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Abstract 

Microbes play a key role in the functioning of ecosystems. Recent studies have shown that 

microbial communities harbor keystone taxa, taxa that have a significant influence on 

community composition and microbiome performance irrespective of their abundance. Here 

we propose a definition of keystone taxa in microbiology and summarize reports of such taxa 5 

from soil, plant and marine ecosystems as well as the human microbiome. We illustrate the 

importance of keystone taxa and keystone guilds for ecosystem services,and discuss the 

factors that determine their distribution and activities. This article highlights the relevance of 

keystone taxa as the drivers of microbiome structure and functioning. 
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Introduction 

The role of microbial communities in ecosystem functioning is unequivocal 1,2.  Microbes are 

key drivers of a wide range of ecosystem services including soil nutrient cycling, plant 

growth promotion, marine biogeochemical processes, and maintenance of human health 3–6. 

In recent years, microbial networks have been used to visualize co-occurrence among 30 

members in communities3,7–10. Microbial networks enable testing of ecological theories, 

assessment of which was once postulated to be a major impediment in microbial ecology11,12. 

The concept of co-occurrence and network thinking in ecology was proposed in 2005 13 and 

since then, microbial ecologists have shown particular interest in network analysis 7,14–19, 

resulting in a large body of studies demonstrating microbial co-occurrence patterns in a 35 

diverse range of soil7, plant20, marine21 ecosystems and in the human microbiome22,23(BOX 

1). Reports are also available from the Antarctic 24 and Arctic ecosystems 25,26. Amidst other 

salient features, microbial networks can statistically identify keystone taxa27 .  

The tenet of keystone taxa was originally proposed by ecologist Robert T. Paine in 

1966. In a classic experiment, he demonstrated that the removal of sea stars (Pisaster 40 

ochraceus), a common predator of mussels, had a dramatic impact on the shoreline 

ecosystem community and local biodiversity at Makah Bay, Washington 28. Other examples 

of keystone taxa include the Canadian beaver and African elephant in the animal kingdom, 

leguminous Trifolium in the plant kingdom, and Porphyromonas gingivitis and Bacteriodetes 

thetaiotaomicron in the human microbiome 29–32. Keystone taxa have been frequently referred 45 

to as ecosystem engineers due to their large influence in the community 33. In microbial 

communities, examples of such taxa are now available from a diverse range of environments 

24–26,31,34–59 and their reports are continuously increasing (BOX 1). 

 

Definition of keystone taxa in microbial communities 50 
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The definition of keystone taxa has garnered different lines of thought 60–62. The definition 

proposed by Paine (1969) mainly suggests that keystone taxa are important for community 

structure and integrity, and their influence is nonredundant 63. Later, Power et al. (1996) 

defined keystone taxa by introducing the concept of “community importance”, calculated 

from proportional biomass and traits. Cottee-Jones and Whitaker (2012) presented the 55 

evolution of the term “keystone taxa” in ecology and how its overuse and misuse (e.g., 

keystone mutualist, keystone modifier, reverse keystone, etc.) have resulted in considerable 

confusion about the actual meaning. Readers are referred to their critical appraisal for further 

information on keystone taxa in ecology. Thus, there is no uniformly accepted operational 

definition of keystone taxa in ecology, especially in microbial ecology. Keystone taxa such as 60 

Bacteriodetes thetaiotaomicron, an anaerobic symbiont found in the human intestine, do not 

fulfil the low-abundance criterion 64. However, in view of their impact, they are considered as 

keystone taxa. The definition of keystone taxa in the microbial world should also take into 

account spatiotemporal considerations, due to rapid microbial turnover in both time and 

space. Thus, we propose the following definition: keystone taxa are the taxa which have 65 

major influence on microbiome composition and function at a particular space or time. These 

taxa often, but not always, have an over-proportional influence in the community, relative to 

their abundance. 

 

 70 

Microbial networks and keystone taxa 

With the advent of next generation sequencing, millions of sequences are now available from 

various environments. Network analysis can disentangle microbial co-abundance and 

empower microbial ecologists to gain a comprehensive insight into the microbial community 

structure and assembly patterns 3,65. Several algorithms are available to construct microbial 75 
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networks and these algorithms have already been reviewed previously19,65,66 and thus, for 

brevity, this article will only present an overview (BOX 1). Perhaps one of the most useful 

features of network analysis is that it can identify ‘hubs’ or keystone operational taxonomic 

units (OTUs) that are highly associated in a microbiome (Figure 1). Unlike random networks 

with a Poisson distribution, scale-free or small-world networks with a power-law distribution 80 

comprise such hubs or highly connected nodes (reviewed in REFS 67,68). These hubs have 

been proposed repeatedly as keystone taxa as their removal has been computationally shown 

to cause a shift in the composition and functioning of a microbiome 70,71. While high 

betweenness centrality was previously used to identify keystone taxa statistically in several 

studies 
16,39,40

, Berry and Widder (2014) recently showed that high mean degree, high 85 

closeness centrality and low betweenness centrality can be collectively used to identify 

keystones with 85% accuracy27. Subsequently, these scores have been used to find putative 

keystone taxa in microbial networks in recent studies 
12,41,42

. In their appraisal, Cottee-Jones 

and Whitaker (2012) highlighted the importance of a quantifiable threshold for consistent 

identification and validation of keystone taxa. We recommend that the combined score 90 

proposed by Berry and Widder (2014) serves as the  threshold for defining keystone taxa in 

microbiology. 

 

Recent evidence of keystone taxa 

Computational inference 95 

Numerous studies have used network based scores to identify putative keystone taxa in 

various environments (Table 1; Table S1 in Supporting Information). Zhou et al. (2011) 

identified hubs in microbial networks in grassland soils while Lupatini et al. (2014) found 

that the Pampa and Cerrado biomes in Brazil harbored different keystone taxa. Ma et al. 

