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Keystroke dynamics can be useful to ascertain personal identity even after an authentication phase
has been passed, provided that we are able to deal with the typing rhythms of free text, chosen and
entered by users without any specific constraint. In this paper we present a method to compare
typing samples of free text that can be used to verify personal identity. We have tested our technique
with a wide set of experiments on 205 individuals, obtaining a False Alarm Rate of less than 5%
and an Impostor Pass Rate of less than 0.005%. Different trade-offs are, however, possible. Our
approach can rely on what is typed by people because of their normal job, and a few lines of text,
even collected in different working sessions, are sufficient to reach a high level of accuracy, which
improves proportionally to the amount of available information: As a consequence, we argue that
our method can be useful in computer security as a complementary or alternative way to user
authentication and as an aid to intrusion detection.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
controls, authentication

General Terms: Experimentation, Security

Additional Key Words and Phrases: Biometric techniques, keystroke analysis of free text, identity
verification

1. INTRODUCTION

Biometrics is the term used to indicate a set of physiological and behav-
ioral human characteristics that may allow verification of personal identity.
Biometric techniques, based on physiological features (such as iris and facial
analysis, palm topology, hand geometry, and vein patterns), are considered
more successful than those based on behavioral characteristics (such as speech,
keystroke, and hand-writing analysis) [Ashbourn 2000a]. One reason is prob-
ably that physiological features are very stable and, in normal conditions, do
not vary with time. On the contrary, behavioral features can be greatly influ-
enced by transient situations, such as stress or illness. They also show a certain
degree of instability even without any evident reason.

In the case of computer security, keystroke analysis is appealing for many
reasons. First, it is not intrusive, since users will be typing on the computer
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keyboard anyway. Second, it is relatively inexpensive to implement, since the
only hardware required is the computer. Finally, but very important, typing
rhythms are still available after an authentication phase has passed (or been
fooled), since keystrokes exist as a mere consequence of users using computers.

A serious problem exists when analyzing typing rhythms. Keystrokes, un-
like other biometric features, convey an unstructured and very small amount of
information. From two consecutive keystrokes we may just extract the elapsed
time between the release of the first key and the depression of the second (the
so-called digraph latency) and the amount of time each key is held down (the
keystroke duration), a pretty shallow kind of information. Moreover, this in-
formation may vary not only because of the intrinsic instability of behavioral
characteristics, but because different keyboards can be used, different environ-
mental conditions exist, and, above all, because typing rhythms also depend on
the entered text.

In order to deal with the instability of typing rhythms, most research in
the field of keystroke analysis limited the experiments to samples produced
from structured, predefined text. Moreover, since having to enter long fixed
texts (both when building users’ profiles and during the verification phase)
is obviously tedious, researchers strived to work with relatively short sam-
ple phrases. In many cases, experimental results are controversial. Either the
attained level of accuracy is far from being acceptable, or good performance
is achieved under very special conditions, which is hard to maintain in real
applications [Bergadano et al. 2002].

We prefer to take a different approach. We believe that, at the current state
of the art, keystroke analysis cannot be performed with very short texts. Tim-
ing analysis on such texts does not provide a sufficient amount of information
to discriminate accurately among legal users and impostors. On the contrary, if
relatively long sample texts are accepted, keystroke analysis can become a valid
tool to ascertain personal identity. However, if short texts do not provide suffi-
cient timing information, and if long predefined texts to be entered repeatedly
are unacceptable, we are left with only one possible solution: using the typing
rhythms users show during their normal interaction with a computer. In other
words, we have to be able to deal with the keystroke dynamics of free text.

In this paper, we describe a method that analyzes typing samples of free text,
which is the natural evolution of the basic technique and system [Gunetti and
Bergadano 2002] we introduced in Bergadano et al. [2002], and that performed
well for fixed text. We have tested our method on a wide set of experiments
involving 205 volunteers, reaching a False Alarm Rate (FAR) of less than 5%
and an Impostor Pass Rate (IPR) of 0.00489% (that is, less then one unnoticed
impostor out of 20,000 attempts), for samples of free text of about 800 charac-
ters long, on average. A different trade-off can be easily set up in our system: for
example, by accepting a FAR of 6.66%, we reach an IPR of 0.000889%: less than
one unnoticed impostor out of 110,000 attacks. We suggest that the ability to
deal with free text makes keystroke analysis useful within computer security,
for example, as an aid to intrusion detection and as an alternative or comple-
mentary way to authenticate users, as we discuss in the last section of the
paper.
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2. RELATED WORK

Within keystroke analysis literature, the distinction between static and dy-
namic (or continuous) analysis is often made. Static keystroke analysis means
essentially that the analysis is performed on typing samples produced using
the same predetermined text for all the individuals under observation. Most
systems fall within this category, [e.g., Umphress and Williams 1985; Leggett
and Williams 1988; Joyce and Gupta 1990; Bleha et al. 1990; Brown and Rogers
1993; Obaidat and Sadoun 1997; Bergadano et al. 2002; Clarke et al. 2003]. The
intended application of static analysis is at login time, in conjunction with, or
in place of, other authentication methods.

Dynamic analysis implies a continuous or periodic monitoring of issued
keystrokes and is intended to be performed during a log-in session, after the
authentication phase has passed. Unfortunately, the term dynamic is often
misleading. In fact, in most cases, the experiments are still performed using
a unique, or a small number of predetermined texts, and the term “dynamic”
accounts only for the fact that authentication is attempted before the text is
complete, by using only a varying fraction of the entered keystrokes (e.g., the
first 100 or 200 keystrokes), such as in Leggett et al. [1991] and Furnell et al.
[1996]. However, it should be obvious that keystroke analysis performed after
the authentication phase should deal with the typing rhythms of whatever is
entered by the users. In other words, it should deal with free text. For this rea-
son, we consider the aforementioned systems still based on essentially static
keystroke analysis.

Since the terms static and dynamic may generate confusion, we prefer to
speak of keystroke analysis based on fixed (sometimes also referred to as struc-
tured) text, or on free text. The former term should be adopted in all cases when
the text used to perform the analysis is constrained in some way. The latter
term applies when users are free to type whatever they want and keystroke
analysis is performed on the available information. It should be clear that
the analysis of free text is dynamic by definition, since even the length of the
text is free. Of course, a minimum amount of text is needed in order to make
the analysis of the typing dynamics meaningful. From this point of view, all
systems cited so far should be considered as based on the analysis of fixed
text.

The literature on keystroke analysis of “true” free text is pretty limited.
Monrose and Rubin [1997] collected typing samples from 42 users in about
7 weeks, but experiments were only conducted on 31 users, as 11 profiles had to
be eliminated due to erroneous timing results. Participants ran the experiment
from their own machines at their convenience. They had to type a few sentences
from a list of available phrases and/or to enter a few completely free sentences.
It is unknown how many characters had to be typed by each user to form his/her
own reference profile. Profiles contain the mean latency and standard deviation
of digraphs as well as the mean duration and standard deviation of keystrokes.
When forming a profile, each latency and duration is compared with its respec-
tive mean and any values greater than T·standard deviations above the mean
(that is, outliers) are discarded from the profile. The means of the remaining
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latencies and durations are then recalculated. According to the authors, for
T = 0.5, more than 50% of the data was discarded.

Testing samples are manipulated in the same way by discarding outliers
and so turned into testing profiles to be compared to the reference profiles us-
ing three different distance measures. A profile is treated as a N-dimensional
pattern vector, where a feature (a digraph or a keystroke) has a mean value
0.0 if the number of its occurrences in the profile is less than a threshold value
determined experimentally. In the first experiment, authors use the Euclidean
distance between each testing and reference profile.1 The testing profile is clas-
sified as belonging to the user whose reference profile provides the smallest
Euclidean distance. In the second experiment, authors consider the actual value
X ij of the j th occurrence of each component X i in a testing pattern vector U
that is compared against a reference vector R. A score is computed for each
X ij using the mean µi and standard deviation σi of the same component in
R: the higher the probability of observing the value X ij in R, given µi and σi,
the higher the score. U is then associated with the person who provided the
reference vector that maximizes the score. The last experiment is made in a
similar way, but adding weights to digraphs, in order to give more importance
to those that occur more frequently in English (such as er or th w.r.t. qu or ts).
When both the samples to be classified and users’ profiles are of fixed text, the
authors attain an outcome of about 90% of correct classification. However, when
free text is used both to build users’ profiles and for the samples to be classified,
performance falls to 23% of correct classification in the best case (that is, using
the weighted probability measure).

Works reported in Dowland et al. [2001] and Dowland et al. [2002] are in-
teresting, especially for the adopted experimental setting. In Dowland et al.
[2001] four users are monitored continuously for some weeks during their nor-
mal activity on computers running Windows NT. Hence, the production of typing
samples by the users is not constrained in any way. Users’ profiles are deter-
mined by computing the mean and standard deviation of digraph latency; only
digraphs that occur a minimum number of times in different typing samples
are kept. Nonetheless, profiles contain thousands of digraphs. A new sample U
to be classified is compared against users’ profiles, so that each digraph D in
U is marked as “accepted” by the system if its mean latency falls within the
interval defined by Dp

θ ± w·Dp
σ (where Dp

θ and Dp
σ are the mean and standard

deviation of the corresponding digraph in users’ profiles and w is a weighting
factor). U is then attributed to the user whose profile provides the largest num-
ber of “accepted” digraphs. In this way, 50% of correct classification is achieved.
The experiments are refined in Dowland et al. [2002], which includes five users
and reaches correct acceptance rates slightly below 60%. No global information
is given about the rejection rate of a user’s sample compared against someone
else’s profile, but, in the case of two users, it looks to be about 75% for one user
and about 85% for the other.

1That is, the Euclidean distance between the two corresponding vectors of mean values.

ACM Transactions on Information and System Security, Vol. 8, No. 3, August 2005.



316 • D. Gunetti and C. Picardi

To our knowledge, the above works are the only ones concerning keystroke
analysis of free text found in the literature. Thus, we are left to analyze the
aforementioned systems performing “dynamic” keystroke analysis. We refer to
Bergadano et al. [2002] for a description of “static” keystroke analysis systems.
In Leggett et al. [1991], 36 individuals were asked to type the same text of 537
characters twice, with a delay of at least 1 month between the first and the
second sample. The first sample is used as a model of the user, while the second
sample is analyzed dynamically to be accepted or rejected. The second sample
of each individual is also used to “attack” every other individual. As a conse-
quence, there are 36 legal connection attempts and 1260 attack attempts (each
individual pretends to be one of the other 35 ones). To build a user’s model,
authors extract from the first sample the eight digraphs that occur more fre-
quently and compute their mean latency and relative standard deviation. The
second sample of each user is compared to a user’s profile as follows. Starting
with the first digraph of the sample, the algorithm analyzes the next digraph in
the sample and takes one of three actions: (1) accepts the sample as belonging
to the same user of the reference profile; (2) rejects the sample as belonging to
an impostor, and (3) neither accepts nor rejects the sample, but continues with
the next digraph in the sample.

