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ABSTRACT
Users who are unfamiliar with database query languages
can search XML data sets using keyword queries. Current
approaches for supporting such queries are either for text-
centric XML, where the structure is very simple and long
text fields predominate; or data-centric, where the structure
is very rich. However, long text fields are becoming more
common in data-centric XML, and existing approaches de-
liver relatively poor precision, recall, and ranking for such
data sets. In this paper, we introduce an XML keyword
search method that provides high precision, recall, and rank-
ing quality for data-centric XML, even when long text fields
are present. Our approach is based on a new group of struc-
tural relationships called normalized term presence cor-
relation (NTPC). In a one-time setup phase, we compute
the NTPCs for a representative DB instance, then use this
information to rank candidate answers for all subsequent
queries, based on each answer’s structure. Our experiments
with 65 user-supplied queries over two real-world XML data
sets show that NTPC-based ranking is always as effective as
the best previously available XML keyword search method
for data-centric data sets, and provides better precision, re-
call, and ranking than previous approaches when long text
fields are present. As the straightforward approach for com-
puting NTPCs is too slow, we also present algorithms to
compute NTPCs efficiently.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Designs, Performance

1. INTRODUCTION
The IR community has been developing retrieval tech-

niques for text-centric XML [10], where structures are sim-
ple and structural information plays almost no role in re-
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trieval. In data-centric XML, structure carries important
information about objects and their relationships. Data-
centric XML can support much more powerful query inter-
faces than unstructured data can, but non-expert users have
no easy way to tap into that power with ad hoc queries.
Following the success of keyword search interfaces in IR and
Web search, researchers have proposed XML keyword search
interfaces as a solution [5, 7, 8, 13, 10, 27, 23]. Since keyword
queries do not explicitly specify the structural properties of
the ideal answers, the underlying system must find the XML
sub-structures that are relevant to the query, and preferably
rank them based on their relevance. Further, the system
should exploit XML structural information, to improve the
system’s precision, recall, and ranking quality.

As discussed in more detail in the next section, almost all
XML keyword query approaches incorporate pruning and
ranking heuristics based on shallow structural properties of
the data (e.g., smallest answers are best). A previous user
study involving 65 queries over a movie database and a bib-
liographic database [24] showed that these heuristics lead
to many irrelevant answers (low precision), missing relevant
answers (low recall), and poor or non-existent ranking of an-
swers. To solve these problems, one can use a more powerful
ranking approach, based on statistical measures of the corre-
lation between schema elements [11, 9, 23]. Intuitively, an-
swers that involve closely correlated schema elements should
be ranked higher than less correlated answers. Such schema-
correlation-based measures have been shown to be effective
for ranking query answers for data-oriented XML without
long text fields [23], but they do not handle long text fields
such as paper abstracts or movie plot summaries appropri-
ately. This type of data sets are proliferating due to the in-
creasing popularity of constructing and querying annotated
corpora [4].

In a nutshell, the problem is that these measures consider
two field values to be completely different, even if they differ
in only one word. For example, consider a movie database
that includes information about writers, movie plot lines,
and movie tag lines (lines from trailers). Each movie has its
own unique tag lines and plot lines, so existing correlation-
based measures find that writers’ names are as highly cor-
related with tag lines as with plots. In practice, however,
a writer’s plots tend to involve similar situations or charac-
ters, while the tag lines of his or her shows have little sim-
ilarity. Thus intuitively, writers should be more correlated
with plots than with tag lines. Overgeneralizing slightly,
any correlation measure that cannot capture this intuition
will tend to rank a query answer that includes a writer and
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a phrase from a tag line higher than an answer including a
writer and a phrase from a plot line, which is undesirable in
practice.

To address this problem, we introduce term based corre-
lation measures as an effective way to capture our intuition
about correlations between similar pieces of text, while at
the same time exploiting all other available structural infor-
mation in an XML database. Our contributions:

• We introduce a particular form of term based correla-
tion called normalized term presence correlation
(NTPC) and show how to incorporate NTPC into an
XML query system. We show how to perform a one-
time computation of NTPCs for schema elements, us-
ing a populated database instance. For all subsequent
queries, the precomputed NTPCs are used to rank can-
didate answers based on their structure. NTPCs only
need to be recomputed if structural changes introduce
a new type of schema element. We also show how to
combine NTPCs with traditional IR ranking methods,
so that query answer rankings consider both content and
structure.

• Through an extensive user study with two real-world
data sets, we show that the precision, recall, and ranking
quality of a NTPC-based approach to query answering is
always at least as high that of as seven other previously
proposed approaches to XML keyword search. We also
show that NTPC provides better ranking than previous
approaches when the database includes long fields.

• The straightforward approach to computing NTPCs is
prohibitively slow for large data sets. We present novel
optimizations that allow NTPCs to be computed for .5-
1.1 GB data sets in .5-2.5 days, which is reasonable for
a one-time setup cost.

In the reminder of the paper, Section 2 discusses current
XML keyword search systems. Section 3 defines NTPC.
Section 4 presents optimization techniques and algorithms
for computing NTPC. Section 5 describes our query system,
Section 6 presents empirical results, and Section 7 concludes
the paper.

2. MOTIVATION

2.1 XML Patterns
We model an XML DB as a tree T = (r, V,E, L,C,D),

where V is the set of nodes in the tree, r ∈ V is the root, E is
the set of parent-child edges between members of V , C ⊂ V
is a subset of the leaf nodes of the tree called content nodes,
L assigns a label to each member of V −C, and D assigns a
data value (e.g., a string) to each content node. We assume
no node has both leaf and non-leaf children, and each node
has at most one leaf child; other settings can easily be trans-
formed to this one. We also ignore all non-content leaf nodes,
as they do not affect rankings. Each node can be identified
by its path from the root; e.g., node 5 in Figure 1 has path bib
paper title. Each subtree S = (rS , VS , ES , LS , CS , DS) of T
is a tree such that VS ⊆ V , ES ⊆ E, LS ⊆ L, and CS ⊆ C.
A keyword query is a sequence Q = t1 · · · tq of terms. A
subtree S is a candidate answer to Q iff its content nodes
contain at least one instance of each term in Q. The root
of a candidate answer is the lowest common ancestor (LCA)
of its content nodes [19]. When no confusion is possible, we
identify a candidate answer by its root’s node number.
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Figure 2: DBLP database fragment

Consider the depth-first traversal of a tree, where we visit
the children of a node in the alphabetic order of their labels.
Each time we visit a node, we output its number (or con-
tent); each time we move up one level in the tree, we output
-1. The result is the unique prefix string for that tree [28].
For instance, the prefix string for the subtree rooted at node
4 in Fig. 1 is 4 11 MIT -1 -1 12 Miller -1 -1. Trees T1 and T2

are label isomorphic if the nodes of T1 can be mapped to
the nodes of T2 in such a way that node labels are preserved
and the edges of T1 are mapped to the edges of T2. A pat-
tern concisely represents a maximal set of isomorphic trees
(its instances) [23]. The pattern can be obtained from any
member of the set, by replacing each node number in its pre-
fix string by the corresponding label. For instance, pattern
bib paper title -1 -1 corresponds to trees 1 2 5 -1 -1 and 1 3
8 -1 -1 in Fig. 1. The value of a subtree (if it exists) is the
content associated with its leaves. For example, the value of
1 2 5 -1 6 -1 -1 in Fig. 1 is (“XML Integration”, “VLDB”).
The values of a pattern are all the values of its instances.

