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ABSTRACT 
 

Web security is a critical aspect for many web-based applications, along its research track, 
keystroke dynamics techniques have attracted broad interests due to their high efficiency in 
security. In this paper, the aim was to come out with a keystroke login system that overcomes the 
typical challenges associated with keystroke dynamics and improves on password security but with 
focus on irritability nature of keystroke dynamics based systems. Specifically, we proposed two 
stages user matching method, training/enrolment phase of users and authenticating registered 
users with previously stored data. Furthermore, the proposed algorithm added dwell, flight times 
and multiplied by the locate time to get the upper and lower bounds. Moreover, the uniform 
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differences between the bound timings were calculated to further enhance security. Experimental 
results show that the proposed keystroke dynamics approach used in augmenting password 
security emerged to be superior as compared to existing customary distance metrics. 
 

 

Keywords: Keystroke dynamics; web security; user credentials; flight time. 
 

 1. INTRODUCTION 
 

The universally accepted use of information 
system and computers has made humanity to 
carry out their daily activities with less effort. 
Advancement in information technologies for few 
decades now has made possible improvements 
in network performance, reliability and 
accessibility as well as reducing operating costs 
by adapting to these efficient technologies [1,2]. 
Efficient security measures are being sought now 
to secure computer resources against 
unauthorized access through fraudulent and 
masquerading in web applications. Online based 
applications are developed to allow individuals 
who have access to internet and web browser to 
access the content of a particular web application 
without any platform dependent problems. These 
systems are usually designed consisting of two 
main components thus, the front-tier application 
and a back-end database. The authentication 
credentials need to be secured properly to 
reduce system vulnerabilities which could be 
exploited by illegitimate users, as claimed by [3, 
4]. 
 
Authentication is an essential element in 
networks and computer security and will continue 
be a vital part of a reliable system for granting 
authorization to corporate information. There are 
various methods currently used in authenticating 
system users. The most commonly used is the 
password. Passwords are appropriate as they 
are easily employed in software and require no 
dedicated hardware. Users are also at ease with 
their use. On the other hand, passwords also 
come with many flaws. Users frequently share 
passwords, fail to recall passwords, and select 
weak passwords characters that can be learned 
and mimic by an imposter [5,6]. 

 
Authenticating users to web application systems 
becomes a problem due to threats to computer 
and internet security [7]. The traditional 
measures used to safeguard credentials of 
legitimate users of a system such as passwords 
and pins are no longer much reliable as an 
efficient authentication approach to some extent 
[8]. Hence a new secured methodology that must 
be probed into is biometric techniques [9]. As 
compared to password and pin methods, 

biometrics technologies make use of 
physiological and behavioural traits to identify 
legitimate users to a system [10,11,12]. Biometric 
authentication system is appropriate and most 
secured authentication method, because it is 
practically impossible to be borrowed, stolen, or 
forged. Biometrics use unique personal traits to 
identify and authenticate users into a system 
whether being a physical or behavioural feature 
[13,14,15].  
 
The biometric technique appropriate for the 
purpose of this study is keystroke dynamics. 
Biometrics based on typing of the user does not 
require any extra hardware other than keyboard. 
Keystroke biometric is less expensive to 
implement, more distributed and more 
unobtrusive than other biometrics [16]. Gathering 
of data needs keyboard and simple software 
utilizing JavaScript. It is relatively cheap 
investment than other biometrics like fingerprint 
and retinal scan. It’s very easy to replicate the 
collected data if hardware is not available. 
 
Keystroke dynamics doesn't depend upon the 
location of the client as we can gather the data 
from anywhere using Internet. Keystrokes 
collection software can be distributed via client-
server methodology. No specialized preparation 
is required for keystroke as it’s a daily activity. It 
is relatively unobtrusive technique as contrasted 
to retinal scan where we have to put some part of 
the body in front of a special retina scan device 
[17]. Keystroke dynamics can be considered as 
secure framework even if an illegitimate user 
knows the user login credentials [17,18]. 
 
However, there is no consistency in Keystroke 
analysis mechanism like other biometrics which 
last fairly long period of time. Keystroke analysis 
biometrics comes with irregularities in the typing 
style of users due to; utilizing single hand for 
entering the user credentials, and casual typing 
[6,19]. The design of computer keyboards also 
adds some difference in typing style. The posture 
can lead to change in the keystroke as it’s easy 
to enter the password by sitting rather than 
standing. Keystroke biometrics can be an 
irritating technique if a user has to enter the 
same string repeatedly trying to login accurately 
into his/her account [3,20].  
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Gradually, attention is moving towards biometric 
methods as unique validation and verification 
measure and as a more secured approach to 
verify users to a system [21,22]. Biometrics, 
specifically keystroke dynamics is not in to 
eliminate the usefulness of passwords and pins 
but to augment their efficiency as security 
methods [23,24]. The aim of this study is to 
determine the effectiveness of keystroke 
dynamics that identifies unique patterns in the 
typing behaviour of users used together with 
passwords as authentication measure to solve 
the various authentication issues in computer 
web-based applications. To achieve this 
enhanced security using keystroke dynamics, 
this study proposes an algorithm that ensures 
less irritation of users (i.e. less False Rejection 
Rate and False Acceptance Rate) but still 
maintains maximum security. 
 

2. RELATED WORKS 
 
In a study Monrose and Rubin utilized Keystroke 
dynamic biometrics as an authentication 
technique [1]. They built up a toolkit utilizing C++ 
for examination of data based on user keystroke 
patterns which is a computer desktop application. 
The toolkit was composed of adjusting the x-view 
library routines, and serves as a front-end to their 
primary verification engine. The toolkit was useful 
in diagnosing framework conduct and can create 
graphical response for both MATLAB and 
Gnuplot frameworks. They addressed the 
practical relevance of utilizing keystroke analysis 
as a biometric feature for verifying access to 
workstations. They surveyed the present 
conditions of keystroke analysis and present 
classification methods on basis of template 
matching and Bayesian probability models. Their 
designed toolkit was used to simulate the 
efficiency of using keystroke analysis as an 
authentication measure. 
 

Another study utilized Keystroke analysis as a 
biometric for authentication to predict secured 
password for users to be used as login 
credentials. Their methodology empowers the 
creation of long-term hardened password that 
can be tried for login purposes or utilized for 
encryption of documents, entry access to a 
virtual private system [4,25]. Furthermore, their 
approach naturally adjusts to progressive 
changes in a client's keystroke timings while 
keeping up the same enhanced password over 
numerous logins, for use in document encryption 
or different applications requiring for user 
password. Their approach was mainly to 

generate password for clients based on their 
typing behaviour to be used in other systems and 
the keystroke dynamic metric used was 
continuous keystroke technique. 
 
Vinayak [26] on user authentication used 
advanced keystroke analysis. The study 
indicates that everybody needs to authenticate 
himself on his computer before using it, or even 
before using different applications like email. 
Most of the times, the adopted authentication 
procedure is the use of a classical couple of login 
and password. This method no longer provides 
consistent safety measures because passwords 
are prone to shoulder surfing and passwords can 
also be hacked. In this present study concept of 
keystroke dynamics is introduced to eradicate 
above said problems. This method is based on 
the assumption that every person types in a 
unique manner. He indicates that the advantage 
of introducing the concept of keystroke dynamics 
as compared to conventional system is that even 
the unauthenticated user cracks the password, 
he will be denied access as this method is based 
on the typing pattern of the user. In his research 
FAR error is 0% and FRR is also minimized and 
accuracy level has reached to a higher level but 
did not solve the irritability nature of keystroke 
driven authentication systems. 
 
Seham et al. [27] proposed a method that was 
based on calculating the flight time and dwell 
time. They indicated an important point that the 
identification of users for authentication on 
computer systems is vital. They claim that 
keystroke dynamics is a biometric measurement 
in terms of keystroke press duration and 
keystroke latency. In their study, it was indicated 
that several problems are arisen like the 
similarity between users and identification 
accuracy. In their paper, they propose innovative 
model that can help to solve the problem of 
similar user by classifying user’s data based on a 
membership function but did not consider much 
on the irritability nature of keystroke driven 
authentication systems. Also, they employ 
sequence alignment as a way of pattern 
discovery from the user’s typing behaviour. 
Experiments were conducted to evaluate 
accuracy of the proposed model. Their results 
show high performance compared to standard 
classifiers in terms of accuracy and precision. 
 
This paper elaborates on the effectiveness of 
augmenting passwords security by keystroke 
dynamics in web applications. This study 
specifically adapts static keystroke dynamic 
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techniques to support password security to verify 
users during login sessions in web applications. 
An algorithm is proposed to enhance the 
effectiveness of adopting keystroke dynamics as 
an additional security in web based system by 
combining the strengths of both Euclidean 
distance and Manhattan distance metrics. 
Biometric innovation can take care of issues 
associated with various login systems, yet 
numerous biometrics have failed to fulfill the 
criteria of low equipment prerequisites, minimal 
effort and non-obtrusiveness.  
 