In order to make a decision, at every incoming digraph D, the algorithm be-
haves essentially like in the previous described work. If D does not occur in the
current user’s profile, the algorithm simply moves to the next digraph in the
sample. Otherwise, the mean latency of D, Dθ , is compared with the correspond-
ing mean (Dp

θ ) and standard deviation (Dp
σ ) in the profile. D is “accepted” if Dθ

falls within Dp
θ ± δ·Dp

σ for some positive value δ, to be determined experimen-
tally. Otherwise, D is “rejected.” The algorithm collects a number of “accepted”
and “rejected” digraphs as it moves from one to the next in the sample. When
a certain ratio A/R of “accepted” versus “rejected” digraphs is reached, the
algorithm can finally accept or reject the entire sample. By careful tuning of
parameters δ and A/R, on the basis of the available samples, the authors are
able to reach a 11.1% FAR and a 12.8% IPR over the whole text, with many of
the impostors rejected within the first 100 keystrokes of the testing sample.

In Furnell et al. [1996], 30 subjects were required to enter the same reference
text of 2200 characters twice. These samples are used to form users’ profiles by
storing latency mean and standard deviation of digraphs. Each user was also
required to provide other two samples of 574 and 389 characters that were used
to attack all other users, for a total of 29 ·30 ·2 = 1740 impostors’ attacks. Much
like in the case of the last two works described, a digraph D in the attacking
sample is marked as “invalid” by the system if its latency does not fall within
the interval defined by Dp

θ ± 1.5·Dp
σ , where P is the profile of the attacked

user. If the ratio between the number of invalid digraphs and the total number
of digraphs in the attacking sample reaches a predetermined threshold, the
sample is rejected. For each user, the typing samples of 574 and 389 characters
are used to set up a personal threshold in order to guarantee that the two
samples would be accepted if compared against the reference profile of the user.
In other words, the system is set up in advance to have a 0% FAR and then run
to see what happens to the corresponding IPR. Authors report a 15% IPR with
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26% of the impostors detected when only the first 40 characters of the testing
samples are used; most of the impostors are detected within 160 keystrokes.

We also experimented within “dynamic” keystroke analysis. In Bergadano
et al. [2003], we asked 40 people to enter from 2 to 5 times the same two dif-
ferent texts each one about 300 characters long. Adopting essentially the same
experimental setting and technique described in Bergadano et al. [2002], we
reach an identification accuracy of slightly more than 95%. In Bergadano et al.
[2003], we show experimentally that keystroke analysis of free text, although
more difficult than using fixed text, is possible: on average, two samples of dif-
ferent texts provided by the same individual are more similar than two samples
of the same text provided by different individuals.

3. MEASURING THE DISTANCE BETWEEN TWO TYPING SAMPLES

A typing sample is simply text entered at a computer keyboard, together with
some timing information about the keystrokes that produced the sample. Tim-
ing information is normally represented by two basic measures: the time a key is
depressed and the time the key is released. Such information is used to compute
the duration of a keystroke and the latency between two consecutive keystrokes.
In our experiments, the only information sampled is the time at which a key
is depressed. This allows the computation of what we call the duration of an
n-graph: the elapsed time between the depression of the first and of the nth
(that is, the last) key of a sequence of typed keys. The duration of an n-graph is
clearly a combination of the latency between keystrokes and of their durations.

A typing sample can be represented in terms of the n-graphs it is composed
of, together with the duration of each n-graph. If the typed text is sufficiently
long, the same n-graph may occur more than once. In such cases, the n-graph is
reported only once and the mean duration of its occurrences is used. It is clear
that the same typing sample can be represented in terms of its digraphs (i.e.,
two-graphs), trigraphs (or three-graphs), four-graphs, and so on.

Given two typing samples, we want to compare them regardless of the
typed text. Thus, we must extract the information they share: the n-graphs
occurring in both samples. Some distance measure can then be applied to the
extracted information. By extracting the n-graphs shared between two sam-
ples, we are automatically able to cope with typing errors and, in principle, we
could also compare samples made using different languages, provided the two
languages share some legal n-graph.

As an example that will be used in the remainder of this section to illustrate
how we compute the distance between two typing samples, suppose that two
samples E1 and E2 have been produced entering, respectively, the texts au-
thentication and theoretical. A possible outcome of the samplings may be the
following, where the number before each letter represents the hypothetical time
in milliseconds at which the corresponding key was depressed:

E1: 0 a 180 u 440 t 670 h 890 e 1140 n 1260 t 1480 i 1630 c 1910 a 2010 t
2320 i 2600 o 2850 n

E2: 0 t 150 h 340 e 550 o 670 r 990 e 1230 t 1550 i 1770 c 1970 a 2100 l
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In the next subsections, we will use E1 and E2 to describe two classes of
distance measures used to perform the experiments presented in the paper.
Given any two typing samples, only the n-graphs they have in common will
be used to compute their distance w.r.t the measures we describe below. We
will see that the two classes of measures are in some way orthogonal and try
to point out different aspects of the differences and similarities between the
samples under comparison. The basic measures we will describe return a real
value between 0 and 1 and, for reasons explained below, they will be called “R”
(standing for “Relative”) and “A” (for “Absolute”). Different R and A measures
will then be combined together, in this way increasing their discriminating
power.

3.1 “R” Measures

The basic idea behind measure R was introduced in Bergadano et al. [2002],
where many experimental properties of the measure were shown. Here, we
first review the main points and then generalize the measure to a class of
measures.

Given a array V of K elements, a simple measure of the degree of disorder
(or, simply, the disorder) of V w.r.t. its ordered counterpart V′ can be computed
as the sum of the distances between the position of each element in V and
the position of the same element in V′. As an example, it easy to see that the
disorder of array A = [2,5,1,4,3] w.r.t. A′ = [1,2,3,4,5] is: (1 + 3 + 2 + 0 + 2) = 8.

Clearly, a sorted array V′ has a disorder equal to 0, while we have the max-
imum disorder for an array V′′ when its elements are in reverse order. Such
value of maximum disorder is given by:

|V′′|2/2 (if |V′′| is even); (|V′′|2 − 1)/2 (if |V′′| is odd)

Given an array of K elements, it is convenient to normalize its disorder by
dividing it by the value of the maximum disorder of an array of K elements. In
this way it is possible to compare the disorder of arrays of different size. After
this normalization, the disorder of any array V falls between 0 (if V is ordered)
and 1 (if V is in reverse order). The normalized disorder of array A above is:
(1 + 3 + 2 + 0 + 2)/[(52 − 1)/2] = 8/12 = 0.66666.

Now, let us consider two typing samples S1 and S2 and, for a given n, let
them be represented as two arrays sorted w.r.t. the duration of their n-graphs.
We may consider one of the two (e.g., S1) as the referring sorted array and we
may compute the distance between S1 and S2 w.r.t. the n-graphs they share (in
short, Rn(S1, S2)) as the normalized disorder of S2 w.r.t. S1. In other words,
if S1 and S2 share K n-graphs, the distance of S2 from S1 is the sum of the
distances of each n-graph of S2 w.r.t. the position of the same n-graph in S1,
divided by the maximum disorder showed by an array of K elements; n-graphs
not shared between the two samples are simply ignored.

It is clear that Rn(S1, S2) = Rn(S2, S1) and it also clear that Rn can be used
to compute the distance between any two typing samples, provided they share
some n-graph (which is normally the case for texts sufficiently long—e.g., a full
line of text—and for n sufficiently small—e.g., n < 5). For example, consider
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Fig. 1. (a) Computation of the distance of two typing samples using digraphs. (b) Computation of
the distance of two typing samples using trigraphs.

the two typing samples E1 and E2 described above. To compute R2(E1, E2),
we first extract the digraphs shared by E1 and E2 and then we may compute
R2(E1, E2), as depicted in Figure 1(a).2 The two samples share five digraphs
and the maximum disorder for an array of five elements is (52 − 1)/2 = 12, so
that we have:

R2(E1, E2) = (2 + 0 + 2 + 3 + 1)/12 = 8/12 = 0.6666

Similarly, E1 and E2 share three trigraphs, so that (see Figure 1(b)) we have:

R3(E1, E2) = (2 + 0 + 2)/[(32 − 1)/2] = 1

In the case of samples E1 and E2, it is not possible to compute Rn for n >

3, since the two samples do not share any four-graph. Clearly, longer samples
would allow the computation of R4, R5, and so on.

Intuitively, the meaningfulness of a distance Rn between two samples S1 and
S2 is related to the number of n-graphs shared by the two samples (we showed
this experimentally in Bergadano et al. [2002] for the case R3, which was the
measure used therein). Hence, in the case of our example, we may consider
R2(E1, E2) more meaningful than R3(E1, E2), since the former is computed
using five digraphs and the latter using only three trigraphs (though for such
short texts, both R2 and R3 are relatively meaningless).

It is reasonable to expect that the computation of the relative distance be-
tween two typing samples, w.r.t. the digraphs, trigraphs, or longer n-graphs
they share, may provide different kinds of information about the similarities
and differences between the two samples. This is particularly true if the sam-
ples have been produced entering different texts. For example, the typing speed
of a certain digraph occurring in both samples may be influenced by the fact that
the digraph appears in different contexts (that is, as part of different trigraphs)
in the two samples.

Hence, a more meaningful measure of the distance between two samples S1
and S2 may be obtained by combining Rn(S1, S2) for different instances of n.
When doing so, we must weight each instance of Rn, and the most obvious way

2In the figure, next to every digraph is its duration in milliseconds, that can be computed from the
hypothetical times reported in the page 317. Note that digraph ti occurs twice in E1, so we use the
mean of the two durations.
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to do so is on the basis of the number of n-graphs used to compute the corre-
sponding Rn, so that more n-graphs account for a more accurate Rn. Formally,
if two samples S1 and S2 share N n-graphs and M m-graphs, with N > M, we
may define:

Rn,m(S1, S2) = Rn(S1, S2) + Rm(S1, S2) · M/N

In other words, the cumulative distance Rn,m between two samples is the sum
of the two distances Rn and Rm weighted by the different number of n-graphs
and m-graphs they share. For example, in the case of samples E1 and E2 we
have:

R2,3(E1, E2) = 0.6666 + 1 · 3/5 = 1.2666

Of course, the cumulative R distance between two samples may be extended to
a larger number of different graphs. That is:

Rn,m, p(S1, S2) = Rn(S1, S2) + Rm(S1, S2) · M/N + Rp(S1, S2) · P/N

where P is the number of p-graphs shared by S1 and S2 and N > M, N > P.
Clearly, even more different graphs may be taken into consideration, but when
the weighting ratio P/N becomes very small, the contribution of the p-graphs
shared by S1 and S2 is negligible. In practice, for samples no longer than a few
hundreds characters, it is probably worth taking into consideration at most
digraphs, trigraphs, and four-graphs (see also the observation at the end of
Section 5.2).

Readers may have noticed that measures R completely overlook any absolute
value of the timing features of the samples under comparison. For example, even
if the typing speed of all digraphs in sample E1 were twice the values reported,
this would not be captured in any way by measure R, and R2(E1, E2) would
still be 0.666: only the relative typing speed of digraphs in the two samples are
taken into consideration—hence, the name “R.”

The rationale behind R measures is that the typing speed of an individual
may change along with the psychological and physiological conditions of the
subject, but we may expect the changes to affect all the typing characteris-
tics in a similar way. A headache can cause the individual to type more slowly
than usual, but the relative typing speed of the entered n-graphs will proba-
bly remain stable. If the individual normally types the four-graph wait more
slowly than the four-graph stop, this is likely to remain unchanged, even with
an headache.