2.2 The State of the Art
The consensus in XML keyword search is that the best

answers are the most specific subtrees containing the query
terms [5, 7, 8, 13, 14, 27]. The specificity of a subtree de-
pends on the strength of the relationship between its nodes.
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For instance, if two nodes merely belong to the same bibli-
ography, such as titles of two different papers, then the user
will not gain any insight from seeing them together in an
answer. If the nodes belong to the same paper, such as the
paper’s title and author, the user will surely benefit from
seeing them together. If the nodes represent titles of two
different papers cited by one paper, the answer might be
slightly helpful.

The baseline approach for XML keyword search returns ev-
ery candidate answer ([19], with modest refinements in [8]).
For instance, consider the DBLP fragment from www.informatik.
uni-trier.de/̃ley/db in Fig. 1. The answer to query Integra-
tion Miller is (rooted at) node 2. The baseline approach
has perfect recall but very low precision. For example, for
query Q1 = Integration EDBT, the baseline approach re-
turns the desired answer of node 16, but also the unhelpful
root node. In Q2 = Integration VLDB for Fig. 1, candidate
answers nodes 9 and 1 are not very helpful. The node 9 tree
contains two otherwise-unrelated papers cited by the same
paper, and the node 1 tree contains otherwise-unrelated pa-
pers in the same bibliography. A good approach should rank
them below helpful answers, or omit them.

Current approaches to XML keyword search fall into sev-
eral categories. The first category uses shallow structural
heuristics to filter out irrelevant answers [27, 21, 15, 14, 13].
For instance, SLCA [27] eliminates candidate LCAs that are
ancestors of any other candidate LCA. SLCA implicitly as-
sumes that candidate answers deep in the XML tree are
more relevant to the query than answers high up in the tree.
For Q1 in Fig. 1, SLCA does not return node 1, but SLCA
does return node 9 for Q2. Since SLCA does not rank its
answers, the user gets a mix of unhelpful and desirable an-
swers. Since SLCA filters out some candidate answers, its
recall is less than the baseline approach. For instance, for
query Q3 = XML Burt, nodes 3 and 15 are desirable; but
node 3 is an ancestor of node 15, so node 3 will not be re-
turned. MSLCA and MaxMatch use heuristics similar to
SLCA’s [21, 15], and share SLCA’s deficiencies.

VLCA [13] eliminates candidate answers where two non-
leaf nodes have the same label. The idea is that non-leaf
nodes are instances of the same entity type if they have du-
plicate labels (DLs), and there is no interesting relationship
between entities of the same type. We refer to this heuristic
as DL. For instance, the subtree rooted at node 9 does not
represent a meaningful relationship between nodes 19 and
20, because they have the same label and type. Therefore,
node 9 should not be an answer to Q2.

DL is not an ideal way to detect nodes of similar type.
For example, nodes article and paper in Fig. 2 have different
names but represent similar objects. As a result, for the
query Q4 = SIGMOD XPath, DL returns node 11, which
is undesirable. DL cannot detect uninteresting relationships
between nodes of different types, either; it does not filter
out node 1 for query Q5 = UBC Green in Fig. 2. Further,
sometimes there are meaningful relationships between simi-
lar nodes, even in a DB with few entity types. For example,
DL does not return any answer for Smith Burt in Fig. 2,
as it filters out node 4. Like SLCA, VLCA does not rank
its candidate answers. MLCA [14] uses a quite similar ap-
proach. A more detailed comparison of the methods in this
group can be found elsewhere [24].

The second category of XML keyword search approaches
combines IR-based techniques with the aforementioned struc-

tural heuristics to rank candidate answers [5, 1]. XSearch [5]
filters out candidate answers using DL heuristics and ranks
the remainder using their TF/IDF score and the number of
nodes they contain (their size). However, size is an unreli-
able predictor of relevance. Consider query SIGMOD VLDB
for Fig. 1. The answers rooted at nodes 1 and 3 have the
same size, but only the one at node 3 is relevant. TF/IDF
methods do not consider XML structure, so they cannot
remedy this deficiency or the issues with DL.

XReal [1] filters out entity types that do not contain many
of the query terms. Then it ranks subtrees higher if they
and their entities’ types have more of the query terms. For
instance, DBLP has few books about Data Mining, so XReal
filters out all book entities when answering the query Data
Mining Han – even Han’s textbook. XReal does not consider
the relationship between nodes of a subtree when it ranks its
answers, so irrelevant subtrees can be ranked very high. For
query SIGMOD 1997, XReal ranks the subtree rooted at
node 4 in Fig. 2 higher than the 1997 papers with booktitle
SIGMOD. This is because SIGMOD occurs very frequently
in subtrees rooted at cite. Even if we ignore the importance
of the cite entity type in XReal ranking, XReal still ranks
papers published in 1997 below papers that cite multiple
articles and papers published in 1997. Generally, IR ranking
techniques do not exploit XML’s structural properties.

XRank [7] finds LCAs using a modified baseline approach,
and uses a PageRank-based approach to rank subtrees. It
has the same precision problems as the baseline approach.
Also, PageRank is effective only in certain domains and re-
lationships and is not intended for ranking trees; e.g., all the
Proceedings tags in Fig. 2 have the same PageRank.

CR [23] ranks candidate answers based on the strength
of the correlation between the nodes in their patterns. Pat-
terns with high correlation represent strong relationships.
For example, consider Q2 in Fig. 1. All papers in DBLP
are associated through the DBLP root, so the correlation
between the values of the pattern bib paper booktitle -1 -1
paper cite paper title -1 -1 -1 -1 is very low in the full DBLP.
Therefore, CR ranks candidate answers rooted at the DBLP
root last, or omits them. Pattern cite paper title -1 -1 pa-
per booktitle -1 -1 represents a more meaningful relationship,
as the correlation between its values is higher than for the
previous pattern. However, two papers cited by the same
paper do not always have a meaningful relationship. There-
fore, CR ranks the instance of this pattern rooted at node 9
low. The correlation between the values of the pattern pa-
per title -1 booktitle -1 is higher yet, as each paper appears
in only one conference. Therefore, CR ranks the candidate
answer rooted at node 2 first.