Keystroke dynamics, then again, is a procedure 
that overcomes large portions of the challenges 
different techniques, both customary and new, 
cannot address. Therefore, keystroke dynamics 
is a hopeful new answer for an already exiting 
question: “By what means would we verify clients 
on web applications?” [10,26]. 
 

3. KEYSTROKE DYNAMICS 
 

The study purposed to ensure less irritability (i.e. 
decreasing the chances of where legitimate 
users of keystroke dynamic systems are denied 
access many times they try accessing their 
account) but still maintains needed security over 
the intended system.   perimental research 
design is adapted for this e ploration 
to  investigate  its assertions. Experimental design 
is the process of planning a study to meet 
specified objectives. The prototype model was 
adapted in designing the proposed system 
because it permitted more flexibility for 
reconsideration of the system functionalities. 
Further, this model made it easy to discover 
mistakes associated with the system 
functionalities and features at the early stages of 
the system design. Therefore, the development 
of the proposed keystroke algorithm to 
supplement passwords authentication in web 
based system was done along the structures of 
prototyping techniques, hence, it followed an 
experimental research design. 
 

3.1 Study Population, Sample and 
Sampling Techniques 

 

The sample is given by: 
          

 

Where N = known population size, [28]. 
 

e = alpha level, that is, e = 0.2 if the confidence 
interval is 80%. So the population of 1283, using 

0.80 confidence interval, the sample size is 
calculated as: 
                                

 

Thus, in all, and through a convenient sampling 
technique, an approximate total of 25 volunteers 
were added to the sample size of this study and 
who participated in the study. The study agreed 
that this group of individuals would be able to 
reflect the best information needed for the overall 
performance of the proposed system. 
 

                       n             s 
 

Data for analysis were collected through the 
proposed algorithm as the users interacts with 
the system.  
 

Due to the sensitive nature of keystroke logging, 
participants were first educated on the intended 
exercise for them to be informed with the 
purpose about the overview of the experiment 
and what exactly the data was being logged for. 
The initial stage of the data collection involved 
collecting user typing data samples using a 
structured text (i.e. username and password). 
The writing samples that were used in this part of 
the data collection were a collection of 5 
instances of every participant user credentials. A 
large amount of typing data needed to be 
recorded in order to create good reference 
profiles. However, this required users to type 
their credentials for a significant amount of time. 
This paper hoped to make the experience more 
bearable by having interesting/humorous writing 
samples. The typing samples totaled at least 8 
characters forming the password and at least 6 
characters forming the username. The data 
logged were: key that was pressed, time the key 
was depressed, and time the key was released. 
The time recorded was the amount of time 
passed since the start of the application and the 
unit of measurement was in milliseconds. The 
data structures used to store this data was a 
multidimensional 2 dimensional array tables. The 
key-code of every character was determine by 
the embedded JavaScript as when the 
participants invokes the keys that form their user 
credentials by appending the keystroke timings 
of each character typed.  
 
Once a user finished typing the 5 instances, all 
the data that was logged is processed and first 
inserted into a MySQL database and then an 
acknowledgement is made to notify that a 
successful writing sample had just been captured 
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but before the data is stored it goes through 
series of process. If an error occurs anywhere in 
the process, the error message will prompt the 
user to follow the expected rules set about the 
user credentials in order to proceed. Because of 
the limitation of time, this project only collected 
data from Latin characters such as A-Z and the 
“space”, and “@”. The difference between 
uppercase and lowercase is assumed to be 
handled by the multi mixtures in each key. All 
other unsupported characters (e.g. Backspace 
key and delete key) would be removed from the 
raw data to avoid recording keystroke timings of 
most outliers. The 25 volunteers submitted a 
complete 5 instances of their typing samples 
which were the data that was used to feed and 
evaluate the proposed system. 
 

Collection of data through the proposed 
algorithm can be also categorized into two main 
procedures the Data Preprocessing Stage and 
the Data Feature Extraction Stage. In the Data 
Preprocessing Stage, unwanted keystroke 
timings were removed from the main list 
keystroke timings that were used in the next 
stage Data Feature Extraction Stage. With the 
Data Preprocessing Stage, the proposed 
algorithm is designed to remove outliers in a form 
of unwanted keystrokes timings recorded during 
data acquisition from users. It further describes 
the actual parameter used to extract the final 
keystrokes timings that is used as the main 
benchmark for user authentication. These 
outliers removed at the Data Preprocessing 
Stage, are keystroke timings of special keys 
which are the backspace, delete, enter, shift and 
tab keys. First, in excluding some unnecessary 
key characters typed, the individual key codes of 
these three key characters were included in the 
code for exclusion of their keystroke timings.  
 

4. SYSTEM DESIGN  
 

The Authentication module consists of a sign up 
and login pages where the sign up page is linked 
with the login page (Fig. 1). The sign up allows 
users of the system to create their accounts 
where their keystrokes latencies are determined 
and stored for the enhancement of the password 
security.  
 

4.1 System Architecture 
 
The proposed system deployed for the purposes 
of this study, consist of two main parts: the 
training and the testing phases. The training part 
collects training keystrokes from users and 
updates them to the server. It also accesses the 

database in the server to populate the keyed in 
username and password credential for particular 
users. Data collection in both training (sign-up) 
and testing (Login) phase is performed in client's 
browsers by embedded JavaScript while PHP is 
used to handle database queries in the server 
side. To perform these tasks, a JavaScript 
application was developed to stimulate the data 
collection. It also formats the raw data of typing 
behavior in browsers and then processes it 
further before storing it in the database. This 
JavaScript can be embedded to any web 
applications authentication system, in order to 
apply the result of this project in reality.  
 

On another hand, in order to simulate the real 
collection data phase, the application is able to 
help users to append data in separate times 
rather than one session. In addition, the 
advantage of handling raw keystroke data in the 
client is the avoidance of performance problems 
such as delaying time when transferring data to 
the server or saving more resources in the 
server. Moreover, the data of training keystrokes 
and user's models are stored in the server side 
by MySQL database.  
 

Hence, data processing is also performed in the 
server while the recognition is done through the 
communication between clients and server to 
transfer the testing data and the result of 
recognition tests back to clients from the server. 
Also, the proposed system learns during the 
training section of the application by allowing the 
users to enter their credentials five separate 
instances where the needed extracted values 
from the keystroke events are compared to each 
other in order to determine accurate range 
keystroke timings for each user, within which 
each user has to maintain his/her typing 
behaviour to be successfully authenticated 
together with other parameters. There are five 
main components that aided the design of the 
proposed system which are the database 
(MySQL), server-side scripting language (CSS, 
JavaScript and AJAX), server-side scripting 
language (PHP), server simulator (XAMPP) and 
the web browser.  
 

This paper proposes a new distance metric 
combining both Euclidean distance and 
Manhattan distance such that one complements 
the other. As a result, the proposed distance 
metric combines the benefits of both Euclidean 
and Manhattan distance metrics while 
overcoming their limitations when used 
individually. As it turns out, this new distance 
metric also has a nice statistical interpretation 
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and also the new technique suppress the 
influence of outliers for improved performance. 
 

4.2 Flow Chart of the Proposed System 
 

In the authentication (template matching) 
process we take the Euclidean distance and 
Manhattan distance between the template and 
the query time series. During template matching 
a threshold value is set upon which to accept or 
reject a user pattern. If the query is within the 
threshold the system accepts the pattern 
otherwise it rejects the data as fraud and signals 
as imposter. It is a natural requirement to have a 
user adaptive threshold so we set the initial 
threshold to be the largest distance (Upper-
Bound) and the minimum distance (Lower-
Bound) of a user’s record from the user’s uniform 
distance as computed in data processing 
discussed in subsequent sections of this study, 
this ensures less irritability of users but still 
maintains maximum security.  
 

The flow chart that resulted when this system 
was implemented is as follows and indicated in 
the Fig. 2. 
 

5. SYSTEM ANALYSIS AND EVALUATION 
 

This section illustrates results of the study by 
evaluating the capabilities of the proposed 
authentication system. This paper 
conceptualized the idea of upper bounds and 
lower bounds in keystroke authentication system. 
The proposed system tends to narrow the frames 
between the upper bound and lower bound 
keystroke latencies with the sole purpose to very 
much increase the security. In addition to the 
introduction of the upper and lower bounds in 
Key-Press events of the proposed procedure, an 
anomaly detection distance metrics, The 
Euclidean and the Manhattan was applied 
together, not separately, to calculate and record 
the average distance between the stored bounds 
for all the Key-Press events. The features of the 
proposed algorithm are divided into two major 
segments, the training phase and the testing 
phase.  
 