Rn measures are simple metrics defined over SM
n × SM

n → �, where SM
n is

the space of all typing samples sharing M different n-graphs, sorted w.r.t. their
typing speed. Clearly, SM

n is finite for a given set of M n-graphs, and contains
M ! elements.3 If S1, S2, and S3 belong to SM

n for n ≥ 2 and M > 0, from the
definition of Rn it is easy to see that Rn(S1, S2) ≥ 0 (and Rn(S1, S2) = 0 if, and
only if, S1 = S2) and Rn(S1, S2) = Rn(S2, S1). To prove the triangular inequality
Rn(S1, S3) ≤ Rn(S1, S2) + Rn(S2, S3), we observe, first of all, that the inequal-
ity is trivially true if two of the three samples coincide. Otherwise, note that

3Assuming all n-graphs have a different typing speed.
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Rn(S1, S3) is the minimum number of positions that all n-graphs in S3 must
shift to reach the position they have in S1 (apart from the normalization fac-
tor, which is, of course, the same for all pair of samples in SM

n ). But then
Rn(S1, S3) > Rn(S1, S2) + Rn(S2, S3) is impossible, since it would mean
that Rn(S1, S3) is not the minimum number of shifts needed to turn S3 into
S1, and it would be possible to get S1 from S3 “passing” through S2 in only
Rn(S1, S2) + Rn(S2, S3) shifts.

3.2 “A” Measures

The distance measure R3 was introduced in Bergadano et al. [2002] and in the
case of fixed text provided good results. Unfortunately, R measures may also
show some counterintuitive behavior. Consider, for example, the case where
the typing speed of each digraph in a sample S1 is exactly twice the typing
speed of the same digraph in a sample S2. In this case we have R2(S1, S2) = 0.
Hence, R fails to discriminate between the typing samples of two typists that
have very similar typing rhythms, even if one of the typists is much faster than
the the other one. As a consequence, we need to be able to grasp similarities
and differences between typed samples also on the basis of the absolute typing
speed they are entered.

Unlike R measures, A measures only consider the absolute value of the typing
speed of each pair of identical n-graphs in the two samples under comparison.
The rationale behind measures A is simple. Suppose a user is able to type on
a keyboard exactly in the same way at all times. Then, a particular n-graph
is always typed in the same way and, in particular, always at the same speed
regardless of the entered text. Of course, this is practically impossible, but we
may reasonably expect two occurrences of a given n-graph typed by the same
individual, even in two different texts, to have durations that are closer than if
the two texts have been entered by different individuals.

More formally, let GS1,d1 and GS2,d2 be the same n-graph occurring in two
typing samples S1 and S2, with durations d1 and d2, respectively. We say
that GS1,d1 and GS2,d2 are similar if 1 < max(d1, d2)/min(d1, d2) ≤ t for
some constant t greater than 1. The “A” distance between S1 and S2 w.r.t. the
n-graphs they share and for a certain value of t is then defined as:

At
n(S1, S2) = 1 − (number of similar n-graphs between S1 and S2)/(total

number of n-graphs shared by S1 and S2)

As a consequence, if there are no similar pairs of n-graphs in two typing samples,
their distance is 1. If all n-graphs pairs are similar, the distance is 0. From the
above definition of distance, we see that two typing samples that share no
n-graph have 1 as the maximum distance possible. On the contrary, the two
samples will have the minimum distance w.r.t. any R measure. Actually, we
do not mind such extreme situations, since they are virtually impossible for
samples sufficiently long.

Although A measures may slightly resemble the Hamming distance, there
are differences. A measures count similar n-graphs instead of nonsimilar ones
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and a threshold t is used to establish when corresponding n-graphs are similar.
Moreover, A distances are normalized in the interval [0–1] to handle pairs of
samples sharing a different number of n-graphs. Finally, unlike the Hamming
distance, A measures are not true metrics, since the triangular inequality is
not satisfied.4

The rule used to mark n-digraphs as similar is pretty close to the way di-
graphs are marked as “accepted” or “invalid” in other approaches to keystroke
analysis, as we saw in Section 2. There is, however, an important difference.
We do not use standard deviations to define an interval of validity for n-graphs,
but prefer to rely on a fixed ratio (t) between the typing speeds of n-graphs. In
this way, even n-graphs occurring only once in both samples (so that for such
n-graphs a true mean speed or standard deviation cannot be computed) can be
compared. This helps, of course, to exploit as much as possible all the avail-
able timing information, even in samples that may not have n-graphs repeated
many times (which is more and more likely as the length of graphs increases).

In the case of samples E1 and E2 above, for digraphs and for t = 1.25 we have:

E1 E2
280 ca 200 (280/200 = 1.400)
220 he 190 (220/190 = 1.157) (similar pair)
150 ic 220 (220/150 = 1.466)
230 th 150 (230/150 = 1.533)
265 ti 320 (320/265 = 1.207) (similar pair)

And A1.25
2 (E1, E2) = 1 − 2/5 = 0.6. It is easy to check that A1.25

3 (E1, E2) = 2/3.
Much like we saw for measures R, for a given t, it is possible to compute

a cumulative absolute distance between two typing samples w.r.t. n-graphs of
different length:

At
n,m(S1, S2) = At

n(S1, S2) + At
m(S1, S2) · M/N

for M m-graphs and N n-graphs shared by S1 and S2 and N > M.5 In a similar
way, we may define At

n,m, p(S1, S2).
In order for A measures to become operative, a suitable value for t must be

chosen. In fact, a serious drawback that may affect systems based on experi-
mental data is the well-known problem of overfitting: a tailoring of a method on
a particular set of data in order to achieve the best results. Such tailoring would
very probably fail to achieve the same results with a different set of samples. In
the case of our experiments, overfitting may occur when choosing a value for t.

To limit the problem, we did the following. When the first five volunteers of
our experiments had provided their samples, we performed the classification
task described in Section 5.1, in order to test measure At

2 for different values of
t. We experimented with values 1.20, 1.25, 1.33, and 1.40. The best outcomes
were reached for t = 1.25 and, hence, this value is the one used for measures A

4As a simple example, consider three samples containing only digraph ab with durations: S1 = 100
ms, S2 = 115 ms, S3 = 130 ms. Then, 1 = A1.25

2 (S1, S3) > A1.25
2 (S1, S2) + A1.25

2 (S2, S3) = 0.
5One might also want to weight n-graphs w.r.t. the number of their occurrences in a sample, but in
our experiments this did not provide any improvement to the performance of A measures.
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in all of the experiments reported in this paper, for digraphs as well as for longer
n-graphs. Actually, it is possible that better outcomes could be reached for some
value in the interval [1.20,1.40], and that different values may perform better
for trigraphs and four-graphs, but we did not bother to find such particular
values that would hardly perform as well on a different set of users. Since
t = 1.25 is the value used in all the experiments described below, in the rest of
the paper we will omit it as the superscript of A measures.

4. EXPERIMENTAL SETTING

All the typing samples used to test the performance of measures R and A were
collected through a simple HTML form comprised of two fields. In the first
field, users had to enter their login name. The second field was a text area
where volunteers were free to enter whatever they wanted to fill the form.
When the form was complete, a “submit” button was used to send the sample to
the collecting server. A client-side Javascript was written to gather the timing
information. The sampling data was composed of the time (in milliseconds)
when a key was depressed, together with the ascii value of the key. The timer
had a clock tick of 10 ms.

4.1 The Volunteers and the Gathering of Samples

Fourty volunteers provided 15 typing samples each, as described below. In our
experiments, these people act as legal users of a hypothetical system. Moreover,
under the same conditions described below, another 165 people were asked to
provide just one typing sample. These individuals act as impostors that pretend
to be one of the legal users of the system.

All the people participating in the experiments were native speakers of
Italian and were asked to provide samples written in Italian. We found the vol-
unteers in our department, among colleagues and students in their last year of
study. Although with varying typing skills, all of them were very used to typing
on normal computer keyboards. Of course, none of the volunteers was hired, or
in any way paid for their assistance.

The samples were collected on the basis of the availability and willingness
of volunteers over a period of about 6 months. All volunteers were instructed to
provide no more than one sample per day. A few individuals were able to provide
their samples on a very regular basis, each working day or every 2 or 3 days,
so they completed their task in about 1 month. However, the majority of the
participants to the experiment provided their typing samples on a very irregular
basis; some of the samples were provided frequently, while other samples every
2 or 3 weeks. For others still, even 1 or 2 months passed between the production
of a sample and the next.6 Samples were provided at any working hour, at the
convenience of the participants.

For obvious reasons, we had no control over the way volunteers performed
the experiment. Every working day an email was sent to each of the volun-
teers to remind them about the experiment, but people were, of course, free

6Such large intervals were due to different reasons, including vacations.
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to ignore such reminders. Most of the volunteers used their office computers
or their notebook computers to produce the samples. In some cases, the exper-
iment was done by some volunteer connecting from home or from computers
located in another town. Thus, each user may have provided some of his/her
samples using different keyboards. However, we do not have any way to know
which samples were provided on which keyboards, and we have not explicitly
tested our method w.r.t. the use of different keyboards.7 Samples were provided
both in Windows and Unix environments, using both Explorer and Netscape
browsers.

Volunteers were asked to enter the samples in the most natural way, more
or less as if they were writing an email to someone. They were completely
free to choose what to write and the only limitations were of not typing the
same word or phrase repeatedly in order to complete the form and not to enter
the same text in two different samples. We suggested that volunteers write
about different subjects in each sample: their job, movies, holidays, recipes,
family, and so on—anything they liked. They were, of course, free to make typos
and to correct them or not. Corrections could be made by using the backspace
key or the mouse, as preferred. People were free to pause for whatever reason
and for as long as they wanted when producing a sample. No sample provided
by the volunteers was rejected, for any reason.

The text area to be filled was 65 characters wide and 12 lines long, for a total
of 780 characters. However, volunteers were not compelled to enter exactly 780
characters, but just to stop when they had the “feeling” the form had been filled.
On average, the gathered samples have a length varying between 700 and 900
characters (just to give an idea, the previous paragraph is about 850 characters
long).

5. USER CLASSIFICATION, AUTHENTICATION, AND IDENTIFICATION

Within Biometrics, the distinction between user authentication and identifica-
tion is often made. In the first case, a typing sample is provided together with
a declaration of identity. The system must decide if the sample comes from the
user whose identity has been declared or not. In user identification the system
only sees a new sample and must determine who provided the sample, or that
the sample does not come from any of the users known to the system. Clearly, the
task of user identification is more difficult than user authentication [Ashbourn
2000b]. However, this is true only if new samples presented to the system may
also come from individuals different from system’s users, individuals whose

7It would also be interesting to test our method with other kinds of input devices, such as, e.g.,
terminal for the blinds (although blind people also use standard keyboards, sometimes equipped
with Braille codes on the keys). Such terminals have from six to eight large keys that must be
pressed to form the different combinations of dots of the Braille code. Additional control keys are
often available. Typing styles would clearly be quite different from than on QWERTY keyboards.
However, as long as a sufficient amount of timing data can be gathered, the keystroke analysis would
still be possible. On the contrary, our method would not be suitable to analyze the very short key
sequences normally entered on numerical keypads, such as phone numbers or pins. Also raw timing
data stemming from mouse movements and clicks would probably not fit well in our framework,
which requires a sufficient number of different typing patterns—the n-graphs durations—to work.
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typing habits are completely unknown to the system. If new samples only come
from individuals known to the system, both authentication and identification
become much easier, but system performance is less meaningful: After all, in
many real security applications, most of the attacks are to be expected from the
outside world, by someone who is unknown to the system.

