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Abstract 
 

A long-text-input keystroke biometric system was 
developed for applications such as identifying perpetrators 
of inappropriate e-mail or fraudulent Internet activity. A 
Java applet collected raw keystroke data over the Internet, 
appropriate long-text-input features were extracted, and a 
pattern classifier made identification decisions. 
Experiments were conducted on a total of 118 subjects 
using two input modes – copy and free-text input – and two 
keyboard types – desktop and laptop keyboards. Results 
indicate that the keystroke biometric can accurately 
identify an individual who sends inappropriate email (free 
text) if sufficient enrollment samples are available and if 
the same type of keyboard is used to produce the 
enrollment and questioned samples. For laptop keyboards 
we obtained 99.5% accuracy on 36 users, which decreased 
to 97.9% on a larger population of 47 users. For desktop 
keyboards we obtained 98.3% accuracy on 36 users, which 
decreased to 93.3% on a larger population of 93 users. 
Accuracy decreases significantly when subjects used 
different keyboard types or different input modes for 
enrollment and testing. 
 

1. Introduction 
The goal of this study is to prove or disprove the 

distinctiveness of an individual’s keystroke pattern, on 
long passages, when conditions are not ideal (different 
entry task, different keyboards).  

This paper concerns an identification (one-of-n) 
application of the keystroke biometric for long-text input. 
A potential scenario for this application is a company 
environment in which there has been a problem with the 
circulation of inappropriate (unprofessional, offensive, or 
obscene) e-mail from easily accessible desktops in a work 
environment, and it is desirable to identify the perpetrator.  
This system could also be used in an authentication 
application to verify the identity of students taking online 
quizzes or tests, an important application with the student 
population of online classes increasing and instructors 
becoming more concerned about evaluation security and 
academic integrity. 

    The keystroke biometric is appealing for several 
reasons.  First, it is not intrusive and computer users, for 
work or pleasure, frequently type on a computer keyboard.  
Second, it is inexpensive since the only hardware required 
is a computer.  Third, keystrokes continue to be entered for 
potential subsequent checking after an authentication phase 
has verified a user’s identity (or possibly been fooled) 
since keystrokes exist as a mere consequence of users 
using computers [8]. Finally, with more businesses moving 
to e-commerce, the keystroke biometric in internet 
applications can provide an effective balance between high 
security and ease-of-use for customers [19]. 

 Keystroke biometric systems measure typing 
characteristics believed to be unique to an individual and 
difficult to duplicate [2, 9, 10]. There is a commercial 
product, BioPassword currently used for hardening 
passwords in existing computer security schemes [15], 
however this is on short entry.  Keystroke Biometrics is 
one of the less-studied biometrics and researchers tend to 
collect their own data, so few studies have compared 
recognition techniques on a common database. 
Nevertheless, the published literature is optimistic about 
the potential of keystroke dynamics to benefit computer 
system security and usability [18].   

Previous work follows the most commonly adopted 
metrics to evaluate a biometric system’s authentication 
accuracy are the False Reject Rate (FRR) and the False 
Accept Rate (FAR) that respectively correspond to the two 
popular metrics of sensitivity and specificity [2, 7, 12].  
Early work of Legett and Williams [13] showed that 
keystroke digraph latencies had potential for a static 
identity verifier at login time, as well as a dynamic identity 
verifier throughout a computer session, and Leggett, et al. 
[13] conducted similar experiments, reporting 5.0% FAR 
and 5.5% FRR on a long string of 537 characters. 
D’Souza’s experiment weighted the latencies to reduce 
false acceptances [4]. Brown and Rogers [3] and Obaidat 
and Sadoun [15] used short name strings for user 
verification. Dynamic shuffling was also evaluated as a 
process applied to training samples for neural networks as 
a means of enhancing sample classification and reducing 
false acceptance and rejection rates during keystroke 
analysis [3].  Recent work by Gunnetti and Picardi [8] 
suggest that if short inputs do not provide sufficient timing 
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information, and if long predefined texts entered repeatedly 
are unacceptable, we are left with only one possible 
solution, which is using the typing rhythms users show 
during their normal interaction with a computer; in other 
words, deal with the keystroke dynamics of free text. 

