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Abstract. Various definitions and indices have been proposed in the literature to identify
keystone species. In this study, we intended to make the concept of keystone species
operational for marine biodiversity conservation. We used an exclusive definition of keystone
species, based on the original concept of keystone predator, and derived a new functional
index of keystoneness (KS) from an ecosystem-modeling approach. First, several KS indices
were formulated, by combining measures of the mixed-trophic impact (MTI) and biomass of
species. Then, a meta-analysis was performed, based on 101 published Ecopath food-web
models, selected with a scoring method, and representative of the variety of marine ecosystems
worldwide. The indices were applied to the models, and two statistical methods were
compared to select the most promising KS index. Rank correlation tests were performed to
assess the balance between the contribution of the impact and biomass components to the
different KS indices. In addition, a classification tree was implemented, based on ecosystem-
specific thresholds applied to the latter species traits, and used to confirm the identified
keystone species. The selected index obtained the highest number of models with positive
results from both the rank correlation tests and the classification tree. We also demonstrated
the limitations of existing KS indices previously applied in the literature. Species were ranked
according to their estimates of keystoneness with the selected KS index, so that potential
keystone species were quantitatively identified in the 101 modeled food webs. The
standardized modeling approach allowed for a comparison of the identified keystone species
across models: cartilaginous fishes and toothed whales obtained the highest occurrences.
Finally, the selected KS index was applied to the well-known case study of Prince William
Sound (Alaska, USA). Potentially significant anthropogenic (fishing) impacts on keystone
species were also considered and discussed. The operational methodology presented is directly
applicable to marine food webs, and may be adapted to other (freshwater or terrestrial)
systems.

Key words: classification tree; Ecopath model; food-web structure; index of keystoneness; keystone
species; marine ecosystems; meta-analysis; mixed-trophic impact; rank correlation tests; scoring method.

INTRODUCTION

The metaphorical terminology of keystone species was

introduced in aquatic food-web ecology by R. T. Paine

(1969). A keystone species was first described as a

predator maintaining high species diversity and complex

interspecific feeding relationships in the community

(Paine 1966). Variations in the keystone species abun-

dance or activity would have greater impacts on

biodiversity and trophic structure, compared to other

coexisting species with similar or higher abundance in

the ecosystem (Paine 1969). Since Paine’s analogy, the

concept of keystone species has rapidly expanded, as it

has been applied to an ever-growing number of aquatic

and terrestrial species, playing a wide variety of critical

roles in the ecosystem (Paine 1995, Power and Mills

1995, Power et al. 1996). Many authors discussed the

relevance of the keystone species term (Hurlbert 1997),
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which has been turned into an inclusive concept, either

described as a powerful buzzword in conservation

(Barua 2011), or criticized as an ambiguous and

overused concept (Cottee-Jones and Whittaker 2012).

As pointed out by Paine (1995), ‘‘an answer serving all

masters probably provides few useful solutions.’’ Thus,

in this study, a clear, exclusive, and thus operational,

definition of keystone species was applied, based on the

original concept of keystone predator (Paine 1966,

1969). More precisely, we defined a keystone species as

a predator species which disproportionately influences

the food-web structure of its community. In other

words, we considered a keystone species to correspond

to a predator species with a high and wide impact on its

food web, despite a low biomass.

Experts reviewed the methods used to identify

keystone species and concluded that the most powerful

approach was the combination of comparative studies

with experimental methods (Power et al. 1996), as

conducted by several authors (e.g., Paine 1966, Menge et

al. 1994). However, field experiments have practical

limitations. Field-based experimental removals of a

single species are expensive and time-consuming, re-

stricted in scope (both spatially and temporally), and

may be challenging with some types of species (either

not easily accessible, or under some restrictive protec-

tion statuses; Power et al. 1996, Bond 2001, Libralato et

al. 2006). Thus, experimental approaches often require

focusing on a few species only, a priori assumed to be

the potential keystones, which may introduces bias in

the analysis of keystoneness (Libralato et al. 2006). To

overcome these difficulties, recent approaches to identify

potential keystone species were based on a variety of

ecological modeling methods: ecological network anal-

ysis (ENA; Jordán et al. 1999, 2007, 2009, Estrada 2007,

Torres-Alruiz and Rodrı́guez 2013); loop analysis (e.g.,

Ortiz et al. 2013a, b); community viability analysis (e.g.,

Christianou and Ebenman 2005, Ebenman and Jonsson

2005, Berg et al. 2011, Stouffer et al. 2012); or food-web

models (e.g., Okey et al. 2004, Libralato et al. 2006,

Eddy et al. 2014).

Different indices measuring the potential of species to

be critical to the community were proposed and

reviewed in the literature (Jordán et al. 2008, Jordán

2009, Perry 2010, Cottee-Jones and Whittaker 2012).

Initially, the proposed indices were based either on

observations from the field (e.g., interaction strength

[Paine 1992] or community importance [Mills et al. 1993,

Power et al. 1996]), or on theoretical concepts (e.g.,

general functional importance [Hurlbert 1997] or func-

tional group dominance [Davic 2003]). A suite of

structural indices, derived from binary or weighted

networks, was then developed: degree (Jordán et al.

2003, Scotti et al. 2007), centrality indices (Estrada

2007), overlap indices (Jordán 2009), topological im-

portance of species (Jordán et al. 2008), and trophic

function and trophic field overlap (Jordán et al. 2009).

Recently, a topo-dynamical criterion, which estimates

the consequences of species removal on community

dynamics, was proposed in the ENA literature (Torres-

Alruiz and Rodrı́guez 2013). Additionally, qualitative

indices, based on loop analysis models, were introduced

and compared to existing structural and functional

indices (Ortiz et al. 2013a, b). Three indices explicitly

quantifying species keystoneness were proposed: a

structural index (K ) based on network analysis (Jordán

et al. 1999), a dynamic index (KI) based on time-

dynamic simulations (Okey et al. 2004), and a functional

index (KS) based on mass-balanced modeling (Libralato

et al. 2006).

In this study, we used the Ecopath with Ecosim (EwE)

modeling approach to estimate species keystoneness and

identify potential keystone species in marine communi-

ties. EwE is a well-known and widely applied modeling

approach in aquatic ecology (Coll et al. 2008, Chris-

tensen et al. 2011). The EwE software is freely available

online.6 Published EwE models have become more and

more accessible, such that the approach has been applied

to hundreds of aquatic ecosystems worldwide, and

several meta-analyses, based on EwE models, have

already been published (Colléter et al. 2013). EwE-based

studies help with understanding the general structure

and functioning of aquatic ecosystems, by summarizing

the available knowledge on a given ecosystem, deriving

its various system properties, and comparing them to

other ecosystems (Walters et al. 1997). The EwE

modeling approach was primarily developed to answer

‘‘what if ’’ questions about policy that could not be

addressed with single-species assessment models (Chris-

tensen and Walters 2004). Thus, EwE is more suitable to

studying aquatic food webs than terrestrial ones and has

been primarily applied to marine ecosystems. In this

study, we only considered EwE models representing

marine ecosystems.

EwE may be described as an ecosystem model since it

represents feeding relationships between all species

occurring in the ecosystem, although it only captures

trophic interactions, not nutrient cycling. EwE is based

on Ecopath, a food-web model first proposed and

applied to estimate the main predator–prey pathways in

the marine ecosystem of the northwestern Hawaiian

Islands (Polovina 1984). The original Ecopath model

was then developed further (Christensen and Pauly

1992), and turned into the EwE modeling complex,

which can be seen as a toolbox offering a large collection

of methods to analyze various ecological phenomena.

The EwE modeling complex consists of a suite of three

main sub-models: (1) Ecopath, static and descriptive, (2)

Ecosim, dynamic and predictive, and (3) Ecospace,

spatially explicit, dynamic, and predictive (Christensen

and Walters 2004). Ecopath is a descriptive model,

representing a static snapshot of the ecosystem trophic

structure, and used as a parameter estimation method-

ology in the EwE modeling complex (Walters et al.