5.1 Training Phase of the Proposed 
Algorithm 

 

The training phase serves as the enrolment 
phase, which instructs and guides the users of 
the system to go through a five-series signup 
process. The training phase involves gathering 
the information of users (usernames and 
passwords) before login process which is the 

next stage, testing phase. The phase also 
generates a unique signature reference, called 
bound, which acts as a template to authenticate 
user. The bound templates are kept in record of 
a database to be used later in the testing stage, 
in authenticating users. The purpose of this 
training phase to the system is that, it enables 
the system to learn and store the individual 
bounds (in milliseconds) of any Key-Press events 
initiated by the users, except for the initial key 
character for the username or password, which 
will always be recorded as a zero bound. For 
e ample, a username ‘ernestina’ will always 
have an initiated bound for the key character ‘e’ 
to be zero, which according to the algorithm, is 
used for special purposes described in 
subsequent paragraphs. Again, the algorithm 
uses the stored bounds timings to calculate a 
constant distance value which is also an 
additional security feature used in identifying a 
legitimate users and allowing their accesses into 
the system. 
 
5.1.1 Calculating of bound timings  
 

A bound in the context of the proposed algorithm, 
is therefore the time, in milliseconds, taken by a 
user to locate, initiate Key-Down and Key-
Release/Key-Up events for a particular key on 
the keyboard. According to the Fig. 3, which 
describes how the algorithm calculates the 
bound timing values, there are three timings 
recorded by the algorithm for the calculation of its 
bound timing values. These three timings are the 
Locate time, keystroke duration/dwell time and 
the keystroke latency/flight time. The Locate time 
has a sole purpose of one linking to its 
consecutive key so that key characters can form 
a string of meaningful or human understandable 
words, sentences and paragraphs. In simple 
explanation, typical real word scenarios were 
made to clarify the algorithm. A male, user ‘A’ 
also referred with the name ‘Michael’, and with 
the username ‘michael’ and password ‘osei@22’, 
is used in subsequent scenarios. In addition, a 
female, user ‘B’ referred with the name 
‘ rnestina’, and with the username ‘ernestina’ 
and password ‘tinao@22’, will be used in some 
other instances. Therefore, if the locate times of 
each user are taken into consideration, it will 
definitely differentiate user ‘B’ from user ‘A’ in 
typing a word like ‘michael’. In this, user ‘A’ might 
be slower or faster than, but never equal to a 
user ‘B’, who is also typing the same word using 
the same keyboard, User ‘A’ might be faster or 
slower in locating the keys on the keyboard when 
compared to user ‘B’. 
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(a)    (b) 
 

Fig. 1. module of the proposed system (a) Login page module, (b) Signup page module 
 

 
 

Fig. 2. Dataflow diagram of the proposed system 
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Fig. 3. Bounds calculation using the three key states 
 

In simple terms, the bound is a recorded 
measure of time, whenever the key is pressed 
and ends when the pressure is released from the 
key. The bound of a key (Bk), according to 
proposed algorithm is calculated by adding the 
Flight time (Ft) to the Dwell time (Dt) and then 
multiplying it with Locate time (Lt).  

 
Bound of a key   (Flight Time + Dwell time) x 
Locate time 
 
According to the algorithm, the relationship 
between all the three states of a key is that the 
pressed state serves as the intermediary 
between the original state and the release state 
of the key. This simply means that, a key in an 
original state enters the pressed state on any 
Key-Down event for that particular key, if and 
only if the key immediately enters its released 
state. Also, the next relationship between the 
three states of a key is that, the states are cyclic 
in nature. 
 

The Fig. 3 describes how the locate times for 
each key pressed by a user ‘B’, the female user 
named Ernestina, subjected the calculation of 
bound times for these keys in the algorithm.  

 
After the bound for each key character is 
calculated, they are stored in an array. The 
multidimensional array of characters and their 
respective bounds were recorded for each key. 
The username of the user ‘B’, which is 
‘ernestina’, consisted of 9 characters and 
therefore the algorithm will calculate a bound 
time for all the 9 characters. The algorithm 
therefore generates 9 bound times. The 9 
characters are stored in a 1-Dimensional (1-D) 

array (userN[]) while the 9 bound times are 
stored in another 1-Dimensional (1-D) array 
(bound[]). Then, a new 2-Dimensional (2-D) array 
(userNBound[][]) was created by combining the 
two 1-Dimensional arrays userN[] and bound[] as 
represented in the Fig. 4. 
 
5.1.2 Determining the lower bounds and 

upper bounds of the proposed 
algorithm 

 
At this point, it is finally derived from the training 
phase that, the system stores the bounds (in 
milliseconds) for all the Key-Press events in a 
2D-Dimensional table array, assigning 
independent indexes to these bound timings. 
Now, it has to be pointed out that, the algorithm, 
determines the lower and upper bound timings 
that are stored into a database, based on all the 
five signup processes. These lower and upper 
bounds are used by the proposed system to 
accept legitimate users and reject imposters. 
Therefore, the primary aim for calculating the 
bound timings for all the key characters stroked 
on the keyboard is to find these highest and 
lowest bounds of all the Key-Press events. 
 
As shown in Fig. 5, the bound timings for key 
characters are stored as elements within a 1-D 
array. These bound timings were recorded for 
the user ‘B’, who went through all the five series 
in her signup process. 
 
The algorithm makes these sorting arrangements 
to make it easier to extract the final upper bond 
and lower bond of the keystroke timings that is 
stored as thresholds for testing the system. From 
Fig. 6 these timings are then arranged in order of 
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magnitude from lowest to highest to determine 
the lower and upper bounds for all the stored 
bound timings.  
 
The 2-Dimensional table array are arranged in 
ascending order of magnitude (using the bound 
timings), from the lowest to the highest values 
and stored in a new 1-Dimensional array (see 
Fig. 7). 
 
However, the highest value is realized by the 
system as the highest bound for all the Key-
Pressed Events. The highest bound forms the 

upper bound (in milliseconds). This upper and 
lower bounds limits the user. In that sense, the 
upper bound is a limit for the next phase (testing 
phase) to which the user, when finished with the 
training phase, cannot instantiate a bound above 
it (upper bound). This is also referred to as 
stored upper bound. Similarly, the lowest bound 
recorded at the training phase for a particular 
user, serves as the lower bound limit (in 
milliseconds), in the next phase (testing phase), 
below which the user cannot initiate a bound 
afar. This is also referred to as stored lower 
bound (see Fig. 8).  

 

 
 

Fig. 4. Code snippet representation of 2-D array, userNBound[][] for storing bound timings 
 

 
 

Fig. 5. Snipet of the first instance of Keystroke Timings for Username at Five-Series SignUp 
Process ( s  n m   s ‘  n s  n ’) 
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Fig. 6. Keystroke timings for username at five-series sign up processes  
(Username  s ‘  n s  n ’) 

 

 
 

Fig. 7. Keystroke Timings for username at five-series sign-up processes arranged in 
ascending order of magnitude (Username  s ‘  n s  n ’) 

 

 
 

Fig. 8. Lower and upper bounds of  s   ‘B’, s       n  m  g    n     1-D array, to find the final 
lower and upper bounds 

 
5.1.3 Determining the uniform difference 

between bounds  
 
The differences in the bounds were determined 
using the Euclidean and Manhattan 
(Taxicab/city-block) distance metric approaches. 
The algorithm choses to calculate the distance 

between the bounds either with Euclidean 
distance metric or Manhattan distance measure, 
based on the locate time of the user typing 
pattern. If the algorithm records in the 
FinBounds[] array that any locate time is greater 
than or equal to one seconds which is 
approximately 1000 milliseconds and also any 
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locate time is lesser than or equal to 0.5 
seconds, which is approximately 500 
milliseconds, then the Manhattan distance 
measure is used.  
 
This is because, from literature [22], it was 
revealed that the Euclidean distance metric is 
good for measuring real distances on a plane 
within relatively small areas with distinctively 
single intervals. But the Euclidean distance 
metric cannot be used to determine how shorter 
or longer a distance is, one point to another while 
moving at a given speed. Manhattan distance 
measure is therefore a proposed distance 
measure that was used by the algorithm to 
determine the shorter distance value to be stored 
for a slower typing pattern of a user. 
 