The size of a pattern is not related to its correlation. For
instance, bib paper title -1 -1 paper title -1 -1 and cite paper
title -1 -1 paper title -1 -1 in Fig. 1 have the same size. But
the correlation of the first is less than that of the second,
as every two papers are connected to each other through
the root of the subtree. The same goes for paper title -1
author name -1 -1 and paper booktitle -1 author name -1
-1 in Fig. 1. Since many authors publish their papers at
the same conference and each title has only a few authors,
the values of the first pattern are more correlated than the
values of the second one.

CR computes correlations using a measure based on the
concept of mutual information, called Normalized Total Cor-
relation (NTC). CR has been combined with IR-style mea-
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sures to deliver better rankings [23]. As CR does not rely
on shallow structural properties, it does not have the preci-
sion pitfalls mentioned for previous approaches. As CR does
not remove candidate answers, it has better recall than the
approaches that prune out answers. However, neither CR
nor any of the other approaches discussed above can rank
answers with long text fields well. We explore this problem
in the next section.

2.3 Long Text Field Issues
Consider the Citeseer fragment from citeseer.ist.psu.edu/

in Fig. 3. The best answer to query Burt Mining is rooted at
node 3. Since desc is a long text field, two different papers
will almost never have the same description. However, a few
papers have similar titles but different authors. Thus, the
NTC of the values of paper author -1 title -1 is less than that
of paper author -1 desc -1, and CR inappropriately returns
node 2 as the best answer.

IR-style heuristics and penalties for long fields will not
solve this problem. For instance, consider the IMDB frag-
ment from www.imdb.com in Fig. 4. Because tag lines are
less indicative of a movie’s content than plot lines, the best
answer to query Evolution Brian is the subtree rooted at
node 3. Different movies have different plot lines and tag
lines. In the original IMDB, on average each movie has
more plot nodes than tagline ((The famous sentences in the
movies’ trailers) nodes, so the NTC of movie taglines tagline
-1 -1 writers write -1 -1 is 1.48 and the NTC of movie plots
plot -1 -1 writers write -1 -1 is only 1.37. Thus, CR ranks
node 2 above node 3. As the plot field is longer than the
tagline field, penalizing long fields will not solve the prob-
lem.

The problem can occur for short text fields as well. Con-
sider query XML Dan for Fig. 2. The best answer is at node
4, which gives papers about XML written by Dan. The node
3 answer should be ranked second, as it is less interesting

for most users. But since each proceedings has a different
title, the NTC of proceedings title -1 editor name -1 -1 is
the same as the NTC of paper title -1 author name -1 -1
in this fragment. NTC does not consider the fact that the
proceedings titles for nodes 2 and 3 are almost identical; if
it did, the correlation of the first pattern would drop and we
would get the desired ranking.

Thus, intuitively, we should consider the individual com-
ponents (words) of each value when computing correlations,
both for long and short fields. For instance, the words in
movie tag lines are not as representative of the movie’s sub-
ject as the words in its plot lines. Thus in Fig. 4, the terms
in the values of the field writer are more correlated with
those of plot than tagline.

Correlation mining is an active research area in data min-
ing and databases [3, 11, 16]. But most research has fo-
cused on finding the correlations between data items them-
selves, rather than computing the collective correlation be-
tween their columns or nodes. Even the systems in the latter
category [9, 11, 12] consider the values of each column as a
whole, so we cannot apply them to our ranking problem.

3. TERM BASED CORRELATION

3.1 Preliminaries
A root-subtree is a subtree whose root is the root of the

XML DB and whose leaves are the parents of content nodes
[23]. For instance, 1 2 5 -1 6 -1 -1 is a root-subtree in Fig. 1.
If the root-subtree is a path, we call it a root-path. Each
root-subtree contains at least one root-path. Every maximal
set of isomorphic root-subtrees in a tree T corresponds to
a pattern. The size of a root-subtree pattern is the
number of root-path patterns it contains. From now on, the
only patterns we consider are those of root-subtrees.

Definition 1. W (r1 : w1, . . . , rn : wn) is a term of root-
subtree T containing root-paths r1, . . . , rn, with value (r1 :
v1, . . . , rn : vn), if w1, . . . , wn are non-stop words that occur
in values v1, . . . , vn, respectively.

The terms of pattern p containing root-path patterns (p1, . . . , pn)
are the union of the sets of terms of its instances. We write
p’s terms as W (p1 : w1, . . . , pn : wn), reflecting which root-
path pattern contains which term. For instance, (p1 : De-
sign) is a term of the root-path pattern bib paper title -1 -1
and p1 : Design, p2 : SIGMOD is a term of the root-subtree
pattern t1 = bib paper title -1 booktitle -1 -1 in Fig. 1.

Each term W (p1 : w1, . . . , pn : wn) is associated with 2n

possible events. Each event takes the form E(p1 : f(w1), . . . , pn :
f(wn)), where each f(wi) is either wi or w̄i, depending on
whether wi does or does not occur in pi.

Definition 2. The occurrence probability of an event
E(p1 : f(w1), . . . , pn : f(wn)) for term W in a root-subtree

pattern q is O(E) = |t(E)|
|t(q)| , where |t(E)| is the number of

terms where pi contains wi, if f(wi) = wi; or where pi does
not contain wi, if f(wi) = w̄i (1 ≤ i ≤ n). |t(q)| is the total
number of terms of q in the DB.

In Fig. 1, if q = bib paper title -1 -1, O(p1 : “Design”) = 1
4
,

as this pattern has 4 terms.

Definition 3. The presence probability of an event E(p1 :
f(w1), . . . , pn : f(wn)) for term W in a root-subtree pattern
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q is P (W ) = |E|
|q| , where |E| is the number of instances of q

where pi contains wi, if f(wi) = wi; or pi does not contain
wi, if f(wi) = w̄i (1 ≤ i ≤ n). |q| is the number of instances
of q in the DB.

In Fig. 1, if q = bib paper title -1 -1, P (p1 : Design) = 1
2
, as

the pattern has two instances and “Design” occurs in one.
A root-subtree pattern represents the joint distribution of

the root-paths it contains. For instance, the root-subtree
pattern t1 = bib paper title -1 booktitle -1 -1 represents an
association between root-path patterns p1 = bib paper title
-1 -1 and p2 = bib paper booktitle -1 -1.

Intuitively, the entropy of a random variable indicates how
predictable it is [6]. We define the entropy of term W :

Definition 4. Given term W of pattern p of size n whose
events E1, . . . E2n have presence probability P (E1), . . . , P (E2n)
respectively, the presence entropy of p is
Hp(W ) =

∑
1≤i≤2n P (Ei) lg (1/P (Ei)).