6 www.ecopath.org
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1997). Ecosim uses the outputs of Ecopath to produce

time-dynamic simulations of changing trophic interac-
tions with changes in the ecosystem due to anthropo-

genic or environmental disturbances (Walters et al.
1997). Ecosim may be used to fit model predictions to

time-series data, and to explore different fisheries
management or climate change scenarios (Christensen
and Walters 2004). Ecospace replicates outputs of

Ecosim over a spatial grid to explicitly account for the
spatial aspects of trophic structure, and was primarily

designed for exploring the possible consequences of
alternative marine protected areas policies (Walters et al.

1999).
In this study, we focused on three main questions

related to the identification of keystone species in marine
ecosystems: (1) What are the limitations of the existing

functional indices measuring species keystoneness? (2)
Could these limitations explain the inconsistencies and

discrepancies observed when applying these indices to
modeled food webs? (3) How could we formulate a new

functional index overcoming these limitations? We
intended to answer these questions based on a meta-

analysis of published Ecopath models representing
marine food webs. First, models were selected with a

scoring method. Second, several indices of keystoneness
were formulated, comprising new and existing indices.
Third, the indices were applied to the models, and the

obtained keystone species were recorded. A preliminary
comparison of the results was made to identify potential

biases in the indices. Then, two statistical methods were
used to select the most suitable index: Spearman rank

correlation tests and a classification tree. The new
functional index of keystoneness was selected according

to the indicated definition of keystone species and
applied to a well-known case study.

METHODS

Derivation of indices of keystoneness from Ecopath food-
web models

Selection of the Ecopath models with a scoring
method.—The data used in this study were extracted

from 101 Ecopath food-web models. First, the EcoBase
database was used to establish the list of models to select

from. EcoBase is an online repository, referencing and
integrating information from more than 400 published

EwE models (Colléter et al. 2013). We extracted critical
metadata on the models stored in EcoBase, and reused

some of the metadata as selection criteria in our
analysis. Then, the data extracted from the selected

models were accessed through another collection of EwE
models (Christensen et al. 2011).

We collected a suite of metadata from EcoBase,
including the ecosystem type, the climatic zone, the first

and last year, the spatial extent, and the reference of the
models. We excluded from our analysis all referenced

models representing non-marine ecosystem types.
Among the marine types, models were selected by

applying a scoring method, based on six criteria: (1) an

analysis of keystoneness (KS) was previously performed

with this model, (2) the model represented an established

Marine Protected Area (MPA); (3) one (or more)

historical version(s), or ‘‘sibling,’’ of the same modeled

ecosystem was available; (4) the model was focusing on a

species (or group of species) of particular interest; (5)

detailed information on species aggregation into func-

tional groups was available for this model; and (6)

another (or more) geographical version(s), called ‘‘over-

lapping,’’ of the same modeled ecosystem was available.

We note that criteria 1, 2, and 3 were particularly

relevant to our study, whereas criteria 4, 5, and 6 were

less significant. Outcomes from past analyses of

keystone species on the same ecosystems could be

compared to our results. Models representing MPAs,

or successive historical versions of the same area, could

be used to understand fishing impact on marine food

webs and keystone species. In contrast, species of

particular interest might or might not be keystone

species, and information on species aggregation might or

might not help identifying keystone species. Overlapping

models were very few in the EcoBase database.

All criteria correspond to metadata directly extracted

from EcoBase, apart from criteria 3 and 6, which were

refined for the purpose of this study. Sibling models

(criteria 3) were more precisely defined here as models

with the same geographic location and surface area, but

representing different years or time periods. Overlapping

models (criteria 6) were defined as models with the same

geographic location and time period, but not necessarily

the same surface area (i.e., representing the ecosystem at

smaller or larger spatial scales). Each criterion was given

a score of 1 if true and 0 if false. For each model, the

final score was obtained by summing the scores of the six

criteria, with a coefficient of 2 applied to the first three

criteria, since they were more relevant to this study. The

final scores ranged from 0 to 6. Models were selected

only if their final score was equal to or higher than 3.

Nonetheless, models with an overall score lower than 3,

but a positive score for one of the first three criteria (of

higher importance), were also considered.

Description of the Ecopath modeling approach.—

Ecopath describes the feeding relationships between all

species occurring in the modeled food web. Species are

aggregated into functional (or trophic) groups, corre-

sponding to an age/size class of a single species, a single

species, or a group of species sharing similar ecological

traits (such as size, diet, predator, and life cycle;

Christensen et al. 2008). A functional group can also

be defined as a group of species with similar effects on

ecosystem processes, without redundancy among the

other groups (Perry 2010). Thus, a keystone species may

be represented by a functional group (De Leo and Levin

1997, Perry 2010), or by the most abundant species

within its functional group (Davic 2003). As a result, the

terminologies keystone groups and keystone species are

used interchangeably in this study.
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The main assumption in Ecopath is of mass balance

over a given time period (typically one year; Christensen

and Walters 2004). For each functional group, Ecopath

assumes that the energy input and output are balanced

in the ecosystem, and that the system has the same

biomass state at the end of the period as it had at the

beginning (Walters et al. 1997). The mass-balance

constraint serves as a filter for mutually incompatible

estimates in the model. All available data collected

about the components of the ecosystem pass through the

mass balance filter, which determines what the param-

eters must be to support the current trophic structure

and be consistent with observations (Walters et al. 1997,

Christensen and Walters 2004). See Appendix A for

details on the Ecopath model and Appendix B for an

illustrative example.

For each selected Ecopath model, we gathered, from

the collection of EwE models (Christensen et al. 2011),

the name and the biomass (B, Mg/km2) of each living

group (dead groups, such as detritus, were excluded),

and deduced the total number of living groups in the

model and their total biomass in the ecosystem (Btot,

Mg/km2). Biomass is usually entered as input data in

Ecopath, but may be estimated by the model if missing.

As a first data quality check, we recorded the number of

biomass estimates computed by Ecopath for each model

(Bestim), and deduced the proportion of estimated

biomass. Although we did not use Ecosim in our

analysis, we recorded for each selected model if the

Ecopath model was fitted to time series in Ecosim or not

(metadata extracted from EcoBase), and used it as a

second data quality check. A supplementary parameter,

the trophic level (TL, dimensionless), was collected for

each living group in each selected model. TL is a

fractional number giving the position of each functional

group in its food web (generally ranging from 1 to 5),

and estimated by Ecopath based on the diet composition

of the group and the TL of its prey items (starting with a

TL of 1 assigned to producers and detritus; Christensen

and Pauly 1992). Some of the selected models described

ecosystems exploited by one or more fishing fleets. For

these models, we collected the total number of fishing

fleets in the model and the total catch rate (Ytot,

Mg�km�2�yr�1) of all fishing fleets in the ecosystem.

The mean trophic level of the catch (TLY, dimension-

less), estimated by Ecopath based on the composition of

the total catch and the TL of the targeted groups

(Christensen et al. 2008), was collected as well.

Description of the mixed-trophic impact (MTI)

analysis and derived KS indices.—Several modules were

developed and added to the EwE package, such as the

network analysis module, a tool available with the

Ecopath model (Christensen et al. 2008). The network

analysis notably comprises the mixed-trophic impact

(MTI) and keystoneness (KS) analyses. The MTI is an

economic input–output analysis adapted to ecological

networks by Ulanowicz and Puccia (1990), and imple-

mented in Ecopath (Christensen and Walters 2004). The

MTI is calculated by constructing an n 3 n matrix,

whose elements (mij) represent, for each pair of groups

(i, j ) in the modeled food web, the relative impact of the

impacting group i on the impacted group j, by

considering direct (predation) and indirect (competition)

feeding interactions (Ulanowicz and Puccia 1990,

Christensen and Walters 2004). The mij are also

estimated for each fishing fleet defined in the model,

by considering fishing fleets as predators (Christensen

and Walters 2004). See Appendix A for details on the

MTI analysis and Appendix B for an illustrative

example.