Unfortunately, the above is not always well understood in the literature
concerning keystroke analysis. In some cases, systems claim to perform iden-
tification, but when they are tested, some knowledge is provided about the
typing habits of the attackers, a situation that is closer to classification than to
identification [for example, this is the case for Leggett et al. 1991, Brown and
Rogers 1993, and Furnell et al. 1996]. On the contrary, Leggett and Williams
[1988], Leggett et al. [1991], Joyce and Gupta [1990], and Bergadano et al.
[2002] perform true authentication/identification, whereas this is unclear in
the experiments described in Bleha et al. [1990].

Hence, a system performing keystroke analysis can be tested on three tasks
of increasing difficulty, when a new sample X is submitted to the system:
� Classification: X comes from one of the known users. The system must find

who actually provided the sample.
� Authentication: X is claimed to belong to user U. The system must decide if

this is true or false. X may belong to U, to another known user, or to someone
else (whose typing habits are) completely unknown to the system.

� Identification: X is presented to the system. The system has two possible
answers: (a) X belongs to user U; or (b) X belongs to someone unknown. As in
the case of authentication, X may, in fact, belong to one of the known users,
or to someone unknown to the system.

In the following subsections we will cope with the above three tasks using
the distance measures introduced earlier, building more sophisticated methods
on top of the more simple ones.

5.1 User Classification

To perform user classification, we start with the same technique we introduced
in Bergadano et al. [2002]. However, here we will use different ways to compute
the distance between two samples, so as to individuate those that perform
better.

Let d be a generic distance measure between two samples S1 and S2, such
that d(S1, S2) ≥ 0. Let A be a user and let the typing profile of A be made of
a set {A1, A2, . . . , An} of typing samples provided by A. We define the mean
distance (md for short) of a typing sample X from A’s profile as:

md(A,X) = [d(A1, X) + d(A2, X) + · · · + d(An, X)]/n

Hence, if there is a set of users A, B, C, . . . , and a typing sample X to be classified
as belonging to one of the users, we may classify X as coming from the user with
the smallest mean distance from X.

Our experiments in user classification are made using the samples gath-
ered from the 40 users each one providing 15 samples. Each user’s profile
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Table I. Experimental Results in User Classification for Different R and A Measuresa

a. R Measures
Adopted distance measure R2 R3 R4 R2,3 R2,4 R3,4 R2,3,4
No. of classification errors 13 44 61 5 9 29 9
% of error 2.16 7.33 10.16 0.83 1.5 4.83 1.5
b. A Measures
Adopted distance measure A2 A3 A4 A2,3 A2,4 A3,4 A2,3,4
No. of classification errors 44 84 133 41 39 81 41
% of error 7.33 14.0 22.16 6.83 6.5 13.5 6.83

aAttempted classifications: 600.

contains 14 samples and the remaining one must be classified. Hence, by us-
ing every sample as a test sample, we have a total of 15 · 40 = 600 attempted
classifications.

Table Ia illustrates the outcomes obtained by using, as distance measure, all
R distances that may be computed on the samples using digraphs, trigraphs,
and four-graphs. Table Ib shows the same experimental outcomes using A
distances.

From the two tables it is easy to see that (1) R measures perform better than
the corresponding A measures; (2) distances computed using graphs of different
lengths perform better than the same distances used separately (this is espe-
cially evident for R measures. For example, R2,3 provides better results than
R2 and R3); (3) on average, distance measures involving shorter graphs per-
form better than measures involving longer graphs. For example, R measures
including digraphs always perform better than R measures not using digraphs,
and R measures involving trigraphs are more accurate than R measures using
four-graphs in place of trigraphs. In the case of A measures, this is less evident:
A measures involving digraphs are more accurate than A measures using only
longer graphs, but adding trigraphs or four-graphs, or both, to digraphs seems
to provide more or less the same improvement.

As a further step, let us see what happens when R and A measures are
summed together to compute the distance between two samples. For example,
in the following, when we write that the adopted distance measure is R2 + A2,3
we mean that the distance between any two samples S1 and S2 is computed
as: d(S1, S2) = R2(S1, S2) + A2,3(S1, S2). For the sake of conciseness, we
only combine in all possible ways the four R measures that provide the best
results (R2, R2,3, R2,4, R2,3,4) together with the four A measures that provide
the best results (A2, A2,3, A2,4, A2,3,4). Outcomes are shown in Table II (distance
measures computed using R2,4 provide outcomes quite similar to those reached
using R2,3, so we omit them for brevity).

From Table II it is easy to notice a further improvement in the outcomes due
to the combination of R and A measures. One may observe that such improve-
ment is pretty small, since only a few more samples are correctly classified.
Actually, R measures provide an accuracy pretty close to 100%, so that a little
space for improvements is left. As we will see in the next section, the positive
influence of combining R and A measures together is much more evident within
authentication.
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Table II. Experimental Results in User Classification for Different R and A Measures Combineda

a
Adopted distance measure R2 + A2 R2 + A2,3 R2 + A2,4 R2 + A2,3,4
No. of classification errors 6 4 11 14
% of error 1.0 0.66 1.83 2.33
b
Adopted distance measure R2,3 + A2 R2,3 + A2,3 R2,3 + A2,4 R2,3 + A2,3,4
No. of classification errors 2 4 5 7
% of error 0.33 0.665 0.83 1.16
c
Adopted distance measure R2,3,4 + A2 R2,3,4 + A2,3 R2,3,4 + A2,4 R2,3,4 + A2,3,4
No. of classification errors 2 1 4 4
% of error 0.33 0.16 0.66 0.66

aAttempted classifications: 600.

5.2 User Authentication

Suppose that we have three users A, B and C, and let X be a new sample to be
classified, so that we compute, for a distance measure d:

md(A, X) = 0.419025; md(B, X) = 0.420123; md(C, X) = 0.423223

Hence, we decide that X belongs to user A, following the classification rule of
the previous section. However, for a given user A, let m(A) be the mean of the
distances of the samples in A’s profile. In fact, m(A) can be seen as a sort of
number representative of the way A types on a keyboard: m(A) gives us an idea
of the distance we may expect between two typing samples provided by user A.
Now, suppose that in our example A’s samples are A1, A2, and A3, and that we
have:

d(A1,A2) = 0.312378; d(A1,A3) = 0.304381; d(A2,A3) = 0.326024;
m(A) = (0.312378 + 0.304381 + 0.326024)/3 = 0.314261

Then, we may expect another sample of A to have a mean distance from the
model of A similar to m(A), which is not the case for X in the example above.
Even if X is closer to A than to any other user’s profile in the system, it should
be rejected.

In other words, the classification rule described in the previous section cannot
be used to perform authentication. An impostor pretending to be a legal user
U of a system, has 1/N chances of being recognized as U, if there are N legal
users in the system. This happens whenever the impostor’s sample is closer to
the profile of the user under attack than any other legal user. Hence, from the
above rule we may expect, at best, a (100/N)% IPR.

However, as observed in Bergadano et al. [2002], we can do much better, by
refining the classification rule as follows: a sample X claimed to belong to user
A is acknowledged as coming from A if, and only if,

(1) md(A,X) is the smallest w.r.t. any other md(B,X), where B is another legal
user in the system;

(2) md(A,X) is smaller than m(A) (2a), or md(A,X) is closer to m(A) than to any
other md(B,X) computed by the system (2b).
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Requirement (1) is the basic classification rule: X may come from A only if X
is closer to A’s samples than to the samples of any other user B. However, we
also want to check whether X is sufficiently close to A in order to accept it. This is
what requirement (2) states. As we saw, m(A) is the expected distance between
samples from A. If (requirement 2a) X is so similar to A’s samples that md(A,X)
is even smaller than m(A), X is recognized as belonging to A. If (requirement
2b) md(A, X) is greater than m(A), then we check if the distance between X and
A’s samples is closer to the distance we expect from A’s samples, m(A), than
to the distance that X shows w.r.t the samples of any other user B. Since 2b is
asked only when md(A,X) > m(A) and, moreover, md(A,X) < md(B,X), we can
express 2b formally as follows:

md(A, X) − m(A) < md(B,X) − md(A, X);
md(A, X) − m(A) < m(A) − md(A, X) + md(B, X) − m(A);
2md(A, X) < 2m(A) + md(B,X) − m(A);
md(A, X) < m(A) + 0.5[md(B,X) − m(A)]

Note that this inequality is trivially true if md(A,X) < m(A); thus, it actually
expresses the whole of requirement (2).

One may wonder why not use a more intuitive rule, such as, |md(A,X) −
m(A)| < |md(B,X) − m(B)| in place of requirement (2). However, there are two
problems with this inequality.

First, suppose requirement (1) is passed (that is, md(A,X) < md(B,X)) by a
lucky impostor pretending to be A. Then, recalling the example at the begin-
ning of this section, it is very likely that md(A,X) � md(B,X). Using the rule
|md(A,X) − m(A)| < |md(B,X) − m(B)|, X will be accepted or rejected depending
on whether m(A) is greater or smaller than m(B), that is, by chance. On the
contrary, with rule 2b, when md(A,X) � md(B,X) X is accepted only if md(A,X)
and m(A) are even closer. In other words the tightness of requirement 2b is
proportional to how well X passed requirement (1).

Second, suppose B provided samples with a very high variability between
each other, so that m(B) is high (that is, m(B) � m(A) for any other A). Then, if X
belongs to A, md(B,X) will also be high and there are good chances that |md(A,X)
− m(A)| < |md(B,X) − m(B)| does not hold. Even if md(A,X) < md(B,X), this is
blurred by the high variability of the typing habits of B. Thus, the presence
of a user like B in the system would be sufficient to cause many false alarms,
because it would lead to rejecting many samples X claimed to belong to some
other user A whose typing habits are steadier. In our requirement, the typing
habits of B (that is, m(B)) are not used. Thus, the peculiarities of a particular
user cannot affect the behavior of the whole system.

To test the performance of our approach to user authentication, we did the
following experiment. The 40 people who provided 15 samples are known as
legal users by the authentication system. Each sample S of each legal user U
is used as a new sample, that should hopefully be recognized as belonging to U
on the basis of the other 14 samples that form U’s typing profile. Moreover, S
is used to attack all other legal users in the system. When S, belonging to U, is
used to attack another legal user U1, U’s profile is temporarily removed from
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Table III. Experimental Results in User Authentication for Different Distance Measures R and
Aa

Adopted Distance Measure R2 R2,3 R2,4 R2,3,4 A2 A2,3 A2,4 A2,3,4
No. of passed impostors 563 324 279 199 590 335 366 331
No. of false alarms 50 32 41 41 92 80 84 79
IPR (%) 0.125 0.072 0.062 0.044 0.1311 0.0744 0.081 0.0736
FAR (%) 8.333 5.333 6.833 6.833 15.333 13.333 14.0 13.166

aAttempted attacks: 450,000; attempted legal connections: 600.

the system before running the authentication procedure, so as to make U, and
his/her typing habits, completely unknown to the system. Every legal user is
also attacked using the samples of the 165 individuals who provided only one
sample. Hence, on the whole, the system is tested with 600 legal connection
attempts and with 450,000 impostors’ attacks brought by 40 + 165 individuals
(600 · 39 · 15 + 165 · 40 · 15 = 450, 000). Readers may notice that by removing
the profile of a user whose sample is used to attack another user, we are able to
simulate the worst conditions for the system. In fact, each impostor’s attack is
now brought by someone from the outside world—someone whose typing habits
are completely unknown to the system.8

As in the case of classification, here also we have to choose the distance mea-
sure to use in the experiments. We start by showing in Table III the outcomes
reached by using the four R and A measures that provided the best outcomes
in user classification (we have, of course, also tested the other measures, such
as, e.g., R3,4 and A4, which, however, provide worse results, as we already have
seen for the case of classification).