(2016) conducted a continental scale network analysis and showed that bacterial keystones 100 
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belonged to Alphaproteobacteria and Actinobacteria and fungal keystones belonged to 

Pezizomycotina. Keystone taxa have also been identified in Arctic  25,26,44,46 and Antarctic 

ecosystems 24, which were not numerically dominant in the communities. Similar reports are 

also available for microbial communities in contaminated soils 47,48 and aquatic systems 

24,55,72. Interestingly, our literature review revealed that various members of Rhizobiales and 105 

Burkholderiales were identified as keystone taxa in different studies and across different 

ecosystems (Table 1; Table S1). The order Rhizobiales not only comprises nitrogen fixers 

including members of Rhizobium and Bradyrhizobium, but also other important groups such 

as Methylobacterium that are abundant in phyllosphere but also known to be endosymbiotic 

73. On the other hand, Burkholderiales includes important genera such as Bordetella, 110 

Ralstonia, Oxalobacter that are well-known pathogens, but also one of the most versatile and 

diverse terrestrial groups, Burkholderia. This observation does not mean that all Rhizobiales 

and Burholderiales can be considered keystone taxa (e.g., many taxa in those clades are 

subordinate taxa in microbial communities and have no major influence on community 

composition or functioning). Computational inference of Rhizobiales and Burkholderiales as 115 

keystones can also be due to their sheer abundance in various environments. However, our 

review indicates that the likelihood of finding a keystone taxon within these two clades is 

higher. Further targeted research on their role as keystones in influencing microbial 

functioning is needed. 

 120 

Empirical evidence 

Empirical evidence of keystone taxa is mainly available from the human microbiota, where 

keystones have been linked to a range of processes including inflammation, colon and gastric 

cancer, starch degradation and stabilization of the microbiome 22,23,31,32,56–59,64 (see Table S1 

for details). Perhaps one of the most prominent keystones in humans is Bacteroides fragilis, 125 
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which spurred the “alpha-bug” or “keystone pathogen” hypothesis 58,64. Other examples of 

keystone taxa include Porphyromonas gingivitis 32, Bacteriodes thetaiotaomicron 31, 

Ruminococcus bromii 59, Methanobrevibacter 64 and Helicobacter pylori 56. These taxa can 

cause significant shifts in the composition and functioning of the oral and gut microbiome. 

Examples are also available from other microbiomes where keystones have been identified 130 

through network based scores and linked to microbiome functioning and ecosystem 

processes. Agler et al. (2016) found that the effects of abiotic factors and host genotypes on 

microbial communities are mediated via microbial keystone taxa. This not only supports the 

relevance of keystone taxa but also provides evidence of their importance for plant 

microbiome functioning. Nitrogen-fixing rhizobia have been proposed as keystone taxa and 135 

their abundance has been shown to significantly improve plant productivity and community 

evenness 74. Banerjee et al., (2016b) demonstrated keystone taxa in bacterial and fungal 

communities during organic matter decomposition in an agricultural soil and, interestingly, 

these taxa were also identified as keystones for organic matter transformation in agricultural 

soil in a recent study 41, indicating the importance of similar keystones for specific habitats 140 

and processes. Recently, Herren and McMahon (2017) found that low-abundant keystone 

taxa which are highly connected in the microbiome can explain microbiome compositional 

turnover better than all taxa combined. Indeed, such encouraging reports highlight the 

relevance of keystone taxa for microbiome composition and functioning.  

 145 

Challenges in identifying keystone taxa 

Correlation ain’t causation 

Keystone taxa identified using network based scores were linked to ecological processes in 

many studies (e.g., see Table S1), indicating the suitability of this method. However, to 

obtain convincing evidence, network-based scores need to be complemented with 150 
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experimental evidence on the impact of the keystone taxa on microbiome composition and 

function. The detection of keystone taxa using network-based scores can be biased by habitat 

filtering, and networks can show positive associations between non-interacting members in 

microbial communities. Moreover, network scores and co-occurrence patterns are ultimately 

based on correlations and they must be interpreted with caution as correlation does not mean 155 

causation. Statistical analyses such as structural equation modelling (SEM) can be employed 

to move beyond correlation analysis and explore causal relationships among keystone taxa 

and microbiome composition or function. SEM is an advanced multivariate statistical 

approach that identifies such causal relationships and generates strong and distinct links 

between theoretical and experimental ideas76. The strength of SEM lies in the fact that it is 160 

theory oriented and not null hypothesis based and thus, it provides a framework to interpret 

complex networks involving numerous response and predictor variables. Upon assessing the 

univariate and multivariate normality, an initial model is generated based on the existing 

knowledge, site information and background data77. Subsequently, a χ2 test is conducted to 

assess if the covariance structure indicated by the model adequately fits the covariance 165 

structures, where a non-significant χ2 test suggests sufficient model fit. Importantly, the 

requirement of a minimum sample size of 50 must be followed while employing SEM 76. 

Ascertaining disproportionality of influence for keystones can also be a challenge 78. A recent 

study used sparse linear regression with bootstrap aggregation in a discrete-time Lotka-

Volterra model to identify Bacteriodes fragilis and Bacteriodes stercosis as the keystone taxa 170 

with disproportionate influence on the gut microbiome structure 22. This is encouraging 

because the algorithm statistically identified Bacteriodes fragilis as a keystone taxon, which 

already has empirical validity 64. 

  

Characterization and manipulation 175 
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While experimental manipulation (e.g., removing a putative keystone to assess the impact) is 

the popular choice among plant and animal ecologists, one of the fundamental challenges that 

microbiologists are confronted with is the characterization and manipulation of such taxa. 