Generally, a number of measurements or features are 
used to characterize a user’s typing pattern. These 
measurements are typically derived from the raw data of 
key press times, key release times, and the identity of the 
keys pressed. From key-press and key-release times a 
feature vector, often consisting of keystroke duration times 
and keystroke transition times, can be created [19]. Such 
measurements can be collected from all users of a system, 
such as a computer network or web-based system, where 
keystroke entry is available, and a model that attempts to 
distinguish an individual user from others can be 
established. For short input such as passwords, however, 
the lack of sufficient measurements presents a problem 
because keystrokes, unlike other biometric features, 
convey a small amount of information.  Moreover, this 
information tends to vary for different keyboards, different 
environmental conditions, and different entered texts [8]. 
For these reasons we focus our studies on long text input 
where more information is available. 

This paper extends previous work on a long-text 
keystroke biometric system that showed the effectiveness 
of the system under ideal conditions in which the users 
input prescribed texts, used the same type of keyboard for 
enrollment and testing, and knew that their keystroke data 
were being used for identification purposes [1]. In this 
paper, we implement an improved system (more features 
and appropriate handling of statistical computations for 
small sample sizes) and obtain experimental results on 
more subjects under ideal conditions and extend these 
results to less favorable conditions where the users enter 
arbitrary texts, use different types of keyboards for 
enrollment and testing. 

The remainder of the paper is organized as follows. 
Section 2 describes our keystroke biometric system, having 
components for data capture, feature extraction, and 
classification.  Section 3 describes the experimental design 
and section 4 presents the experimental results and 
conclusions. 

2.   Keystroke Biometric System 

The Keystroke Biometric System consists of three 
components: raw keystroke data collection, feature 
extraction, and pattern classification. 

 

2.1.   Data Capture 

A Java applet was developed to enable the collection 
of keystroke data over the Internet (Figure 1). The user is 
required to type in his/her name, although no data is 
captured on this entry. Also, the submission number is 
automatically incremented after each sample submission, 
so the subject can immediately start typing the sample to be 
collected. If the user is interrupted during data entry, the 
“Clear” button will blank all fields, except name and 
submission number, and allow the user to redo the current 
entry.  

 

 
Figure 1: Java applet for data collection. 

 
The raw data file recorded by the application contains 

the following information for each entry: 
 

• key’s character 
• key’s code text equivalent 
• key’s location (1 = standard, 2 = left, 3 = right) 
• time the key was pressed (milliseconds) 
• time the key was released (milliseconds) 
• number of left-mouse-click, right-mouse-click, and 

double left-mouse-click events during the session (note 
that these are events in contrast to key presses) 

 
Upon pressing submit, a raw-data text file is 

generated, which is delimited by the ‘~’ character. The 
aligned version of the raw data file for the “Hello World!” 
example is shown in Figure 2. 
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Figure 2: Aligned raw data file for “Hello World!” 

2.2.   Feature Extraction 

The system extracts a feature vector from the 
information in a raw data file. The features are statistical in 
nature and specifically designed to characterize an 
individual’s keystroke dynamics over writing samples of 
200 or more characters. Most of these features are averages 
and standard deviations of key press duration times and of 
transition times between keystroke pairs, such as digraphs 
[15, 17]. We measure the transitions between keystrokes 
two ways: from the release of the first key to the press of 
the second, t1, and from the press of the first to the press of 
the second, t2 (Figure 3). While the second measure, t2, is 
always positive because this sequence determines the 
keyboard output, the first measure, t1, can be negative (see 
Figure 3). We refer to these two measures of transition 
time as type-1 and type-2 transition features. 

 

t-key h-key

t-key h-key

time
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a) Non-overlapping

b) Overlapping

duration

 
Figure 3: A two-key sequence (th) showing the two transition 

measures: t1 = press time of second key – release time of first, 
and t2 = press time of second key – press time of first. A 

keystroke is depicted as a bucket with the down arrow marking 
the press and the up arrow the release time. Part a) non-

overlapping keystroke events (t1 positive), and b) overlapping 
keystroke events where the first key is released after the second is 

pressed (t1 negative). 
 