From Table III, we again see that R measures perform better than A mea-
sures. In particular, every A measure provides a FAR that is about twice as
bad as the corresponding R measure and an IPR which is slightly higher than
the one provided by the corresponding R measure. Using distances computed
by summing together the values returned by R and A measures leads to the
authentication results of Table IV (also in this case, for brevity, we omit the
results obtained using R2,4; they are very similar to those obtained using R2,3).
Outcomes of Table IV clearly show that the combination of R and A measures
provides a better authentication accuracy. For example, when measure R2,3,4 is
summed to any of the four A measures taken into consideration (Table IVc), on
average, the outcomes improve roughly twice w.r.t. the corresponding results
provided by R2,3,4 alone. We are thus able to reach an IPR of less than one false
positive out of more than 3400 attempts (in the worst case), and a FAR of less
than one false negative out of 25 attempts.

Measures used in the experiments can be combined together further, by using
them as a set of filters applied one after the other. As a consequence, a sample
X claimed to belong to user U is acknowledged as belonging to U only if it
passes the authentication rule for each of the distance measures in the set. For
example, when the adopted distance measure is, e.g., the set {R2 + A2, R2 +
A2,3,4}, we mean that in order for a sample X to be authenticated as belonging

8If profiles of attacking users were not removed from the system, an attacking sample would very
likely be recognized as belonging to the attacking user, and not to the user under attack.
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Table IV. Experimental Results in User Authentication for Different R and A
Measures Combineda

a
Adopted Distance Measure R2 + A2 R2 + A2,3 R2 + A2,4 R2 + A2,3,4
No. of passed impostors 360 272 260 237
No. of false alarms 36 34 37 41
IPR (%) 0.08 0.0604 0.0578 0.0527
FAR (%) 6.0 5.6667 6.1667 6.8333
b
Adopted Distance Measure R2,3 + A2 R2,3 + A2,3 R2,3 + A2,4 R2,3 + A2,3,4
No. of passed impostors 235 205 154 185
No. of false alarms 26 24 25 30
IPR (%) 0.0522 0.0456 0.0342 0.0411
FAR (%) 4.3333 4.0 4.1667 5.0
c
Adopted Distance Measure R2,3,4 + A2 R2,3,4 + A2,3 R2,3,4 + A2,4 R2,3,4 + A2,3,4
No. of passed impostors 124 78 95 131
No. of false alarms 19 23 22 23
IPR (%) 0.0276 0.0173 0.0211 0.0291
FAR (%) 3.1667 3.8333 3.6667 3.8333

aAttempted attacks: 450,000; attempted legal connections: 600.

Table V. Experimental Results in User Authentication for Different Filters Using
R and A Measuresa

{R2 + A2, {R2,3 + A2, {R2,3,4 + A2,
R2 + A2,3, R2,3 + A2,3, R2,3,4 + A2,3,

Set of distance measures R2 + A2,4, R2,3 + A2,4, R2,3,4 + A2,4,
Applied as consecutive filters R2 + A2,3,4} R2,3 + A2,3,4} R2,3,4 + A2,3,4}
No. of passed impostors 83 74 22
No. of false alarms 55 38 29
IPR (%) 0.0184 0.01640 0.00489
FAR (%) 9.1667 6.3333 4.8333

aAttempted attacks: 450,000; attempted legal connections: 600.

to user U, X must have been authenticated as belonging to U using the distance
measure R2 + A2, and using the distance measure R2 + A2,3,4. Of course, we may
expect the system IPR to improve and the corresponding FAR to worsen, since
every sample under analysis has to pass more authentications steps. Table V
shows the outcomes of this last experiment for three different sets, constructed
with the measures used in Table IV. When R2,3,4 is used together with A2, A2,3,
A2,4, and A2,3,4 (last column of the table) accuracy dramatically improves. FAR
still remains below 5% (that is, less than an authentication error out of 20 legal
attempts), whereas the IPR shrinks of about five times, on average, reducing
to less than one undetected intrusion out of 20,000 attempted attacks.

As a final remark, we observe that we also tried to take into consideration
five-graphs, but without any further improvements in the outcomes. Hence,
our experiments have been limited to digraphs, trigraphs, and four-graphs. It
is very likely that longer n-graphs are not effective because a relatively limited
number of them are shared, on average, between any two samples available.
However, we believe that longer samples would make five-graphs useful to
further improve the accuracy of our approach.
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Table VI. Experimental Results in User Identificationa

k = 0.66 k = 0.75
Adopted
Distance % of Errors % of Errors % of Errors % of Errors Equal Error
Measure on Unknown on Users on Unknown on Users Rate (EER) (%)

R2,3,4 + A2 0.1924 1.333 0.3762 0.8333 ≈0.5
(k = 0.8)

R2,3,4 + A2,{3,4} 0.1147 2.5 0.2527 1.6666 ≈0.95
(k = 0.93)

a450,000 cases of samples coming from unknown individuals; 600 cases of samples coming from known users.

5.3 User Identification and the Crossover Accuracy

Readers may have noticed that the authentication method described in the
previous section is, in fact, an identification task, since a new sample X declared
to belong to user A is compared not only to A’s samples, but to the samples of
all users known to the system. When the system authenticates X, it is merely
stating that user A has been identified as the one who provided X. When the
system rejects X, it is just answering “unknown.” Hence, we may easily re-
formulate and generalize the rule used in the previous section in terms of an
identification task: an incoming sample X is attributed to user A if, and only if,
for any other user B and for some positive constant k ≤ 1, the following holds:

(1) md(A,X) < md(B,X);
(2) md(A,X) < m(A) + k·[md(B,X) − m(A)]

If a user A, meeting the above rules, does not exist, X is labeled as “unknown.”
In the previous section, we used k = 0.5, since, within authentication, IPR
must be kept small. However, if identification is not done for security purposes,
one may want to reach a better trade-off between system IPR and FAR. In
such cases, it is possible to use greater values for k, such as, e.g., k = 0.75 or
k = 0.66.9 As a consequence of the above observation, in the rest of the paper
the terms authentication and identification will be used interchangeably, when
referring to our system (we will often prefer to speak of authentication—with the
corresponding IPR and FAR—as we have mainly in mind security applications).

Table VI illustrates the outcomes in user identification for two different val-
ues of k and for two of the distance measures used in the previous section: the
one that provides the best FAR, R2,3,4 + A2, and the one that reaches the best
IPR, the set {R2,3,4 + A2, R2,3,4 + A2,3, R2,3,4 + A2,4, R2,3,4 + A2,3,4} (and that, for
the sake of conciseness, we will indicate as R2,3,4 + A2,{3,4} in the rest of the pa-
per). The “% of errors on unknown” is the percentage of cases in which a sample
from an “unknown” is falsely attributed to one of the users of the system. The
“% of errors on users” is the percentage of cases in which a samples belonging
to some user is not identified as belonging to that user. These two are simply
the IPR and FAR of authentication.

The “Equal Error Rate” (EER), (last column of Table VI), is also known in
the literature as the “crossover accuracy,” and refers to the case when the IPR

9Note that for k = 1 we get the classification rule introduced in Section 5.1.
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Table VII. Experimental Results in User Authentication for k = 0.45a

Adopted Distance Measure (k = 0.45) d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
No. of passed impostors 66 4
No. of false alarms 28 40
IPR (%) 0.0147 0.000889
FAR (%) 4.6666 6.6666

aAttempted attacks 450,000; attempted legal connections: 600.

and FAR of the system are (at least roughly) equivalent. EER can be seen as
a rough estimate of the relative performance of different biometric techniques
and systems, although, in general, systems are not necessarily tuned to set
FAR = IPR = EER, since different applications may require a different trade-
off between FAR and IPR.

Physiological biometrics have in general better-crossover accuracies than
behavioral ones. For example [Mansfield et al. 2001, Ruggles 2002], iris scan
reaches a 1:131,000 crossover accuracy, which shrinks to 1:500 for fingerprint
analysis and hand geometry. Behavioral biometrics such as voice and signature
dynamics have a crossover accuracy of about 1:50. According to the outcomes
reported in the EER column of Table VI, our approach to keystroke analysis of
free text shows a crossover accuracy varying from slightly more than 1:100 to
1:200.

The choice of an appropriate value for k is a very simple and effective way of
reaching the required trade-off between then percentage of false negatives and
false positives shown by the system, on average. As we have seen in this section,
values of k sufficiently greater than 0.5 are likely not to be used for security
applications. Of course, values for k smaller than 0.5 can be also adopted, in this
way enforcing the security of the system at the cost of generating more false
alarms. Table VII shows the outcomes of the experiments in user authentication
for the distance measures used in this section with k = 0.45. The outcomes
reached by R2,3,4 + A2,{3,4} are particularly interesting: by accepting a FAR of
6.66% (one error every 15 legal connections, on average), we reach an IPR of
0.000889%: less than one unspotted impostor out of 110,000 attacks.

6. MORE EXPERIMENTS AND DISCUSSION

With the aid of more experiments, in this section we will study the behavior of
our method with respect to the number, length, and composition of the available
samples. We will also say more on the properties of R and A measures and will
discuss the scalability of our approach.

Recall that all the results of the previous section have been obtained using
samples of an average length varying from 700 to 900 characters, with fourteen
such samples in each user’s profile. However, one may want to know how the
overall performance of our method relates to the size and number of typing
samples available. We will discuss these issues in this section, using the two
distance measures we already adopted in the experiments on user identifica-
tion: R2,3,4 + A2 (best FAR for k = 0.5), and the set R2,3,4 + A2,{3,4} (best IPR
for k = 0.5). All the experiments of this section will be performed with k = 0.5.
We anticipate that using any of the other measures seen before will lead to
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Table VIII. Experimental Results in User Authentication for
Different Sizes of Users’ Profiles

No. of Samples in d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Users’ Profiles IPR (%) FAR (%) IPR (%) FAR (%)

2 0.2622 20.0788 0.1276 26.6648
4 0.09479 10.0119 0.04579 13.8654
6 0.05822 6.8703 0.02609 9.7594
8 0.04303 5.2985 0.01733 7.7751

10 0.03477 4.4097 0.01209 6.5707
12 0.029 3.8498 0.00809 5.7308
14 0.0276 3.1667 0.00489 4.8333

Table IX. Accuracy Improvement in User Authentication w.r.t. the Size of
Users’ Profiles

� of Samples in d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Users’ Profiles � IPR (%) � FAR (%) � IPR (%) � FAR (%)
2 → 4 −64.8 −50.1 −64.1 −48.0
3 → 6 −58.2 −48.3 −62.4 −46.1
4 → 8 −54.6 −47.1 −62.2 −43.9
5 → 10 −51.5 −45.7 −64.0 −42.4
6 → 12 −50.2 −44.0 −69.0 −41.3
7 → 14 −44.0 −46.9 −76.7 −43.8

very similar conclusions. The experiments presented in the section will provide
meaningful insights on the behavior of our method in real applications.

