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Figure 1: Controlling shape deformation with unsupervised 3D keypoints. We discover unsupervised 3D keypoints that allow for

intuitive control of an object’s shape. This figure shows individual steps of interactive control. The red arrows illustrate the direction in which

the keypoints are manipulated. Note that the resulting deformations are localized and object parts are deformed in an intuitive manner—e.g.,

moving keypoints at the tip of the wings backward moves the wings backwards—all while preserving the details of the original shape.

Abstract

We introduce KeypointDeformer, a novel unsupervised

method for shape control through automatically discovered

3D keypoints. We cast this as the problem of aligning a

source 3D object to a target 3D object from the same ob-

ject category. Our method analyzes the difference between

the shapes of the two objects by comparing their latent

representations. This latent representation is in the form

of 3D keypoints that are learned in an unsupervised way.

The difference between the 3D keypoints of the source and

the target objects then informs the shape deformation algo-

rithm that deforms the source object into the target object.

The whole model is learned end-to-end and simultaneously

discovers 3D keypoints while learning to use them for de-

forming object shapes. Our approach produces intuitive

and semantically consistent control of shape deformations.

Moreover, our discovered 3D keypoints are consistent across

object category instances despite large shape variations.

As our method is unsupervised, it can be readily deployed

to new object categories without requiring annotations

for 3D keypoints and deformations. Project page: http:

//tomasjakab.github.io/KeypointDeformer.

1. Introduction

Given the vast number of 3D shapes available on the

Internet, providing users with intuitive and simple interfaces

for semantically manipulating objects while preserving their

key shape properties has a wide variety of applications in

AI-assisted 3D content creation. In this paper, we propose

to automatically discover intuitive and semantically mean-

ingful control points for interactive editing, enabling detail-

preserving shape deformation for object categories.

Specifically, we identify 3D keypoints as an intuitive and

simple interface for shape editing. Keypoints are sparse

3D points that are semantically consistent across an object

category. We propose a learning framework for unsupervised

discovery of such keypoints and a deformation model that

uses the keypoints to deform a shape while preserving local

shape detail. We call our model KeypointDeformer.

Figure 1 describes the inference-time use case of Key-

pointDeformer. Given a novel shape, KeypointDeformer

predicts 3D keypoints on the surface. If a user manipulates a

keypoint on a chair leg upwards, the entire leg is deformed

in the same direction (bottom). Our approach optionally

enables the use of a categorical deformation prior on these

* Work done while interning at Google Research.
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edits, such that if a user moves one side of an airplane wing

backwards, the opposite side of the wing is deformed sym-

metrically in the same direction (top)—while if the user

wishes to only move one side of the wing, our approach

also allows this. Our framework enables stand-alone shape

edits or shape alignment between two shapes, and can also

synthesize novel variations of shapes for amplifying stock

datasets.

While 3D keypoints may be a good proxy for shape edit-

ing, obtaining explicit supervision for keypoints and defor-

mation models is not only expensive but also ill-defined. As

such, we propose an unsupervised framework for jointly dis-

covering the keypoints and the deformation model. To solve

our problem, we devise two components that operate in con-

cert: (1) a method for discovering and detecting keypoints,

and (2) a deformation model that propagates keypoint dis-

placements to the rest of the shape. To achieve these, we set

up a proxy learning task where the goal is to align a source

shape with a target shape, where the two can represent very

different instances of a category. We also propose a simple

yet effective keypoint regularizer that encourages learning of

semantically consistent keypoints that are well-distributed,

lie close to the object surface and implicitly preserve underly-

ing shape symmetries. The result of our training approach is

a deformation model that deforms a shape based on automat-

ically discovered 3D control keypoints. Since the keypoints

are low-dimensional, we can further learn a category prior

on these keypoints, enabling semantic shape editing from

sparse user inputs.

Overall, our method has following key benefits:

1. It gives users an intuitive and simple way to interac-

tively control object shapes.

2. Both the keypoint prediction and deformation model

are unsupervised.

3. We show that keypoints discovered by our method are

better for shape control than other kinds of keypoints,

including manually annotated ones.