For instance, consider the term (p1 : robot, p2 : Aldis) in the
pattern imdb movie plots plot -1 -1 writers writer -1 -1 -1,
where p1 is imdb movie plots plot -1 -1 -1 and p2 is imdb
movie writers writer -1 -1 -1 in Fig 4. The term has four
events. Considering only DB fragment in the figure, we can
compute their presence probabilities to find the the presence
entropy for the term: 2 ∗ 1/4 lg (4) + 2/4 lg (2) = 1.5.

The occurrence entropy Ho(W ) of term W can be de-
fined similarly.

Definition 5. Given the pattern p containing termsW1, . . . ,WN

with occurrence probabilitiesO(W1), . . . , O(WN ) respectively,
the collective entropy of p is
H(p) =

∑
1≤i≤N O(Wi) lg (1/O(Wi)).

As opposed to the presence and occurrence entropies, col-
lective entropy is defined over all terms of a pattern. Notice
that we cannot define the collective entropy based on pres-
ence probability, as the sum of the presence probabilities of
the terms of a pattern could exceed one. If the pattern has
more than one path, we also call its entropy joint entropy,
as it is defined over a joint distribution.

3.2 Correlation Measures
Total correlation [25] is closely related to mutual informa-

tion [6]; it measures the correlation between random vari-
ables. It is defined over random variables A1, . . . , An as

I =
∑

1≤i≤n

H(Ai)−H(A1, . . . , An). (1)

The greater the value of I, the more correlated the variables
are. If the variables are independent, the value of I will be
zero. Since each wi of term W (p1 : w1, . . . , pn : wn) is a
term itself, we can extend the definition of total correlation
as follows:

Definition 6. The total presence correlation (TPC) of
term W (p1 : w1, . . . , pn : wn) of pattern q is:

Ip(W ) =
∑

1≤i≤n

Hp(wi)−Hp(W ). (2)

In the same setting as the last example, the TPC of term
(p1 : evolution, p2 : Fagan) is 0.61 and the TPC of term (p1 :
robot, p2 : Aldiss) is 0.31. In this fragment, from the writer’s

name Fagan, we can predict that the movie is about evolu-
tion and vice versa. However, knowing the movie is about
robot does not necessarily mean that its writer is Aldiss, so
they are not as correlated as the previous term. Thus, the
TPC of a term reflects the correlation between its compo-
nents. In the above definition, the instances of path pi in
the DB are a superset of its instances that are subtrees of
the instances of q. Thus, we compute Hp(wi) considering
only the instances of pi that are subtrees of the instances
of q. The total occurrence correlation (TOC) of a term
can be defined similarly.

We can measure the correlation of a pattern by averaging
the sum of TPCs for all terms in the pattern. However, there
are many weakly correlated terms in patterns. For instance,
the original IMDB has many terms in the title, tag line, or
plot that are not correlated or are weakly correlated with the
terms in the name of the movie writers or the terms in other
fields. Such words usually have high frequency in the DB.
Hence, patterns that intuitively should have different cor-
relations may look very similar if we average over all their
terms. To prevent this problem, we average over the top-k
correlated terms, where k is reasonably large. If k is too
small, we face the same problem, as there are always some
terms that are highly correlated in most patterns. Through
empirical evaluation, we found that a value of 50-100 is ap-
propriate for a large database such as DBLP or IMDB.

TOC and TPC both measure the collective correlation of
a pattern. However, their different properties make them
appropriate for different applications. Consider the term
W (p1 : w1, p2 : w2) in pattern q, where the values of p2

are relatively long. With TOC, w1 is associated with many
terms in p2 where one of them is w2. Thus, TOC finds
the term W to be relatively weakly correlated. Since TPC
views the presence of the components of the term W in an
instance of p as an association between them, TPC givesW a
higher correlation. As mentioned before, a good correlation
measure must work equally well for long and short fields.
Hence, we choose TPC for our application, keyword search.

Among patterns of size 1, those with more variety are
more helpful for users. For instance, in Fig. 1, title is more
helpful for most users and queries than booktitle. Thus if
both match the input query, the system should rank title
first. Since the terms of highly repetitive fields such as book-
title are quite evenly distributed in the database and there
are so few of them, averaging over their top-k entropies re-
turns a relatively high value that does not reflect the true
variety of their information. Therefore, we use collective
entropy from Definition 5 to rank patterns of size one.

Since users prefer smaller patterns, we penalize larger pat-
terns in the final formula for TPC:

NTPC(W ) = g(n)× TPC(W )

H(W )
, n > 1. (3)

g(n) is a function that penalizes larger patterns; g(n) =
n2/(n−1)2 performs well in practice [23]. Exploring options
for g(n) is an interesting area for future work.

The values of NTPC and collective entropy for all patterns
in the DB should be computed in a separate phase before
the first queries are submitted to the system. If the DB
does not undergo drastic structural changes that introduce
new node types and patterns, this computation need never
be repeated. For example, the tightness of the relationship
between paper titles and their authors will not change, no
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matter how many years go by or new conferences are in-
troduced. However, if a new field paper-body is introduced,
we must compute the NTPCs for candidate answers that
include that new field.

To answer a query, we find all candidate answers and their
associated patterns, and look up those patterns in a table of
precomputed NTPCs. We rank answers according to their
NTPC values. We choose to omit answers with zero NTPC,
as they are especially irrelevant.

NTPC-based ranking successfully handles all the exam-
ples described earlier. For instance, the NTPC of proceed-
ings title -1 editor name -1 -1 in the full DBLP is 1.41, and
the NTPC of paper title -1 author name -1 -1 is 1.73. In the
full IMDB, the NTPC of movie taglines tagline -1 -1 writers
write -1 -1 is 1.25, while the NTPC of movie plots plot -1
-1 writers write -1 -1 is 1.49. Section 6 contains a detailed
evaluation of the effectiveness of NTPC-based ranking.

4. COMPUTING NTPC

4.1 Optimization Techniques
Researchers have experimented with techniques for effi-

ciently computing correlations. Unfortunately, these tech-
niques rely on domain characteristics that are not applicable
for keyword search over XML with long fields. For example,
in keyword search, many strongly correlated terms are not
frequent, so we cannot consider only frequent terms [3]. For
keyword search, the minimum interesting value of NTPC is
too small for it to be helpful as a cutoff during correlation
computation [18]. Nor is the number of distinct values for a
field necessarily much less than its total number of values,
which would allow us to use sampling [9]. Nor can we adopt
the techniques for precomputing NTC quickly [23], as NTC
computes the correlation for entire values, not for the terms
of a pattern. However, as in [23], we can assume that the
maximum number of keywords in a query is relatively low
(2.5 on average according to IR studies [26]). Thus, the size
of the patterns we seek does have a domain-dependent up-
per bound MCAS (maximum candidate answer size). For
instance, empirical studies suggest that 4 is a reasonable
MCAS value for bibliographic DBs [23].