Manipulating growth or co-culturing microbes on nutrient media or petri-dishes or in 

microcosms can be challenging owing to individual physiological requirements. There have 180 

been some exciting strategies in the last few years that employed novel approaches to tackle 

the uncultivability issue. Nichols et al. (2010), for example, developed the ichip that employs 

the diffusion chamber method and allows in situ cultivation of novel microbiota. Similarly, a 

“microbial trap” has been developed to capture and culture Actinobacteria in in situ 

conditions 80. On the other hand, on-chip microbial culture coupled with surface plasmon 185 

resonance allows in situ detection of novel and rare microbes 81. Droplet-based microfluidic 

technology also offers the opportunity to mimic natural conditions and co-cultivate 

synergistic microbial communities 82, while the microbiome-on-a-chip approach enables the 

study of microbial networks and their associations with host plants 83. Future studies may 

wish to include such promising approaches to isolate and characterize keystone taxa from 190 

various ecosystems. Removal of keystone taxa may lead to an alternative stable state (sensu 

84) of the microbial network, which results in dysfunction or even renewed functioning if the 

keystone originally had a negative impact. Future studies may also wish to experimentally 

manipulate microbial network structure in synthetic communities to assess whether the 

removal of keystone taxa disrupts microbiome functioning. 195 

 

Keystone taxa and influence on microbiome 

The influence irrespective of their abundance distinguishes keystone taxa from dominant 

taxa. A dominant species often affects ecosystem functioning or a specific process 

exclusively by virtue of sheer abundance (Figure 2A), whereas keystone taxa might exert its 200 
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influence on microbiome functioning irrespective of its abundance. The importance of 

keystone taxa may also be related to the broadness of a process, i.e., a process involving 

many steps and operated by functionally and taxonomically distinct microbial groups 1,85. For 

example, dominant taxa with large biomass or major energy transformations might influence 

broad processes such as denitrification or organic matter decomposition. On the other hand, 205 

the influence of rare keystone taxa might be stronger if a process is “narrow”, consisting of 

single steps (e.g., nitrogen fixation, ammonia oxidation, etc.) and operated by a small group 

of microbes 1,85. We postulate that the influence of rare keystone taxa on an ecosystem 

process is inversely proportional to the broadness. However, it should be noted that some 

keystone taxa such as Bacteriodetes thetaiotaomicron in the human intestine can be 210 

numerically dominant as well and thus the distinction between dominant and less abundant 

keystone taxa is not always true. Thus, whether numerically inconspicuous keystone taxa are 

more influential on narrow processes is a hypothesis that needs further investigation. 

Keystone taxa might resort to a range of strategies to exert an influence on a 

microbiome. For example, they might function via intermediate or effector groups. These are 215 

the groups whose abundance can be selectively modulated to regulate community structure 

and functioning 23,64. Such selective modulation might include promotion (commensalism) or 

suppression (ammensalism) of effector groups by secreting metabolites, antibiotics or toxins 

with themselves being unaffected. In humans, Porphyromonas gingivitis exerts its influence 

by causing dysbiosis, the community-wide change in relative abundance of other microbes, 220 

which thereby results in inflammation 32. Similarly, certain strains of Pseudomonas 

fluorescens produce a secondary metabolite (2,4-diacetylphloroglucinol) that suppresses 

Gaeumannomyces graminis var tritici, which causes the take-all disease in wheat 86. 

Alternatively, keystone taxa might produce bacteriocins to selectively alter microbiota 

composition. For example, bacteriocin production by Enterococcus faecalis can induce niche 225 
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competition in the gastrointestinal tract to change microbiota composition 87. Keystones 

might also engage in synergistic relationships and change the abundance of their partners. 

Some members of Burkholderia can act as an endosymbiont in arbuscular mycorrhizal fungi 

to change the abundance and community characteristics of this important group in soil 88, 

which subsequently may alter plant community richness and productivity 89. Thus, keystone 230 

taxa can employ different strategies to shape the microbiota in their favor, but the selection of 

a particular strategy would depend on the microenvironment. 

 

Putative drivers of keystone taxa 

The presence of keystone taxa in a microbiome does not necessarily guarantee their influence 235 

because a number of factors may still determine their distribution and efficacy (Figure 2B). 

For example, spatiotemporal heterogeneity can be a major driver of the abundance and 

distribution of keystone taxa 60,62,78. This is particularly true for soil, which is one of the most 

heterogeneous and multifaceted environments. Similarly, seasonal variability determines the 

structural and compositional properties of microbiomes in an environment, and as such, a 240 

keystone might only be present in a specific season or time period. 

The occurrence and functioning of a keystone will also depend on its position in the 

microbiome. Recently, the tenet of core microbiomes and holobionts has been proposed for 

humans 6,90, plants 91 and readers are referred to Hamady and Knight (2009) and 

Vandenkoornhuyse et al. (2015) for the taxonomic and functional definitions of a core 245 

microbiome. Keystone taxa might belong to the core microbiome that is consistently present 

in an environment regardless of changes in environmental conditions 90,91. In a seminal paper, 

Turnbaugh et al (2009) first presented the evidence of a core gut microbiome in obese and 

lean twins.  Recently, Yeoh et al. (2017) found an evolutionarily conserved core microbiome 

in plant roots and it is also fascinating that some of the well-known keystone taxa such as 250 
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Rhizobium, Bradyrhizobium and Burkholderia are also part of the core root microbiome. The 

contribution of keystone taxa would be higher if they are part of the core microbiome, 

highlighting the importance of such taxa for microbiome functioning 23. 