4. Our unsupervised 3D keypoints are semantically consis-

tent across object instances of the same category giving

us sparse correspondences.

We evaluate the semantic consistency of our unsupervised

3D keypoints on standard benchmarks, and achieve state-

of-the-art results among unsupervised methods. We also

demonstrate the suitability of our keypoints for shape defor-

mation. Finally, we provide qualitative results of user-guided

interactive shape control, and include videos of interactive

shape control on our project page.

2. Related Work

Shape deformation. Our approach is closely related to

detail-preserving deformations studied in geometric model-

ing, including Laplacian-based shape editing [21], As-Rigid-

As-Possible shape deformation [22], and cages [13]. While

these approaches enable shape editing via many forms of

user-specified constraints (e.g., points or sets in an optimiza-

tion framework), a major challenge is that they rely purely

on geometric properties and do not consider semantic at-

tributes or category-specific shape priors for deformation.

Such priors can be obtained from artists painting the object

surface with stiffness properties [1] or learned from a set of

meshes with known correspondence [20]. However, such

supervisions are prohibitively expensive to obtain and are

not applicable to novel shapes. Yumer et al. [32] address

this issue in a data-driven framework that provides a set of

sliders that control the attributes of a given shape. However,

this approach requires a set of predefined attributes obtained

from expert annotations. We propose an unsupervised ap-

proach, and provide users with direct semantic deformation

handles in the form of keypoints. Furthermore, our formula-

tion can incorporate a category-specific deformation basis

on the discovered 3D keypoints, allowing for semantically

consistent user edits from sparse keypoints edits (such that if

one side of an airplane wing is extended, the other opposite

side also extends).

Another related problem is deformation transfer [23],

which transfers the deformation exhibited by a source

mesh onto a target mesh via known correspondences be-

tween shapes. Recent approaches employ deep learning

to implicitly learn the shape correspondences to align two

shapes [30, 8, 28]. While we also use a shape alignment

objective to train our framework, we make our intermedi-

ate control explicit in the form of keypoints, which allows

for stand-alone shape editing. In contrast, prior approaches

always require a target shape to express the desired deforma-

tion.

User-guided shape editing. Our approach is related to re-

cent deep learning–based methods that learn generative mod-

els of shapes for interactive editing. Tulsiani et al. [27]

learn to abstract shapes in terms of primitives, which can

be used to edit the shape by transferring primitive defor-

mations to the surface. However, shape editing is not their

primary focus, and it is unclear how well the direct trans-

fer of primitive transformations preserve local shape detail.

Recent approaches take this idea further by learning a gener-

ative model of primitives in the form of set of point-based

primitives [9], shape handles [5], or disconnected shape

manifolds [19]. These methods enable interactive editing by

searching for latent primitive representations that best match

user edits. However, they require an involved user interface

via sketching or directly manipulating the underlying set of

primitives. Most critically, as the edits are based on genera-

tive models, these approaches may change the local details

of the original shape. In contrast, we directly deform the

source shape, leading to better preservation of shape detail.
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Figure 2: Model. Our model aligns the source shape x with the target shape x
′ using predicted unsupervised keypoints p and p

′. The

unsupervised keypoints describe the objects pose and work as control points for the deformation. The model is trained end-to-end using a

similarity loss between the deformed source shape x
∗ and the target shape x

′, as well as a keypoint regularization loss. During interactive

shape manipulation at test time, a user can choose to input only the source shape x that the keypoint predictor Φ uses to estimate a set of

unsupervised keypoints p. The user can then manually control the keypoints p obtaining p
′ target keypoints that are fed into the deformation

model to produce the deformed source shape x∗ as demonstrated in Figure 1, Figure 9 and in the supplementary videos on our project page.

We qualitatively compare our approach to DualSDF [9] to

illustrate this benefit.

Unsupervised keypoints. While the problem of unsuper-

vised keypoint discovery is well studied in 2D [26, 33, 14,

10, 25, 11], this problem is relatively under-explored in 3D.