In determining the differences between bounds 
using the Euclidean distance measure, the 
bounds are treated as points on a Cartesian 
coordinate. If for each distance between two 
consecutive bounds is to be measured on the 
Cartesian coordinate, the bounds are perceived 
as points, for instance, P and Q, where P is the 
beginning bound and the Q is the end bound, 
under concentration.  Therefore, the Euclidean 
distance measures the length of the line segment 
connecting points P and Q on the plane of the 
Cartesian coordinate. If P = (P1, P2, P3, ..., Pn) 
and Q = (Q1, Q2, Q3 ..., Qn) are two points in 
Euclidean n-space, then the distance (Ed) from P 
to Q, or from Q to P is given by the Pythagorean 
formula: 
                                                           
                               

    

 
where n=FinBounds[].length=10 

 
The position of points (bounds) in a Euclidean n-
space is a Euclidean vector. So, P and Q are 
Euclidean vectors, and having two vectors, each, 
represented as X and Y. So for point P on the 
Euclidean n-space, its x and y values are derived 
from the Cartesian coordinate as well as the 
point Q. In this sense, point P is solely denoted 
as P (X, Y). Similarly, point Q can be represented 
as Q (X, Y). Taking point P to be the source or 
starting point of the distance to be covered, it is 
further represented as P (X0, Y0), where X0 and 
Y0 are initial vector coordinates in the Cartesian 
plane. Likewise, taking point Q to be the 
destination or end point of the distance to 

covered, it can be further denoted as Q (X1, Y1), 
where X1 and Y1 are finishing vector coordinates 
in the Cartesian plane. In an n-Euclidean 
dimension, the distance between two points on 
the real plane (Cartesian coordinates) is the 
absolute value of their numerical difference. Thus 
if P (X0, Y0) and Q (X1, Y1) are two (source and 
destination) points on the real line, then the 
distance between them is given by: 
                                          

                                                   
    

 

where n=FinBounds[].length=10 
 
The formula can be simply explained that, the 
first (source) vectors on the Cartesian 
coordinates X0 and Y0, are subtracted from the 
second (destination) vectors on the Cartesian 
coordinates, X0 and Y0, to be able to get the 
distance covered from X0 to X1 and Y0 and Y1, 

respectively. In explaining these, a real world 
e periment was conducted whereby the user ‘B’ 
typed her username as ‘ernestina’. As seen from 
previous paragraphs and subsections, after 
going through series of processing, the algorithm 
finally recorded the 10 bound timings as 50 ms, 
54 ms, 54 ms, 58 ms, 60ms, 149 ms, 149 ms, 
154 ms, 158 ms, 160 ms and stored them in the 
array FinBounds[]. The algorithm will therefore 
use the Euclidian distance metric to measure the 
uniform differences between the bounds, 
because it was obvious that during its (the 
algorithm) processing, no locate time recorded 
was above 1000 millisecond which is 
approximately 1 second.  
 

The Fig. 9, further denotes how the algorithm 
arranges the element within the 1-D array, 
FinBounds[] on a Cartesian plane. After the 
algorithm places the bounds as points on a 
Cartesian plane, it uses each point’s coordinates 
derived from its corresponding x-axis and y-axis 
to calculate for the distance between the element 
in the 1-D array FinBounds[]. The diagonal 
distance between points is calculated using the 
Euclidean distance metric which is denoted by Ed 
on the figure. In calculating the distance, the 
coordinates are noticed from the horizontal (y-
axis) and vertical (x-axis) perspective. On the y-
axis, the coordinates represent the bound 
elements stored in the array while on the x-axis, 
the coordinates represent the 10 indexes (from 0 
to 9) of the array at which bound elements are 
stored.  
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From the figure, distances that need are 
calculated by the proposed algorithm are, from 
ponts P3 (4, 58) to P4 = (5, 60), then to P5 = (6, 
149). From P6 (7, 149) through P7 (8, 154) to P8 
(9, 158) also needs to be calculated. Lastly, 
distances between the points P8 (9, 158) to P9 

(10, 160) also needs to be calculated. When all 
these distances are calculated for all the 10 
points, they are added together to result in the 
uniform difference between bounds of a user 
typing pattern. Table 1 further illustrates this 
concept of the algorithm. 
 

In the second case, when the algorithm decides 
to use the Manhattan distance measurement 
metric to determine the differences between 
bounds, each distance between two consecutive 
bounds are calculated along the right/left and 
top/down directions. A comparison is then made 
on all the possible distances between the two 
(source and destination) points to choose the 
shortest to be stored. The Manhattan Distance is 
the distance between two points measured on 
the grid-like Cartesian plane layout, which can 
determine the shortest time a user can use in 
striking the first key and also striking of the last 
key on the keyboard. Typically, the Manhattan 
distance measures the differences between the 
elements within the sorted array FinBounds[], 
which provides 1 value, each, for x and y at each 
of the 10 alternative points on the plane. 
Therefore, just like with the Euclidian distance, 
for the 10-point distance measure using the 
Manhattan metric, if Xi(s) and Yi(s) are the X and 
Y coordinates of the points P and Q, and if the 
starting point Xi and the ending point Yi are the X 
and Y coordinates of points P and Q, in the 
Cartesian state, the formular is given by: 
                                                                    
                               

    

 

where n=FinBounds[].length=10 
 

Manhattan metric takes the sum of the absolute 
values of the differences in the coordinates of the 
points. For example, if point P with coordinates 
X0 and Y0, which serves as the starting 
coordinates and point Q, with ending coordinate 
X1 and Y1, then the Manhattan distance (Md) 
between coordinates Xi and Yi  is primarily given 
as 
                                       

                                                
    

 

where n=FinBounds[].length=10 
 
In explaining these, a real world experiment was 
conducted whereby the user ‘A’ typed his 
username as ‘michael’. The algorithm classified 
this user as a slow typist as it (the algorithm) 
recorded some locate times of the user to be 
more than 1 second which is approximately 1000 
milliseconds. In other words, the difference 
between the upper bound and the lower bound 
was greater than 0.5 seconds or 500 
milliseconds. After going through series of 
processing, the algorithm finally recorded the 10 
bound timings as 251ms, 354ms, 458ms, 464ms, 
658ms, 668ms, 668ms, 670ms, 690ms and 
1150ms which were stored in the array 
FinBounds[] as follows in Fig. 10. 

 
In calculating the Manhattan distance, a standard 
heuristic for a square grid is taken into 
consideration. In other words, the algorithm looks 
at all the difference in bounds in relation to the 
Cartesian plane and finds the minimum 
difference for moving from one point to another 
adjacent point. In simple case, on a square grid, 
the algorithm can move in a minimum of four 
directions in each given distance between points. 
In picking the distance, the best path chosen to 
be the difference between the bounds is the one 
with the lowest value between the two adjacent 
points. 

 
In the Fig. 11 and as shown on the                    
Cartesian plane, there are 10 points (from P0 to 
P1). Each point on the Cartesian plane is 
represented by an X and Y coordinate values. 
For example, point P0 is represented on the 
Cartesian plane as P0 (1, 251) and P1 
represented as P1 (2, 354), P2 as P2 (3, 458) and 
so on till last point P9, also represented as P9 (10, 
1150). However, because the algorithm decided 
to use Manhattan metric of distance to measure 
the differences in the bounds on the Cartesian 
plane, several minor points are also            
considered. Take for instance, if the algorithm 
wanted to measure the difference in 
milliseconds, between the first bound point P0 
and the second bound point P1, it (the algorithm) 
will consider all the two paths (Md1 x 1 and Md1 x 2) 
from P0 to P1, in which one (Md1 x 1), path which is 
represented as P0 → P0-up → P0-upRight → P1                  

and another path (Md1 x 2) which is also represented 
as P0 → P0-down → P0-downRight → P0-downRightUp → 
P1. 
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Fig. 9. Array representation in determining the uniform difference between bounds on a 
Cartesian plane (Euclidean Distance) 

 

Table 1. Uniform difference between bounds by euclidean metric 
 

Cartesian plane points Array representation of points Distance by euclidean metric 

P0 to P1 P0 = (1, 50) to P1 = (2, 54) 4.123 
P1 to P2 P1 = (2, 54) to P2 = (3, 54) 1 
P2 to P3 P2 = (3, 54) to P3 = (4, 58) 4.123 
P3 to P4 P3 = (4, 58) to P4 = (5, 60) 2.236 
P4 to P5 P4 = (5, 60) to P5 = (6, 149) 89.001 
P5 to P6 P5 = (6, 149) to P6 = (7, 149) 1 
P6 to P7 P6 = (7, 149) to P7 = (8, 154) 5.011 
P7 to P8 P7 = (8, 154) to P8 = (9, 158) 4.123 
P8 to P9 P8 = (9, 158) to P9 = (10, 160) 2.236 
Uniform difference between bounds (Summation) = 112.853 

 

 
 

Fig. 10. L w    n  Upp   B  n s  f  s   ‘A’, s       n  j  n    n     1-D array, to find the 
final Lower and Upper Bounds 
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Fig. 11. Array representation in determining the uniform difference between bounds on a 
Cartesian plane (Manhattan Distance) 

 

  
Fig. 12. Determining the shortest path by manhattan distance 

 
Table 2. Uniform difference between bounds by manhattan metric 

 

Points (Mdn x 1) (Mdn x 2) Relationship Chosen 

P0 to P1 104 206 (Md1 x 1) < (Md1 x 2) (Md1 x 1) = 104 
P1 to P2 105 213 (Md2 x 1) < (Md2 x 2) (Md2 x 1) = 105 
P2 to P3 79 123 (Md3 x 1) < (Md3 x 2) (Md3 x 1) = 79 
P3 to P4 195 259 (Md4 x 1) < (Md4 x 2) (Md4 x 1) = 195 
P4 to P5 75 127 (Md5 x 1) < (Md5 x 2) (Md5 x 1) = 75 
P5 to P6 65 137 (Md6 x 1) < (Md6 x 2) (Md6 x 1) = 65 
P6 to P7 63 139 (Md7 x 1) < (Md7 x 2) (Md7 x 1) = 63 
P7 to P8 41 161 (Md8 x 1) < (Md8 x 2) (Md8 x 1) = 41 
P8 to P9 561 461 (Md9 x 1) > (Md9 x 2) (Md9 x 2) = 461 
Uniform difference between bounds (Summation) = 1188 



 
 
 
 

Osei et al.; AJRCOS, 4(4): 1-26, 2019; Article no.AJRCOS.53624 
 
 

 
15 

 

After the Manhattan distance have been 
computed using the coordinate of the identified 
points the in the Fig. 12, Table 2 also gives the 
distance values for the paths and shows the 
relationship between the two alternate paths so 
as to make a decision as to which path should be 
chosen. 
 