Microbiomes can also harbor keystone guilds or groups of keystone taxa with similar 

functioning 62 (Figure 2C). Examples of such guilds that can alter structure and dynamics of 255 

ecosystems are common in the animal world 94. Perhaps the most famous example is the three 

species of kangaroo rats that are a keystone guild in the Chihuahuan desert and have a strong 

impact on local biodiversity and biogeochemical processes 94. In the microbial world, 

keystone guilds may arise based on a number of factors such as complementary resource 

acquiring strategies, resource sharing, niche partitioning, spatiotemporal coherence, etc. 29,78. 260 

While numerically inconspicuous keystone taxa might have a greater influence on narrow 

processes, a keystone guild consisting of diverse keystone taxa within a community might 

also influence a broad process. Jones et al. (2014), for example, showed that certain key 

guilds of co-occurring denitrifiers can play a significant role in denitrification, a broad 

process operated by heterogeneous groups of microbes. We expect that examples of such 265 

keystone guilds will continue to rise in the future. Indeed, such guilds may be particularly 

powerful if they belong to the core microbiome.  

Keystone taxa or members of keystone guilds might be functionally redundant or their 

effect might be context dependent. For example, the effect might only be observed under a 

specific scenario whereas in other scenarios the species might be non-keystone or even 270 

nonexistent. Such context dependency or conditionality may be more common in 

environments with turbulence or high spatiotemporal variability 62. Thus, keystone taxa might 

not be always keystones in environments. A plausible challenge for assessing keystone taxa is 

also the fact that there might be a hysteresis effect i.e., time lag between the change in 

keystone taxa and their influence on microbiome functioning. With rapid microbial turnover, 275 
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identifying such lags can be a daunting task. Nonetheless, while we provided a list of 

potential drivers of keystone taxa, this is not exhaustive as there may be other factors 

influencing these taxa in the microbial world. 

 

Keystone in the light of rare species concept 280 

Keystone taxa underline the importance of numerically inconspicuous taxa for microbiome 

functioning, which is also congruent with the rare taxa concept. Indeed, the fundamental 

premise of keystone and rare taxa is the same: species abundance is not the best determinant 

of its contribution to the community 96. Importance of rare microbes have been observed for 

many biogeochemical processes including nitrification, denitrification, methanogenesis, 285 

methanotrophy and sulfate reduction (reviewed in REFS 96,97). A seminal example of the 

significance of rare microbes came from the study by Pester et al. (2010), who showed that 

Desulfosporosinus sp. ,which only represents 0.06% of the total community, plays a pivotal 

role in sulfate reduction and carbon flow in peatland soils. Rare biosphere has also been 

found important in human microbiome and even in depauperate ecosystems 97. Evidence of 290 

such low abundant taxa with an overproportional influence obviously raises the possibility 

that members of rare biosphere can also be keystone taxa.  

 

Next frontier 

Unexplored areas 295 

Network scores have been popular to statistically identify keystone taxa in recent years and it 

is important to continue this momentum to strengthen keystone repertoire. For example, 

information on keystone taxa from desert, tropical forest or vadose zone are rare or not 

available yet. Similarly, knowledge about how keystones respond to environmental 

disturbance, pathogen attack in plants, or medical intervention in humans would be valuable. 300 
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For example, it could be tested whether keystone taxa help microbiome resilience against 

perturbations. Keystone taxa in plant invasion is an equally interesting area, especially in the 

light of observations that some invasive tree species cannot establish without their microbial 

symbionts or that invasive species alter the soil microbiome 99. Moreover, our knowledge of 

fungal, archaeal  and protistan keystones is negligible and only a few studies have considered 305 

fungal-bacteria, or fungal-archaeal and bacterial-archaeal co-occurrence networks 38,39. Thus, 

a cross-domain network may reveal how members of different taxonomic groups associate 

with each other or if they have overlap in resource sharing. An intriguing question is whether 

keystones in microbial communities follow similar ecological principles (e.g., drift, dispersal, 

diversification, environmental selection; sensu 12) as keystones in plant or animal kingdoms. 310 

 

Linking keystone taxa to ecosystem processes 

Linking community structure to function is a central goal in microbial ecology11 and it is 

necessary to extend microbial co-occurrence patterns and keystone taxa to ecosystem 

processes (Figure 3). Studies investigating keystone taxa may wish to include promising 315 

culturing approaches to explore complex ecological relationships such as commensalism and 

ammensalism in natural conditions and assess the effect of keystones. The actual importance 

of keystone taxa to microbiome functioning and ecosystem processes can only be derived 

from robust functional profiling using the latest tools such as RNA-stable isotope probing100 

coupled with metatranscriptomics or metaproteomics. Upon identifying keystone taxa in an 320 

environment, it could also be tested if there are structural keystones and functional keystones 

depending on whether they affect microbiome structure or functioning. Since any change in 

microbiome structure may also have consequences for microbiome functioning, a clear 

distinction between structural and functional keystones in microbial communities is 

questionable. Nonetheless, the latest molecular tools have empowered microbiologists to test 325 
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such theories and ideas. The contribution of microbial communities for ecosystem processes 

is often missing or insignificant in ecosystem models 5. These models mostly consider the 

overall community characteristics (abundance, composition, diversity), which might blur the 

actual contribution of important microbial members. Keystone taxa observed across habitats 

and studies might be the missing piece of the puzzle that could help microbial ecologists 330 

explain the unexplained variation in ecosystem processes. 

 

Concluding remarks 

Beyond the dominant taxa with large biomass or major energy transformations, keystone taxa 

can orchestrate microbiota to perform ecosystem processes. The number of studies 335 

investigating keystones is rising exponentially and we expect this to continue in the next few 

years. With the noticeable exception of keystone pathogens in the human microbiome, 

keystone taxa are mainly identified through network based scores. To quantify the 

contribution of keystone taxa to microbiome functioning, microbial ecologists need to 

employ the latest microbiological and analytical techniques, and move beyond mere 340 

description of their occurrence in different ecosystems. The conceptual and empirical insights 

presented in this opinion article can be useful for future microbiological studies. 