Two alternative indices measuring the potential for

being a keystone species, or keystoneness (KS), were

implemented in the KS analysis of the network analysis

module in EwE (Christensen et al. 2008). The first index

(called KS1 in EwE) was proposed by Libralato et al.

(2006), and the second one (called KS2 in EwE) was

adapted from a methodology proposed by Power et al.

(1996). Both indices are estimated based on the same

parameters: a measure of trophic impact (ei) derived

from the MTI analysis, and a measure of biomass (pi).

Parameter ei represents the overall effect of group i on

all the other groups in the food web (without including

the effect of the group on itself)

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j 6¼i

m2
ij

vuut ð1Þ

where ei is expressed as the sum of the squared values of

mij of group i, paired with each of the other living group

j in the food web. The mixed-trophic impact of group i

on itself (mii) is excluded, as well as the mixed-trophic

impact on dead groups such as detritus (Libralato et al.

2006).

Parameter pi corresponds to the contribution of group

i to the total biomass in the food web

pi ¼
BiXn

k¼1

Bk

ð2Þ

where Bi is the biomass of group i, and Bk the biomass of

each of the n living groups in the food web (Power et al.

1996, Libralato et al. 2006).

The KS1 and KS2 indices are obtained by combining

ei and pi for each group i (Power et al. 1996, Libralato et

al. 2006), such as

KS1i ¼ log½ei 3ð1� piÞ� ð3Þ

KS2i ¼ log½ei 3ð1=piÞ�: ð4Þ

Formulation and application of several KS indices.—In

both the KS1 and KS2 indices, the KS is estimated based

on two components: (1) a component estimating the

trophic impact of the group (here called impact

component; IC), and (2) a component estimating the
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biomass of the group (here called biomass component;

BC), so that a general equation for an index of KS may

be expressed

KSi ¼ log½ICi 3BCi�: ð5Þ
Based on the general equation of KS (Eq. 5), we

explored several formulations and combinations of IC

and BC. We retained three different ICs and four

different BCs, and combined the seven components in all

possible ways to obtain 12 alternative KS indices (Table

1). ICs were calculated using a measure of trophic

impact (ei; Eq. 1), and BCs using a measure of biomass

(pi; Eq. 2, Bi). To avoid imbalance between both

components, BCs and ICs were defined so that they

had value ranges of comparable orders of magnitude.

One of the ICs and two of the BCs were directly adapted

from the literature (Power et al. 1996, Libralato et al.

2006) and denoted with subscripted letters (ICL, BCL,

BCP), while the other components were marked with

subscripted numbers, with a zero for the components

using ranks (IC0 and BC0). KS1 and KS2 were directly

adopted from the literature and correspond to the

indices described in Eqs. 3 and 4.

The 12 retained KS indices were applied to the 101

selected modeled ecosystems. The names of the groups

with the highest value of keystoneness were recorded for

each KS index and each model. The mij values were

extracted from Ecopath for each living functional group

(dead groups such as detritus were not considered) of

each selected model, and ei was calculated as described

in Eq. 1. As described in Eq. 2, pi was derived from the

Bi values extracted from Ecopath. Contrary to previous

approaches (e.g., Libralato et al. 2006), the mij

corresponding to fishing fleets were included in our

analysis. We assumed that fishing fleets could be added

as a supplementary functional group, if considered as a

predator feeding on targeted groups. Therefore, a

supplementary group, called ‘‘all fleets’’ was added as

an n þ 1 functional group, in all selected models

representing exploited ecosystems. All defined fishing

fleets were combined together into the all-fleets group,

whose Bi and TLi were approximated with Ytot and TLY,

respectively. For models with multiple fleets, mij of all

fleets was obtained by summing up the mij values over all

the defined fishing fleets.

Analysis of the contributions of the IC and BC

components to the keystoneness estimation

Comparison of groups ordered by keystoneness, trophic

impact, and biomass.—To test the 12 KS indices (Table

1), we analyzed the balance between IC and BC

components for each index. First, we compared, for

each KS index and each selected model, the groups

ordered by keystoneness, with the groups ordered by

trophic impact and biomass, separately. Precisely, we

compared the group of the highest keystoneness with:

(1) the three groups with the highest values of trophic

impact (ei) and (2) the three groups with the lowest

values of biomass (Bi). If the group with the highest

keystoneness value also had one of the three highest

trophic impact values, then the model was categorized as

‘‘match impact’’ for the particular index. In contrast, if

the group with the highest keystoneness value also had

one of the three lowest biomass values, then the model

was categorized as ‘‘match biomass’’ for the particular

index. If the group with the highest keystoneness did not

correspond to any of the three groups, neither with the

highest trophic impact, nor with the lowest biomass,

then the model was categorized as ‘‘no match’’ for the

particular index. The methodology was applied to each

of the 101 selected models, and the number of models in

each matching category (match biomass, match impact,

or no match) was recorded, for each KS index. The

‘‘overall match,’’ obtained for each KS index over all

models, corresponded to the matching category of the

majority of models (i.e., 51 models or more, for a total

of 101 models).

Rank correlation tests between KS indices and trophic

impact or biomass estimates.—To analyze further the

balance between IC and BC components for each KS

index, we applied the Spearman’s rank correlation test

(Coleman 2010) using the R software (R Development

Core Team 2014). We tested if there was a monotonic

correlation between the rank (in ascending order, because

keystone species should have high keystoneness) of the

KS index of group i, called arank(KSi), and: (1) the rank

(in ascending order, because keystone species should have

high trophic impact) of the trophic impact of group i,

called arank(e2i ) and (2) the rank (in descending order,

TABLE 1. Equations of the 12 indices of keystoneness (KS),
obtained by combining each impact component (IC) with
each biomass component (BC).

Impact components and KS indices Biomass components

ICL ¼ ei
KS1 ¼ ICL 3 BCL BCL ¼ 1 � pi
KS2 ¼ ICL 3 BCP BCP ¼ 1/pi
KS3 ¼ ICL 3 BC0 BC0 ¼ drank(Bi)
KS4 ¼ ICL 3 BC1 BC1 ¼ 1/

ffiffiffiffiffi
Bi

p

IC0 ¼ arank(ei)
KS5 ¼ IC0 3 BCL BCL ¼ 1 � pi
KS6 ¼ IC0 3 BCP BCP ¼ 1/pi
KS7 ¼ IC0 3 BC0 BC0 ¼ drank(Bi)
KS8 ¼ IC0 3 BC1 BC1 ¼ 1/

ffiffiffiffiffi
Bi

p

IC1 ¼ e2i
KS9 ¼ IC1 3 BCL BCL ¼ 1 � pi
KS10 ¼ IC1 3 BCP BCP ¼ 1/pi
KS11 ¼ IC1 3 BC0 BC0 ¼ drank(Bi)
KS12 ¼ IC1 3 BC1 BC1 ¼ 1/

ffiffiffiffiffi
Bi

p

Notes: ICs were calculated using a measure of trophic impact
(ei; Eq. 1), and BCs using a measure of biomass (pi; Eq. 2, Bi).
The components adapted from the literature were subscripted
as follows: ICL and BCL (Libralato et al. 2006), and BCP

(Power et al. 1996). The other components were marked with
subscripted numbers, with a zero for the components using
ranks: IC0 and BC0. The abbreviations arank and drank
designate the rank of the variable, with a ranking in ascending
and descending order, respectively.