5.1.4 The proposed algorithm for the training 

phase of keystroke dynamic 
 
Summarizing the above processes involved 
training phase of the keystroke dynamics, it was 
revealed that the algorithm generates the bound 
timings from three main recorded values which 
are the dwell time, flight time and the locate time 
of a key pressed. After generating the bound 
timings of key characters pressed, they are then 
arranged in ascending order of magnitude in an 
array to find the lower and upper bounds of the 
timings.  
 
The lowest value, inserted into the first index of 
the sorted array is deemed the lower bound 
whereas the highest value inserted into the last 
index area of the sorted array is stored as the 
upper bound. The differences in all the stored 
bounds is calculated and added together by 
using either Euclidian distance metric approach 
or the Manhattan distance measure approach. A 
decision is taken by the algorithm if it learns the 
user is slow/inexpert typist it adopts to use 
Manhattan distance metric else if it learns the 
user is fast typist it uses Euclidian distance 
metric in calculating the uniform distance. 
 

5.2 Testing Phase of the Proposed 
Algorithm 

 
The procedural features of the proposed 
algorithm at the testing phase has significant 
similarities and minor differences with the training 
phase, hence, in this section, although much has 
been said about the similarities, substantial 
portion of the section will greatly concentrate of 
the differences too. In the testing phase of the 
proposed system, a user is presented with the 
login interface. A user, after successfully going 
through the training phase, can successfully login 
into the testing phase. In the testing phase, the 
user has to meet certain credentials before 
he/she is allowed into the system. First, the user 
has to correctly supply into the login interface, 
his/her username and password that was used to 
sign-up into the system. Second, the user typing 
pattern must record a lower bound (hitherto 
referred to as lower bound threshold) equal to or 

greater than the stored lower bound for that 
particular user. Similarly, the user must record an 
upper bound (hitherto referred to as upper bound 
threshold), equal to or less than the stored upper 
bound for that particular user. Back to the 
scenario for instance, the male user ‘A’, who has 
successfully sign-up into the system with the 
username ‘michael’, has a stored lower bound of 
251 milliseconds and a stored upper bound of 
1150 milliseconds. The user ‘A’, can therefore be 
allowed to login into the system if and only if he 
records a lower boundary latency, called lower 
bound threshold, greater than or equal to stored 
lower bound and also, records an upper bound, 
upper bound threshold, that is less than or equal 
to the stored upper bound for that particular user 
(i.e. upper bound ≥ threshold ≥ lower bound). 
When this user ‘A’ was permitted to partake in 
the testing phase, so as to determine if he could 
be verified into the system, he recorded a lower 
bound of 359 milliseconds and an upper bound 
of 1057 milliseconds. This is illustrated in Fig. 13. 

 
In the testing phase, what is important is the 
threshold. The algorithm treats the recorded 
thresholds in two descriptions. The first threshold 
is the bound thresholds while the second 
threshold is the distance threshold. The algorithm 
associates the bound thresholds with the stores 
lower bound and the stored upper bound, 
whereas the distance threshold is associated 
with the uniform difference between the bounds 
calculated using either the Euclidean or the 
Manhattan distance metric. The threshold is the 
recorded bound timing at the testing phase at 
which it becomes reasonable certain that a 
keystroke sample matches a particular reference 
template. Typically, the value of a threshold is 
never exact and hence the algorithm chooses a 
measure of similarity at which a keystroke 
sample may be declared identical to the 
reference template. 

 
It is therefore important to note here that, in the 
testing phase, the users are grouped into two 
main classes. These two main classes of users 
also have to do with either the recorded 
thresholds are met by the user or not. Users of 
the system are classified as an individual who is 
legitimate or a user who is illegal. A legitimate 
user, as the name implies, is a user who has 
successfully gone through and completed all the 
five-series sign-up process at the training phase 
of the proposed system. This is also referred to 
as legal or valid user. A user is believed to be 
legitimate if he/she provides an acceptable value 
for his/her thresholds. An illegal user, also as the 
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name infers, is a user who has not successfully 
gone through the training phase of the proposed 
system. A user is alleged to be illegal if he/she 
does not provide an acceptable value for his/her 
thresholds. To the system, a user’s first time visit 
to the system is supposed to be at the training 
phase; else that particular user is deemed as 
illegitimate user. If a user’s first time visit to the 
system is at the testing phase, then that user is 
classified as an illegal user. This is hereafter 
referred to as illegitimate user or imposter. 
 
Also, in the testing phase, the calculated bound 
timings and its correspondent uniform difference 
were set as the reference threshold at which a 
user’s typing sample must match. The 
algorithmic procedures in this phase is similar to 
the training phase because, at this phase, the 
propose system likewise calculates the bound 
timings of the sample typing pattern provided, 
arranged these bound timings in order of 
magnitude, from lowest to highest using selection 
sort in an array, and sets the lower bound timing 
of the typing sample to be the lowest bound in 
the sorted array as well as the upper bound 
timing to be the highest bound also in the same 
sorted array. The only difference here is that; the 
array was 1-D instead of 2-D, as with the case of 
the training phase. 1-D array was very significant 
in decreasing the time and cost complexity used 
in processing the algorithm.  
 
In simple terms, the algorithm for testing phase 
ran faster than that of the training phase because 
of the 1-D array used. The algorithm then goes 
further by calculating the uniform differences 
between the bounds also using either Euclidian 
of Manhattan distance measure.  Likewise, the 
training phase, in choosing the distance metric to 
be used for a particular user, the locate time 
(typing speed was considered). The uniform 
differences between the bound timings of a slow 
typist with highest locate times above 500 
milliseconds were calculated using the Euclidian 
Distance metric while that of a fast typist with 
highest locate times below 500 milliseconds was 
calculated using the Manhattan Distance         
metric.  
 
These values for the lower bound, upper bound 
and the uniform difference calculated at the 
testing phase is then compared with the lower 
bound, upper bound and uniform difference 
thresholds calculated from the training phase. 
There were three major if-condition set that 
controls the state of the tested sample, whether 
as a legitimate user or an imposter. If the lower 

bound at the testing phase is greater than the 
lower bound of the training phase, and if the 
upper bound at the testing phase is lesser than 
the upper bound of the training phase and if the 
uniform difference at the testing phase is lesser 
than the uniform difference of the training phase, 
then the tested sample is nearer the referenced 
template recorded in the database and hence the 
user is deemed legitimate and can therefore log 
into the system. 
 
5.2.1 Calculating of bound timings in the 

proposed algorithm 
 
Still using in subsequent scenarios, the 
processing of the algorithm on the typing pattern 
of the male, user ‘A’ who supplied into the 
system, the username ‘michael’ and the 
password ‘osei@22’, and also, the typing 
template of the female, user ‘B’ with the 
username ‘ernestina’ and password ‘tinao@22’, 
this paragraph explains how the testing phase 
was designed. Just with the training phase, the 
algorithm multiplied the dwell time (keystroke 
duration) and the flight time (keystroke latency) 
with the locate times when calculating the 
bounds of a user’s typing pattern. Again, the 
locate time is initially set to zero to denote a start 
of a new process within the system. This simply 
means that, the locate time of a user’s typing 
pattern is reset to zero when he/he moves the 
computer’s focus to the password textarea, 
which is an entirely a new process, to type 
his/her password. As indicated earlier, the bound 
of a key (Bk), according to proposed algorithm is 
calculated by adding the Flight time (Ft) to the 
Dwell time (Dt) and then multiplying it with Locate 
time (Lt). Furthermore, for simplicity sake, the 
tables below summarize the bound times 
calculated from the typing template of the user 
‘A’ and user ‘B’. 
 