6.1 Number of Typing Samples in Users’ Profiles

Table VIII shows the system outcomes in user authentication when only a
subset of the samples in each user’s profile is used10 (note that the last line
of the table illustrates the same outcomes shown in Tables IVc and V for the
corresponding measures). Quite obviously, system accuracy increases together
with the number of involved samples. When a new sample X is compared against
the samples in the profile of some user U, n-graphs in X are compared with cor-
responding n-graphs typed by U in different moments, situations, and contexts.
Hence, the larger the number of user’s samples, the more meaningful is likely
to be md(U, X).

By looking at the outcomes of Table VIII, it is possible to notice that, roughly,
the system FAR and and IPR appear to halve when the number of samples in
users’ profiles doubles. We highlight this situation in detail in Table IX. Each
row of the table shows the percentage of improvement of FAR and IPR for the
corresponding measure and number of samples involved in the experiment.
For d = R2,3,4 + A2, IPR and FAR improvement is about 50%, on average, at
each profiles’ size doubling step. However, we also note that the amount of

10In the table, we only report the percentages because the total number of attempted attacks and
legal connections change with each experiment. For example, when each user’s profile contains
two samples, we can simulate 3,150,000 attacks and 54,600 legal connections, by extrapolating in
all possible ways two samples out of fifteen. With eight samples in users’ profiles we can simulate
193,050,000 attacks and 1,801,800 legal connections.
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improvement decreases slightly as more and more users’ samples are added
to the profiles. The reason is that new samples in users’ profiles only partially
contribute with new information on the typing habits of users w.r.t. the informa-
tion already present and such information becomes more and more marginal as
users’ profiles enlarge. The outcomes for R2,3,4 + A2,{3,4} are different, since IPR
improvement increases as more users’ samples are available. This is due to the
combined effect of the various distance measures used together as cumulative
filters. Each distance is able to grasp slightly different aspects of the typing
habits of legal users, so as to rule out impostors’ samples, and such ability
improves as more information is available. Of course, the presence of multiple
filters may cost some additional errors on legal connections. The comparison of
the IPR and FAR columns of Table IX provides experimental evidence of the ef-
fectiveness of using multiple filters like R2,3,4 + A2,{3,4}. Corresponding numbers
in the two FAR columns are similar and move in the same direction, whereas
in the IPR columns they diverge quickly as more users’ samples are available.
Hence, we may conclude that the use of cumulative filters provides more gain
in the system IPR of what is lost in the corresponding FAR. This becomes more
and more evident as the size of users’ profiles increases.

Numbers in Table IX suggest that there is still room left for improvement in
our experimental setting. For example, we may reasonably expect improvement
of the IPR of about 40% for d = R2,3,4 + A2 when moving from 14 to 28 samples in
users’ profile. Nonetheless, there will come a point when adding more samples to
users’ profiles will no longer provide any significant improvement of accuracy: a
sort of “saturation” of the information contained in the profiles that will possibly
be overcome only by using longer samples, as we discuss below.

6.2 Length of the Typing Samples

System accuracy is, of course, related to the size of the typing samples. In
general, the longer two samples under comparison, the higher the chances that
they share a large number of n-graphs and, hence, the more meaningful the
computed distance between them. This is particularly true in the case of sam-
ples of free text: if not sufficiently long, they may not even share any n-graph.11

Table X shows the outcomes of the authentication experiments using all
the available samples in each user’s profile, but using samples whose length
is 1

4 , 1
2 , and 3

4 of the original samples, both for the samples in users’ profiles
and for the sample to be authenticated (the first part of each sample has been
used in the experiments). Again, the last line of the table refers to the exper-
iments performed with samples of full length, as reported in Section 5.2 on
authentication.

It is clear that longer samples, in general, share more different n-graphs
and, hence, provide better accuracy than shorter samples. Even more than in
the previous section, system IPR and FAR greatly improve as samples length
doubles. We show this in Table XI, which is equivalent to Table IX w.r.t. the

11One may observe that even the number of occurrences of a given n-graph is meaningful. However,
in Bergadano et al. [2002] we showed, at least for the case of R3, that having many different
n-graphs is by far more important than having them repeated many times.
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Table X. Experimental Results in User Authentication for
Different Length of the Samples

Length of d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Samples IPR (%) FAR (%) IPR (%) FAR (%)
1/4 0.3951 29.1667 0.1762 36.0
2/4 0.1011 11.8333 0.0633 15.5
3/4 0.0504 6.6667 0.0289 9.3333
4/4 0.0276 3.1667 0.00489 4.8333

Table XI. Accuracy Improvement w.r.t. Samples Length

� of the Length d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
of Samples � IPR (%) � FAR (%) � IPR (%) � FAR (%)
1/4 → 2/4 −64.8 −50.1 −64.1 −48.0
2/4 → 4/4 −72.7 −73.2 −92.3 −59.1
4/4 → 8/4 −91.2 −84.4 −90.8 −85.3

variation of samples length. (We will explain the last row of the table later).
Even in the case of samples length, we may expect, at least in principle, a satu-
ration of the information contained in the samples as their length increases, so
that beyond a certain size, no greater accuracy can be reached using longer sam-
ples. However, in the case of our experiments, such point of saturation seems
very far from being reached. In fact, from the first two rows of Table XI, we see
that the percentage of improvement is even larger in the second than in the
first row.

One may well wonder what happens for even longer samples. A partial an-
swer is provided by the following experiment. Samples of each user have been
merged together in pairs, so that from the first fourteen samples from each user,
we may form seven long samples, each one having an average length of about
twice an original sample (in this experiment, the last sample of each user can-
not be paired with another sample and remains unused). Now we have seven
long samples for each user and we may repeat the experiments in user authen-
tication to see how the increased length of the samples affects the outcomes.
New results are reported in Table XII. To help with the comparison, the first
two columns of the table illustrate the outcomes when using the original, plain
samples,12 so that we may notice the improvement achieved by using samples
of double length. In particular, in the last row of the first part of Table XII, we
see that the use of six samples of double length improves the IPR of about ten
times and the FAR of about 6 times (the exact percentage of improvement is
reported in the last row of Table XI). However, note that the whole amount of
information involved in the experiment with seven samples of double length

12It is possible to notice that the IPR outcomes of the experiments with plain samples are not
exactly equivalent to those reported in Table VIII. This is due to the fact that, when performing the
experiments with the long samples, impostors samples cannot be used, as their length is about only
a half of that of long samples. Hence, only long samples from other users can be used to simulate
impostors’ attacks. For this reason we had to repeat the experiments with plain samples without
using impostors’ samples. Readers may however note that IPR outcomes of Tables VIII and XII
(for plain samples) are quite similar. Of course, FAR outcomes are not affected by the presence or
absence of impostors’ samples.
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Table XII. Experimental Results for Different Sizes of Users’ Profiles and Length of Samplesa

Samples Plain Samples Double-Length Samples
in Users’ d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4} d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Profiles IPR FAR IPR FAR IPR FAR IPR FAR
2 0.2662 20.0788 0.1296 26.6648 0.0702 6.1667 0.0379 9.119
3 0.1403 13.2862 0.0710 18.0998 0.0306 3.1607 0.0152 4.75
4 0.0958 10.012 0.0479 13.8654 0.0186 2.2143 0.00916 3.0476
6 0.0592 6.8703 0.0286 9.7594 0.00523 1.0714 0.00262 1.4286

Samples Triple-Length Samples
in Users’ d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Profiles IPR FAR IPR FAR
2 0.0372 3.6667 0.0218 4.5833
3 0.00641 1.25 0.00256 1.75
4 0.0 0.5 0.0 1.0

aAs usual, values of IPR and FAR columns are percentages.

is about the same as involved when using all fifteen original samples, only ar-
ranged in a different way. Hence, it is correct to compare the outcomes reached
using all available samples of double length with the outcomes reached using
all original samples (see, e.g., the last row of Table X). The improvement due
to double length samples is still evident. The IPR improves between two and
five times for the two measures used in the experiments and the FAR improves
about three times for both measures.

By merging three consecutive samples, we obtain even better results, re-
ported in the second part of Table XII. When all available information is used
(in order to form five samples of triple length: four of them to form users’ profiles,
and the remaining one that must be authenticated), we reach an impressive
IPR = 0% for both measures used in the experiments, with corresponding FARs
better than in any other experiment described so far.

Although good, it is, however, only fair to note that the outcomes reached us-
ing double-, or triple-length samples are less meaningful than those obtained
using the original samples. In fact, with six double-length samples in users’
profiles, it is possible to test the system with only 40·7 = 280 legal connections
and 280·39·7 = 76,440 intrusions. Using triple-length samples, the system can
be tested with only 40·5 = 200 legal connections and 200·39·5 = 39,000 in-
trusions. In both cases, each user is attacked by only 39 different individuals.
Nonetheless, the experiments of this section show clearly that the accuracy of
our method is strongly related to the length of the available samples. More-
over, given a certain amount of information about the typing habits of users, it
seems clearly better to organize it as a small number of longer samples, instead
of using many shorter samples (see also the next subsection).

One may, of course, wonder why not just merge all available samples of a
user U, in order to form a unique very long sample that represents the entire
U’s profile. The reason for not doing so is that at least two samples in U’s profile
are necessary to compute the mean distance of the samples in the profile (that
is, m(U)) and to perform the authentication step, as described in Section 5.2.
Moreover, more samples in U’s profile make m(U) more meaningful, and the
authentication/identification step more accurate.
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Table XIII. Experimental Results for Test Samples of
Different Length

Length of d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
Test Samples IPR (%) FAR (%) IPR (%) FAR (%)
1/4 0.04 28.16 0.0148 31.83
2/4 0.0275 13.0 0.0086 16.66
3/4 0.028 7.0 0.0079 10.5
4/4 0.0276 3.16 0.00489 4.8333

We conclude this section by showing what happens to system accuracy when
only the length of the typing sample under analysis varies, while the size of
users’ profiles remains fixed. Table XIII shows the outcomes of this experiment
with fourteen original samples in users’ profiles, and with only the first, second,
and third quarter of the test sample used (the last line of the table illustrates
the outcomes found in Section 5.2 for the corresponding measures). From Ta-
ble XIII (it is useful to compare it with Table X) it appears that the length of
the sample under analysis is especially important to have a low FAR, while
the IPR remains pretty small even when only the first quarter of the sample
under analysis is used by the system. In practice, this means that if X comes
from an impostor pretending to be U, md(U,X) tends to remain constant, or to
increase, as the length of X increases. If X is being entered by U, md(U,X) tends
to shrink as more and more keystrokes are entered by the user. In practical
applications, the incoming sample X can be analyzed at regular intervals and
md(U,X) can be recomputed. By observing md(U,X) to increase or decrease, one
may gather meaningful information about the identity of the individual typing
at the keyboard.

6.3 On the Usefulness of Short Samples

Roughly speaking, a typing sample can be considered to be a sequence of
keystrokes that produces a coherent piece of text and that, more or less, is
entered continuously. For example, a secretary copying a long document is pro-
ducing a typing sample, as well as an individual writing an email. On the other
hand, an URL typed into the browser address toolbar is a (very short) typing
sample too, as well as a Unix command, for example, “ls -lR mydir > myfileslist.”

Hence, in real situations, typing samples stemming from individuals using
computers may be of largely different lengths. Of course, a continuous monitor-
ing of the keyboard may gather all such samples. However, what should be done
with them, especially with the shortest ones? In Section 6.2, we saw that there
is a direct relation between the length of the typing samples and system accu-
racy, so that very short samples are likely to be useless to authenticate/identify
someone, as well as worthless to be used as typing samples in users’ profiles.
On the other hand, long samples are likely to be infrequent.

