Fortunately, it is possible to compress these vectors
by projecting them into a subspace defined by the eigen-
vectors of their largest eigenvalues using Principal Compo-
nent Analysis (PCA). Let � = [f1 . . . f200N ] (where N is the
gallery size) be the 400 × 200N matrix of all the feature
vectors of all the faces in the gallery. Each column of �

contains a feature vector of dimension 400. The mean of �

or the mean feature vector is given by

f = 1

200N

200N∑

i

fi . (7)

The mean feature vector is subtracted from all features

f ′
i = fi − f. (8)

The mean subtracted feature matrix becomes

�
′ = [f ′

1 . . . f ′
200N ]. (9)

The covariance matrix of the mean subtracted feature vec-
tors is given by

C = �
′(�′)T , (10)

where C is a 400 × 400 matrix. The eigenvalues and eigen-
vectors of C are calculated using Singular Value Decompo-
sition (SVD) as

USVT = C, (11)

where U is a 400 × 400 matrix of the eigenvectors sorted
in decreasing order i.e. the eigenvector corresponding to the
highest eigenvalue is in the first column. S is a diagonal ma-
trix of the eigenvalues, also sorted in decreasing order. The
dimension of the PCA subspace is governed by the amount
of required accuracy (fidelity) in the projected space. This
can be easily understood by plotting the ratio of the first k

eigenvalues to the total eigenvalues given by

ψ =
∑k

i=1 λi∑400
i=1 λi

, (12)

where λi is the ith eigenvalue. Figure 4 shows a plot of the
ratio ψ as a function of the number of eigenvalues k. The
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Fig. 3 a A keypoint displayed
(in white colour) on a 3D face
(top) and its corresponding
texture map (bottom). b A local
surface fitted to the
neighborhood of the keypoint
(top) using a 20 × 20 lattice.
The corresponding texture map
is also rotated (bottom) for
alignment with the coordinates
of the 3D surface. c The texture
mapped on the local surface

curve reaches a value of 0.99 very quickly at only k = 11
which means that taking eigenvectors corresponding to only
the highest 11 eigenvalues gives us 99% accuracy and a
compression ratio of (400−11)

400 = 97.3%. This is not surpris-
ing given that all human faces have a similar topological
structure and are roughly symmetric on either side of the
nose. Repeating the keypoint detection with different val-
ues of parameters (r1, t1) as well as randomly selecting key-
points showed that the value of k = 11 is repeatable. The
value of k = 11 has certain significance here. It shows that
local shape variation in 3D faces can be represented with
99% accuracy by a vector of fairly small dimension. This is
in contrast with 2D faces where local appearance variation
is represented with only 60% accuracy by a vector of equal
dimension (see Sect. 4.2). The first k eigenvectors are taken
as

Uk = Ui , (13)

where i = 1, . . . , k and Uk is a 400 × k matrix of the first
k eigenvectors. The mean subtracted feature matrix is pro-
jected to the eigenspace as

�
λ = (Uk)

T
�

′, (14)

where �
λ is a k × 200N matrix of the 3D feature vectors of

the gallery faces. �
λ is normalized so that its variance along

each of the k dimensions is equal

�
λ
rc = �

λ
rc

λr

where r = 1, . . . , k and c = 1, . . . ,200N.

(15)

In (15), r stands for the dimension or row number and
c stands for the feature or column number. Finally, the fea-
ture vectors in �

λ (i.e. the columns) are normalized to unit
magnitude and saved in a database along with f and Uk

for online feature-based recognition of faces. Note that the

Fig. 4 A plot of the ratio ψ as a function of the number of eigen-
values k shows that the eigenvectors corresponding to the highest 11
eigenvalues give 99% accuracy

representation of faces in the gallery is quite compact. Each
face is represented by only 200 feature vectors each of di-
mension 11.