February 2015 33KEYSTONE SPECIES: OPERATIONAL DEFINITION

R
E
V
IE
W
S



since keystone species should have low biomass) of the

biomass of group i, called drank(Bi). The Spearman’s

rank correlation test was applied twice (once with the

trophic impact, and once with the biomass) to each KS

index. The rank correlation tests were validated for each

model, if and only if, for the particular KS index: (1) the

hypothesis H1 (i.e., there is a monotonic correlation) of

the Spearman’s rank correlation test was validated for

both tests 1 and 2; (2) the coefficient of correlation r was

positive for both tests 1 and 2; and (3) the correlation

coefficients r1 and r2 of tests 1 and 2 were of the same

order of magnitude (a constraint was applied to the value

of r2 so that r2¼ r1 6 0.2; 0.2 is a limit on the difference

between r1 and r2). The methodology was applied to each

of the 101 selected models, and we recorded, for each KS

index, the number of models with validated rank

correlation tests (i.e., satisfying the three conditions

specified). We also ran, for comparison, the same tests

without applying any constraint on the order of

magnitude of the correlation coefficients.

Selection of the most promising KS index

Implementation of a classification tree.—We imple-

mented a classification tree (Fig. 1a), as an alternative to

the KS indices for the identification of keystone species

among the functional groups of each modeled ecosys-

tem. The classification was based on two log-trans-

formed parameters: the trophic impact (in squared

values; e2i ) and biomass (Bi) of each group i. Four main

categories were discriminated: keystone (corresponding

to groups with high impact and low biomass), low-

impact–low-biomass, low-impact–high-biomass, high-

impact–high-biomass, and intermediate (corresponding

to groups belonging to none of the previous categories).

Quartiles values of both e2i and Bi parameters, over all

living groups in each model, were set as thresholds to

identify groups belonging to each category. The third

quartiles (Q3) were set as lower thresholds for delimiting

groups with high e2i and Bi, with the first quartiles (Q1)

as upper thresholds for groups with low e2i and Bi. The

other thresholds were defined by the minimum or

maximum values of e2i and Bi recorded for each modeled

ecosystem. Then, among the identified keystone species,

we separated the ones with a high trophic level from the

others. Thus, a supplementary parameter, the trophic

level (TLi) of each group, was used to discriminate the

keystone groups in two subcategories: low TL keystone

(whose TL was lower than the third quartile values of

TL), and high TL keystone (whose TL was equal to or

higher than Q3TL). The classification tree was applied to

each of the 101 selected models, and a scatterplot

representing the classification of each group was

produced for each model (Fig. 1b). The categories

identified with the classification tree were recorded for

all groups and all models.

Comparison between keystone groups identified with the

KS indices and with the classification tree.—The keystone

groups identified with the classification tree were

compared to the ones identified with the KS indices.

Precisely, for each of the 101 selected models and each of

the KS indices, we compared the group with the highest

value of keystoness with the KS index to the groups

categorized as (low or high TL) keystone with the

classification tree. If the group with the highest KS index

value was classified in the (low or high TL) keystone

categories of the classification tree, then the identified

keystone group was considered validated, for the

selected model. The methodology was applied to each

of the 101 selected models, and we recorded, for each KS

index, the number of models with validated keystone

group.

In addition, once the most promising KS index was

selected (see next paragraph), the groups identified as

keystone (i.e., with the highest value of keystoneness)

with the selected index were compared across the 101

selected models. Then, we compared the most frequently

identified groups with the selected index and with the

classification tree. Since the 101 models followed

different rules for naming their respective functional

groups, the names of the identified keystone groups with

the selected index were standardized before comparison.

Groups were renamed (and sometimes aggregated) using

generic group names, based on their original designa-

tions. The same standardization method was applied to

the groups classified as low or high TL keystone with the

classification tree.

Allocation of overall statuses to the KS indices.—The

conclusions from the rank correlation tests and the

classification tree were summarized and compared by

allocating different statuses to each Ecopath-model–KS-

index pair (Fig. 2). The results obtained from the status

allocation were used for the selection of the most

promising of the 12 KS indices applied in the analysis.

Statuses were allocated according to predefined rules

and following three steps: (1) if the KS index was

validated (correlated positively with IC and BC, and

with correlation coefficients of the same order of

magnitude), then the result from the rank correlation

tests was positive, negative if not; (2) if the identified

keystone group was validated (group of highest key-

stoneness with the KS index classified in the keystone

categories of the classification tree), then the result from

the classification tree was positive, negative if not; (3) if

results from both steps 1 and 2 were positive (alternately

negative), then the status was labeled as ‘‘true positive,’’

(alternately ‘‘true negative’’), but if step 1 was positive

and step 2 negative (alternately step 1 negative and step

2 positive), then the status was labeled as ‘‘false positive’’

(alternately ‘‘false negative’’). Thus, there were four

alternative statuses possible for each Ecopath-model–

KS-index pair: true positive, false positive, false

negative, and true negative. In other words, when the

result from the rank correlation tests (step 1) was

positive, the status was labeled as positive, negative if

not, and when the result from the classification tree (step

2) was in agreement with step 1, the status was also
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FIG. 1. Identification of keystone species with a classification tree. (a) Classification tree for the identification of keystone
species among the functional groups of each modeled ecosystem. The classification is based on two (log-transformed) parameters:
the group i to the total biomass (Bi) and trophic impact (in squared values; e2i ) of each group i. Groups are classified using the first
quartile (Q1) and third quartile (Q3) values of the parameters over all living groups in each model, as lower and upper thresholds;
Q1 indicates first quartile biomass values, Q1e indicates first quartile trophic impact values, etc. Four main categories are
discriminated: keystone (i.e., groups with high impact and low biomass), low-impact–low-biomass, low-impact–high-biomass, high-
impact–high-biomass, and intermediate. The keystone category is subdivided into two sub-categories: low TL keystone and high
TL keystone, by comparing the trophic level (TLi) of the group to the third-quartile values of TL (Q3TL). The diamond-shaped
boxes represent yes/no questions, and the rectangle-shaped boxes the categories identified after answering the questions. (b)
Simplified graphical representation of the classification tree on a scatterplot, with the log-transformed biomass (Bi) on the x-axis,
and the log-transformed trophic impact (in squared values; e2i ) on the y-axis. The upper-left box represents the area where the (low
TL and high TL) keystone groups are located, the upper-right box where the high-impact–high-biomass groups are, the lower-left
box where the low-impact–low-biomass groups are, and the lower-right box where low-impact–high-biomass groups are. Each
category box is defined based on the classification tree, using the minimum (min), maximum (max), Q1, and Q3 values (see Fig. 1a).
Intermediate groups are spread on the rest of the plotting area (shaded in gray).

� Daggers represent the intermediate category.
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labeled as true, false if not. For some models, none of

the functional groups were classified in the keystone

categories of the classification tree, so that the identified

keystone group could not be confirmed (step 2). Thus, a

supplementary status was defined for these models, and

labeled as ‘‘no keystone.’’ The status allocation was

performed for each of the 101 selected models, and the

number of models associated with each status (true

positive, false positive, false negative, true negative, and

no keystone) was recorded for each KS index. The

‘‘overall status,’’ obtained for each KS index over all

models, corresponded to the status allocated to the

majority of models.

Application to a case study

A case study was chosen to which both the

classification tree and the selected KS index were

applied. We chose the Ecopath model representing

Prince William Sound, a nearly enclosed embayment

located in the northern Gulf of Alaska, USA for the

time period between 1994 and 1996, and covering an

area of about 9000 km2, with a mean depth of 300 m

(Okey and Pauly 1999). This Ecopath model was

originally built to better understand the structure and

functioning of the food web, based on the information

provided by a panel of 35 experts (Okey and Pauly

1999). See Appendix B for graphical representations of

the Prince William Sound (1994–1996) food web.

RESULTS

Pool of selected Ecopath models

After applying the scoring method, we obtained a

selection of 101 Ecopath models, whose final scores

ranged from 2 to 6. Analyses of keystone species were

previously performed on 23 of the 101 models. In fact,

most models were included in the meta-analysis intro-

ducing the KS2 index (Libralato et al. 2006), or had the

latter index applied by their authors, while four models

had alternative original methods proposed by the

modelers applied (Aydin et al. 2002, Kitchell et al.