An obvious solution to handling short samples is to merge them, in order to
form samples long enough to be useful. It remains to be proved that the level
of accuracy that can be attained with such samples is comparable to the use of
samples of similar length each produced in a unique typing session, as in the
experiments described so far.
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Table XIV. Experimental Results in User Authentication Using
“Scrambled” Profilesa

Adopted Distance Measure d = R2,3,4 + A2 d = R2,3,4 + A2,{3,4}
No. of passed impostors 60 33
No. of false alarms 29 48
IPR (%) 0.0133 0.0073
FAR (%) 4.8333 8.0

aAttempted attacks: 450,000; attempted legal connections: 600.

To test the usefulness of the above solution, we performed the following
experiment. Each of the 14 samples in each user’s profile was split into pieces
of 25 characters entered consecutively. These short samples were then grouped
randomly in order to form 14 samples (let’s call them “scrambled” samples) of
a length similar to the original ones. As a consequence, each scrambled sample
was composed of a set of short samples typed in different days, possibly in
different months. Each short sample was used only once to form a scrambled
sample and then removed.13 For each user, the sample not involved in the
scrambling process was left unchanged and was used as test sample. Impostors
samples are also left unchanged. The whole process is repeated for each of the
fifteen samples provided by the legal users.

Table XIV illustrates the results for this experiment. Outcomes are only
slightly worse than those of Section 5.2 and we believe that this provides
a good evidence of the fact that, in real applications, short samples may be
merged to make them more useful. It must be observed that the experiment
we have performed produces a situation that is very unfavorable (and even
very artificial) for the system. If fact, it must use scrambled samples made of
pieces that may have been produced at a distance of weeks or even months,
possibly on different keyboards and systems, and two adjacent short samples
may be such that the second one has been entered by the user before the first
one. In real situations, short samples gathered together to form a long sample
will be often produced by the users shortly after one another, such as in the
case of a user that first enters a few Unix commands, then writes an email,
and then an Internet address in the navigation toolbar of the browser, and
so on.

6.4 Experimental Properties of R and A Measures

Consider the 600 samples collected from 40 legal users in our experiments.
Table XV illustrates, for different distance measures, the mean distances and
corresponding standard deviations between any two samples of the same user
and between any two samples from different users. These values show why
our system recognizes users on the basis of their typing rhythms: on average,
two samples from the same user have a smaller distance than two samples

13It must be noted that splitting and rejoining samples in this way produces a loss of information.
When merging two short samples, the digraph made of the last character of the first short sample
and the first character of the second short sample has a meaningless duration. Since short samples
are long 25 characters, the loss of information due to such digraphs is about 1/25 of the total number
of available digraphs.
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Table XV. Means and Standard Deviations for Distances
between Samples from the Same (4200 Comparisons) and

Different Users (175,500 Comparisons)

Same user Different usersDistance
Measure Mean / st. dev. Mean / st. dev.
R2 0.390065 / 0.052713 0.521580 / 0.060695
R3 0.483910 / 0.047813 0.580740 / 0.046899
R4 0.509219 / 0.057563 0.600801 / 0.054895
A2 0.460609 / 0.069778 0.629887 / 0.077474
A3 0.519802 / 0.070180 0.665812 / 0.084802
A4 0.505551 / 0.084802 0.662948 / 0.101075
R2,3,4 + A2 1.843803 / 0.176803 2.333008 / 0.179031

Fig. 2. Distributions of distances between samples from the same user (left) and from different
users (right) in the interval [0–1].

from different users. It is interesting to compare the values of Table XV with
the outcomes in user classification obtained using the corresponding distances
(Table I). For example, R2 works better than R3 or R4 and, in fact, the differ-
ence between the mean distance of samples from the same user and the mean
distance of samples from different users is larger in the case of R2 than in the
case of R3 or R4. The same occurs for A measures. Note, in particular, the mean
values for A2. Their difference is even a little bit larger than in the case of R2,
but the classification results using A2 are worse than those reached using R2.
However, observe that the standard deviations for A2 are greater than those for
R2. This higher variability accounts for a larger number of classification errors
when using A2. Standard deviations are even larger for A3 and A4 and, in fact,
these distances show a lower discriminating power than R2, R3,R4, and A2.

The discriminating power of R2, A2, and R2,3,4 + A2 is also depicted in
Figure 2. The left part of the figure shows the distributions in the interval
[0–1] of all distances between any two samples from the same user computed
with the three measures. On the right are the corresponding distributions for
all distances between any two samples from different legal users. Note that
distances computed using R2,3,4 + A2 (which is the sum of four distances) have
been divided by four in order to allow the comparison with R2 and A2. The two
graphs have different scales, since there are 15·14·40/2 = 4200 comparisons
between samples from the same user and 600·599/2–4200 = 175,500 compar-
isons between samples from different legal users. The shape and position of
the distributions in the two graphs show the clear separation between samples
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from the same user and samples from different users operated by the three
distances. Note also that distances computed using R2,3,4 + A2 concentrate in
a narrower distribution than in the case of R2 and A2, which accounts for the
better performance of R2,3,4 + A2 w.r.t. R2 or A2 used alone.

The partial overlapping of corresponding distributions in the two graphs is
mostly only apparent, since they are traced over different scales. For example,
in the case of R2,3,4 + A2, in the interval [0.5–0.55] (actually, in the interval
[2.0–2.2]) fall 711 distances between samples from the same user and 35,817
distances between samples from different users. Moreover, even when, for users
A and B, it is the case that d(A1,A2) � d(A1,B1), with A1, A2 coming from A,
and B1 from B, this does not imply that A and B have similar profiles. This only
happens if d(A1,A2) � d(A1,B1) for most of the typing samples of A and B.

We conclude with an observation on A measures. We saw in Section 3.2 that
they allow to compare all n-graphs shared between two samples, even when
some of the n-graphs occur so infrequently that a meaningful mean and stan-
dard deviation cannot be computed (so that most of the techniques described
in Section 2 could not be easily applied). Nonetheless, one may wonder how A
measures perform w.r.t. other measures that rely on the absolute typing speed
of n-graphs. An obvious term of comparison is the Euclidean distance; therefore,
we repeated the experiment in user classification described in Section 5.1 in the
case of digraphs, but using the Euclidean distance. Following the notation we
used for R and A measures, we computed E2(S1, S2) for any two samples S1 and
S2 from legal users (actually, E2(S1, S2) is the Euclidean distance between di-
graphs shared by S1 and S2, divided by the number of shared digraphs, so that
we can compare distances between pairs of samples sharing a different number
of digraphs). E2 provides a classification error of 68,83%: 413 samples are not
correctly classified, over a total of 600 attempted classifications. We recall that
using A2 we got a classification error of 7.33%. In Monrose and Rubin [1997],
authors reach a classification accuracy of 21.3% (hence, an error rate of 78.7%)
comparing typing samples of free text with the Euclidean distance (though, of
course, they use a different classification rule, as seen). It is interesting to note
that the Euclidean distance on our data set performs more or less in the same
way.

6.5 On the Scalability of Our Experiments

The scalability of our approach to keystroke analysis is, first of all, related to
the computational costs required to authenticate a new sample. Computing the
distance between two samples is expensive, as it involves ordering the samples
w.r.t. the typing speed of the graphs they contain. In our experiments, com-
paring a new sample against 40 profiles containing 14 samples each one, and
computing distances for digraphs, trigraphs, and four-graphs, requires about
140 sec on a Pentium IV at 2.5 GHz. Admittedly, our programs are far from
being optimized. It is very good that the computation of distances can be
strongly parallelized. For example, with three processors, we may compute in
parallel distances w.r.t. digraphs, trigraphs, and four-graphs, sensibly shrink-
ing the time needed to handle new samples.
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In our system, scalability may also be limited by the fact that, if two users
have very similar typing habits, both could raise a false alarm when they are
accessing their own account. The larger the number of legal users, the higher the
chances of such a situation. Actually, when very many users are involved, the
problems of both computational costs and very similar profiles can be limited if
our method is used for true authentication purposes (that is, when the sample
under analysis comes with a claimed identity). To limit computational costs,
it is not necessary to compare a new sample with all users’ profiles, but just
with a subset of manageable size.14 Subsets containing a number of profiles
and samples close to the one used in our experiments will very likely provide
a similar level of accuracy. When two legal users (say, A and B) of a system
have very similar typing habits, false alarms can be avoided by excluding the
profile of B when performing the authentication of a sample claimed to belong
to A. Clearly, if B attacks A, he will be treated as an unknown individual and
will have some more chances of fooling the system. However, in order for B to
judge worth attacking A, B must know that his typing habits are similar to
those of A. Without this knowledge (which may not be easy to acquire), B is left
to randomly choose the user to attack. We note that the proposed solution will
not work well if many, or most of the users in the system, have similar profiles,
and one may wonder how the space of profiles fills in as the number of users
increases.

Only extensive experiments could provide an answer to the above question,
but we can make some remark on the basis of the samples of the 40 legal users
of our experiments. Let mdu(A,B) be the “distance between users A and B,” that
is, the mean distance between any two samples of A and B. For instance, if the
samples of A and B are, respectively, A1, A2, and B1, B2, we have mdu(A,B) =
[(d(A1,B1) + d(A1,B2) + d(A2,B1) + d(A2,B2)]/4. mdu(A,B) gives an idea of the
distance we may expect between any sample of A and B’s profile, or vice versa.
In fact:

[md(A,B1) + md(A,B2)]/2 =
{[d(A1,B1) + d(A2,B1)]/2 + [d(A1,B2) + d(A2,B2)]/2}/2 =
[d(A1,B1) + d(A1,B2) + d(A2,B1) + d(A2,B2)]/4 = mdu(A,B)

In general, the smaller mdu(A,B), the more similar are the typing habits of A
and B, and the higher the chances that users A and B cause false alarms. How-
ever, the important information lies in the relation between m(A) and mdu(A,B).
As observed in Section 5.2, m(A) gives us an idea of the distance we may expect
between two typing samples provided by user A. When m(A) � mdu(A,B) then
samples from A and B cannot be distinguished any longer. We have computed
mdu(A,B) for all pairs of legal users in our experiments, for a total of 40·39/2 =
780 different pairs. It never happens that m(A) � mdu(A,B) for any two users
A and B and, on average, mdu(A,B) is about 16% greater than m(A) and m(B).
On the contrary, for any sample A1 belonging to A, md(A,A1) is only 5% greater
than m(A), on average.15

14Of course, the subset will also contain the profile of the user the sample is claimed to belong to.
15Of course, in this case md(A,A1) and m(A) are computed removing A1 from A’s profile.
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Scalability is also related to the typing skills of users. In our experiments, if
users A and B are fast typists (that is, the mean duration of n-graphs in their
samples is small), mdu(A,B) is normally large (of course, mdu(A,B) is even
larger if A is a fast typist and B is a slow one). On the contrary, slow typists
have, in general, a small mdu between each other. We got similar results even
in the experiments with fixed test [Bergadano et al. 2002]. Hence, it is likely
that more false alarms must be expected if there are many unskilled typists
among the legal users of the system.