Suwajanakorn et al. [24] detect 3D keypoints from a sin-

gle image using 3D pose information as supervision. Here

we focus on learning 3D keypoints on 3D shapes. Chen et

al. [3] output a structured 3D representation to obtain sparse

or dense shape correspondences. Closest to our approach

in terms of 3D keypoint discovery is that of Fernandez et

al. [4], which impose explicit symmetric constraints. In this

work, we discover unsupervised keypoints for the purpose of

shape control. While we focus on shape editing, our formu-

lation results in state-of-the-art 3D keypoints for semantic

consistency. Such unsupervised keypoints may be useful for

robotics applications that use 3D keypoints as a latent rep-

resentation for control [17, 6], and which currently require

manually defined 3D keypoints as supervision.

3. Method

Our aim is to learn a keypoint predictor Φ : x → p that

maps a 3D object shape x to a sparse set of semantically

consistent 3D keypoints p. We also want to learn a condi-

tional deformation model on keypoints Ψ : (x,p,p′) → x
′

that deforms the shape x in accordance to the deformed

control keypoints, where p describes the initial (source) key-

point locations and p
′ the target locations. Obtaining explicit

supervision for keypoints and the deformation model is ex-

pensive and ill-defined. As such, we propose an unsuper-

vised learning framework for training these functions. We

do so by designing an auxiliary task of pair-wise shape align-

ment, where the key idea is to jointly learn keypoints and a

deformation model that can bring two random shapes into

alignment. Specifically, our model first predicts keypoint

locations on the source and target shapes using a Siamese

network. We then deform the source shape according to the

correspondence provided by the discovered keypoints. In

order to preserve local shape detail, we employ a cage-based

deformation method, conditioned on keypoints. We devise a

novel and highly effective, yet simple, keypoint regulariza-

tion term that encourages keypoints to be well-distributed

and lie close to the object surface. Figure 2 provides a

schematic illustration of our framework.

3.1. Shape Deformation with Keypoints

We first predict keypoints from source and target meshes

by representing each object as a point cloud x ∈ R
3×N ,

uniformly sampled from the object mesh. The keypoint

predictor Φ takes the shape as an input x and outputs an

ordered set of 3D keypoints p = (p1, . . . , pK) ∈ R
3×K .

The encoder is shared for both the source and target in a

Siamese architecture. The shape deformation function Ψ
takes the source shape x represented as a point cloud x

as well as source keypoints p and target keypoints p′. The

keypoints p and p
′ are estimated by the keypoint predictor Φ.

At test time, the user can input their own target keypoints p′

for interactive shape deformation as illustrated in Figure 2.

In order to deform the object shape in a manner that pre-
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serves its local shape detail, we use the recently introduced

differentiable cage-based deformation algorithm [30]. Cages

are a classical shape modeling method [13, 12, 15] that use

a coarse enclosing mesh that is associated with the shape.

Deforming the cage mesh results in an interpolated defor-

mation of the enclosed shape. The cage-based deformation

function β : (x, c, c∗) → x
∗ takes a source control cage

c and a deformed control cage c
∗, and deforms the input

shape x that is in the form of a mesh or a point cloud. We

automatically obtain the source cage c for each shape by

starting with a spherical shape that is larger than the source

shape x and iteratively pulling each of the cage vertices cV
towards the centre of the object until it is within a small

distance from the object surface. The resulting cages are

illustrated in Figure 2. While cages are a reliable method for

shape-preserving deformation, modifying cages to achieve

a desired deformation is not necessarily intuitive, particu-

larly to novice users, because the cage vertices do not lie

on the surface, do not have a coarse structure, and are not

semantically consistent across different shapes. We propose

keypoints as an intuitive handle to manipulate the cages.

In order to control the object deformation using our dis-

covered keypoints, we need to associate them with the cage

vertices. We do so with a linear skinning function that

takes the relative differences between the source and tar-

get keypoints ∆p = p
′ − p and associates each of them

with the source cage vertices cV using an influence matrix

W ∈ R
C×K that we learn in an end-to-end manner, where

C is the number of cage vertices and K is the number of

discovered keypoints. The resulting deformed cage vertices

c
∗

V
are then defined as

c
∗

V = cV +W∆p. (1)

In order to adjust for the fact that cages are unique to

each shape, we represent the influence matrix as a function

of the input shape x. Specifically, the influence matrix is

a composition W (x) = WC +WI(x) of a canonical WC

matrix that is shared with all instances of the object category

and an instance specific offset WI that is predicted from the

source shape x using an influence predictor WI = Γ(x). We

regularize the instance specific WI matrix by minimizing

its Frobenius norm to prevent overfitting of the resulting

influence matrix W . We denoted this regularizer as Linf.