5.2.2 Determining the lower bounds and 

upper bounds of the proposed 
algorithm 

 
After the bound for each key character is 
calculated, the next step for the algorithm at this 
testing phase is to store these bounds in a 1-
Dimendioanl array. Hence, the array of 
characters is not stored by the algorithm for 
further processing. The username of the user ‘B’, 
which is ‘ernestina’, consisted of 9 characters 
and therefore the algorithm will calculate a bound 
time for all the 9 characters. The algorithm 
therefore generates 9 bound times. The 9 bound 
times are stored in a 1-Dimensional (1-D) array 
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(userBound[]). The code snippet for storing 
bound timings in the 1-D array userBound[], is 
represented. 
 
Fig. 14 shows how the proposed algorithm stores 
the bounds (in milliseconds) for the user ‘B’ who 
initiated key-press events. These bound timings 
are stored in a 1D-Dimensional array, assigning 
independent indexes to these bound timings. 
Just like in the training phase, the primary 
purpose for calculating the bound timings of all 
key-press events of a user is to determine the 
lower and upper bounds for the user’s typing 
sample. These lower and upper bounds are used 
by the proposed system to accept legitimate 
users and reject imposters. To determine the 
lower and upper bounds for all the stored bound 
timings, the recorded bound timings for the 
user’s typing pattern are arranged in order of 
magnitude from the lowest to the highest bound 
values. The lowest bound value, which will 
always be ‘0’ is stored for the first character, and 
in the first index position of the array. As clarified 
in previous paragraphs, this first bound for the 
first key character is always zero as, a locate 
time of zero is always multiplied by the sum 
value of flight and dwell times. Likewise, the 
training phase, the algorithm of the testing phase 
does not consider the bound timing of the first 
character keyed in the user, when determining 
the lower and upper bounds. As a result, the 
actual bound timings for determining the lower 
and upper bounds of the user is calculated from 
the bound timing of the second key character, 
stored in the second index position of the sorted 
array. Thus, the algorithm always considers the 
bound timing element stored in the second index 
of the array. The array will by this time be sorted 
from lowest to highest, with the lowest value 
placed at the second index of the array 

(userBound[1]) and the highest value placed at 
the last index of array ((userBound[].length)-1). In 
this testing phase, the lowest bound value is 
stored by the system as the lower bound for all 
the Key-Pressed Events. Again, the highest 
value is stored by the system as the upper bound 
for all the Key-Pressed Events as illustrated in 
the Fig. 15.  
 
5.2.3 Determining the uniform difference 

between bounds  
 
Also just like in the training phase, after the 
bound limits (lower and upper bound) have been 
set, the differences in the bounds will be 
determined using the Euclidean and Manhattan 
(Taxicab/city-block) distance metric approaches. 
The differences between all recorded bounds 
was also calculated by the algorithm and stored 
in a well-structured database, as the Euclidean 
or Manhattan distance between the bounds. With 
the distance measurement, the difference 
between the recorded final bounds, from the 
lowest final bound to the highest final bound, was 
calculated and added up to get a rounded single 
value. It has been established that algorithm was 
much interested in using the upper and lower 
bounds in deciding on which user is given access 
into the system. It also uses the uniform distance 
as a distance threshold in deciding which user is 
legitimate or imposter.  
 
The algorithm choses to calculate the distance 
between the bounds wither with Euclidean 
distance metric or Manhattan distance measure, 
based on the locate time of the user typing 
pattern. Below are the calculated uniform 
distances for the two users, user ‘A’ using 
Manhattan metric and user ‘B’ using  uclidean 
metric. 

 

 
 

Fig. 13. Lower  n   pp   b  n   h  sh   s  f  s   ‘A’  n  h    s  ng ph s  
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Table 3. Recorded bound   m ngs f    s   ‘A’ 
 

Key character Flight time (Ft) Dwell time (Dt) Locate time (Lt) Bk=(Ft+Dt)xLt 

‘m’ 0 0 0 0 
‘i’ 4.2 3.8 52.6 421 
‘c’ 4.9 5.4 60.1 619 
‘h’ 4.1 4.6 58.7 511 
‘a’ 5.9 6 88.8 1057 
‘e’ 5.1 5.1 72.4 738 
‘l’ 4.4 3.9 43.2 359 

 
Table 4. Recorded bound   m ngs f    s   ‘B’ 

 

Key Character Flight time (Ft) Dwell time (Dt) Locate time (Lt) Bk=(Ft+Dt)xLt 

‘e’ 0 0 0 0 
‘n’ 2.2 2.9 14.3 73 
‘e’ 2.5 2.8 11.7 62 
‘r’ 2.1 2.4 14.2 64 
‘s’ 4 4.9 17.3 154 
‘t’ 3.2 3.3 13.1 85 
‘i’ 2.7 2.5 14.3 74 
‘n’ 2.6 2.8 13.7 74 
‘a’ 1.8 1.9 13.6 50 

 

 
 

Fig. 14. Code snippet representation of 1-D array, userBound[], for storing bound timings 
 

  

 (a) (b) 

 

Fig. 15. Sorted array to determine the lower and upper bounds of the typing pattern of (a) user 
‘A’; (b)  s   ‘B’ 

 

Table 5. Uniform differences between bound of user ‘A’  s ng manhattan distance 
 

Points (Mdn x 1) (Mdn x 2) Relationship Chosen 

P0 to P1 93 113 (Md1 x 1) < (Md1 x 2) (Md1 x 1) = 93 
P1 to P2 132 153 (Md2 x 1) < (Md2 x 2) (Md2 x 1) = 132 
P2 to P3 186 212 (Md3 x 1) < (Md3 x 2) (Md3 x 1) = 186 
P3 to P4 243 275 (Md4 x 1) < (Md4 x 2) (Md4 x 1) = 243 
P4 to P5 404 445 (Md5 x 1) < (Md5 x 2) (Md5 x 1) = 404 
Uniform difference between bounds (Summation) = 1058 

 
5.2.4 Determining the legitimacy of the user 

using logical thresholds  
 
Now, the concept of thresholds in Keystroke 
dynamics comes into play. These thresholds, as 

indicated earlier, limit the user and help secure 
the system by distinguishing between a 
legitimate user and an imposter. In that sense, 
the upper bound calculated from the training 
phase is a limit or threshold for the upper bound 
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calculated in the testing phase where a user at 
the testing phase cannot instantiate an upper 
bound above the threshold.  
 
Similarly, the lower bound calculated from the 
training phase serves as the lower bound limit or 
threshold for the lower bound calculated in the 
testing phase where a user at the testing phase 
cannot instantiate a lower bound below the 
threshold.  
 
Finally, the uniform distance determined in the 
training phase is a limit or threshold for the 
uniform distance calculated in the testing phase, 
where a user at the testing phase cannot 
instantiate a uniform distance far away from the 
threshold, either greater or lesser than.  
 
The scenario for the two users, with username 
‘ernestina’ and ‘michael’ yielded the following 
figures. With the user ‘A’, who is Michael, at the 
training phase, in registering with the user name 
‘michael’, he recorded a stored upper bound of 
1150ms, a stored lower bound of 251 ms and a 

uniform difference of 1058 ms between the 
recorded bounds. He does this at the testing 
phase of the proposed system.  
 
Therefore, at the testing phase, the threshold 
expected to be set by the algorithm for this 
particular users are the aforementioned values, 
1188 ms as an upper bound threshold, 251 ms 
as a lower bound threshold and 1188 ms as a 
uniform difference threshold in the testing phase. 
After this user has successfully registered into 
the system, he can therefore go on to log into his 
account using his credentials. Also at this phase, 
it has been recorded from previous paragraphs 
and from the system that, the user ‘A’ had a 
recorded upper and lower bounds of 1022 ms 
and 289 ms respectively. Also, he recorded a 
uniform difference of 1150 ms between the 
recorded bounds in the testing phase. In doing 
this, the algorithm employed the unification 
techniques in array manipulations. In other 
words, the algorithm merged two arrays’ numeric 
indexes, appended two 1-D arrays and sorted 
the array in order of magnitude.  