2002, Okey et al. 2004). The selection comprises 13

models representing MPAs, and only five of them are

fully unexploited ecosystems (no fishing fleet defined).

However, the no keystone status was allocated to the

majority of the MPA models. About one-third (39) of

the selected models focus on a (group of) species of

particular interest. The selection includes 81 sibling

models, but only two overlapping models. In fact, only

48 of the sibling models are suitable for comparative

analyses, since some models did not have their

corresponding siblings selected, others had different

species aggregations between siblings, and some siblings

FIG. 2. Rules for status allocation to each Ecopath-model–KS-index pair. The statuses were allocated in three steps: (1) if the
KS index was validated, then the result from the rank correlation tests was positive, negative if not; (2) if the identified keystone
group was validated, then the result from the classification tree was positive, negative if not; (3) if results from steps 1 and 2 were
both positive (respectively both negative), then the status was labeled as ‘‘true positive,’’ (respectively ‘‘true negative’’), but if step 1
was positive and step 2 negative (respectively step 1 negative and step 2 positive), then the status was labeled as ‘‘false positive’’
(respectively ‘‘false negative’’). Four alternative statuses are possible for each Ecopath-model–KS-index pair: true positive, false
positive, false negative, and true negative. A positive result for step 1 means that the KS index was validated for the selected model,
because it was correlated positively with the impact component (IC) and biomass component (BC), with correlation coefficients of
the same order of magnitude (Table 1). A positive result for step 2 means that the identified keystone group was validated for the
selected model, since the group of the highest keystoneness with the KS index was categorized as keystone with the classification
tree.
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were associated with the no keystone status. See

Appendix C: Table C1 for the detailed results of the

scoring method for each selected model.

Most of the 101 selected models seem to be good-

quality models in terms of data. A large proportion of

the models (78) provide detailed information on species

aggregation into functional groups. Approximately one-

third of the selected models do not have any biomass

input data computed by Ecopath, and the proportion of

estimated biomass is lower than 25% for the second one-

third, and lower than 75% for the last one-third (up to

95% for only one model). Besides, the selection

comprises 43 Ecopath models fitted to time series. See

Appendix C: Tables C2 and C3 for the detailed

metadata and references of each of the 101 models.

The 101 selected models represent a wide variety of

marine ecosystems. Continental shelf (less than 200 m

deep) is the most represented type of ecosystem, with 41

models. Six other types are represented in smaller

proportions: ocean (more than 200 m deep, 19 models),

upwelling (16 models), channel or strait (10 models), bay

or fjord (seven models), coral reef (seven models), and

coastal lagoon (one model). Most modeled ecosystems

are located in temperate or tropical zones (58 and 36

models, respectively), and few in polar zones (seven

models). About two-thirds of the selected models

represent ecosystems over a time period of one year,

and the last one-third covers time periods lasting from

two to 11 years (up to 40 years for one model). About

half of the models describe ecosystems in the recent past

(49 models for the 1990s–2000s), while the other half

describe ecosystems in less recent times (26 models for

the 1970s–1980s, 18 models for the 1950s–1960s, and

eight models for periods before 1950). The spatial extent

of the selected models varies from 2.48 to more than

18 000 000 km2, but most models cover an area smaller

than 500 000 km2 (Fig. 3a). Among the selected models,

ecosystems of the ocean and continental shelf types have

wider ranges of spatial extent, whereas the ocean and

upwelling types cover the largest areas, followed by

continental shelf and channel or strait (Fig. 3a). Coral

reef ecosystems have the widest range and highest values

of total biomass (Fig. 3b), whereas upwelling ecosystems

have the widest range of total catch, followed by bay or

fjord and channel or strait (Fig. 3c). The number of

living groups in the 101 selected models ranges from six

to 96, with most models comprising 20 to 40 groups

(Fig. 4a). The number of fishing fleets varies from zero

to 19, with 14 models without fleet, and most models

including 1–5 fleets (Fig. 4b). Among models with

defined fishing fleets, the mean trophic level of the catch

ranges from 1.02 to 4.52, and is between 3 and 3.5 for

most models (Fig. 4c).

Balance in the contributions of IC and BC

to the KS indices

The comparison between the groups ordered by

keystoneness and by trophic impact and biomass,

FIG. 3. Boxplots of (a) spatial extent (area), (b) total
biomass (Btot), and (c) total catch (Ytot), for all selected Ecopath
models, categorized by type of modeled ecosystem: bay/fjord
(B/F), channel/strait (C/S), coastal lagoon (CL), continental
shelf (CS), coral reef (CR), ocean (Oc), or upwelling (Up). The
line in the box represents the median or second quartile. The
limits of the box represent the first and third quartiles. Whiskers
represent the lowest and highest data points which are no more
than 1.5 times the interquartile range of the lower and upper
quartiles from the box.
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applied to the 101 Ecopath models and for each KS

index, shows that three of the KS indices out of the 12

seem to be balanced: KS3, KS7, and KS12 (Table 2). For

these three indices, the spreading of the models is

comparable between the three matching categories, so

that not one of the categories is associated with the

majority of models (51 or more) and no overall match is

determined. Thus, for these three indices, the group with

the highest keystoneness value may also have one of the

three highest trophic impact values, or one of the three

lowest biomass values, or none of the previous, with

similar probabilities. Nonetheless, we note that the

number of models is higher (and close to the majority) in

the match impact category for the KS3 index. In

addition, the comparison shows that both KS1 and

KS2 indices (directly adapted from the literature) are

unbalanced. KS1 has a significantly higher number of

models (91) in the match impact category, meaning that

this index tends to identify keystone groups mainly

based on their (high) trophic impact. In contrast, KS2
has a significantly higher number of models (81) in the

match biomass category, so that it would identify

keystone groups primarily based on their (low) biomass.

The overall match of the other KS indices corresponds

to either match impact or match biomass, determined

with a more or less substantial majority of models.

The rank correlation tests are validated for a majority

of the 101 models for only one of the 12 KS indices: KS3,

with 75 models with validated tests (Table 3). Both the

KS1 and KS2 indices show significantly lower numbers

of models with validated rank correlation tests, with 40

FIG. 4. Boxplots showing (a) number of living groups, (b) number of fishing fleets, and (c) mean trophic level of the catch
(TLY), for all selected Ecopath models. The line in the box represents the median or second quartile. The limits of the box represent
the first and third quartiles. Whiskers represent the lowest and highest data points which are no more than 1.5 times the
interquartile range of the lower and upper quartiles from the box. The dots represent the outliers or extreme data points.

TABLE 2. Results from the comparison between groups
ordered by keystoneness, and by trophic impact or biomass,
for each KS index, over all selected models.

KS
index

Match
impact

Match
biomass

No
match

Overall
match

KS1 91 10 0 match impact
KS2 5 81 15 match biomass
KS3 50 28 23
KS4 25 54 22 match biomass
KS5 86 12 3 match impact
KS6 0 94 7 match biomass
KS7 32 35 34
KS8 11 70 20 match biomass
KS9 91 10 0 match impact
KS10 25 54 22 match biomass
KS11 71 20 10 match impact
KS12 46 39 16

Notes: Indices KS1 and KS2 are adapted from the literature,
and KS3 is the selected index. The number of models whose
group with the highest keystoneness matched one of the three
groups with highest trophic impact (ei) is shown in the match
impact column, the number whose group with the highest
keystoneness matched one of the three groups with the lowest
biomass (Bi), is shown in the match biomass column. The
number of models for which the group with the highest
keystoneness value matched none of the three groups with,
either the highest trophic impact, or the lowest biomass, is
shown in the no match column. In the overall match column,
results are expressed as an overall match for each KS index over
all models, corresponding to the matching category of the
majority of models (i.e., 51 models or more, for a total of 101
models) for the particular index. Cells left blank indicate no
majority. See Table 1 for detailed equations of each KS index.
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and 12 models, respectively. The other KS indices have

less than 10 models with validated tests (apart from KS6,

with 44 models). Thus, the results from the tests

demonstrate a better balance between IC and BC

components for the KS3 index, for which high key-

stoneness values seem to correlate, with the same order

of magnitude, to high trophic impact and low biomass

values. When the constraint on the magnitude order of

the correlation coefficients is released, the conclusions

from the tests are not changed: KS3 appears as the most

balanced index. The number of models with validated

(unconstrained) tests increases for most of the KS

indices (apart from KS8 and KS9, for which it remains

equal to zero), yet the KS3 index still has the highest

number, with 99 models. When unconstrained, the rank

correlation tests are validated for a majority of models

with four other indices, including KS1 and KS2, with 95

and 52 models, respectively.