The following lemma reduces the number of patterns for
which we must compute NTPC. We call two events pres-
ence independent if their presence probabilities are inde-
pendent of one another.

Lemma 1. Consider the term W (p1 : w1, . . . , pn : wn),
n > 1, of the pattern q, with events E(p1 : f(w1), . . . , pn :
f(wn)). If the root of q is the DB root, then all components
p1 : f(w1), . . . , pn : f(wn) are presence independent.

Proof. We show the property for two arbitrary compo-
nents of the term itself. The proof is similar for other num-
bers of components and other events. For every 1 ≤ i, j ≤ n
we have:

P (pi : wi|pj : wj) =
P (pi : wi ∪ pj : wj)

P (pj : wj)

=
|wi||wj |/|pi||pj |
|wj |/|pj |

=
|wi|
|pi|

= P (pi : wi).

(4)

We can view the components of a term’s events as a random
variable that assumes value 0 when f(wi) = wi and 1 when
f(wi) = w̄i. Since all the events of these random variables
are independent, they are independent, too. Therefore, we
have:

Corollary 1. The NTPC of patterns rooted at the root
of the database is zero.

Hence, when computing NTPCs we ignore all patterns rooted
at the root of the database tree.

The number of pattern instances containing a term is the
frequency of the term. From the properties of total cor-
relation, it follows that infrequent terms have relatively low
NTPC. The frequency of term W (p1 : w1, . . . , pn : wn) is
less than the frequencies of its components wi, . . . , wn. As
explained later in this section, we compute the NTPC of a
pattern using the information from its root-path patterns.
Before computing the NTPC of patterns of size n > 1, we re-
move all terms in root-path patterns p whose frequencies are
less than ε|p|, where 0 < ε < 1. Similarly, for terms of very
high frequency, we use an upper frequency cutoff threshold
1− ε, and remove components with relative frequency above
that limit. The appropriate value of ε depends on the num-
ber of root-path instances in the DB. In our experiments
we used ε = 0.01, with two exceptions. First, a root-path
pattern will have members with very low frequency if the
entity represented by the root-path pattern is a key or semi-
key and each value of the pattern has only one or two terms,
such as for ISBN numbers in a bibliographical database. We
do not remove any term from such patterns, as that would
not leave any term in the pattern. Some entities have terms
that are very frequent, such as payment-methods with values
cash, check, credit card. We do not remove any terms from
such patterns, either.

4.2 NTPC Computation Algorithms
The ComputeNTPC algorithm in Fig. 5 gives an overview

of how to compute NTPC and collective entropy. First,
ComputeNTPC reads the XML data set in a depth first
manner, finds the root-path patterns, and creates a com-
pressed index (CI) for each root-path pattern. Each entry
in a CI contains a root-path instance and the terms in its
value. We define a 32 bit key for each term, and store the
key instead of the term in the index. We do not need the
terms to compute the collective entropies and NTPCs. Each
root-path instance is represented in the CIs by the Dewey
code [22] of its leaf node. Every Dewey code is stored in a
bitmap to save space. These optimizations reduce the space
requirements and enable ComputeNTPC to keep the CIs in
main memory. For instance, for the roughly 1 GB IMDB
data set, the average CI size was 4MB. As we use only one
instance of CI for each root-path pattern throughout Com-
puteNTPC, this ensures modest space overhead and dras-
tically reduces run time. The root-path instances in each
CI entry are sorted according to their depth-first traversal
order in the DB.

The next step in computing NTPCs is to find all patterns
in the DB. We primarily use techniques from previous work
[23] to generate these patterns efficiently, and discuss only
the differences here. After creating CIs, ComputeNTPC
computes the collective entropy for each root-path pattern
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Input: XML data file data
Input: Maximum size MCAS of patterns to compute

NTPC for
Input: Minimum term frequency ε
Output: Table CT of NTPC for data

/* Find the root-paths and build their CIs */

invdx = Create CI(data);1

/* Compute the collective entropies */

forall p ∈ invdx do2

clt Entropy(p);3

/* Prune frequent and infrequent terms */

prune(p,ε);4

/* Initialize the set of prefix classes */

pfxSet← ∅;5

/* Add all root-path patterns as one prefix

class */

pfxSet.add(invdx);6

for k = 2 to MCAS do7

nextPfxSet← ∅;8

last = ();9

forall pfx ∈ pfxSet do10

forall p ∈ pfx do11

/* Compute all prefix classes with

prefix p */

nextPfx ← ∅;12

forall q ∈ pfx do13

Jnt ← join Pattern(p, q);14

forall r ∈ Jnt do15

if subTrees(r) 6⊂ pfxSet then16

continue;17

/* Find the root-paths and join

levels for the new pattern */

rp ← rootPaths(r);18

jl ← joinLevels(r);19

/* Join the CIs */

jTable ← join CIs(rp,jl);20

if jTable.freq = 0 then21

continue;22

/* Compute the NTPC */

CT[r] ← NTPC(jTable);23

if k 6= MCAS then24

nextPfx.add(r);25

if k 6= MCAS then26

nextPfxSet.add(nextPfx);27

pfxSet← nextPfxSet28

return CT ;29

Figure 5: ComputeNTPC: algorithm to compute
NTPCs

in line 3. In line 4, ComputeNTPC prunes terms whose rela-
tive frequencies are less than ε or more than 1−ε. In addition
to lines 1-4, ComputeNTPC is different from the algorithms
of [23] in its join operation at lines 18-20 and computing the
correlation at line 23. After generating a pattern, in line 18
ComputeNTPC finds its root-paths, and then finds the lev-
els of the LCAs of the root-paths. We call these levels join

Input: List rp of root-path patterns to join
Input: List jl of join levels
Output: Join table jTable

/* root-paths to CI mapping */

path2Ind = pathIndexMap(rp);1

/* Distinct CIs */

indcs = indexes(path2Ind);2

/* Group levels for each root-path */

gLvs = group Levels(rp,jl);3

for i = 0 to indcs.size - 1 do4

nextInd.add(i);5

repeat6

/* Read the terms from the CI entries */

for i = 0 to indcs.size - 1 do7

if i /∈ nextInd then8

continue;9

buf [i].clear();10

buf [i].add(nextBuf [i]);11

nextBuf [i] = NULL;12

repeat13

ent = indcs[i].next();14

/* No more entries */

if ent = NULL then15

break;16

/* If entries of the same index can be

grouped */

if grp(buf [i][0],ent,gLvs[i]) then17

buf [i].add(ent);18

else19

nextBuf [i] = ent;20

break;21

until false ;22

/* Join groups of nodes */

for i = 0 to buf [0].size - 1 do23

resBuf [i][0] ← buf [0][i];24

for i = 1 to rp.size - 1 do25

forall rent ∈ resBuf do26

forall ent ∈ buf [path2Ind[i]] do27

if !eql(ent,rent) and28

jin(ent,rent.last,jl[i-1]) then
tmp.add(rent,ent);29

resBuf ← tmp;30

tmp.clear();31

/* Update the join table */

jTable.add(resBuf);32

/* Find the next indexes to read */

nextInd← nextGrp();33

until !nextInd.empty() ;34

return jTable;35

Figure 6: JoinCIs: Algorithm to join compressed
inverted indexes
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Output: The entries of the next groups