 

 

 345 

Acknowledgements 

We thank the Swiss National Science Foundation (Grant No. 31003A_166079) for the 

financial support. We also thank three reviewers whose constructive comments and insightful 

suggestions greatly improved the quality of the manuscript.



16 

 

References 350 

1. Fierer, N. Embracing the unknown: disentangling the complexities of the soil 

microbiome. Nat. Rev. Microbiol. (2017). doi:10.1038/nrmicro.2017.87 

2. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem 

functioning. Nature 515, 505–511 (2014). 

3. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 355 

459, 193–9 (2009). 

4. van der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen 

majority: Soil microbes as drivers of plant diversity and productivity in terrestrial 

ecosystems. Ecol. Lett. 11, 296–310 (2008). 

5. Graham, E. B. et al. Microbes as engines of ecosystem function: When does 360 

community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 

1–10 (2016). 

6. Hamady, M. & Knight, R. Microbial community profiling for human microbiome 

projects: Tools, techniques, and challenges. Genome Res. 19, 1141–1152 (2009). 

7. Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to 365 

explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 

(2012). 

8. Banerjee, S. et al. Determinants of bacterial communities in Canadian agroforestry 

systems. Environ. Microbiol. 18, 1805–1816 (2016). 

9. Zhang, Z. et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-370 

associated intestinal microbiota. ISME J. 8, 881–893 (2014). 

10. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community 

dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015). 

11. Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. 

Microbiol. 5, 384–392 (2007). 375 

12. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. a. The 

Application of Ecological Theory. 336, 1255–1262 (2012). 

13. Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and 

evolution. Trends Ecol. Evol. 20, 345–353 (2005). 

14. Zhou, J. et al. Functional molecular ecological networks. MBio 1, e00169-10 (2010). 380 

15. Reshef, D. N. et al. Detecting novel associations in large data sets. Science (80-. ). 334, 

1518–1524 (2011). 

16. Ruan, Q. et al. Local similarity analysis reveals unique associations among marine 

bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 

(2006). 385 

17. Friedman, J. & Alm, E. J. Inferring Correlation Networks from Genomic Survey Data. 

PLoS Comput. Biol. 8, 1–11 (2012). 

18. Faust, K. et al. Microbial co-occurrence relationships in the Human Microbiome. PLoS 

Comput. Biol. 8, (2012). 

19. Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in 390 

sensitivity and precision. ISME J 10, 1–13 (2016). 

20. Agler, M. T. et al. Microbial Hub Taxa Link Host and Abiotic Factors to Plant 

Microbiome Variation. PLoS Biol. 14, 1–31 (2016). 

21. Gilbert, J. a et al. Defining seasonal marine microbial community dynamics. ISME J. 

6, 298–308 (2012). 395 

22. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome 

from metagenomic timeseries using sparse linear regression. PLoS One 9, 1–10 (2014). 

23. Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & de Vos, W. M. Intestinal 

microbiome landscaping: Insight in community assemblage and implications for 



17 

 

microbial modulation strategies. FEMS Microbiol. Rev. 41, 182–199 (2017). 400 

24. Vick-Majors, T. J., Priscu, J. C. & Amaral-Zettler, L. A. Modular community structure 

suggests metabolic plasticity during the transition to polar night in ice-covered 

Antarctic lakes. ISME J. 8, 778–89 (2014). 

25. Gokul, J. K. et al. Taxon interactions control the distributions of cryoconite bacteria 

colonizing a High Arctic ice cap. Mol. Ecol. 25, 3752–3767 (2016). 405 

26. Comte, J., Lovejoy, C., Crevecoeur, S. & Vincent, W. F. Co-occurrence patterns in 

aquatic bacterial communities across changing permafrost landscapes. Biogeosciences 

13, 175–190 (2016). 

27. Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone 

species with co-occurrence networks. Front. Microbiol. 5, 1–14 (2014). 410 

28. Paine, R. T. Food Web Complexity and Species Diversity. Am. Nat. 100, 65–75 

(1966). 

29. Nunez, M.A., Dimarco, R. D. Keystone Species. The Berkshire Encyclopedia of 

Sustainability: Ecosystem Management and Systainability (2012). 

30. Hector, A. et al. Plant diversity and productivity experiments in European grasslands. 415 

Science (80-. ). 286, 1123–1127 (1999). 

31. Curtis, M. M. et al. The gut commensal bacteroides thetaiotaomicron exacerbates 

enteric infection through modification of the metabolic landscape. Cell Host Microbe 

16, 759–769 (2014). 

32. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory 420 

periodontal disease through the commensal microbiota and complement. Cell Host 

Microbe 10, 497–506 (2011). 

33. Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity 

loss in food webs: robustness increase with connectance. Ecol. Lett. 5, 558–567 

(2002). 425 

34. Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 

(2012). 

35. Lupatini, M. et al. Network topology reveals high connectance levels and few key 

microbial genera within soils. Front. Environ. Sci. 2, 1–11 (2014). 

36. Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological 430 

network of soil microbial communities in response to elevated CO2. MBio 2, e00122-

11 (2011). 

37. Eldridge, D. J. et al. Soil-foraging animals alter the composition and co-occurrence of 

microbial communities in a desert shrubland. ISME J. 9, 1–11 (2015). 

38. Ma, B. et al. Geographic patterns of co-occurrence network topological features for 435 

soil microbiota at continental scale in eastern China. ISME J. 10, 1–11 (2016). 

39. Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa 

amongst bacterial and fungal communities during organic matter decomposition in an 

arable soil. Soil Biol. Biochem. 97, 188–198 (2016). 

40. Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community 440 

composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017). 

41. Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial Community Structure after 

Long-term Organic and Inorganic Fertilization Reveals Important Associations 

between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. 

Microbiol. 8, (2017). 445 

42. Liang, Y. et al. Long-term oil contamination alters the molecular ecological networks 

of soil microbial functional genes. Front. Microbiol. 7, 1–13 (2016). 

43. Wang, H. et al. Combined use of network inference tools identifies ecologically 

meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 



18 

 

(2017). 450 

44. Hill, R. et al. Temporal and spatial influences incur reconfiguration of Arctic 

heathland soil bacterial community structure. Environ. Microbiol. 18, 1942–1953 

(2016). 

45. Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-

occurrence of environmental antibiotic resistance genes. ISME J. 9, 1–13 (2015). 455 

46. Yang, S. et al. Hydrocarbon degraders establish at the costs of microbial richness, 

abundance and keystone taxa after crude oil contamination in permafrost 

environments. Sci. Rep. 6, 37473 (2016). 

47. Chao, Y. et al. Structure, variation, and co-occurrence of soil microbial communities 

in abandoned sites of a rare earth elements mine. Environ. Sci. Technol. 50, 11481–460 

11490 (2016). 

48. Jiao, S. et al. Bacterial communities in oil contaminated soils: Biogeography and co-

occurrence patterns. Soil Biol. Biochem. 98, 64–73 (2016). 

49. Shi, S. et al. The interconnected rhizosphere: High network complexity dominates 

rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016). 465 

50. Yan, Y., Kuramae, E. E., De Hollander, M., Klinkhamer, P. G. & Van Veen, J. A. 

Functional traits dominate the diversity-related selection of bacterial communities in 

the rhizosphere. ISME J. 11, 1–11 (2016). 

51. Geng, H., Tran-Gyamfi, M. B., Lane, T. W., Sale, K. L. & Yu, E. T. Changes in the 

structure of the microbial community associated with Nannochloropsis salina 470 

following treatments with antibiotics and bioactive compounds. Front. Microbiol. 7, 

1–13 (2016). 

52. Graham, E. B. et al. Deterministic influences exceed dispersal effects on 

hydrologically-connected microbiomes. Environ. Microbiol. 1–44 (2017). 

doi:10.1111/1462-2920.13720 475 

53. Ji, Y. et al. Structure and function of methanogenic microbial communities in 

sediments of Amazonian lakes with different water types. Environ. Microbiol. 18, 

5082–5100 (2016). 

54. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic 

bacteria. Proc. Natl. Acad. Sci. U. S. A. 105, 17861–6 (2008). 480 

55. Zhao, D. et al. Network analysis reveals seasonal variation of co-occurrence 

correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ. 

573, 817–825 (2016). 

56. Maldonado-Contreras, A. et al. Structure of the human gastric bacterial community in 

relation to Helicobacter pylori status. ISME J. 5, 574–579 (2011). 485 

57. Trosvik, P. & de Muinck, E. J. Ecology of bacteria in the human gastrointestinal 

tract—identification of keystone and foundation taxa. Microbiome 3, 44 (2015). 

58. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation 

of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009). 

59. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone 490 

species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–

1543 (2012). 

60. Mills, L. S. & Doak, D. F. The Keystone-Species Concept in Ecology and 

Conservation. BioScience 43, 219–224 (1993). 

61. Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: a critical 495 

appraisal. Front. Biogeogr. 4, 217–220 (2012). 

62. Power, M. E. et al. Challenges in the Quest for Keystones. Bioscience 46, 609–620 

(1996). 

63. Paine, R. T. A note on trophic complexity and community stability. The American 



19 

 

Naturalist 103, 91–93 (1969). 500 

64. Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. 

Nat. Rev. Microbiol. 10, 717–25 (2012). 

65. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. 

Microbiol. 10, 538–550 (2012). 

66. Cardona, C., Weisenhorn, P., Henry, C. & Gilbert, J. A. Network-based metabolic 505 

analysis and microbial community modeling. Curr. Opin. Microbiol. 31, 124–131 

(2016). 

67. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001). 

68. Newman, M. E. J. The structure and function of complex networks. Soc. Ind. Appl. 

Math. Rev. 45, 167–256 (2003). 510 

69. Newman, M. E. J. The structure and function of complex networks. E-Print Cond-

Mat/0303516 45, 167–256 (2003). 

70. van der Heijden, M. G. A. & Hartmann, M. Networking in the Plant Microbiome. 

PLoS Biol. 14, 1–9 (2016). 

71. Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based 515 

approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011). 

72. Steele, J. A. et al. Marine bacterial, archaeal and protistan association networks reveal 

ecological linkages. ISME J. 5, 1414–25 (2011). 

73. Andreote, F. D. et al. Culture-independent assessment of rhizobiales-related 

alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and 520 

rhizoplane of transgenic eucalyptus. Microb. Ecol. 57, 82–93 (2009). 

74. Van Der Heijden, M. G. A. et al. Symbiotic bacteria as a determinant of plant 

community structure and plant productivity in dune grassland. FEMS Microbiol. Ecol. 

56, 178–187 (2006). 

75. Herren, C. M. & McMahon, K. D. Small subsets of highly connected taxa predict 525 

compositional change in microbial communities. bioRxiv (2017). 

doi:http://dx.doi.org/10.1101/159087 

76. Grace, J. B., Anderson, T., Olff, H. & Scheiner, S. On the specification of structural 

equation models for ecological systems. Ecol. Monogr. 80, 67–87 (2010). 