Selection of the most promising KS index

Based on the classification tree (Fig. 1), we could

confirm (or not) the keystone groups identified with each

of the 12 KS indices, for each of the 101 models (Table

3). The number of models with a validated keystone

group (i.e., belonging to the keystone categories of the

classification tree) ranges from 15 to 59, over all KS

indices. The KS3 index shows one of the highest scores

(with 48 models), whereas the KS1 and KS2 indices show

lower scores (with 15 and 34 models, respectively).

Then, by comparing the results from the rank

correlation tests and the classification tree, we could

allocate alternative statuses to each of the 101 models,

for each of the 12 KS indices (Fig. 2). Since 33 models

were allocated a no keystone status (no functional

groups in these models were categorized as keystone

with the classification tree), the majority was reduced to

35 models to determine the overall status of each KS

index. The outcomes from the status allocation corrob-

orate the selection of the KS3 index as the most

promising one. Indeed, KS3 is the only index associated

with a true positive overall status (with 40 true positive

models), meaning that results from the tests (step 1) and

the classification tree (step 2) are both positive for a

majority of models (Table 3). Two indices, KS5 and KS9,

are allocated a true negative overall status (with 46 and

53 true negative models, respectively), traducing nega-

tive conclusions from both steps 1 and 2. For three of

the KS indices (KS1, KS2, and KS6), none of the statuses

are associated with the majority of models, so that no

overall status is determined for these indices. Nonethe-

less, we note that the number of true negative (false

negative, respectively) models is close to the majority for

KS1 (KS2, respectively; with 32 models in each case).

The remaining KS indices are allocated a false negative

overall status, indicating a negative result from the tests

while the result from the classification tree is positive.

Identification of potential keystone groups with the

selected KS index and the classification tree

The selected KS3 index was applied to the 101 selected

Ecopath models, so that the results from the whole

analysis could be analyzed in terms of species (or

groups). We compared, across the 101 selected models,

the keystone groups most frequently identified with the

KS3 index (i.e., with the highest value of keystoneness)

and with the classification tree (i.e., belonging to the

high or low TL keystone categories).

Groups are labeled using 12 generic group names, to

standardize their heterogeneous original designations

(Fig. 5a, b). Fish groups are separated into four groups:

Elasmobranchii (including groups of sharks and rays),

Gadiformes (cod and hake groups), Scombroidei (tunas,

billfishes, and barracudas groups), and fishes (all the

other groups of fishes). We note that the fishes group

TABLE 3. Results from the rank correlation tests (Correlation), the classification tree (Keystone category; see Fig. 1) and the status
allocation (true positive, false positive, false negative, true negative, overall status; see Fig. 2), for each KS index.

KS index Correlation Keystone category True positive False positive False negative True negative Overall status

KS1 40 (95) 15 7 21 8 32
KS2 12 (52) 34 6 5 32 25
KS3 75 (99) 48 40 12 14 2 true positive
KS4 0 (0) 50 0 0 55 13 false negative
KS5 0 (0) 22 0 0 22 46 true negative
KS6 44 (50) 22 17 24 9 18
KS7 9 (14) 59 7 1 59 1 false negative
KS8 0 (51) 43 0 0 48 20 false negative
KS9 0 (8) 15 0 0 15 53 true negative
KS10 1 (1) 50 0 1 55 12 false negative
KS11 2 (8) 35 1 0 37 30 false negative
KS12 3 (7) 47 2 1 51 14 false negative

Notes: Values correspond to the number of models with validated rank correlation tests (correlation), whose identified keystone
group with KS index is categorized as keystone with classification tree (keystone category), and whose associated status correspond
to each of the possible statuses (true positive, false positive, false negative, and true negative). Values given in the correlation
column are for results with a constraint applied on the correlation coefficients, the results with no constraint applied are shown in
parentheses. In the overall status column, results are expressed as an overall status for each KS index, corresponding to the status of
the majority of models (i.e., 35 models or more, since 33 models over the 101 models in total were allocated a no keystone status),
for the particular index. Cells left blank indicate no majority. See Table 1 for detailed equations of each KS index.
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corresponds to a relatively wide range of species,

aggregating groups of both large pelagic and small

demersal species, because they all have low occurrences

as identified keystone groups. Mammal groups are

separated between Odontoceti (comprising groups of

dolphins and orcas, as well as unspecified toothed

whales), Pinnipedia (seals, sea lions, and walruses

groups), and mammals (baleen whales groups, and

unspecified groups of cetaceans and mammals). The

other groups separate seabirds (all groups of birds) from

invertebrates (comprising crustaceans, cephalopods, and

unspecified invertebrates). The zooplankton, producers,

and all-fleets groups are unchanged from their original

designations.

Overall, the groups identified as keystone species

with the highest occurrences across models correspond

to cartilaginous fishes and toothed whales (Fig.

5a, b).The most frequently identified groups with the

KS3 index, across the 101 models, are Elasmobranchii,

all fleets, fishes, and Odontoceti (Fig. 5a). In compar-

ison, the most frequently identified groups with the

classification tree, across the 101 models, are Elasmo-

branchii, Pinnipedia, Odontoceti, and fishes (Fig. 5b).

With the classification tree, the identified keystone

groups may be separated by their trophic level (Fig.

5b). Thus, Odontoceti scores higher than Pinnipedia

when considering high TL keystone only. Besides, all

fleets are low TL keystone, as well as a substantial

proportion of the seabirds and fishes. The keystone

groups identified with the KS3 index may be separated

based on the status of the models (Fig. 5a). Thus, the

most frequently identified groups associated with a true

positive status are Elasmobranchii and Odontoceti. In

contrast, the most frequently identified groups associ-

FIG. 5. Bar plots of the groups identified as keystone with (a) the selected KS3 index (see Table 1), and (b) the classification tree.
Values are expressed in number of models, over the 101 selected Ecopath models. Based on their original names in each model, the
identified keystone groups are aggregated into 12 broader groups: all fleets, Elasmobranchii, fishes, Gadiformes, invertebrates,
mammals, Odontoceti, Pinnipedia, producers, Scombroidei, birds, and zooplankton. With the KS3 index, the identified keystone
groups may be discriminated based on the status of the model: true positive (TP), false positive, false negative, or true negative (FP/
FN/TN), and no keystone (NK). With the classification tree, the identified keystone groups may be classified as either high TL
keystone (high TL K) or low TL keystone (low TL K).
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ated with a no keystone status are all fleets and fishes.

Finally, the high TL keystone groups, such as

Scombroidei or Gadiformes, correspond to a true

positive status. See Appendix C: Table C4 for the

detailed results obtained with the selected KS3 index,

for each model.