While key press duration and transition times are 
typically used as features in keystroke biometric studies, 
our use of the statistical measures of means and standard 
deviations of the key presses and transitions is uncommon 
and only practical for long text input. As additional 
features, we use percentages of key presses of many of the 
special keys. Some of these percentage features are 
designed to capture the user’s preferences for using certain 
keys or key groups – for example, some users do not 
capitalize or use much punctuation. Other percentage 
features are designed to capture the user’s pattern of 
editing text since there are many ways to locate (using keys 
– Home, End, Arrow keys – or mouse clicks), delete 
(Backspace or Delete keys, or Edit-Delete), insert (Insert, 
shortcut keys, or Edit-Paste), and move (shortcut keys or 
Edit-Cut, Edit-Paste) words and characters.  

For this study, the feature vector consists of the 239 
measurements listed in Table 1, which are also depicted in 
Figures 4 and 5. These features make use of the letter and 
digraph frequencies in English text [6], and the definitions 
of left-hand-letter keys as those normally struck by fingers 
of a typist’s left hand (q, w, e, r, t, a, s, d, f, g, z, x, c, v, b) 
and right-hand-letter keys as those struck by fingers of the 
right hand (y, u, i, o, p, h, j, k, l, n, m). The features 
characterize a typist’s key-press duration times, transition 
times in going from one key to the next, the percentages of 
usage of the non-letter keys and mouse clicks, and the 
typing speed. The 239 features are grouped as follows: 

  
• 78 duration features (39 means and 39 standard 

deviations) of individual letter and non-letter keys, 
and of groups of  letter and non-letter keys, 

• 70 type-1 transition features (35 means and 35 
standard deviations) of the transitions between letters 
or groups of letters, between letters and non-letters or 
groups thereof, between non-letters and letters or 
groups thereof, and between non-letters and non-
letters or groups thereof,   

• 70 type-2 transition features (35 means and 35 
standard deviations) which are identical to the 70 
type-1 transition features except for the use of the 
type-2 transition measurement, 

• 19 percentage features that measure the percentage of 
use of the non-letter keys and mouse clicks,  

• 2 keystroke input rates: the unadjusted input rate 
(total time to enter the text / total number of 
keystrokes and mouse events) and the adjusted input 
rate (total time to enter the text minus pauses greater 
than ½ second / total number of keystrokes and 
mouse events).  

 



 C3.4

# Meas Feature Measured # Meas Feature Measured
1-2 µ & σ dur all keystrokes 131-32 µ & σ tran1 letter/non-letter
3-4 µ & σ dur all alphabet letters 133-34 µ & σ tran1 letter/space
5-6 µ & σ dur vowels 135-36 µ & σ tran1 letter/punct
7-8 µ & σ dur vowels a 137-38 µ & σ tran1 non-letter/letter
9-10 µ & σ dur vowels e 139-40 µ & σ tran1 shift/letter