77. Lamb, E. G., Shirtliffe, S. J. & May, W. E. Structural equation modeling in the plant 530 

sciences: An example using yield components in oat. Can. J. Plant Sci. 91, 603–619 

(2011). 

78. Mouquet, N., Gravel, D., Massol, F. & Calcagno, V. Extending the concept of 

keystone species to communities and ecosystems. Ecol. Lett. 16, 1–8 (2013). 

79. Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of ‘uncultivable 535 

microbial species’. Appl. Environ. Microbiol. 76, 2445–2450 (2010). 

80. Gavrish, E., Bollmann, A., Epstein, S. & Lewis, K. A trap for in situ cultivation of 

filamentous actinobacteria. J. Microbiol. Methods 72, 257–262 (2008). 

81. Bouguelia, S. et al. On-chip microbial culture for the specific detection of very low 

levels of bacteria. Lab Chip 13, 4024 (2013). 540 

82. Park, J., Kerner, A., Burns, M. A. & Lin, X. N. Microdroplet-enabled highly parallel 

co-cultivation of microbial communities. PLoS One 6, (2011). 

83. Stanley, C. E. & van der Heijden, M. G. A. Microbiome-on-a-chip: New frontiers in 

plant–microbiota research. Trends Microbiol. 25, 610–613 (2017). 

84. Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative 545 

equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993). 

85. Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. 

Microbiol. 3, 1–11 (2012). 

86. Raaijmakers, J. M. & Weller, D. M. Natural plant protection by 2,4-



20 

 

diacetylphloroglucinol - Producing Pseudomonas spp. in take-all decline soils. Mol. 550 

Plant-Microbe Interact. 11, 144–152 (1998). 

87. Kommineni, S. et al. Bacteriocin production augments niche competition by 

enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015). 

88. Heijden, M. G. A. Van Der, Martin, F. M. & Sanders, I. R. Mycorrhizal ecology and 

evolution : the past , the present , and the future. New Phytol. 205, 1406–1423 (2015). 555 

89. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant 

biodiversity , ecosystem variability and productivity. Nature 396, 69–72 (1998). 

90. Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core 

microbiome. Environ. Microbiol. 14, 4–12 (2012). 

91. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The 560 

importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 

(2015). 

92. Turnbaugh, P. J. et al. A core gut microbiom in obese and lean twins. Nature 457, 

480–484 (2009). 

93. Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant 565 

phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017). 

94. Brown, J. H. & Heske, E. J. Control of a Desert-Grassland Transition by a Keystone 

Rodent Guild. Science (80-. ). 250, 1705–1707 (1990). 

95. Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink 

capacity. Nat. Clim. Chang. 4, 801–805 (2014). 570 

96. Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. 

Rev. Microbiol. 13, 217–229 (2015). 

97. Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems 

strings. ISME J. 1–10 (2017). doi:10.1038/ismej.2016.174 

98. Pester, M., Bittner, N., Deevong, P., Wagner, M. & Loy, A. A ‘rare biosphere’ 575 

microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1591–602 

(2010). 

99. Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by 

disrupting belowground mutualisms. PLoS Biol. 4, 727–731 (2006). 

100. Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope 580 

probing, a novel means of linking microbial community function to phylogeny. Appl. 

Environ. Microbiol. 68, 5367–5373 (2002). 
 



21 

 

Figures 

 

 
 

 

Figure 1. A) Modularity and keystone taxa in microbial networks. Nodes (oval shaped) 

represent OTUs and solid lines represent edges i.e., relationships among nodes. A network 

consisting of many taxa (nodes), without any highly interacting hub or keystone taxa. This 

network is similar to a random network that has a Poisson distribution of edges per node i.e., 

most nodes have similar number of edges and no highly interconnected nodes. A microbial 

network without any modules but with two hubs or keystone taxa. This is a scale-free 

network that has a power-law distribution of edges i.e., only two nodes are highly 

interconnected holding the network together. Highly interacting keystones positioned in two 

distinct clusters or modules. These keystone groups are holding the modules together. Thus, 

removal of such keystones may cause dramatic shift in the composition. B)  Empirical 

evidence of keystone taxa in the human, plant and soil microbiomes. The numbers given in 

parentheses refer to the respective studies showing the keystone performance of these taxa. 
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Figure 2. Conceptual diagram showing the concept of keystone taxa in microbial 

communities and the factors influencing their functioning in an environment. A) Distinction 

between the modes of operation of dominant- and keystone taxa. The dominant taxa (light 

orange) affect microbiome functioning exclusively by virtue of sheer abundance, whereas 

keystone taxa (green) exert its influence irrespective of their abundance. Since the impact of 

dominant species on a process is primarily due to greater abundance, broadness of that 

process is less important. Here broadness implies that a particular process consists of many 

steps and are operated by diverse microbial groups. However, keystone taxa exert influence 

via selective modulation and might have a greater influence on narrow processes i.e., the 

processes that consist of single or a few steps and are operated by selected groups of 

microbes. B) Environmental and ecological factors that may determine the distribution and 

performance of keystone taxa in an environment. C) Hypothetical diagram showing various 

modes of functioning of keystones in an environment. Individually, keystone taxa might have 

greater influence on a narrow process (e.g., biological nitrogen fixation performed by highly 

specific microbes). On the other hand, a keystone guild comprising multiple keystone taxa 

within a community might also be able to influence a broad process. 
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Figure 3. Hypothetical diagram illustrating the tools for linking keystone taxa to ecosystem 

functioning and the research areas where keystone taxa can be employed. While network 

analysis can be used to statistically identify keystone taxa in microbial networks, it is 

important to link such taxa to ecosystem processes. With the advent of newer tools such as 

chip or culture-based methods, keystone taxa can be isolated from environments and cultured 

or co-cultured. Functional profiling of such taxa can be performed using RNA-stable isotope 

probing coupled with metatranscriptomics or metaproteomics. Upon functional profiling, the 

relative importance can be estimated through microbiome modelling. Such models involving 

causal relationships can be used to reveal the contribution of keystone taxa to ecosystem 

processes. 
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Table 1. Summary of studies reporting keystone taxa in different ecosystems. Within each ecosystem, studies 

are listed alphabetically. Members of Rhizobiales and Burkholderiales are consistently present as keystone taxa 

across ecosystem types, except for human microbiome. Keystones across individual studies and links between 

keystone taxa and specific microbial ecosystem processes as reported in relevant studies are shown in Table S1. 