Case study of the Prince William Sound (1994–1996)

food web

With the selected KS3 index, the Ecopath model of the

Prince William Sound (1994–1996) shows positive

results from the rank correlation tests. Also, the same

groups are identified as potential keystone species, both

with the classification tree (Fig. 6) and the selected KS3
index (Fig. 7a), in the Prince William Sound (1994–

1996) food web. Transient orcas (group 1) are classified

as high TL keystone and have the highest value of

keystoneness with the KS3 index. Avian predators

(group 15, mainly representing bald eagles) are catego-

rized as low TL keystone and have the second-highest

keystoneness value. Thus, the status of the selected KS3
index applied to the case study model is true positive. In

contrast, with the KS1 and KS2 indices directly adapted

from the literature, results from the classification tree are

FIG. 6. Application of the classification tree (see Fig. 1) to the Prince William Sound (1994–1996) food web (Okey and Pauly
1999). The scatterplot shows the log-transformed biomass (Bi) on the x-axis, and the log-transformed trophic impact (in squared
values; e2i ) on the y-axis. Each point is a functional group in the model, identified with a group number and a group name (indicated
in the legend). Groups belonging to each category are displayed in the same color as the corresponding category box: keystone
groups in light red (upper-left box), high-impact–high-biomass groups in orange (upper-right box), low-impact–low-biomass
groups in green (lower-left box), and low-impact–high-biomass groups in blue (lower-right box). Keystone groups are subdivided
into two categories: low TL keystone in pink, and high TL keystone in light red. The all-fleets group, for which Bi was
approximated with the total catch (Ytot), corresponds to the aggregation of all the fishing fleets defined in the model.
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in disagreement with results from the rank correlation

tests. More precisely, the groups having the highest
values of keystoneness with the KS1 index belong to the

high-impact–high-biomass category (Fig. 7b). With the
KS2 index, although transient orcas and avian predators

have the two highest keystoneness values, the correla-
tion tests were not validated, seeing that the groups
classified as low-impact–low-biomass have high key-

stoneness (Fig. 7c).

DISCUSSION

A balanced index of keystoneness for marine food webs

In this study, we derived a functional index estimating

species keystoneness from a meta-analysis on a selection
of 101 Ecopath models. The selection of models was

representative of the variety of marine ecosystems
worldwide. Also, most models were of good quality in

terms of data. The Ecopath-based approach enabled us
to use trophic impact and biomass as measurable species
traits, and to propose ecosystem-specific thresholds of

minimum trophic impact and maximum biomass for a
species to be keystone. In each modeled food web, species

were ranked according to their keystoneness estimates, so
that the potential keystone species could be quantitative-

ly identified. The new index of keystoneness proposed in
our study (the KS3 index) was obtained by multiplying

the ICL impact component (adapted from Libralato et al.
2006) by the BC0 biomass component (based on

descending ranking, so that high biomass corresponds
to low BC). The usage of ranking in the biomass

component enabled us to prevent ‘‘inflating uncertainty
and errors in the index because measures for rare species

are divided by small numbers’’ (Cottee-Jones and
Whittaker 2012). The KS3 index was selected by

confronting the results from two statistical methods: (1)
Spearman’s rank correlation tests (step 1) and (2) a
classification tree (step 2). The selected index correspond-

ed to the KS index with the highest number of models for
which results from both steps 1 and 2 were positive.

The standardized Ecopath approach allowed for a
comparison of the keystone groups identified across

models. The generic groups of species with the highest
occurrences across models were cartilaginous fishes and

toothed whales, over all the 101 selected models. These
species corresponded to the definition of keystone

predator applied in this study. As for the case study
model, the identification of a toothed whales species

(transient orcas, see Plate 1) as a potential keystone
group was consistent with empirical knowledge of the

modeled ecosystem. Although sea otters are known as
an historical example of keystone species in kelp forest

ecosystems (Estes and Palmisano 1974), transient orcas
were identified as keystone species in the Ecopath model

of the Prince William Sound (1994–1996). Alaskan
transient orcas were observed to be partially feeding on
sea otters, which were mainly feeding on clams but

rarely on sea urchins (Estes et al. 1998, Okey and Pauly
1999). Thus, the keystoneness of sea otters was reduced

in the Prince William Sound food web, due to both the

predation pressure from transient orcas (Estes et al.

1998), and the low abundance of grazers such as sea

urchins (Paine 1980).

In this study, we established that the selected index

(KS3) seemed to be more balanced than the ones

previously proposed in the literature and implemented

in EwE (KS1 and KS2). Both the KS1 and KS2 indices

were applied to several modeled food webs, representing

various types of marine ecosystems (e.g., Libralato et al.

2006, Coll and Libralato 2012, Coll et al. 2013). As for

the six models selected in this study to which the latter

indices were applied, the results from the KS1 index were

not convincing for four of the models (Coll et al. 2007,

Tsagarakis et al. 2010, Valls et al. 2012, Tecchio et al.

2013), and inconsistent results were obtained when both

KS1 and KS2 indices were used. In this study, we

confirmed that both KS1 and KS2 indices fail at

attributing high keystoneness to groups having both

low biomass and high trophic impact. The KS1 index

frequently attributed high keystoneness to functional

groups with high biomass, provided their trophic impact

was high. Such groups should instead correspond to

abundant species (Coll and Libralato 2012). In contrast,

the KS2 index often gave high values for functional

groups with low biomass, even though these groups had

low trophic impact. Such groups should instead be

categorized as rare species (Libralato et al. 2006, Coll et

al. 2013). The KS3 index proposed in this study was

demonstrated to have more balanced contributions

between its trophic impact and biomass components in

its estimation of species keystoneness. Therefore, the

new index may be used to identify keystone species in

marine food webs, without overrepresenting abundant

or rare species.

Methodological considerations on the derived functional

KS index

The MTI analysis, like the Ecopath model, only gives

a snapshot of the trophic web at one point in time, and

should not be used for drawing conclusions on the

consequences of changes in biomass over time. For

instance, a decrease in the biomass of a predator might

lead to an increase in the biomass of its prey in the short

term. In the longer term, it might also result in higher

biomasses of other predators, or changes in the

predator’s diet facing reduced prey abundance, but

these cumulative effects cannot be predicted from the

MTI analysis (Christensen and Walters 2004). However,

the (positive or negative) mij corresponds, for each pair

of groups (i, j ) in the modeled food web, to the relative

change (increase or decrease) in the biomass of the

impacted group j, caused by a slight increase in biomass

of the impacting groups i (Libralato et al. 2006).

The main criticism about Ecopath-based approaches,

especially when looking at keystone species, deals with

the species aggregation into functional groups. Aggre-

gating species is required to obtain smaller, simpler, and
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easier-to-analyze food webs. A few methods of aggre-

gation are commonly used, yet there are no systematic

aggregation rules, which potentially introduce taxonom-

ic bias (Jordán 2009). Other than mass-balance food-

web models, alternative methods to identify ecologically

important species, such as keystone species, are based on

ecological network analyses (ENA). ENA-based ap-

proaches are used to derive quantitative structural

indices describing species position in complex networks

of interspecific interactions (e.g., Estrada 2007, Jordán

2009, Jordán et al. 2009). ENA methods consist of

topological studies applied in ecology to characterize the

positional importance of species in communities, by

considering the number of trophic links between species,

but not necessarily the strength of the links (Jordán

2009). Such methods were first applied to binary

networks only (e.g., Jordán et al. 2003), and then

adapted to weighted networks (e.g., Scotti et al. 2007,

Jordán et al. 2008), since weighted structural indices

were demonstrated to best correlate with functional

indices from EwE-based methods (Jordán et al. 2008).

As with food-web models, ecological networks are

aggregated to some extent, seeing that all species are

directly or indirectly interconnected in the food web

(Jordán 2009). Besides, ENA studies are based on the

Lotka-Volterra assumption of uniform and random

FIG. 7. Application of the (a) KS3 (ICL 3 BC0), (b) KS1 (ICL 3 BCL), and (c) KS2 (ICL 3 BCP) indices (see Table 1) to the
Prince William Sound (1994–1996) food web (Okey and Pauly 1999). Each scatterplot shows the rank of the functional group,
based on its index of keystoneness in ascending order (keystone species have high ranks) on the x-axis, and the trophic level (TLi) of
the functional group on the y-axis. Each dot is a functional group in the model, identified with a group number and a group name
(indicated in the legend). Groups are displayed in the color of the category they were associated with on the classification tree (see
Fig. 6).
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distribution of interactions between species (e.g., Chris-

tianou and Ebenman 2005). Yet, the latter assumption

was proven to be unrealistic, compared to the foraging

arena theory implemented in EwE models (Walters and

Martell 2004, Walters and Christensen 2007, Ahrens et

al. 2012). Finally, community structure and dynamics

were shown to be correlated in EwE studies (Libralato et

al. 2006). Likewise, another challenge for ENA-based

approaches is to understand species importance, not

only in terms of network position, but also regarding

network dynamics (Jordán 2009).