Finally, we limit the matrix W to only influence at most M

nearest cage vertices per each keypoint to encourage locality.

3.2. Losses and Regularizers

Our KeypointDeformer is trained end-to-end with stochas-

tic gradient descent by minimizing a similarity loss between

the source and target shape, as well as a keypoint regulariza-

tion term and instance-specific influence matrix regulariza-

tion term.

(a) frequency of sampled regularizer points

(b) unsupervised keypoints predictions

Figure 3: Farthest Point Keypoint regularizer. We use farthest

point sampling with a random starting point to regularize the pre-

dicted keypoints. (a) illustrates the frequency of a given point being

sampled by the farthest point sampling algorithm. Darker colours

indicate higher probability of a point being sampled. The expected

locations of sampled points provide good coverage and inherently

follow the symmetry of the original shape. Also, a subset of them

tend to be semantically stable across different object instances.

Using expected sample locations as a prior for keypoint location

works well as the keypoint predictor will learn to be robust to noise

in these sampled points. This can be seen in the example of the

airplane where the tips on the fuel tanks (shown in red circle) are

ignored, and the keypoints are instead predicted (b) at the wingtip

(shown in green circle) location that is more consistent across the

dataset (most planes have wings, but many lack fuel tanks).

Similarity loss. Ideally, we would like to compute the simi-

larity between the deformed source shape x and the target

shape x′ using known correspondences between the meshes.

However, such correspondence is not available since we aim

to train on generic collections of object category CAD mod-

els. We approximate the similarity loss by computing the

Chamfer distance between the deformed source x
∗ and the

target shape x
′ represented as point clouds. We denote this

loss as Lsim.

Farthest Point Keypoint regularizer. We propose a simple,

yet highly effective keypoint regularizer Lkpt that encourages

predicted keypoints p to be well-distributed, lie on the ob-

ject surface, and preserve the symmetric structure of the

underlying shape category. Specifically, we devise a Farthest

Sampling Algorithm to sample an unordered set of points

q = {q1, . . . , qJ} ∈ R
3×J from the input shape x repre-

sented as a point cloud. The initial point for sampling is

chosen at random, and hence each time we compute this

regularization loss a different set of sampled points q is used.

Given these stochastic farthest points, the regularizer mini-

mizes the Chamfer distance between the predicted keypoints
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p and sampled points q. In other words, the regularizer en-

courages the keypoint predictor Φ to place the discovered

keypoints p at the expectation of the sampled farthest points

q. Figure 3 illustrates the properties of the sampled regu-

larizer points. The sampled points provide equally spaced

coverage of the input object shape x, are relatively stable

across different instances, and preserve the symmetric struc-

ture of the original input shapes.

Another intuition behind this regularization is that we can

consider the sampled farthest points q as a noisy prior over

keypoint locations. This prior is not perfect—it may miss

important points in some models, or place spurious points

in others—but the neural network keypoint predictor will

learn keypoints in a way that is robust to such noise, and

instead, prefer to predict keypoints at consistent locations,

as demonstrated in Figure 3.

Full objective. In summary, our full training objective is

L = Lsim + αkptLkpt + αinfLinf (2)

where αkpt and αinf are scalar loss coefficients. Our method

is simple and does not require additional shape specific regu-

larization for shape deformation, such as the point-to-surface

distance, normal consistency, and symmetry losses employed

in [30]. This is due to the fact that keypoints provide a low-

dimensional correspondence between shapes and that cage

deformations are a linear function of these keypoints, pre-

venting extreme deformations that result in unwanted local

shape deformations.