 

Ecosystem/habitat Keystone taxa References 

Computational inference  

Grasslands Burkholderiales; Sphingobacteriales 

Clostridiales; Actinomycetales 

Acidobacteria GP4 

Deng et al. 2012; Lupatini et al., 

2014;  Zhou et al., 2011 

   

Forest/woodlands Actinomycetales; Acidobacteria_Gp4 

Rhizobiales; Burkholderiales  

Clostridiales; Sphingobacteriales 

Rhodobacteriales; Verrucomicrobia 

Banerjee et al., 2016; Ding et al., 

2015; Eldridge et al., 2015; 

Lupatini et al., 2014; 

Ma et al., 2016 

   

Agricultural Gemmatimonas; Acidobacteria_GP17; 

Xanthomonadales; Rhizobiales; Burkholderiales  

Solirubrobacteriales; Verrucomicrobia 

Jiang et al., 2017; Liang et al., 

2016; Lupatini et al., 2014; Wang 

et al., 2017  

 

   

Arctic/Antarctic Rhizobiales; Burkholderiales 

Actinobacteria, Alphaproteobacteria 

Comte et al., 2016; Gokul et al., 

2016; Hill et al., 2016; Yang et 

al., 2016 

   

Contaminated soil Rhizobiales; Nitrospira;  

Pseudomonadales; Actinobacteria 

Chao et al., 2016; Jiao et al., 2016 

   

Plant associated 

microbiota 

Acidobacteria_GP1, GP3, GP6 

Rhizobiales; Burkholderiales 

Pseudomonadales; Bacteriodetes  

Frankiales 

Jiang et al., 2017; Shi et al., 2016; 

Yan et al., 2016; 

   

Aquatic Pelagibacter; Oceanospirillales 

Flavobacteriaceae; Nitrospira 

Rhodobacteriadaceae Alteromonadaceae; 

Chromatium; Rhizobiales; Burkholderiales 

Chlorobium; Verrucomicrobia, 

Chloracidobacteria, Chloroflexi, OP3 

Geng et al., 2016; Graham et al., 

2017; Ji et al., 2016 

Musat et al., 2008; Steele et al., 

2011; Vick-Majors et al., 2014; 

Zhao et al., 2016;  

   

Empirical evidence   

Agricultural* Gemmatimonas; Acidobacteria  Banerjee et al., 2016b; Li et al., 

2017 

Phyllosphere Albugo, Dioszegia Agler et al., 2016 

   

Human microbiome   

Oral microbiome Porphyromonas gingivitis Hajishengallis et al., 2011 

 Streptococcus gordonii Hajishengallis et al., 2012 

   

Gut microbiome Helicobacter pylori; Methanobrevibacter smithii; 

Actinobacteria; Bacteriodes fragilis; Bacteriodes 

stercosis; Bacteriodetes thetaiotaomicron; 

Ruminococcus bromii; Klebsiella pneumoniae; 

Proteus mirabilis 

Curtis et al., 2014;  Fisher and 

Mehta, 2014; Garrett et al., 2010; 

Maldonado-Contreras et al., 2011; 

Shetty et al., 2017; Trosvik and 
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de Muinck, 2015; Wu et al., 2009; 

Ze et al., 2012 

*Keystone taxa were initially identified using network based scores and linked to organic matter decomposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOX 1. Microbial co-occurrence and network analysis                    
The number of papers on Web of Science database reporting microbial network 

analysis and keystone taxa is increasing exponentially as shown in the figure 

below. Papers were searched until 2016 using the keywords microbial network 

analysis and microbial keystone. A wide range of methods and algorithms are 

available to construct microbial networks with each having its own usefulness. 

Starting with basic Pearson or Spearman rank correlation based approaches7,14, 

microbial networks quickly evolved to incorporate more robust methods. For 

example, maximal information coefficient (MIC) developed by Reshef et al 

(2011), relies on equitability and generality of relationships, and can yield a 

variety of linear and nonlinear associations among microbes that can be 

interpreted similar to coefficient of determination i.e. r
2
. Local similarity 

 

analysis (LSA) that detects change in 

abundance of operational taxonomic 

units (OTUs) over time in an 

environment, is particularly useful for 

analyzing microbial temporal 

variability data 16, whereas SparCC  is 

especially suited for compositionally 

diverse microbial data 17. On the other 

hand, ensemble approach (CoNet) can 

use multiple measures (similarity, 

correlation, mutual information) with 

generalized boosted linear model to 

generate comprehensive networks 18. 

Recently, Weiss et al (2016) found 

LSA, MIC and SparCC are well-suited 

for both count and compositional data 

and are less sensitive to distribution 

shape of data, whereas CoNet ensemble approach performs better for data with 

high scatteredness or sparsity. However, they also noted that different 

approaches may yield different results and significance levels for the same 

dataset, and while the scores obtained from thousands of pairwise correlations 

are typically corrected for Type I error using Bonferroni or false discovery 

rate, extremely rare OTUs or OTUs with large number of zeros should be 

avoided for network construction. 