Perspectives for future directions in keystoneness analyses

The major challenge in the quest for keystone species

is the estimation of the time and space required to assess

potential keystone effects (Paine 1995, Power and Mills

1995). Thus, the temporal and spatial scales considered

are determinant to the identification of keystone species.

Although static patterns differ from dynamic processes

(Paine 1980, Arponen 2012), it was verified that the

keystoneness of species may be inferred without

performing time-dynamic analyses (Libralato et al.

2006). Thus, in this study, we chose to compare Ecopath

models of past and present ecosystem states, rather than

using Ecosim simulations. Such an approach was

previously applied to a selection of models representing

upwelling ecosystems at different time periods (Librala-

to et al. 2006), or used to analyze the effects of the

establishment of an MPA (Coll et al. 2009, Eddy et al.

2014). Here, we preferentially selected models represent-

ing the same ecosystem at different temporal periods

(sibling models) or spatial scales (overlapping models),

in order to integrate temporal and spatial variability. We

ended up with very few (only two) overlapping models,

so that we could not analyze the influence of spatial

scale. In contrast, our selection of Ecopath models

comprised a large number of sibling models, which were

used to explore context-dependency issues a little

further. We used the selected sibling models to compare

the changes in identified keystone groups over time in

the same ecosystem. However, no consistent pattern

could be identified across our selection of sibling models.

A more in-depth analysis would be required to fully

understand the interacting factors affecting species

keystoneness over time.

Human-induced variability may be a factor of

potential influence on species keystoneness. Anthropo-

genic impacts may lead to the loss of keystone species

(first becoming rare, and then disappearing) and the

community architecture they maintained, leaving an

altered ecosystem where species are less likely to play

keystone roles (Paine 1995). On the contrary, Power et

al. (1996) argued that loss of species diversity may lead

to the remaining species taking on keystone roles. Using

the KS1 and KS2 indices, several authors demonstrated

that ecosystems highly affected by fishing impact had

less prevalence of keystone species, whose role was

modified with increased fishing pressure. As an example,

in the Mediterranean Sea, the proportion of keystone

species in fully exploited ecosystems was shown to be

less than in protected (or slightly exploited) ecosystems,

while the proportion of abundant species was compara-

ble across ecosystems (Coll and Libralato 2012). A

similar pattern was observed globally, in a study

considering coastal ecosystems from all over the world

ocean (Heymans et al. 2012). Keystone species in non-

exploited marine ecosystems may become rare when

over-exploitation occurs, such as cetaceans in the

Mediterranean Sea (Coll et al. 2009), or groupers in

the Galapagos (Okey et al. 2004). Similarly, the keystone

species status of lobsters in New Zealand was shown to

be impacted by fisheries (Eddy et al. 2014). Consequent-

ly, human activities could result in large-scale removals

of potential keystone species, without any record of the

ecosystem state before the uncontrolled removals

(Power et al. 1996). Human-induced climate change

may be determinant to the keystone role of species as

well (Harley 2011). Through the same mechanisms as in

natural variability, human-induced variability may lead

to competitive balance shifts and predator removals,

and thus alter species interactions (Poloczanska et al.

2008).

PLATE 1. Orcas in Alaska. Photo credit: Arnaud Bethier
2013.
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The fishing fleets defined in the selected Ecopath

models were included as human predators in our

analysis, so as to consider potentially significant

anthropogenic (fishing) impacts on keystone species.

The all-fleets group appeared as a frequently identified

keystone group with the selected index (Fig. 5a), which

could suggest a significant effect of fishing on keystone

species in the corresponding modeled food webs.

However, the keystoneness of the all-fleets group was

not confirmed with the classification tree, since most

corresponding models were allocated a no keystone

status (Fig. 5a). We observed that the overall match and

overall status of the different KS indices were not

modified by the inclusion of fishing fleets in the

calculation of the mixed-trophic impacts. Nonetheless,

the sensitivity of the identified keystone group to the

addition of the all-fleets group in the analysis varied

among the different KS indices. Ideally, an index of

keystoneness would consider context-dependency as-

pects and identify keystone species differently depending

on the status of the ecosystem. Alternatively, a suite of

complementary indices, each best adapted to a specific

level of exploitation, could be developed and applied

according to the situation. So, further analyses could

explore the sensitivity of the proposed KS index to

context dependency, by comparing the changes in

identified keystone species with the changes in fishing

pressure in the modeled food web. In the literature,

sensitivity analyses on matrix models representing

ecological succession were notably used to quantify the

relative importance of species interactions to community

composition and proposed as a method to identify

keystone species (Tanner et al. 1994). In addition, we

could investigate the robustness of the proposed KS

index to uncertainty and possible model construction

errors. Structural indices for binary food webs, such as

the mixed-trophic impact, were demonstrated to be

robust to uncertainty (Fedor and Vasas 2009), so that

the equivalent functional indices for weighted food

webs, used in our approach, may be assumed to be

robust as well. Yet, the development of a measure of

robustness for functional indices of keystoneness,

similar to the one applied to structural indices, would

constitute interesting questions for future studies.

Toward an index of keystoneness applicable to

biodiversity conservation

In this study, we developed an operational method-

ology, directly applicable to marine ecosystems, and

possibly adaptable to other types of systems (freshwa-

ter or terrestrial). Food-web dynamics and keystone

species may respond differently, depending on the type

of ecosystem (Bond 2001, Link 2002). The response to

species introduction or removal is known to be

generally slow in natural ecosystems, but the time scale

is thought to be shorter in aquatic ecosystems,

especially lakes, than in terrestrial ones (Bond 1994,

2001, Power et al. 1996). Marine food webs differ from

other types of food webs by their higher connectivity,

due to large ontogenetic changes in size and diet of

marine species, which are opportunistic feeders in an

open foraging range (Link 2002). Therefore, the

detection of keystone mechanisms might be easier in

freshwater or terrestrial food webs.

Conserving biodiversity is often a compromise

between protecting species, areas, or processes (Sim-

berloff 1998). Among the critical ecological processes

maintaining whole communities, some are driven by

critical species, which thus have to be identified and

used in the ‘‘conservation biologist’s toolbox’’ (Power

et al. 1996). Critical species play an important

ecological function, performed by few other species in

the ecosystem, such as keystone species that maintain

the food-web structure of their community (Perry

2010). Thus, identifying and protecting critical species

may be the only long-term solution to preserve a

‘‘working ecosystem rather than a collection of

charismatic species’’ (Jordán 2009, Perry 2010). In this

study, we focused on the keystone species category, yet

other categories of critical species may be identified

with the classification tree. Indeed, species belonging to

the high-impact–high-biomass category may corre-

spond to critical food resources in the food web. On

the contrary, the low-impact–low-biomass category

may include some rare species, which could be

potentially endangered or ecologically extinct. Lastly,

the fourth category of low-impact–high-biomass spe-

cies may represent critical habitat species in the

ecosystem. In practice, analyzing functional roles in

species assemblages is determinant to setting conserva-

tion priorities and defining restoration programs

(McClanahan 2000, Clemente et al. 2010). The identi-

fication of functionally important species, such as

keystone species, not only helps in developing effective

conservation strategies for species-level prioritization,

but also a better understanding of ecosystem function-

ing and processes (Jordán 2009, Clemente et al. 2010).

Moving toward a fully operational and widely appli-

cable index of species keystoneness would thus

constitute one step further in biodiversity conservation.
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