3.3. Categorical Shape Prior

Since we represent an object shape as a set of semantically

consistent keypoints, we can obtain a categorical shape prior

by computing PCA on the keypoints predicted on the training

set. This prior can be used to guide keypoint manipulation.

For example, if user edits a single keypoint on an airplane

wing, the remaining keypoints can be “synchronized” ac-

cording to a prior by finding the PCA basis coefficients that

best reconstruct the new position of the edited keypoint. The

resulting reconstructed set of keypoints follow the prior de-

fined by the data. This prior also allows sampling of novel

shapes via sampling a new set of keypoints. This set of

keypoints can be then used to deform the shape using our

deformation model in order to, for instance, automatically

augment libraries of stock 3D models.

4. Experiments

The main objectives of our experiments are to evaluate

whether (1) our discovered keypoints are in general of good

quality as keypoints (Section 4.2), (2) our discovered key-

points are better suited for shape deformation than other key-

points (Section 4.3), and (3) our method allows for intuitive

shape control (Section 4.4). The supplementary material

contains extended version of results and ablation studies.

airplane car chair motorbike table

Chen et al. [3] 0.69 0.39 0.78 0.91 0.75

Fernandez et al. [4] 0.78 0.66 0.80 0.90 0.85

ours 0.85 0.73 0.88 0.93 0.92

Table 1: Semantic part correspondence. We report the average

unsupervised keypoints correlation for each category. ↑ is better.

Extended version with additional categories and detailed correlation

tables can be found in the supplementary.
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(a) airplane (b) car (c) chair

airplane car chair

Chen et al. [3] 0.49 0.46 0.22

Fernandez et al. [4] 0.36 0.47 0.24

ours 0.61 0.56 0.37

(d) Percentage of correct keypoints (PCK) @0.05

Figure 4: Unsupervised 3D keypoints accuracy. We measure

the semantic consistency of keypoints following [26]. We train

a linear regressor to predict manually annotated keypoints from

unsupervised keypoints. The regressor accuracy on the test set

estimates the semantic consistency of the underlying unsupervised

keypoints. We show results in terms of PCK for airplane, car and

chair category on the KeypointNet dataset [31].

4.1. Experimental Setup

Datasets. We train our KeypointDeformer using

ShapeNet [2] following the standard training and test-

ing split. We normalize all the shapes into a unit box.

For evaluation, we use semantic part annotations for

ShapeNet [29], as well as the KeypointNet [31] dataset,

which contains semantic keypoint annotations for selected

ShapeNet categories. Note that our method does not require

any of these annotations for training. We also evaluate

KeypointDeformer on real-world 3D scans of shoes from

Google Scanned Objects dataset [7].

Implementation details. The keypoint predictor Φ and the

influence predictor Γ are implemented as neural networks

using a PointNet encoder and the whole model is optimized

using the Adam optimizer. We use 1024 sampled points for

the point cloud representation of shape x. Unless otherwise

mentioned, we predict 12 unsupervised keypoints for all
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(c) ours (d) Fernandez et al. (e) Chen et al.

(a) ours (b) Chen et al.

Figure 5: Unsupervised 3D keypoints. We compare our unsuper-

vised 3D keypoints with Fernandez et al. [4] and Chen et al. [3].

Our keypoints are more semantically consistent despite large shape

variations when compared to other methods. Keypoints obtained by

Fernandez et al. [4] do not explain all the shapes well. Moreover,

our keypoints are symmetrical without explicitly enforcing that in

contrast with [4]. We show results on additional categories in the

supplementary.

Figure 6: Unsupervised 3D keypoints on real-world data. We

run our unsupervised keypoint detector on real-world scans of

shoes [7]. The keypoints are semantically consistent across differ-

ent shapes.

categories except for airplane and car where we use 8. The

supplementary contains an ablation studying the effect of

different number of unsupervised keypoints. We set the num-

ber of sampled farthest points q to the double of the number

of keypoints. Detailed descriptions of network architectures

and training details are in the supplemental material.