for i = 0 to nextInd.size-1 do1

if nextBuf = NULL then2

nextInd.clear();3

return;4

nextInd.clear();5

if resBuf .size > 0 then6

/* move over all CIs */

for i = 0 to indcs.size-1 do7

nextInd[i] = i;8

else9

/* Find the groups with the smallest LCAs */

node ← MAX CODE;10

for i = 0 to indcs.size-1 do11

if grpLCA(buf [i][0],gLvs[i]) < node then12

nextInd.clear();13

nextInd.add(i);14

node = buf [i][0];15

else if grpLCA(buf [i][0]) = node then16

nextInd.add(i);17

Figure 7: NextGrp: algorithm to find the next
group to join

Input: Nodes n and m to group
Input: Join level l
Output: true if n and m can be grouped
if n = NULL or n.ancestor(l) = m.ancestor(l) then1

return true;2

return false;3

Figure 8: Grp: algorithm for the grouping test

Input: Nodes n and m to join
Input: Join level l
Output: true if n and m can be joined
if n.ancestor(l) = m.ancestor(l) and n.ancestor(l + 1)1

!= m.ancestor(l + 1) then
return true;2

return false;3

Figure 9: Jin: test whether nodes can be joined
at a particular level

levels. Each entry in a CI represents an instance of a root-
path pi containing a root-path term wi. Thus, joining the
entries of root-paths p1, . . . , pn of pattern q produces terms
such as W (p1 : w1, . . . , pn : wn) of the pattern q.

Fig. 6 shows the join algorithm, JoinCIs. Many patterns
have duplicates of the same root-path. For instance, the
pattern bib paper author name -1 -1 author name -1 -1 -1
has the root-path bib paper author name -1 -1 -1 two times.
These root-paths share the same CI and our goal is to use
only one CI for each root-path. Thus, the join algorithm
finds the mapping from root-paths to unique CIs in line 1.

The loop from line 6-34 moves down the entries of the CIs
and joins them if possible. For example, assume JoinCIs
wants to join the instances of root-path pi with root-path
pj at level l. An instance of pi can join with an instance of
pj if they have a common ancestor at level l or above. For
instance, we can join the root-path bib paper author name
-1 -1 -1 with the root-path bib proceedings title -1 -1 at level
0 to create instances of the pattern bib paper author name
-1 -1 proceedings title -1 -1 in Fig. 2. The path instances 1
4 10 20 -1 -1 -1 and 1 4 11 22 -1 -1 -1, whose LCA (node 4)
is at level 1, can both join with the instance 1 3 8 -1 -1. We
call all instances of a root-path that have an LCA at level l
or lower a group.

The Grp function shown in Fig. 8 checks whether two
instances are in the same group. Since each root-path in a
pattern is adjacent to two other root-paths (except the first
and the last root-paths in the traversal of the pattern, which
are only adjacent to one), the root-path has two candidate
group levels. As the groups of this root-path must join to the
groups of all its adjacent root-paths, the pseudocode chooses
the lowest level of the two as the grouping level. Consider a
pattern q that consists of root-paths pi, pj , and pi, with join
levels l1 and l2, where l1 < l2. To perform the join, we must
group all instances of pi at l1 to form group g1, and group its
instances at level l2 to form group g2. However, according
to the definition of a group, g2 is a subset of g1. Thus, we
need only the group at level g1. We use this technique to
make the join operation faster. If a root-path occurs more
than once in the same pattern, we create only one group
for its instances. The group levels are computed at line 3
of JoinCIs. Every instance of a root-path belongs to only
one group in each join operation. Thus, JoinCIs reads each
member of a CI entry only once, and finds its group at lines
13-22.

JoinCIs then joins the groups in lines 25-31. The Jin
method in Fig. 9 checks if two root-path instances can join
at a given level. When two root-paths are the same, JoinCIs
performs a self-join between the members of a group. Line
28 checks whether a root-path instance is different from the
other root-path instances in a joint pattern instance. After
joining the groups of the root-paths, JoinCIs inserts the keys
of the joint terms in the join table at line 32. The join table
is a hash table that maps the terms W of the produced pat-
tern to the number of times |W | they appear in the pattern.
Line 33 finds the CIs whose groups are the next ones to read.
The NextGrp algorithm in Fig. 7 shows how to find these
CIs. Every root-path instance belongs to only one group.
Also, the entries in each CI are sorted. Thus, if the join
operation was successful (lines 6-8), NextGrp must advance
the cursor over all CIs. Otherwise, it must advance the cur-
sor over the groups whose LCAs have the smallest Dewey
codes among the current groups (lines 11-17). For the rea-
sons mentioned earlier, these groups cannot join with any
other group. Lines 1-4 of NextGrp check whether we have
finished with any CIs. The time complexity of joining CIs
is linear in the number of groups in each CI. If the join op-
eration produces at least one pattern instance, line 22 of
ComputeNTPCs computes the NTPCs using the join table.

5. USING NTPC AT QUERY TIME
We keep the collective entropy and NTPC for each pat-

tern in a hash table in main memory during query process-
ing. Our query processing system, SA3, finds each candi-
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ε = 0 ε = 0.001 ε = 0.01 ε = 0.02 ε = 0.03
DBLP 20.3 17.9 13.7 12.1
IMDB 43.5 40.8 34.9 33.0 31.8
XMark 56.5 48.5 41.7 35.0 31.6

Table 1: NTPC computation time in hours, for dif-
ferent choices of ε

NTPC CR XSearch XReal PN XRank
IMDB 0.701 0.510 0.612 0.587 0.478 0.431
DBLP 0.834 0.834 0.794 0.790 0.621 0.591

Table 3: Mean average precision (MAP) for DBLP
and IMDB queries

date answer. It then extends the candidate answer to be a
root-subtree, by adding the path from the root of that an-
swer to the root of the DB. SA3 looks up the NTPC of the
root-subtree pattern of the candidate answer, and ranks the
answer based on its NTPC. We use a modified version of the
query processing algorithm from [23] (call it SA2), which is
in turn an extension of the SA algorithm from [8]; we re-
fer the reader to those papers for details and a performance
analysis. In the remainder of this section, we focus on SA3’s
unique features.

SA and SA2 use an inverted index to find nodes that con-
tain the query terms. SA does not present answer values to
the user; SA2 finds them by a sequential scan of the original
XML files, which is slow. SA3 incorporates a new storage
strategy and indexes to eliminate this problem.