11-12 µ & σ dur vowels i 141-42 µ & σ tran1 space/letter
13-14 µ & σ dur vowels o 143-44 µ & σ tran1 non-letter/non-letter
15-16 µ & σ dur vowels u 145-46 µ & σ tran1 space/shift
17-18 µ & σ dur freq cons 147-48 µ & σ tran1 punct/space
19-20 µ & σ dur freq cons t 149-50 µ & σ tran2 any-key/any-key
21-22 µ & σ dur freq cons n 151-52 µ & σ tran2 letter/letter
23-24 µ & σ dur freq cons s 153-54 µ & σ tran2 top cons pairs
25-26 µ & σ dur freq cons r 155-56 µ & σ tran2 top cons pairs th
27-28 µ & σ dur freq cons h 157-58 µ & σ tran2 top cons pairs st
29-30 µ & σ dur next freq cons 159-60 µ & σ tran2 top cons pairs nd
31-32 µ & σ dur next freq cons l 161-62 µ & σ tran2 vowel/cons
33-34 µ & σ dur next freq cons d 163-64 µ & σ tran2 vowel/cons an
35-36 µ & σ dur next freq cons c 165-66 µ & σ tran2 vowel/cons in
37-38 µ & σ dur next freq cons p 167-68 µ & σ tran2 vowel/cons er
39-40 µ & σ dur next freq cons f 169-70 µ & σ tran2 vowel/cons es
41-42 µ & σ dur least freq cons 171-72 µ & σ tran2 vowel/cons on
43-44 µ & σ dur least freq cons m 173-74 µ & σ tran2 vowel/cons at
45-46 µ & σ dur least freq cons w 175-76 µ & σ tran2 vowel/cons en
47-48 µ & σ dur least freq cons y 177-78 µ & σ tran2 vowel/cons or
49-50 µ & σ dur least freq cons b 179-80 µ & σ tran2 cons/vowel
51-52 µ & σ dur least freq cons g 181-82 µ & σ tran2 cons/vowel he
53-54 µ & σ dur least freq cons other 183-84 µ & σ tran2 cons/vowel re
55-56 µ & σ dur all left hand letters 185-86 µ & σ tran2 cons/vowel ti
57-58 µ & σ dur all right hand letters 187-88 µ & σ tran2 vowel/vowel
59-60 µ & σ dur non-letters 189-90 µ & σ tran2 vowel/vowel ea
61-62 µ & σ dur space 191-92 µ & σ tran2 double letters 
63-64 µ & σ dur shift 193-94 µ & σ tran2 left/left
65-66 µ & σ dur punctuation 195-96 µ & σ tran2 left/right
67-68 µ & σ dur punctuation .period 197-98 µ & σ tran2 right/left
69-70 µ & σ dur punctuation ,comma 199-200 µ & σ tran right/right
71-72 µ & σ dur punctuation 'apost 201-02 µ & σ tran2 letter/non-letter
73-74 µ & σ dur punctuation other 203-04 µ & σ tran2 letter/space
75-76 µ & σ dur numbers 205-06 µ & σ tran2 letter/punct
77-78 µ & σ dur other 2070-8 µ & σ tran2 non-letter/letter
79-80 µ & σ tran1 any-key/any-key 209-10 µ & σ tran2 shift/letter
81-82 µ & σ tran1 letter/letter 211-12 µ & σ tran2 space/letter
83-84 µ & σ tran1 top cons pairs 213-14 µ & σ tran2 non-letter/non-letter
85-86 µ & σ tran1 top cons pairs th 215-16 µ & σ tran2 space/shift
87-88 µ & σ tran1 top cons pairs st 217-18 µ & σ tran2 punct/space
89-90 µ & σ tran1 top cons pairs nd 219 % shift
91-92 µ & σ tran1 vowel/cons 220 % caps lock
93-94 µ & σ tran1 vowel/cons an 221 % space
95-96 µ & σ tran1 vowel/cons in 222 % backspace
97-98 µ & σ tran1 vowel/cons er 223 % delete
99-100 µ & σ tran1 vowel/cons es 224 % insert
101-02 µ & σ tran1 vowel/cons on 225 % home
103-04 µ & σ tran1 vowel/cons at 226 % end
105-06 µ & σ tran1 vowel/cons en 227 % enter
107-08 µ & σ tran1 vowel/cons or 228 % ctl
109-10 µ & σ tran1 cons/vowel 229 % four arrow keys combined
111-12 µ & σ tran1 cons/vowel he 230 % Sent ending punct.?!
113-14 µ & σ tran1 cons/vowel re 231 % Other punct 
115-16 µ & σ tran1 cons/vowel ti 232 % left shift
117-18 µ & σ tran1 vowel/vowel 233 % right shift
119-20 µ & σ tran1 vowel/vowel ea 234 % left mouse click
121-22 µ & σ tran1 double letters 235 % right mouse click
123-24 µ & σ tran1 left/left 236 % double left mouse click
125-26 µ & σ tran1 left/right 237 % left shift to right shift
127-28 µ & σ tran1 right/left 238 rate input rate with pauses
129-30 µ & σ tran1 right/right 239 rate input rate w/o pauses

Table 1:  Summary of the 239 features used in this study. 
 