 
Table 6. Uniform   ff   n  s b  w  n b  n   f  s   ‘b’  s ng         n   s  n   

 

Cartesian plane points Array representation of points Distance by euclidian metric 

P0 to P1 P0 = (1, 50) to P1 = (2, 62) 12.042 
P1 to P2 P1 = (2, 62) to P2 = (3, 64) 2.236 
P2 to P3 P2 = (3, 64) to P3 = (4, 73) 9.055 
P3 to P4 P3 = (4, 73) to P4 = (5, 74) 1.414 
P4 to P5 P4 = (5, 74) to P5 = (6, 74) 1.000 
P5 to P6 P5 = (6, 74) to P6 = (7, 85) 11.045 
P6 to P7 P6 = (7, 85) to P7 = (8, 154) 69.007 
P7 P7 = (8, 154)  
Uniform difference between bounds (Summation) = 105.800 

 

 
 

Fig. 16. Determining thresholds using array f   Us   ‘A’ 
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In this example, given two sorted arrays 
FinBounds[] and UserBound[] as the input arrays  
for the user ‘A’ which can be represented as 
FinBounds[] = {251, 354, 458, 464, 658, 668, 
668, 670, 690, 1150} from the training phase, 
and UserBound[] = {359, 421, 511, 619, 738, 
1057}, from the testing phase, in finding their 
union set array, threshold[], the program will 
limelight out the union array as and sort their 
indexed values as threshold[] = {251, 354, 359, 
421, 458, 464, 658, 511, 619, 668, 668, 670, 
690, 738, 1058, 1150}. In this union array, the 
first value considered for making decision is the 
value at a specific indexed position of the 
threshold[] that took the value of the first             
indexed position of the UserBound[], which 
should not be less than the threshold for lower 
bound (TLB) as indicated in the Fig. 16. The 
second value considered for making decision is 
the value at last indexed position of the 
threshold[] that took the value of the last indexed 
position of the UserBound[], which should not be 
greater than the threshold for upper bound (TUB) 
as indicated in the Fig. 16. With this instance, 
user ‘A’ was allowed into the system 
successfully. 
 
Similarly, by means of the user ‘B’, who is 
Ernestina, the algorithm at the training phase 
recorded a stored upper bound of 158 ms, a 
stored lower bound of 50 ms and a uniform 
difference of approximately 113 ms between the 
recorded bounds. Therefore, at the testing 
phase, the thresholds expected to be set by the 
algorithm for this particular user are the 
aforementioned values, 158 ms as an upper 
bound threshold, 50 ms as a lower bound 
threshold and 113 ms as a uniform difference 
threshold in the testing phase.  
 
After this user has successfully registered into 
the system, he can therefore go on to log into his 
account using his credentials. At the testing 
phase, user ‘B’ recorded 50 ms as a lower 
bound, 154 ms as an upper bound and 
approximately 106 ms as a uniform difference of 
between the recorded bounds. In doing so, the 
algorithm can also therefore allow user ‘B’ into 
the system because, she recorded a lower bound 
at the testing phase, greater that of the training 
phase. She also recorded an upper bound at the 
testing phase, lesser than that of the training 
phase. Finally, the uniform difference between 
the bounds, calculated at the testing phase was 
lesser but closer to the uniform difference 
between the bounds, calculated and stored at the 
training phase. 

5.2.5 The proposed algorithm for the testing 
phase of the Keystroke Dynamic 

 
In summary, the proposed algorithm at the 
testing phase is similar to that of the training 
phase; however, the differences had to do with 
the introduction of the concept of thresholds in 
the keystroke dynamic algorithm. It was 
discussed that the processes in the algorithm at 
the testing phase are similar with the algorithm 
for the training phase in the sense that, it 
(algorithm in the testing phase) also computes 
the bound timings from the three main biometric 
keystroke dynamic features, the dwell time, flight 
time and the locate time of a key pressed.  
 
The bound timings calculated for each key are 
then arranged in ascending order of magnitude in 
an array to find the lower and upper bounds of 
the timings. The lowest value, inserted into the 
first index of the sorted array becomes the lower 
bound whereas the highest value inserted into 
the last index area of the sorted array becomes 
as the upper bound. After calculating the bound 
timings, the proposed further processed the 
uniform difference between bounds. The 
algorithm chooses to either use the Euclidian 
distance metric approach or the Manhattan 
distance measure approach in computing the 
differences in all the stored bounds based on a 
conditions set around the locate time of the user 
typing pattern.  
 
If the algorithm records any locate time greater 
than or equal to 0.5 seconds, which is 
approximately 500 milliseconds, then the 
Manhattan distance measure is used, however, if 
the algorithm calculates majority of the locate 
time of the user to be less than 500 milliseconds 
which, then it uses the Euclidean distance metric.  
 
The only additional feature of the algorithm at the 
testing phase was the segment to determining 
the legitimacy status of the user using 
thresholds. These thresholds, restricts the user 
and help secure the system by distinguishing 
between a legitimate user and an imposter. In 
that sense, the upper bound calculated from the 
training phase is a limit or threshold for the upper 
bound calculated in the testing phase where a 
user at the testing phase cannot instantiate an 
upper bound above the threshold.  
 
Similarly, the lower bound calculated from the 
training phase serves as the lower bound limit or 
threshold for the lower bound calculated in the 
testing phase where a user at the testing phase 
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cannot instantiate a lower bound below the 
threshold. Finally, the uniform distance 
determined in the training phase is a limit or 
threshold for the uniform distance calculated in 
the testing phase, where a user at the testing 
phase cannot instantiate a uniform distance far 
away from the threshold, either greater or lesser 
than.   
 

5.3 Ease of Use from Technical 
Perspective 

 
This section gathers information on performance 
indicators that can depict and measure how easy 
and simple the proposed system was to users. In 
par with this description, Failure to Enroll Rate 
(FER) and False Rejection Rate (FRR) were the 
performance indicators used to quantify how 
easy the proposed system could be. In must be 
noted that these indicators are tested in worst 
case scenarios, meaning more attempts are 
made to put the system at a weak spot at failing 
miserably. The system will therefore be classified 
as annoying or not annoying, easy or not easy to 
use, if it is able to give a reasonably standard 
values for its’ F Rs and FRRs. 
 
Failure to Enroll Rate (FER) is a situation where 
users will genuinely fail to enroll into the system, 
a couple of times before they actually 
successfully enroll into the system. This is used 
to measure how easy users can get into the 
keystroke system on the first place. It can be 
calculated as follows;  
 
Failure to Enroll Rate (FER) = (Number of User 
having Failed Attempts)/(All Genuine Enrollment 
attempts) x 100. 
 
For the 25 people initially enrolled in the system, 
who were numbered from 1st to 25th, most of 
them successfully login to the system but few 
had issues with their login attempts. In this case, 
user 3rd, 9th and 17th failed at their first instance 
to enroll into the system and hence, 3 users had 
failed attempts. Consequently, Failure to Enroll 
Rate (FER) is: 
 
FER = 3/68 x 100 = 4.412%   4% 
 
This can be interpreted as, for every 100 people 
enrolled into the system, approximately 4 to 5 
users might fail for their first time or not get 
enrolled at all. This can also imply that, for the 25 
people who were enrolled into the system, 
approximately 1 or 2 users might fail for their first 
time or not get enrolled at all. Failure to Enroll 

Rate is therefore obviously low for the proposed 
system. 
 
False Rejection Rate (FRR) refers to the 
percentage ratio between falsely denied genuine 
users against the total number of genuine users 
accessing the system. Occasionally known as 
False Nonmatching Rate (FNMR), this is a type I 
error. In keystroke dynamics, an acquisition 
problem is a typing mistake which forces the 
individual to type again the text from scratch. 
This metric is important for this biometric 
modality as it measures how annoying the 
system is to, for a lot of users in keystroke 
dynamics. Mathematically, FRR is calculated as: 
 
False Rejection Rate (FRR) = (Genuine Logins 
failing thresholds)/(Total number of Genuine 
Logins) x 100 
 
In this case, when all the 25 respondents were 
successfully registered into the system at the 
training phase, when testing the FRR, each user 
was friendly instructed to login in five times. 
Basically, the respondents were numbered from 
the 1st to the 25th. Out of the 25 respondents, 
the 2nd, 8th, 14th and 21st users had challenges 
login in at all five instances. 
 
In this formula, the numerator which is the 
genuine logins failing thresholds were 8 whilst 
the denominator which is the total number of 
genuine logins were 125. In calculating the FRR 
therefore is; 
 
FRR = 8/125 x 100 = 6.4%   6% 
 
This can be interpreted as, for every 100 login 
attempts into the system; approximately 6.4% 
representing 6 to 7 of these genuine logins might 
fail to get into the system.  
 

5.4 Security from Technical Perspective 
 
This section gathers information on performance 
indicators that can depict and measure how 
secured the proposed system was to users. In 
line with this description, False Acceptance Rate 
(FAR) was the only biometric performance 
indicator used to quantify how secured and 
authentic the proposed system could be.  

 
False Acceptance Rate (FAR) is defined as the 
percentage ratio between falsely accepted 
unauthorized users against the total number of 
imposters accessing the system. Terms such as, 
False Match Rate (FMR) or type II error refers to 
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the same meaning. Mathematically, FAR is 
calculated as: 
 
False Acceptance Rate (FAR) = (Imposter 
Logins passing thresholds)/(Total number of 
Imposter Logins) x 100 
 
By means of the FAR test, the system was 
proved on false acceptance of fraud login 
attempts. In order to achieve this, all login user 
credential details were printed out. The users 
were pre-informed that, their usernames and 
passwords will be interchanged among 
themselves to how secured the system was. 
Basically, the imposters were numbered from the 
1st to the 25th so is the numbering of login 
credentials. In this logic, all usernames and 
passwords registered into the system was 
printed out and shared among them.  
 