At startup, SA3 reads the XML data set in a depth first
fashion and stores it in a NODES table in Berkeley DB [2].
Each node is described in a separate tuple of NODES. The
key of each tuple is the node’s Dewey code and the remainder
of the tuple contains its tag name, its parent’s Dewey code,
and its value if it is a content node.

SA3 builds an inverted index for the text information in
the NODES table. Each entry in the inverted index for a
term w contains two separate lists. The first list describes
the leaf nodes whose values contain w. Each list entry con-
tains the Dewey code of the node and the number of times
w occurs in its value. The second list stores the number
of times w occurs in the values of each node type (all the
nodes with the same tag name constitute a node type). This
information is required to compute the IR based ranks, as
explained below. We store the inverted index as a table
MATCHES in Berkeley DB.

SA2 returns only the answer subtrees. However, for many
queries the user wants to also see the siblings of the leaf
nodes, which can satisfy the user’s underlying information
need. For instance, for the query XML Integration in Fig. 1,
returning the subtree rooted at node 5 is not useful. The
user already knows the title, and probably wants to learn
the author and/or booktitle of the paper. To address this
need, SA3 presents the full subtree to the user. To this end,
SA3 builds an additional index CHILDREN on the parental
information of the DB nodes, and stores it in Berkeley DB.
Given the Dewey ID of a node, a lookup in CHILDREN
finds its children. For each candidate LCA, SA3 queries
CHILDREN to reconstruct the full subtree.

6. EVALUATION
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Figure 10: Average F-measure for IMDB queries

We evaluated ComputeNTPC and SA3 on a Linux ma-
chine with 2GB memory and a 2.13 GHz Intel Xeon CPU.
We used two real-world and one synthetic data set: DBLP
(529.9 MB, max depth 5), IMDB (994.8 MB, max depth 7),
and XMark (1172.3 MB, max depth 11) [20]. We use XMark
only to evaluate the scalability of ComputeNTPC, as there
is no way to evaluate ranking quality for queries over a non-
sense database. IMDB includes long text fields such as plot,
quote, crazy-credit (interesting facts about movies’ credits),
tagline, goofs (mistakes in the movies), trivia, and others;
these fields have not been included in any previous study of
the effectiveness of XML keyword query processing strate-
gies (including [23]), and serve to illustrate the effectiveness
of NTPC in the presence of long text fields. DBLP does not
have long text fields; we use DBLP to show that NTPC also
works well when the DB does not have very long fields, and
to demonstrate ComputeNTPC’s scalability.

We set MCAS to 5 for DBLP and IMDB, which is a
generous setting for both domains.

6.1 NTPC Computation Efficiency
Table 1 shows the time to load data, build supporting

indexes, and compute NTPC, for different values of ε. IMDB
is close to twice as large as DBLP and is more nested, so
it has more patterns and more CI indexes than DBLP, and
IMDB’s CIs are larger on average than DBLP’s. IMDB also
has longer text fields than DBLP, so its join tables are larger.
Thus, with ε = 0, ComputeNTPC takes a bit more than
twice as long for IMDB as for DBLP. The average length of
XMark fields is less than for IMDB, but XMark is about 20%
larger and is more nested, so ComputeNTPC takes about
25% longer for XMark than for IMDB, with ε = 0.

The NTPC for a pattern is a characteristic of the underly-
ing domain. Once NTPCs are computed for a representative
instance, they do not need to be recomputed until a struc-
tural update introduces new schema element types. Thus
NTPC calculations will be rare for a populated DB, and the
.5-2.5 day running times shown in Table 1 are reasonable for
a rare task.

Larger values for ε reduce the preprocessing time consid-
erably. Run times drop off sharply at first as ε increases,
then begin to level off, for a total drop of roughly 1/3 be-
fore ε grows too large. DBLP has more relatively infrequent
terms than IMDB does. Thus, pruning infrequent terms re-
duces DBLP processing time the most. XMark content is
randomly selected from a specific text collection, so XMark
has relatively few infrequent terms and relatively many very
frequent terms, compared to DBLP and IMDB. Thus, re-
moving the terms with relative frequency greater than 1− ε
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NTPC CR XReal SLCA MaxMatch CVLCA XSearch XRank
Precision 0.611 0.599 0.566 0.566 0.545 0.048 0.046 0.050
Recall 0.985 0.965 0.918 0.798 0.798 0.975 0.976 0.975

Table 2: Average precision and recall for IMDB queries

helps to reduce the processing time for XMark. If ε grows
too large, highly correlated terms can be pruned, which will
change NTPCs enough to change the ranking of query an-
swers. For DBLP, this happens for ε > .02. Since IMDB has
longer fields than DBLP, this happens at ε > .03 for IMDB.

The final table of NTPCs was under 2MB for both DBs.
Thus NTPCs can reside in main memory at query time.

6.2 Ranking Effectiveness
We used the IMDB and DBLP query workload from [24]

to evaluate NTPC ranking quality. The queries came from
15 users who did not participate in the research. Each user
submitted up to 5 queries to IMDB and DBLP, resulting in
40 queries for IMDB and 25 for DBLP. The exact workload
can be found in [24]; we cannot list it here due to space
limits. Users were given query results through a GUI inter-
face where they can score each result as being relevant or
irrelevant. We used the NTPCs computed for MCAS = 5
and ε = 0.02 for DBLP, and ε = 0.03 for IMDB. No candi-
date answer had more than 4 leaf nodes, which shows that
MCAS = 5 was reasonable.

We first compared precision, recall, and F-measure [17]
of NTPC against current methods: SLCA [27], MaxMatch
[15], XRank [7], CVLCA [13], XSearch [5], XReal [1], and
CR [23]. Recall gives the fraction of the relevant candidate
answers that are included in the actual answer returned to
the user. Precision gives the fraction of the returned answers
that are relevant. The F-measure shows the tradeoff between
precision and recall; it is computed as:

F =
(β2 + 1)PR

β2P +R
. (5)

Setting β = 1 weights precision and recall equally. Values
of β < 1 emphasize precision, while β > 1 emphasizes recall.

For DBLP, NTPC produced the exact same ranking for
every query as did CR. In turn, CR has previously been
shown to equal or outperform each of the six other methods
on the same workload and DB instance, in terms of preci-
sion, mean average precision (for approaches that rank their
answers), recall, and F-measure [23, 24]. This shows that
NTPC maintains CR’s good performance when the data set
contains short text fields. DBLP text fields are relatively
short, and none of the 25 queries in the DBLP workload
demonstrated NTPC’s potential advantage over CR when
fields have similar text, such as “EDBT 2009” and “EDBT
2010”. Since the performance of CR and the other six ap-
proaches for the DBLP instance and workload has been ana-
lyzed in previous work, we focus on IMDB in the remainder
of this section.