The granularity of the duration and transition features is 

shown in the hierarchy trees of Figures 4 and 5. For each 
of these trees, the granularity increases from gross features 
at the top of the tree to fine features at the bottom. The 
least frequent letter in the duration tree is “g” with a 
frequency of 1.6%, and the least frequent letter pair in the 
transition tree is “or” with a frequency of 1.1% [6]. 
Because these features were designed to capture the 
keystroke patterns of users creating emails of as few as 200 
keystrokes, we omit the infrequent alphabet letters, letter 
pairs, and punctuation, as well as the individual number 
keys and other infrequently used keys. 
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Figure 4: Hierarchy tree for the 39 duration categories (each 
oval), each represented by a mean and a standard deviation. 
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oval), each represented by a mean and a standard deviation for 

each of the type 1 and type 2 transitions. 
 

The computation of a keystroke-duration mean (µ) or 
standard deviation (σ) requires special handling when there 
are few samples. For this we use a fallback procedure 
which is similar to the “backoff” procedures used in natural 
language processing [11]. To compute µ for few samples – 
that is, when the number of samples is less than kfallback-

threshold (an experimentally-optimized constant) – we take 
the weighted average of µ  of the key in question and µ of 
the appropriate fallback as follows: 
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where µ’(i) is the revised mean, n(i) is the number of 
occurrences of key i, µ(i) is the mean of the n(i) samples 
of key i, µ(fallback) is the mean of the fallback, and 
kfallback-weight is the weight (an experimentally-optimized 
constant) applied to the fallback statistic. The appropriate 
fallback is determined by the next highest node in the 
hierarchy tree. For example, the “e” falls back to 
“vowels,” which falls back to “all letters,” which falls 
back to “all keys.” The σ (i) are similarly computed, as 
are the means and standard deviations of the transitions. 
Thus, we ensure the computability (no zero divides) and 
obtain reasonable values for all feature measurements. 
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Two preprocessing steps are performed on the feature 
measurements, outlier removal and feature standardization. 
Outlier removal consists of removing any duration or 
transition time that is far (more than koutlier-σ standard 
deviations) from the subject’s µ (i) or µ (i, j), respectively. 
After outlier removal, averages and standard deviations are 
recalculated. The system can perform outlier removal a 
fixed number of times, recursively, or not at all, and this 
parameter, koutlier-pass, is experimentally optimized. Outlier 
removal is particularly important for these features because 
a keyboard user could pause for a phone call, for a sip of 
coffee, or for numerous other reasons, and the resulting 
outliers (usually overly long transition times) could skew 
the feature measurements. Using a hill-climbing method, 
the four parameters – kfallback-threshold, kfallback-weight, koutlier-σ , 
and koutlier-pass – were optimized on data from an earlier 
study [1].  

After performing outlier removal and recalculation, we 
standardize the measurements by converting raw 
measurement x to x’ by the formula,  

 

minmax

min'
xx

xxx
−

−
=                                             (2) 

 
where min and max are the minimum and maximum of the 
measurement over all samples from all subjects [5]. This 
provides measurement values in the range 0-1 to give each 
measurement roughly equal weight. 

2.3.   Classification 

A Nearest Neighbor classifier, using Euclidean 
distance, compares the feature vector of the test sample in 
question against those of the samples in the training 
(enrollment) set. The author of the training sample having 
the smallest Euclidean distance to the test sample is 
identified as the author of the test sample. 

3.  Experiments 

3.1 Subjects and Data Collection 
 

 After discarding incomplete data, a total of 118 
subjects participated in the experiments. Data samples were 
obtained from students in introductory computer classes 
(accounting for the majority of the data samples); from 
students in classes at the masters and doctoral levels; and 
from friends, family, work colleagues, and fellow 
academics. Table 2 summarizes the demographic 
information of the subject pool.  