Out of the 25 imposters, the 24th user managed 
to enter into the system once. Overall all, out of 
the 125 imposter attempts, of all the 25 
imposters, only 1 succeeded, at the worst case. 
In this formula, the numerator which is the 
number of imposter logins passing thresholds 
was 1 whilst the denominator which is the total 
number of imposter logins was 125. Therefore, 
FAR calculated as: 
 

FAR = 1/125 x 100 = 0.8%   1% 
 
This can be interpreted as, for every 100 
imposter attempts into the system, approximately 
0.8% representing 0 to 1 of these imposters 
might succeed to get into the system. This 
supports the study conducted by [6,11,29] that 
any biometric enhanced authentication system 
having low FAR than FRR is of high performance 
rate. 
 

6. RESULTS AND DISCUSSION 
  
This paper was limited to implementing its 
system in a web-based format, using only 
QWERTY form of keyboards in input 
acquisitions, ignoring other keyboard structures 
like the Dvorak Keyboard. It is therefore 
recommended that, for a keystroke system to be 
more robust, algorithm developers should 
incorporate all the most commonly used 
keyboard structures in a single system so that 
the limitation of a keystroke biometric system by 
keyboard features will be minimized for once.  
 

Furthermore, it must be emphasized that, the 
training phase is a five-series sign-up process 

and it is therefore recommended to other 
algorithm developers who wants to delve into the 
proposed receptacle, to make the number of 
series in the training phase, more dynamic so 
that the administrators of the proposed system 
can increase or decrease the number of sign-up 
instances either above or below 5 as with the 
proposed system. Time restricted the effort by 
the researcher to incorporate such a dynamic 
signup feature in the system. If the system’s 
signup process is dynamic enough, the scope of 
the bounds and the distance values stored to 
control the access into the system will be widen 
to further decrease the FER, FRR and FAR 
toward an absolute zero percentage.  
 
Also, as in the algorithm, after the bound for each 
key character is calculated, only the bounds are 
then stored in a 1-Dimendioanl array. Hence, the 
keyed-in characters are not stored by the 
algorithm for further processing. It can be 
recommended that algorithm developers can 
store the character sets into any data structure in 
addition to the calculated bound timings of the 
user’s typing sample at both the testing and 
training phases, so that the algorithm can know 
which characters at the training and testing 
phase had similar timings to allow the user, an 
access into the system. 
 
The keystrokes analysis design was based on 
bound timing values which helped in determining 
the uniform difference between them, and which 
serves as the main criteria together with the user 
credentials upon which authentication is 
performed. In light of the sorted concepts, 
various features were utilized in capturing user 
profiles, processing these features to obtain the 
values for the upper-bound, lower-bound timings 
and uniform distances of each template stored 
and then implementing these obtained values as 
the classifier for verification. In doing so, efforts 
were made to know if a satisfactory level of FER, 
FRR and FAR of the proposed system will or will 
not be accomplished. It was therefore concluded 
that, the proposed system, with an FER of about 
4%, an FRR of around 6% and a minimized FAR 
of approximately 1%, is easy to use, accurate, 
and secured. 

 
As opposed to other works which concluded that, 
in order to attain a low FER, FRR and FAR, the 
three major keystroke features, which are the 
dwell time (keystroke source duration), flight time 
(keystroke latency) and the locate time 
(terminus), should be captured individually from 
the user’s typing pattern, this study concludes 



 
 
 
 

Osei et al.; AJRCOS, 4(4): 1-26, 2019; Article no.AJRCOS.53624 
 
 

 
23 

 

Table 7. Comparative studies of the proposed and existing methods 
 

Study Data 
size 

Latency Input 
repetition 

Input  
freedom 

Method FAR 
(%) 

FRR 
(%) 

FER 
(%) 

User irritability 
solved 

[25] - DT, FT, 1 No Euclidean Distance 0 6 - No 
[26] 50 DT,FT 8 Yes Enhanced NM&W algorithm Precision = 90.3 

Accuracy = 80 
No 

[30] 31 FT 2 Yes Degree of Disorder 1.99 2.42 - No 
[4] - DT,FT 10 Yes Euclidean Distance OR  

Manhattan Distance 
2.46 6.62 - No 

[22] 20 DT,FT 20 Yes Euclidean Distance 0 35 - No 
20 Mahalanobis distance 20 2.5 - No 

[17] 30 DT,FT Minimum of 2 Yes Threshold minimum 
and maximum limits 

0 1 - No 

Proposed  
Method 

25 DT,FT,LT 5 Yes Euclidean(Eu) + Manhattan 
Distance(Mh): (Eu+Mh) 

1 6 4 Yes 
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that these keystroke features should form a 
calculable equation whereby the flight time is 
always added to the dwell time and the summed 
value multiplied by the locate time of the user’s 
inputting pattern. The output value form this 
equation is termed the bound timing.  
 

The study also concluded that the calculated 
bound timings should be stored in a 1-D array to 
make the algorithm faster in arranging these 
bound timings from lowest to highest, in terms of 
value weights. The study also introduced the 
concept of uniform difference whereby the 
differences between the lower bound through to 
the upper bound timings are calculated using the 
Euclidean or Manhattan distance metric formula. 
The study also concludes that, if the values for 
lower, the upper bound timings and the uniform 
difference are used as a threshold at which a 
user must pass, before he/she is accepted into 
the biometric system, FER, FRR and FAR will be 
very low. The proposed biometric system, as 
compared with other biometric system (such as 
voice, fingerprint, eye recognition, etc.), although 
they are equally secured and require less effort 
in using them, keystroke dynamic approaches 
are very less costly biometric authentication 
system.   
 

It was also therefore concluded that, in light of 
the fact that there is no requirement for any extra 
equipment other than an ordinary computer 
keyboard, and in light of the fact that the 
proposed system was viewed as easy to use and 
secured; the proposed system is comparatively 
secured and less costly. In general, it is 
concluded that utilizing keystroke analysis 
enhances the security features and efficiency of 
conventional username/password based 
verification methods, at a very low cost. It can 
also be generally concluded that, keystroke 
dynamics can be used as add-up security 
measure for securing web applications. 
 

6.1 Comparative Analysis 
 

A comparative analysis has been illustrated for 
the proposed and existing methods to compare 
the FRR, FER and FAR as well as irritability 
issues of the proposed Keystroke Dynamics 
Algorithm (KDA) method. This study achieved a 
minimum FER, FAR and FRR of 6%, 1% an 4% 
respectively. Also the user irritability issues is 
minimized by applying the techniques of 
Euclidean and Manhattan distance seamless 
together which provides flexibility for both slow 
and fast typists which intend limits false rejection 
of legitimate users. 

Both dwell time (DT) and flight time (FT) are 
often extracted as feature vector for static 
authentication but one key feature which is very 
important to keystroke dynamics which is often 
not extracted is locate time (LT).  The locate time 
is explained as, how long the user suspends 
his/her hand in the air, looking for the next key to 
press and allows the algorithm to record dynamic 
bound timings for different users and even for the 
same user at certain period. The inclusion of LT 
feature in the algorithm minimizes the issues of 
user irritability which bores a lot of keystroke 
dynamic driven systems users as detailed in 
section 5.1.1 of this paper. 
 
Table 7 illustrates the comparative studies of the 
proposed system and the existing methods. The 
FAR of the proposed KDA is 1% percent, similar 
to the method presented in ([17], [26]) but better 
than methods used in ([4], [30] and [22] – using 
Mahalanobis). The proposed KDA method 
achieved a much similar FRR of 6% as 
presented in ([4], [26] and better than [22] – 
using Euclidean distance). 
 
Since the intended system is able extract LT 
together with FT and DT and uses both 
Euclidean and Manhattan distance seamlessly to 
train user keystrokes samples by adapting 
Euclidean distance for fast typists and Manhattan 
distance for slow typist, the system leans and 
adapt to the user typing behavior to creates the 
thresholds that avoids user irritation during login 
sessions of most keystroke dynamic driven 
systems, therefore, the proposed KDA method 
ensured smooth enrollment process and allow 
legitimate users to access their accounts with 
minimized irritation than the other methods, thus 
FER is 4% which is not considered in other 
studies in literature. 
 

7. CONCLUSION 
 
It was therefore concluded that, the proposed 
system, with an FER of about 4%, FRR of 
around 6% and a minimized FAR of 
approximately 1%, is easy to use, accurate, and 
secured. 
 
Literature proposes that, in order to attain a low 
FER, FRR and FAR, the three major keystroke 
features, which are the dwell time, flight time and 
the locate time should be captured individually 
from the user’s typing pattern, of which this paper 
offers. This study adds to literature by introducing 
the bound timings concept whereby flight time is 
always added to the dwell time and the summed 
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value is multiplied by the locate time of the user’s 
inputting pattern. In this case, a very low FER, 
FRR and FAR is far achieved. 
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