4 2D Feature Extraction and Fusion

4.1 2D Feature Extraction

In the 2D domain we used an off the shelf feature extraction
algorithm. We chose SIFT (Scale Invariant Feature Trans-
form) (Lowe 2004) for this purpose as our keypoint detec-
tion algorithm was inspired by the SIFT keypoint detection
even though the two algorithms take completely different
approaches to keypoint detection. In SIFT (Lowe 2004), a
cascaded filtering approach is used to locate the keypoints
which are stable over scale space. First, keypoint locations
are detected as the scale space extrema in the Difference-
of-Gaussian function convolved with the image. A thresh-



Int J Comput Vis (2008) 79: 1–12 7

old is then applied to eliminate keypoints with low con-
trast and those which are poorly localized along an edge.
Finally, a threshold on the ratio of principal curvatures is
used to select the final set of stable keypoints. For each key-
point, the gradient orientations in its local neighborhood are
weighted by their corresponding gradient magnitudes and
by a Gaussian-weighted circular window and put in a his-
togram. Dominant gradient directions corresponding to the
peaks in the histogram are used to assign one or more orien-
tations to the keypoint.

For every orientation of a keypoint, the gradients of its lo-
cal neighborhood are used to extract a feature (SIFT). SIFT
is invariant to orientations because it is extracted after ro-
tating the gradients relative to the keypoint orientation. The
gradient magnitudes are weighted by a Gaussian function
giving more weight to closer points. Next, 4 × 4 sample re-
gions are used to create orientation histograms, each with
eight orientation bins forming a 4 × 4 × 8 = 128 dimen-
sional feature vector. To achieve robustness to illumination,
the feature vector is normalized to unit magnitude and large
gradient magnitudes are thresholded to a ceiling of 0.2 each
and the vector is renormalized to unit magnitude once again.
A detailed explanation of the SIFT keypoint detection and
feature extraction is given by Lowe (2004).

4.2 Feature-level Fusion

It is believed that feature-level fusion can provide better re-
sults than score-level fusion (Jain et al. 2004). However, cur-
rent research in the area of feature-level fusion is still in
its infancy. Some of the challenges in feature-level fusion
include the relative incompatibility of features and dimen-
sionality problems. Incompatibilities can be in the dimen-
sionality of the features, the variance of the features along
each dimension and the location from which these features
are extracted. In this section, we address these problems one
by one. First, we standardize the keypoint locations so that
both 2D and 3D features can be extracted from the same
points. Second, we reduce the dimensionality of the 2D fea-
ture and normalize it so that both 2D and 3D features con-
tribute equally to the resultant fused features.

The process described in Sect. 4.1 generally identifies 2D
keypoints at locations that are different from the 3D key-
points described in Sect. 2. This is not a problem when both
features are matched independently and fusion is performed
at the score-level. However, for feature-level fusion, both
the 2D and 3D features must be extracted at the same lo-
cations. There are two ways to do this. The first is to extract
3D features at points on the 3D face that correspond to the
2D keypoints on the 2D image. This approach was tested
in our earlier work (Mian et al. 2006d) but the results indi-
cated that the keypoint locations or orientations provided by
the 2D features are not suitable for extracting 3D features.

Fig. 5 A plot of the ratio ψ as a function of the number of eigenvalues
k for the 128 dimensional SIFT features shows that the eigenvectors
corresponding to the highest 64 eigenvalues give 95% accuracy

The second approach is tested in this paper whereby SIFT
features are extracted at the 2D image locations which cor-
respond to the keypoint locations and orientations on the 3D
face. The 2D pixel values corresponding to the local region
L are mapped on the point cloud and rotated using (4) in
order to align them with the coordinates of the 3D feature.
These pixels are then sampled on a uniform 20 × 20 grid so
that the pixel-to-point correspondence is maintained to the
local surface. Figure 3b shows a local 2D image patch af-
ter rotation and sampling. The same image patch is mapped
onto its corresponding 3D surface in Fig. 3c.

Note that using the 3D keypoints for extracting SIFTs
has an added advantage that the image scale can be normal-
ized with respect to the absolute 3D scale. In other words,
SIFTs can be extracted from the local 2D image patches at
the same scale as that of the local surface. Once the 2D SIFT
features are extracted from the same keypoints as the 3D
ones, they are projected to the PCA subspace in a similar
way as described in Sect. 3. To decide on the number of
SIFT dimensions (eigenvectors) that must be used, the ra-
tio ψ is plotted versus k in Fig. 5. Ideally, it is desirable to
keep the dimensions of the 3D and 2D features equal so that
the resultant feature and the matching process is not biased.
However, this is not feasible as the two features have sig-
nificantly different reconstruction accuracies at equal values
of k (see Fig. 4 and Fig. 5). For example, at k = 11 the ac-
curacy of SIFT is only 0.6 whereas that of the 3D features
is 0.99. To strike a balance between accuracy and compres-
sion, we selected eigenvectors of SIFTs that correspond to
the 64 highest eigenvalues (i.e. k = 64). The variance of the
64 dimensional vectors along each dimension is then nor-
malized using (15) and the resultant vector is normalized to
unit magnitude. Corresponding 2D and 3D feature vectors
are concatenated and normalized to unit magnitude to form
a multimodal feature vector.
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Fig. 6 a Correct match.
b Incorrect match