 
 

Age Female Male Total 
Under 20 15 19 34 

20-29 12 23 35 
30-39 5 10 15 
40-49 7 11 18 
50-59 11 4 15 
60+ 0 1 1 
All 50 68 118 
Table 2: Summary of subject demographics 

  
3.2 Experimental Design 

 
Experiments were designed to explore the 

effectiveness of identifying users under optimal (same 
keyboard type and input mode for enrollment and testing) 
and non-optimal conditions (different type of keyboard, 
different mode of input, or both, for enrollment and 
testing). All the desktop keyboards were manufactured by 
Dell (and the data obtained primarily in classroom 
environments); over 70% of the laptop keyboards (mostly 
individually owned) were also by Dell, and the remaining 
ones were a mix of IBM, Compaq, Apple, HP, and Toshiba 
keyboards. We used two input modes: a copy-task in which 
subjects copied a predefined text of approximately 650 
keystrokes, and free-text input in which subjects typed 
arbitrary emails of at least the length of the copy passage. 

Figure 6 summarizes the experimental design, and 
shows four quadrants and six arrows. The quadrants are the 
areas in which the subjects were asked to participate: 
desktop copy, laptop copy, desktop free text, and laptop 
free text. The six arrows correspond to six experimental 
groupings. Groups 1 and 2 compare the two keyboard 
types on the copy-task and free-text inputs, respectively. 
Groups 3 and 4 compare the two input modes on the 
desktop and laptop keyboards, respectively. Finally, groups 
5 and 6 compare the two possible ways of having different 
keyboard types and input modes for enrollment and testing. 
The subjects were asked to complete a minimum of two of 
the four quadrants as indicated by the two horizontal (1 and 
2) and the two vertical (3 and 4) arrows in Figure 6. A 
subject completes a quadrant by typing a minimum of 5 
samples of that category. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 C3.6

  
Desktop 

 

 
Laptop 

 
Copy Task 
 
 
 
 

       
     
  
 

                          
  
 

 
  
     

 
Free Text 
 

               
               
             
                 
                     
               
          

 
 
 
            

Figure 6: Summary of experimental design. 
 

For the copy task on different keyboards (group/arrow 
1), the subjects typed a copy of the predefined passage five 
times on one keyboard and then typed the same text five 
times on the other keyboard. For the free-text experiment 
on different keyboards (group/arrow 2), the subjects typed 
five arbitrary emails on each keyboard type. These two 
experimental groupings required the subjects to use both 
keyboard types. Groups 3 and 4 required the subjects to 
type in different modes on the same type of keyboard, so 
these groups were most suited for subjects having access to 
only one keyboard.  

Although all subjects were invited to participate in all 
four quadrants of the experiment, due to time or equipment 
limitations some opted for two (minimum) while others 
participated in three or four quadrants of the experiment.  
This provided a comparison of different tasks on different 
keyboards as depicted by arrows 5 and 6 on the diagonals 
of Figure 6. A total of 118 subjects supplied five entries in 
at least two quadrants of the experiment (incomplete 
sample sets were discarded), and 36 completed all four 
quadrants of the experiment.  

4.  Results and Conclusions 

The results of the study are summarized in Tables 2 
and 3. Table 2 contains the results of the 36 users who 
completed all four quadrants of the experiments, and Table 
3 contains the results of all the users who completed at 
lease two of the four quadrants. The six experimental 
groupings in each of these tables correspond to the six 
numbered arrows in Fig. 6. Several experiments were 
conducted within each experimental group, such as 
experiments 1-5 within group 1. Within each experimental 

group we tested under the optimal conditions of the same 
keyboard type and the same input mode (e.g., experiments 
1 and 2 in group 1), the combined data (e.g., experiment 3 
in group 1), and the less-optimal experimental conditions 
(e.g., experiments 4 and 5 in group 1). The combined data 
experiments combined the data from both quadrants 
covered by the arrow – from both the keyboard types, from 
both the input modes, or from both the keyboard types and 
the input modes. For the optimal conditions and for the 
combined experiments we used the leave-one-out 
classification procedure. For the less-optimal conditions we 
trained on one set and tested on the other. In Table 2 the 
two experiments for optimal conditions are only shown for 
groups 1 and 2 and need not be repeated for the remaining 
groups because the same 36 subjects participated in each 
experimental group, whereas this was not the case for the 
groups in Table 3. 