4.2. Semantic Consistency

We first demonstrate the quality of our unsupervised key-

points by evaluating their semantic consistency, i.e. whether

they always correspond to the same semantic object parts

or not. For instance, if a keypoint is predicted on the tip of

the wing on one instance of an airplane, then that same key-

point should always correspond to the tip of the wing across

source targetdeformed source

(a) Chen et al. [3]

(b) Fernandez et al. [4]

(c) ours

Fernandez et al. [4] Chen et al. [3] annotations [31] ours

CD 7.55 5.93 4.20 3.02

(d) Chamfer distance between deformed source and target

Figure 7: Keypoints for shape deformation. We replace our dis-

covered keypoints in KeypointDeformer to compare with different

keypoints detectors and manually annotated keypoints on keypoint-

guided pairwise shape alignment for the airplane category. The

degree of alignment is measured by the Chamfer distance between

the deformed source and target shapes. Our discovered keypoints

can align shapes better even when compared to manually selected

keypoints from KeypointNet [31]. Keypoints from Fernandez et

al. [4] and Chen et al. [3] fail to accurately align shapes as their

keypoints are less precise. Data in the table are scaled by 10
3.

different instances. For this task we compare with recently

introduced methods for unsupervised keypoint discovery

from Fernandez et al. [4] and Chen et al. [3].

We evaluate semantic consistency using two protocols.

First, we use an evaluation protocol of Fernandez et al. [4].

Since their evaluation is very coarse, we also follow an

evaluation protocol for unsupervised keypoints established

by Thewlis et al. [26].

The evaluation protocol of Fernandez et al. [4] employs

the ShapeNet dataset with part annotations to measure the

correlation between each keypoint and annotated semantic

object parts across instances of the category. Each keypoint

is associated with the nearest object part. This protocol has

two limitations. First, a keypoint can be associated with an

object part even if it lies far from the object (indicating a poor

choice of keypoint). Second, this protocol does not account

for boundary keypoints that are predicted just between two

annotated object parts (which can still be high-quality, salient

keypoints). To address these limitations, we propose a small

modification to this protocol, in which we associate each

keypoint with a given object part if it lies within its small
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(a) DualSDF [9]

(b) ours

(c) ours with shape prior

Figure 8: Comparison with DualSDF [9]. We move the wing tip

in the direction of the red arrow. (a) DualSDF is a generative model

and changing the position of the wing tip results in a change from an

airliner to a jet fighter. In contrast, our method preserves the original

structure of the mesh and allows for asymmetric manipulation when

desired (b). Our method can also work in conjunction with a shape

prior (Section 4.5) to achieve symmetrical manipulation (c).

neighborhood (0.05 from the object part when the object is

normalized to unit box)—hence, a keypoint can be associated

with multiple parts. For each keypoint, we compute its

correlation with each object part. Since a keypoint can be

associated with multiple parts, we consider only the most

correlated part for a given keypoint in the final metric. The

final metric then computes the average correlation over all

the keypoints. We report semantic consistency results for

ShapeNet categories in Table 1. Our keypoints show better

average correlation when compared to Chen et al. [3] and

Fernandez et al. [4].

Second, we adopt the standard unsupervised 2D keypoint

evaluation protocol as in [26, 33, 10], since the semantic

object parts are coarsely annotated (e.g., the airplane cate-

gory comes with only 3 semantic parts). The objective of

this protocol is to measure how predictive unsupervised key-

points are of semantic keypoints selected by humans. This

is done by finding a linear mapping between the unsuper-

vised keypoints and manually annotated ones. The linear

mapping is established on the training set by fitting a linear

regressor. The predictiveness of unsupervised keypoints is

then measured in terms of this regressor’s prediction error

on the test set. We use the recent KeypointNet dataset [31],

which contains semantic annotations on ShapeNet dataset.

We report the performance in Figure 4. Our unsupervised

keypoints are more predictive of manually annotated key-

points than other unsupervised keypoint. Figure 5 provides

qualitative comparison of our unsupervised keypoints with

those obtained by other methods.

Real world scans. We also demonstrate applicability of

our unsupervised keypoint detector on real-world 3D scans

of objects. We use the shoe category from Google Scanned

Objects dataset [7]. We align the shapes using the automat-

ical alignment method from [16]. We split the dataset into

training and test sets with 219 and 36 samples respectively.