(a) (b)

5 Feature Matching

It is possible to speed up the matching process with the help
of indexing or hashing (Mian et al. 2006e). However, these
techniques are not included here because we are interested
in matching a probe to every gallery face in order to gen-
erate a large number of impostor scores which are useful
for drawing the Receiver Operating Characteristic (ROC)
curves. Currently, an unoptimized implementation of our al-
gorithm in MATLAB can perform 23 matches per second
using a 3.2 GHz Pentium IV machine with 1 GB RAM.

During online recognition, features are extracted from the
probe face using the same parameters as the gallery. Let fp
be a feature extracted from a probe face. This feature is first
projected to the PCA subspace

fλp = (Uk)
T (fp − f). (16)

To calculate the similarity between a probe and a gallery
face, their local features are matched using the following
equation

e = cos−1(fλp(fλg)
T ), (17)

where fλp and fλg correspond to the probe and gallery features
in the PCA subspace, respectively. These features could be
2D, 3D or multimodal 2D-3D. The same matching algo-
rithm (to the code level) is used for matching different types
of features. If the two features are exactly equal, the value of
e will be zero indicating a perfect match. However, in reality
a finite error exists between the features extracted from the
exact same locations on different images of the same face.
For a given probe feature, the feature from the gallery face
that has the minimum error with it is taken as its match.
Once all the features are matched, the list of matching fea-
tures is sorted according to e. If a gallery feature matches
more than one probe feature, only the one with the minimum
value of e is considered and the rest are removed from the
list of matches. This allows for only one-to-one matches and
the total number of matches m is different for every match-
ing of probe-gallery faces.

The keypoints corresponding to the matching features on
the probe face are projected on the xy-plane, meshed using
Delaunay triangulation and projected back to the 3D space.
This results in a 3D graph. The edges of this graph are used
to construct a graph from the corresponding nodes (key-
points) of the gallery face using the list of matches. If the
list of matches is correct i.e. the matching pairs of features
correspond to the same location on the probe and gallery
face, the two graphs are deemed to be similar (see Fig. 6).
The similarity measure between the two graphs is

γ = 1

nε

nε∑

i

|εpi − εgi | (18)

where εpi and εgi are the lengths of the corresponding edges
of the probe and gallery graphs, respectively. The value nε is
the total number of edges. Equation (18) is an efficient way
of measuring the spatial error between the matching pairs
of probe and gallery features. The similarity γ is invariant
to the facial pose because the edge lengths of the graphs
will not vary if the graph is rotated or translated. Another
similarity measure between the two faces is calculated as
the mean Euclidean distance d between the nodes of the two
graphs after least squared error minimization. Outlier nodes
which have an error above a threshold are removed before
calculating the mean error. This threshold is determined by
the sampling distance of the faces used to find the keypoints
in Sect. 2.

The matching algorithm described above results in four
measures of similarity between the two faces i.e. the average
error e between the features, the total number of matches m

between the faces, the graph edge error γ and the graph node
error d between the two graphs. Except for m, all other simi-
larity measures have a negative polarity (i.e. a smaller value
means a better similarity). A probe is matched with every
face in the gallery resulting in four vectors sq of similarity
measures (where q corresponds to one of the four similarity
measures namely e, m, γ and d). The nth element of each
vector corresponds to the similarity between the probe with
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Fig. 7 Individual identification
performance of the local
features and their combined
performance when fusion is
performed at the score-level.
The combined rank one
identification rate for neutral
versus all faces is 96.1%

(a) (b)

(c)

the nth gallery face. Each vector is normalized on the scale
of 0 to 1 using the min-max rule

s′
q = sq − min(sq)

max(sq − min(sq)) − min(sq − min(sq))
, (19)

where s′
q contains the normalized similarity measures. The

operators min(sq) and max(sq) produce the minimum and
maximum values of the vectors, respectively. The elements
of s′

m (i.e. the number of matches) are subtracted from 1
in order to reverse their polarity. The overall similarity of
the probe with the gallery faces is then calculated using a
confidence weighted sum rule:

s = κes′
e + κm(1 − s′

m) + κγ s′
γ + κds′

d , (20)

where κq is the confidence in each individual similarity mea-
sure. Confidence measures can be calculated offline from the
results obtained on training data or dynamically during on-
line recognition as:

κq = sq − min(sq)

sq − min2(sq)
, (21)

where sq is the mean value of sq and the operator min2(sq)

produces the second minimum value of the vector sq . Note
that κm is calculated from 1−s′

m. The gallery face which has
the minimum value in the vector s is declared as the identity

of the probe when the decision is to be made on the basis of
individual 2D or 3D features or the fused multimodal 2D-
3D features. In the case of score-level fusion, the similarity
vectors resulting from individual 2D and 3D feature match-
ing are normalized and fused using a weighted sum rule.
The weights are calculated in a similar manner to (21). The
resultant vector is then used to make the decision.

6 Results and Analysis

The FRGC v2 data consist of a training and a validation set.
The validation set comprises 4007 three-dimensional scans
of faces along with their texture maps. There are 466 sub-
jects in the validation set. Minor pose variations and ma-
jor expression and illumination variations exist in the data-
base. A detailed description of the database can be found
in Phillips et al. (2005). We selected one textured 3D face
per individual under neutral expression to make a gallery of
466. The remaining faces (4007 − 466 = 3541) were treated
as probes and were divided into two sets i.e. one with neutral
expressions (1944 probes) and the other with non-neutral ex-
pressions (1597 probes).

Figure 7 shows our identification results. Note that it is
not the aim of this paper to provide a true and unbiased
comparison of the 3D and 2D features but to demonstrate
their use for face recognition in the presence of expression
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Fig. 8 Individual verification
performance of the local
features and their combined
performance when fusion is
performed at the score-level.
The combined verification rate
for neutral versus all faces is
98.6%

(a) (b)

(c)

and illumination variations. The 3D local features achieved
rank one identification rates of 99.0% and 86.7% for probes
with neutral and non-neutral expressions, respectively. In the
neutral expressions case, only two probes (out of a total of
1944) are above rank 11 and only one is above rank 17 i.e.
a 100% recognition rate is achieved at rank 17. In the case
of non-neutral expressions, the identification rate drops sig-
nificantly however it should be kept in mind that 3D face
recognition algorithms are generally more sensitive to ex-
pressions compared to 2D face recognition. For example,
the face recognition rate in Lu et al. (2006) (using surface
only) drops by 30% i.e. from 98% to 68%. However in our
case, due to the use of local-features, the recognition rate
drops by only 12.3%. Another point to note in the case of
non-neutral expressions is that there is a steep rise in the
recognition rate (i.e. 86.7% to 95%) from rank 1 to rank 5.
This is an indication that it is possible to significantly im-
prove the rank one recognition rate by fusing other features
e.g. global. The combined (using 2D and 3D features) rank
one identification rates are 99.4% and 92.1% for probes with
neutral and non-neutral expressions, respectively.

Figure 8 shows the ROC curves of our algorithm.
At 0.001 FAR (False Acceptance Rate), the 3D features
achieved verification rates of 99.9% and 92.7%, respec-
tively for probes with neutral and non-neutral expressions.
In the neutral expression case, a 100% verification rate was
achieved at 0.01 FAR. The combined verification rates are

99.9% and 96.6% for probes with neutral and non-neutral

expressions, respectively. The combined results reported in

Fig. 7 and Fig. 8 are for score-level fusion of the 3D and 2D

features. Table 1 compares score and feature level fusion and

recognition based on 3D features alone. Score-level fusion

performs better than feature-level fusion which is contra-

dictory to the claims of Jain et al. (2004) who argue that

feature-level fusion is more powerful. Possible reasons for

this anomaly are given in Sect. 7.

It is not the aim of this paper to report the most accu-

rate results on the FRGC v2 data and we believe that better

results can be obtained by combining our local 3D features

with other features (e.g. global) in a multi-algorithm set up.