7. APPLICATIONS

Being able to verify personal identity of users through the keystroke dynamics
of free text means, first of all, that the profiling phase becomes much easier. In
fact, the formation of users’ models by means of fixed, long texts, is clearly per-
ceived as an annoying burden and may lead people to reject the corresponding
technology. Nonetheless, even in the case of free text, the registration process
will have to take place in a protected environment, in order to avoid impostors
being able to manipulate users’ profiles through the introduction of false sam-
ples. During the profiling phase, users’ identity must clearly be checked in some
alternative way, and the production of typing samples should be limited to a
few days, not weeks or months. Of course, users themselves could be willing to
provide (part of) their typing profiles in dedicated sessions that would not take
a long time (an average typist enters a text long like the samples used in our
experiments in less than 5 min).

Interested readers may experiment with keystroke analysis through a
simple on-line prototype of our system that can be found at www.di.
unito.it/∼gunetti/prototype.html. The HTML page is very similar to the one
we wrote to collect volunteers’ samples and uses the same Javascript to gather
the timing information. People not registered on the system may, of course,
only test it as impostors, pretending to be one of the legal users (for example,
entering gunetti or picardi as login name). The prototype is, however, also able
to build from scratch the profile of a new user, asking him a number of sam-
ples until a sufficient amount of typing information has been provided. From
that moment, the system will be able to identify the user through his keystroke
dynamics.16 This will also help us to further test our method and to extend the
size of our data set.17

Since through the typing rhythms of people we may ascertain personal iden-
tity, the natural application of keystroke analysis is in the field of security. It
is obviously unrealistic to propose keystroke analysis as a plain substitute of
well-established technologies, such as, for example, password-based systems.
Nonetheless, authentication methods based on keystroke analysis can still be
useful, as we argued in Bergadano et al. [2002]. This is even more true if free
text can be used.

16To be registered as a new user, send an email to one of the authors.
17We also make available the 765 typing samples of free text that we gathered and used in our
experiments. This will allow for a possible independent evaluation of our outcomes. The data set
could also be useful to test other approaches to keystroke analysis. Contact the authors for more
information.
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7.1 Lost and Forgotten Passwords

The most obvious drawback of passwords is that they can be forgotten. This
problem is especially frequent over the Web, where many services are accessible
through passwords. The most common of such services is a free email account,
that is often provided together with access to dedicated discussion groups and
chat lines. Especially if the connection to such sites is infrequent, users tend to
forget the passwords they chose.

Lost and forgotten passwords are turning into such a stringent problem, that
even the press is aware of it [BBC 2000]. The New York Times on the Web site
[Lee 1999] estimates that more than 1000 people forget their password to the
site each week and 10–15% of its registrants are duplicates. Two much cited
sources on this issue can be found on the Web. According to the Gartner Group,
an organization with 2500 desktop computers can spend more than $850,000
per year resetting passwords [Novell ViewPoints]. Forrester Research, Inc. has
found that password problems account for 40–80% of all IT help-desk calls.18

In some cases, an automatic protocol is available to help users to retrieve a
lost password, but such recovery methods are well known not being very reli-
able. Hence, an alternative authentication method based on keystroke analysis
can be provided by the site to allow a registered user to regain access to his/her
account in a few minutes. The ability to deal with free text will allow the use
of emails and messages composed by the users to build their typing profiles,
silently and transparently (although possibly, when forming a user’s profile,
with the limitations we mentioned at the beginning of this section). In order to
be authenticated, users will be free to enter whatever text they like, provided
it is sufficiently long to allow a sufficient level of accuracy. A similar solution
can also be useful to retrieve passwords of job accounts (that, fortunately, are
seldom lost), when a system administrator is not immediately available. Long
texts required for the authentication process (e.g., at least 1000 keystrokes, that
may need a few minutes to be entered) will assure a sufficient level of accuracy
and will discourage potential intruders.

When a very high level of security is needed, keystroke analysis can also be
used in conjunction with passwords. To be authenticated, an individual must
know the password and must provide a typing sample to be checked against
the reference profile. Alternatively, the secret pass phrase itself could be used
as a typing sample, provided it is sufficiently long. In such case the pass phrase
would have to be entered only in environments protected from any kind of
spying, since it would be too awkward to type long texts without having the
entered characters displayed, as in the case of common passwords.

The above applications, of course, are meant for login time, but typing
rhythms do exist throughout an entire working session, after an authentica-
tion phase has been passed—legally or not. Thus, such typing rhythms may
still be exploited, as we discuss in the next section.

18It is fair to note that some people feel such statistics being overestimated. See, e.g., on the
bulletin list of Internet Service Provider journal at www.isp-planet.com/marketing/2002/password
price bol.html
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7.2 Intrusion Detection

In Bergadano et al. [2002] we mentioned Identity Confirmation as a possible
application of keystroke analysis: if an intrusion detection system notices some
strange behavior of an individual using the computer,19 it may ask the individ-
ual to provide a confirmation of his/her identity: a typing sample to be checked
against the typing profile of the legal owner of the account. However, such so-
lution is only partially satisfactory: if the suspicious individual is in fact an
intruder, he/she will be aware of having being spotted and will immediately
disconnect.

However, being able to deal with free text makes it possible to transparently
analyze typing rhythms of individuals. This makes keystroke analysis perfectly
suitable (at least in principle) to be part of an intrusion detection system (IDS for
short). Stated boldly, if an individual using an account shows typing dynamics
different from those in the typing profile of the account’s owner, that individual
is an impostor using the account fraudulently.20 Essentially, this may be seen as
a form of anomaly detection: the individual under observation is not behaving
as expected.

Of course, things in real applications are not so easy, and keystroke anal-
ysis is useless (as probably most other techniques) if the impostor just enters
something like “rm -r ∗” and logouts. On the other hand, if the intruder wants
to steal information or to illegally use resources, he will try to connect to the
system remaining unnoticed for as long as possible. Hence, apart from extreme
situations, keystroke analysis of free text can be added to the set of tools avail-
able to detect intrusions. In particular, we believe it can be very useful to limit
the number of false alarms, an endemic problem of IDSs.21 We have observed
in Section 6.5 that our approach to keystroke analysis is computationally ex-
pensive. Hence, a continuous monitoring and analysis of typing rhythms of all
the users logged on the system—a true keystroke analysis in real time—could
be impractical. However, such analysis can be started only on demand, when
an IDS is raising an alarm.

In Axelsson [1999], the author shows that an IDS requires a FAR largely
lower than 0.1% to be effective. The reason is easy to explain with an example
(reworked from [McHugh 2000]): suppose that an IDS has a 100% true detec-
tion rate and a 0.01% FAR. Suppose also that we have a data set containing
5,000,000 units of analysis so that the system has to make 5,000,000 decisions
and that 1 out of 50,000 units contains a true intrusion. then, as a consequence
of the rates above, all true intrusions will be detected (which will be about 100),

19Such as some exotic Unix command run from a secretary account.
20Clearly, we cannot take into consideration the case where the same account can be legally used
by more individuals.
21Especially of those performing anomaly detection, as a consequence of changes in legal users’
habits [McHugh 2000]. One may observe that also typing habits change, so that keystroke analysis
could itself be a source of false alarms. However, typing skills normally improve up to a certain point,
and then they tend to remain stable, and users’ profiles can be kept updated by simply replacing
old typing samples with newer ones. Other users’ habits are much more subject to change, as a
consequence of the use of new applications and program versions, new computers, different duties
and tasks assigned.
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but together with them also about 500 false alarms will be raised. If alarms
must be handled manually, a system administrator will spend most of his/her
time analyzing legal situations wrongly labeled as intrusions, increasing the
chances that true intrusions go unnoticed.

Suppose now that we have a typing profile of all legal users of a system
and that the timing information of keystrokes issued by the users connected to
the system are continuously gathered (but not analyzed). Suppose, moreover,
that an intrusion alarm is raised for a particular account and that a sufficient
number of keystrokes have been collected for the suspicious account in the
current login session. Keystroke analysis can be used on the timing data col-
lected to confirm/cancel the alarm before it reaches the system administrator.
Consider the example in the previous paragraph and that the system perform-
ing keystroke analysis is tuned to have a 0.5% FAR and 0.5% IPR, on average.
If every alarm can be analyzed by the system (i.e., keystroke analysis is possi-
ble for all accounts raising an alarm), the whole FAR of the IDS will shrink to
0.00005%, whereas the IPR will only worsen to 0.5%. Using the figures above,
the number of false alarms raised will reduce to about two or three, whereas
possibly all 100 intrusion will still be detected.

There are, of course, forms of intrusions where keystroke analysis is useless,
but it is very likely that it will be useful in most cases of stolen or cracked
passwords. For example, the timing data of keystrokes issued by users can be
collected during their connection to the system, while keystroke analysis on
such data can be performed overnight on all accounts accessed the previous
day (or, on a particular account, immediately after log-off). Possible anomalies
would be simply reported to the system administrator and, at the very least, the
legal user of the account could be suggested to change his/her password. In such
case, even a FAR of 0.5 or 1% would not be a serious problem: false alarms will
simply make users change their passwords a bit more frequently than usual.
In any case, the number of false alarms raised each day would be limited to
one or two, assuming, e.g., a system with about 100 users that connect to the
system once per day.

We observe that in modern systems is relatively easy to sample whatever is
entered at a computer keyboard. For example, in our previous work [Bergadano
et al. 2002] we used an X Window application to gather the the typing samples.
In MS Windows, a keyboard “hook” can be used to log all keystrokes issued
from an account, together with the relative timing data. In the case of Web
connections, even a simple Javascript can be sufficient (The one we used to
collect our samples is long less than 40 lines and can be seen at the URL of our
on-line system). Once a sufficient amount of raw data is available, the system
performing keystroke analysis can be started.

When users are providing their samples to register on the system, they, of
course, know they are being monitored. However, a continuous sampling of the
keystrokes issued on a computer keyboard may raise strong concerns about
user’s privacy [Volokh 2000]. Users must, of course, be made aware that they
are under observation, but they must also understand (and hopefully accept)
that every security policy must imply, in some way, a limitation of their privacy.
Nonetheless, at the very least monitored text will have to be blurred, only
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stored in terms of n-graphs and the corresponding timing information, and
made available exclusively to the authentication/identification system.

8. CONCLUSION

In this paper we have described a method to analyze the typing rhythms of
free text. The technique has been tested on a set of volunteers larger than in
other experiments described in the literature, performing well at discriminating
among legal users and impostors. The European Standard for Access Control
(EN 50133-1) requires a commercial biometric system to have a FAR less than
1% and an IPR less than 0.001% [Polemi 2000]: we are not all that far from
such numbers (and we also reached them using triple-length samples, even if
we are well aware that such outcomes must be taken with a grain of salt).

Our experiments were performed without any particular form of overfitting
or any specific tuning of the system on the available samples. This tuning is,
however, possible and should be adopted in real applications: (1) by looking
for the value of t in A measures that performs better for each legal user: this
will improve the ability of the system to discriminate between legal users and
impostors; (2) by choosing the value of k (as described in Section 5.3) that
works better for the intended application: this will allow to find the desired
trade-off between FAR and IPR. Finally, the ability to deal with typing samples
of free text makes it easier to form users’ profiles and to keep them updated.
Samples will have to be gathered in a protected environment, so as to avoid
the introduction of false samples. Users will still be free to keep on doing their
normal job.

Typing dynamics is the most natural kind of biometrics that stems from the
use of computers, it is relatively easy to sample, and it is available throughout
the entire working session. The analysis of such dynamics can be used to as-
certain personal identity and, hence, it can be helpful to improve the security
of computer systems, as we have proposed in this paper.
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