We use the same hyper-parameters as done in experiments

on ShapeNet. Figure 6 shows that our method learns se-

mantically consistent 3D keypoints for shoes with largely

different shapes.

4.3. Keypoints for Shape Deformation

To quantitatively demonstrate that controlled shape defor-

mation is possible through unsupervised keypoints, we use

the task of pairwise shape alignment, in which we deform a

source shape into a target shape. In our case, the deforma-

tion is guided using keypoints. This task also evaluates that

our discovered keypoints are more suitable for shape control

than other keypoints. We modify our method by replacing

our unsupervised keypoints with keypoints obtained from

other methods. We then train our deformation model from

scratch. We experiment with keypoints from [4], [3], and

also manually annotated keypoints from [31]. Performance

is evaluated by measuring the Chamfer distance between

the deformed source shape and the target shape. We present

results in Figure 7. The unsupervised keypoints obtained by

other methods fail to capture the large variations in shapes

in the dataset. Our keypoints, on the other hand, can follow

the large changes in shapes. This ultimately leads to more

accurate shape deformations.

4.4. Shape Control via Unsupervised 3D Keypoints

Our ultimate goal is to use automatically discovered key-

points to perform user-guided interactive shape deformation.

Figure 9 shows interactive shape control using our unsu-

pervised keypoints. Our method provides low-dimensional

handles to control object shape. The control is intuitive as

the deformation is semantically consistent, e.g., moving a

keypoint on the leg of a chair or airplane wing results in

movement of that object part in the same direction. Thus the

user can easily edit shape meshes. Please refer to our project

page for a demo video showcasing user-guided interactive

shape control using keypoints.

The related work DualSDF [9] also allows for user-guided

interactive shape deformation. However, the key distinction

here is that DualSDF is a conditional generative model. Ma-

nipulating an object through its handle generates a new shape

that respects the new position of the handle specified by the

user, but the new generated shape can be very different from

the original one. This aspect is illustrated in Figure 8, where

DualSDF transforms an airliner to a jet fighter.
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Figure 9: Interactive shape control via 3D unsupervised keypoints. We show iterative steps in user guided shape deformation using our

discovered keypoint as handles. Top row shows initial state. Please refer to our project page for a demo video.

4.5. Categorical Shape Prior

Since our deformation model uses keypoints as its low-

dimensional shape representation, we can compute categor-

ical shape prior on them. We compute PCA on the set of

predicted keypoints obtained from the training set. We set

the number of basis to 8. As discussed in Section 4.5, we

use the prior in two ways. First, we can use it during in-

teractive shape control when the user manipulates only a

single keypoint, to “synchronize” the rest of the keypoints

according to the prior. This “synchronized” editing is used

in Figure 8 where we drag only a single keypoint and the rest

get automatically readjusted. Second, we can easily sample

new deformations using sampled keypoints that we obtain

by varying PCA basis coefficients. This can be applied to

automatic dataset amplification as demonstrated Figure 10.

5. Conclusion

We present a method for controlling the shape of 3D

objects through automatically discovered semantic 3D key-

points and a deformation model learned jointly with the

keypoints. The resulting KeypointDeformer model provides

users with a simple interface for interactive shape control.

One limitation of the method is that our approach assumes

aligned shape collections. However, in our experiments with

real scans, automatic alignment method was sufficient. An-

other limitation is that the keypoint representation does not

allow modeling of individual object part rotations. In this

work we focused on the task of shape control and keypoint

prediction, however 3D keypoints has various usage in other

“wing angle” “wing span”

b
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 c
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ef
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Figure 10: Varying PCA basis coefficients for shape augmenta-

tion. We sample new keypoints by varying its PCA basis coef-

ficients. The sampled keypoints are used to deform the original

shape obtaining a new set of shapes. The left two columns show

results for a subspace that correlates with the wing angle. The right

two columns show results for a subspace that correlates with the

wing span.

applications such as robotics [17, 18]. It would be interesting

to explore the applicability of our unsupervised 3D keypoints

to other tasks in the future.
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