However, to give some idea on the performance of our al-

gorithm, we compare our results in Table 2 to others who

used the FRGC v2 data set (Passalis et al. 2005; Maurer et

al. 2005; Husken et al. 2005). The FRGC benchmark (veri-

fication rate at 0.001 FAR) is used for comparison. Table 2

shows that our algorithm has the highest 3D and multimodal

verification rates in general. The performance of our local

3D feature-based face recognition especially stands out with

8% higher verification rate than its nearest competitor on the

complete FRGC v2 data set (i.e. neutral versus all).
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Table 1 Comparison of 3D
feature-based face recognition
with multimodal feature-based
face recognition using score and
feature-level fusion techniques

Neutral vs. All Neutral vs. Neutral Neutral vs. Non-neutral

Identification Verification Identification Verification Identification Verification

Rate Rate Rate Rate Rate Rate

Score level fusion 96.1% 98.6% 99.4% 99.9% 92.1% 96.6%

of 2D & 3D features

3D features alone 93.5% 97.4% 99.0% 99.9% 86.7% 92.7%

Feature level fusion 93.1% 97.2% 97.8% 99.5% 87.4% 93.5%

of 2D & 3D features

Table 2 Comparison of
verification rates at 0.001 FAR
on the FRGC v2 data set

Neutral vs. All Neutral vs. Neutral Neutral vs. Non-neutral

3D Multimodal 3D Multimodal 3D Multimodal

This paper 97.4% 98.6% 99.9% 99.9% 92.7% 96.6%

Maurer et al. 2005 86.5% 95.8% 97.8% 99.2% NA NA

Husken et al. 2005 89.5% 97.3% NA NA NA NA

Passalis et al. 2005 85.1% NA 94.9% NA 79.4% NA

FRGC baseline 45% 54% NA 82% 40% 43%

7 Discussion

Not undermining the potential of feature-level fusion, there
are four possible explanations for why this fusion technique
did not even perform as well as the 3D features alone (see
Table 1). The foremost reason is related to errors in the
FRGC v2 data itself (Mian et al. 2007) as the 3D faces
and their corresponding texture maps are not perfectly regis-
tered. Consequently, a keypoint detected on a 3D face some-
times corresponds to a different location on the texture map
and hence the fused multimodal feature ends up distorted.
The second reason is that given two sets of local features
(2D + 3D), some features will be deteriorated in each set
by variations due to noise, expressions and illumination etc.
It is more likely that the deteriorated features from each set
will belong to different keypoints and when the correspond-
ing features of the two sets are fused, the number of dete-
riorated fused features will be greater than the those in ei-
ther set. The third possible reason is that the same keypoints
may not be suitable for extracting both 2D and 3D features.
The fourth reason is that in score-level fusion, the two sets
of features contain more information as they are extracted
from different keypoints and therefore lead to better results.
Ross and Govindarajan (2005) also report similar findings
where score-level fusion performs better than feature-level
fusion. Many other researchers have reported feature-level
fusion techniques but did not compare their results to score-
level fusion and one is left to speculate how their results will
compare to score-level fusion.

Intuitively, one tends to agree with Jain et al. (2004)
on the potential of feature-level fusion. However, there are
many problems that need to be addressed before one could

expect any improvement over score-level fusion. Our results
show that score-level fusion currently remains the more ro-
bust (if not accurate) choice as it does not impose any re-
striction on the features in terms of size, variance, location
and registration. Feature-level fusion can be considered as a
global representation but in the feature domain as opposed
to the spatial domain. Global features (in the spatial domain)
are more sensitive to variations (Zhao et al. 2003) and by
corollary one could imagine that feature-level fusion (global
features in the feature domain) will also be more sensitive
to variations. These arguments by no means rule out the ad-
vantages of interaction between multimodal features at the
feature-level. Such interactions are beneficial as one feature
could assist in the normalization or selection of another fea-
ture.

8 Conclusion

We presented a novel feature-based algorithm for the recog-
nition of textured 3D faces. We proposed a keypoint detec-
tion algorithm which can repeatably identify locations on
a face where shape variation is high. Moreover, a unique
local 3D coordinate basis can be defined at each keypoint
which allows for the extraction of highly descriptive 3D fea-
tures. The 3D features were fused with existing 2D SIFT
features at the score and feature-level and the performance
of both fusion techniques was compared. We also proposed a
graph-based feature matching algorithm and tested it on the
largest publicly available corpus of textured 3D faces. Our
algorithm has an Equal Error Rate (EER) of 0.45% (neutral
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versus all case) and has the potential for further improve-
ments if integrated with other features and/or classifiers in a
multi-algorithm setup.
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