The results in Table 2 are first discussed. The most 
important finding is that the system can identify with a 
high degree of accuracy the author of long-text input 
(either copy or free-text) as long as the author uses the 
same type of keyboard for both enrollment and testing, or 
when the data are combined. As anticipated, accuracy is 
highest under optimal and combined conditions (greater 
than 98%) when the population of users is relatively small, 
as in the 36-subject experiments.  

Compared to the copy task, accuracy decreased 
somewhat for free-text input – from 100.0% to 99.5% on 
laptop keyboards and from 99.4% to 98.3% on desktop 
keyboards. This is perhaps understandable since each free-
text sample was a different text whereas the copy samples 
were the same text. Interestingly, other variables being 
equal, the laptop accuracies were higher than the desktop 
accuracies – 100.0% versus 99.4% for the copy task and 
99.5% versus 98.3% for free-text input. The reason for this 
might be the greater variety of laptop keyboards used in the 
experiments and the subject’s greater familiarity with the 
laptop keyboards since the laptops were usually owned by 
the subjects. 

Accuracy decreased significantly when the subjects 
used the same copy or free-text input mode but different 
keyboard types for enrollment and testing (experiments 4-
5, and 9-10).   For the copy task, the accuracy decrease in 
going from desktop/desktop (experiment 1) to 
desktop/laptop (experiment 4) was highly significant (p = 
2.0E-20 using the Chi-square test).  However, the 
difference between laptop/laptop and desktop/desktop 
(experiments 1 and 2) was not significant (p = .31).  
Finally, there was no significant difference (p = .30) 
between the copy task and free text on the desktop 
keyboard (experiments 1 and 6). 

Accuracy also decreased significantly when the 
subjects used the same keyboard type but different input 
modes (experiments 12-13, and 15-16). The decrease in 
accuracy for different input modes was not as great as for 

1

2

3 4 

6 5 
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different keyboard types. The difference in accuracy for 
the different input modes suggests that an individual’s 
keystroke patterns are significantly different for the two 
modes. Accuracy decreased most significantly when the 
subjects used different keyboard types and different input 
modes (experiments 18-19 and 21-22).  

The results in Table 4 with the larger number of 
subjects support the above conclusions and also quantify 
the decrease in accuracy as the population of users 
increases. 
 

 
Experiment # Train Test Accuracy 

1 Desktop Desktop 99.4% 

2 Laptop Laptop 100.0% 

3 Combined 
Keyboards 

Combined 
Keyboards 99.5% 

4 Desktop Laptop 60.8% 

1.  Copy Task 
(36 subjects) 

5 Laptop Desktop 60.6% 

6 Desktop Desktop 98.3% 

7 Laptop Laptop 99.5% 

8 Combined 
Keyboards 

Combined 
Keyboards 98.1% 

9 Desktop Laptop 59.0% 

2.  Free Text 
(36 subjects) 

10 Laptop Desktop 61.0% 

11 Combined 
Modes 

Combined 
Modes 99.2% 

12 Copy Free Text 89.3% 
3. Desktop 

(36 subjects) 
13 Free Text Copy 91.7% 

14 Combined 
Modes 

Combined 
Modes 98.9% 

15 Copy Free Text 86.2% 
 4. Laptop 

(36 subjects) 
16 Free Text Copy 91.0% 

17 
Combined 
Keyboards 
& Modes 

Combined 
Keyboards 
& Modes 

98.6% 

18 Desk Copy Lap Free 51.6% 

5. Different  
Mode/Keyboard 

(36 subjects) 
19 Lap Free  Desk Copy 58.0% 

20 
Combined 
Keyboards 
& Modes 

Combined 
Keyboards 
& Modes 

98.9% 

21 Lap Copy Desk Free 50.3% 

6.  Different    
Keyboard/Mode 

(36 subjects) 
22 Desk Free Lap Copy 52.1% 

Table 3:  Summary of results for the 36 subjects participating in 
all four quadrants of the experiment. 