Table 2 summarizes the recall and precision of all 8 meth-
ods on all 40 IMDB queries by averaging over all queries
in the workload. NTPC had higher recall on IMDB queries
than other methods including CR. The recall of the other
approaches is lower, due to imperfect pruning heuristics. For
example, SLCA and MaxMatch showed even lower recall on
IMDB than they did for DBLP and for the data-oriented

version of IMDB used in [24], which had its long text fields
removed. Many relatively unimportant short and long text
fields such as crazy-credit and quote are in the lower levels of
the XML tree. Some important fields like title appear high in
the tree. SLCA and MaxMatch remove answers whose roots
are ancestors of other candidate answers. Thus, they omit
many relevant answers. For instance, they do not return the
obvious answers to Crime The Godfather and High School
Musical; instead they return the plots of some crime movies,
and only the plot for the “High School Musical” movie.

XReal also delivers lower recall for IMDB, compared to
DBLP and the data-oriented version of IMDB. Since many
TV shows, stored in show elements, do not have long text
fields, their values are shorter. Thus they have fewer oc-
currences of query keywords, compared to movie elements.
Therefore XReal filters out TV shows. However, our users
wanted to see TV shows as well as movies, for example in
the queries Pearl Harbor and Christian Bale. Even with
long fields not a factor, XReal filters out all show elements
for Christian Bale, as he appears mostly in movies. The rel-
ative precision and recall of XRank, CVLCA, and XSearch
were the same, as they do not filter based on the content or
the level of the root of the candidate answers.

Keyword search approaches that do not rank their answers
are frustrating to use; for example, High School Musical re-
turns over 100 answers under the baseline approach. We
used mean average precision (MAP) to compare the rank-
ing quality of all current XML keyword search approaches
that do rank their answers: XRank, XSearch, XReal, CR,
and NTPC. MAP shows how many of the relevant answers
appear near the beginning of the returned list [17]. To com-
pute MAP, we first consider each query Q separately. We
compute the precision of all returned answers for Q, up to
and including the ith relevant answer, for each value of i.
The average of these precisions is called the average preci-
sion for Q. The MAP is the mean of the average precisions
for all queries in the workload.

To compare NTPC with the content-based ranking of XSearch,
XReal, and CR, we combined NTPC with pivoted normal-
ization (PN) [17], an IR-style content ranking formula that
we customized for XML. We control the relative weight of
NTPC and PN as follows:

r(t) = αNTPC(t) + (1− α)ir(t), (6)

where ir(t) is the content score of the candidate answer,
computed based on the classical PN formula. α is a constant
that controls the relative weight of structural and contextual
information in ranking. If α is set to 1, the formula uses only
structural information. If α = 0, we have pure PN. Based on
our empirical evaluation, we set the value of α to 0.8 when
combining it with NTPC.

Table 3 shows the MAPs of the methods. XRank shows
a relatively low MAP, as the movie domain and IMDB are
not appropriate for PageRank-like heuristics. PN delivers a
low MAP as well. Generally, PN ranks smaller fields and
fields with more query keyword occurrences higher. There
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are many fields of average length but different importance
in IMDB, such as title, crazy-credit, and tagline, which have
many words in common. For instance, for the query Artifi-
cial Intelligence, PN ranked some science fiction movies that
have the terms Artificial Intelligence in their tagline and plot
first, but the desired answer was the movie “Artificial Intel-
ligence”. XReal has the same problem, as it uses IR tech-
niques. XReal assumes that fields with more occurrences
of a query keyword are more important. For instance, the
keywords of query Edward Norton appear more often in field
actor than field producer. Thus, XReal ranks movies where
Edward Norton acted higher than the movies he produced.
Unfortunately, this heuristic works poorly for long fields, as
they contain many words found elsewhere in the DB, and the
unimportant (for the query) long fields may contain more of
the query keywords than important fields do. For example,
for query Beautiful Mind, XReal concludes that tagline is
more important than title, because tagline has more occur-
rences of the word beautiful than title does, and ranks the
desired answer with title “Beautiful Mind” low. XReal also
ranks subtrees higher if they have many occurrences of the
query keywords. Each movie has many long text fields in
IMDB. Therefore, movies with similar subjects tend to have
almost the same number of query keyword occurrences in
their subtrees. For instance, all sequels to “The Mummy”
have the same number of occurrences of Mummy and Re-
turn. However, the best answer to the query Return of the
Mummy is the one with these words in its title, and XReal
does not recognize this. This situation is common in data
sets with long text fields.

XSearch uses an IR-style formula to rank its results. Thus,
it has the same precision problems as PN. Moreover, it ranks
the smaller subtrees higher. Thus, for the query Crime The
Godfather, it ranks a movie whose keywords include crime
and Godfather first, instead of the movie “The Godfather”,
which was the desired answer. XSearch has better MAP
than PN and XRank, almost as good as that of XReal. CR
performs only slightly better than PN, because CR does not
work well for long text fields, as expected. NTPC correctly
recognizes the important fields and patterns, and delivers
better MAP than all other methods. For instance, for Arti-
ficial Intelligence and Return of the Mummy, NTPC ranks
the desired movies first.

Fig 10 shows the F-measure of the 8 methods on IMDB;
higher F-measures are better. NTPC’s handling of long
fields allows it to surpass CR, which in turn is significantly
better than the other methods.

The MAP of NTPC is high but not perfect; NTPC does
not return the perfect ranking for every query. The first
reason is that some important fields have low collective en-
tropy, such as Genera in IMDB. NTPC does not realize how
important they are. The second reason is that our users pre-
ferred the most popular/famous papers and movies. IMDB
and DBLP do not provide popularity information, although
some related fields are present, such as award in IMDB. Re-
solving these issues is left as future work.

7. CONCLUSIONS
This paper has addressed a new challenge for XML key-

word search: how to provide high-quality, well-ranked query
answers when the data is highly structured but also contains
long text fields such as paper abstracts or movie plot lines.
Previous approaches to XML keyword search do not rank

query answers well for such databases. We have proposed a
approach to measure the correlation between both short and
long text fields in such data sets, based on the new concept
of normalized term presence correlation (NTPC). After a
one-time computation of NTPCs, candidate answers for all
subsequent queries are quickly ranked, based on the NTPC
of their structure.

We performed a user study to evaluate the effectiveness
of a NTPC-based keyword query system for data-oriented
XML with and without long text fields. The study showed
that the NTPC-based approach works as well as the best
system previously available for data sets without long fields,
and performs better than any previous system for data sets
that include long fields. Since the naive method to compute
NTPCs is very slow, we introduced optimization techniques
and provided a faster algorithm to compute the correlation
for schema elements. Our experiments on real and synthetic
data sets of size .5-1.1 GB showed that NTPCs can be com-
puted for data sets of this size in .5-2.5 days, which is rea-
sonable for a one-time computation.
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