 
 
 
 
 
 
 
 
 
 
 

Experiment # Train Test Accuracy 
1 Desktop Desktop 99.2% 
2 Laptop Laptop 99.6% 
3 Combined Combined 98.9% 
4 Desktop Laptop 54.6% 

1.  Copy Task 
(52 subjects) 

  

5 Laptop Desktop 51.9% 
6 Desktop Desktop 96.4% 
7 Laptop Laptop 98.1% 
8 Combined Combined 97.3% 
9 Desktop Laptop 59.1% 

2.  Free Text 
(40 subjects) 

  
  
  10 Laptop Desktop 62.4% 

11 Copy Copy 99.1% 
12 Free Text Free Text 93.3% 
13 Combined Combined 95.9% 
14 Copy Free Text 73.7% 

3. Desktop 
(93 subjects) 

15 Free Text Copy 81.1% 
16 Copy Copy 99.2% 
17 Free Text Free Text 97.9% 
18 Combined Combined 98.6% 
19 Copy Free Text 80.2% 

 4. Laptop 
(47 subjects) 

20 Free Text Copy 87.7% 
21 Desk Copy Desk Copy 99.0% 
22 Lap Free  Lap Free 99.1% 
23 Combined Combined 98.6% 
24 Desk Copy Lap Free 51.37% 

5. Different Mode/ 
Keyboard  

(41 subjects) 

25 Lap Free  Desk Copy 51.44% 
26 Lap Copy Lap Copy 98.5% 
27 Desk Free Desk Free 99.5% 
28 Combined Combined 98.8% 
29 Lap Copy Desk Free 44.2% 

6.  Different    
Keyboard/Mode 

(40 subjects) 

30 Desk Free Lap Copy 51.4% 
Table 4:  Summary of results for all subjects participating in a 

minimum of two quadrants of the experiment. 
 
In order to check the sufficiency of the number of 

enrollment samples, the accuracy as a function of the 
number of enrollment samples was measured on the free- 
text desktop data from 93 subjects (Figure 7). Since each 
subject supplied five data samples per quadrant, the leave-
on-out procedure left a maximum of four enrollment 
samples to match against for a correct response. Since 
accuracy remains relatively high after two enrollment 
samples are available, it appears that a small number of 
enrollment samples is sufficient for this application. 
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Figure 7:  Accuracy versus enrollment samples (93 users). 

 
To show the value of using the fallback procedure and 

outlier removal, we obtained results on the 93 subject free-
text experiment under various parameter settings. Using 
the fallback procedure increased accuracy from 91.0% 
without fallback to 93.3% with fallback. Outlier removal 
was revisited (Figure 8) to demonstrate the importance of 
outlier removal. The setting used for outlier removal in the 
above experiments was “recursive” and the figure shows 
that about four passes of outlier removal are sufficient. 

 

 
Figure 8:  Accuracy versus number of outlier removal passes. 

 
In summary, these results indicate that the keystroke 

biometric can be useful for identifying an individual who 
sends inappropriate email (free text) if sufficient 
enrollment samples are available and if the same type of 
keyboard is used to produce the enrollment and questioned 
samples. A secondary finding is that the keystroke 
biometric is significantly weaker for identification 
purposes when enrollment and testing are on different 
keyboard types. Finally, it is significant that accuracy is 
high on the free text mode (same keyboard) because the 
free text mode is of primary interest for the targeted 
application of identifying the author of inappropriate email. 

Future work might explore the use of more 
sophisticated classifiers, such as Support Vector Machines 
(SVM). Also, although it is difficult to imagine how one 
could mimic another person’s keystroke pattern, imposter 
performance might be investigated. 
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