
Vol:.(1234567890)

Data Science and Engineering (2021) 6:142–162

https://doi.org/10.1007/s41019-021-00154-4

1 3

Keyword Search on Large Graphs: A Survey

Jianye Yang1 · Wu Yao1 · Wenjie Zhang2

Received: 30 October 2020 / Revised: 11 January 2021 / Accepted: 16 March 2021 / Published online: 31 March 2021

© The Author(s) 2021

Abstract

With the prevalence of Internet access and online services, various big graphs are generated in many real applications (e.g.,

online social networks and knowledge graphs). An important task on analyzing and mining these graphs is keyword search.

Essentially, given a graph G and query Q associated with a set of keywords, the keyword search aims to find a substructure

(e.g., rooted tree or subgraph) S in G such that nodes in S collectively cover part of or all keywords in Q, and in the meanwhile,

S is optimal on some user specified semantics. Keyword search on graphs can be applied in many real-life applications, such

as point-of-interests recommendation and web search facility. In spite of the great importance of graph keyword search,

we, however, notice that the latest survey on this topic is far out of date. Consequently, there is prompt need to conduct a

comprehensive survey in this research direction. Motivated by this, in this survey, we systematically review graph keyword

search studies by classifying the existing works into different categories according to the specific problem definition. This

survey aims to provide the researchers a comprehensive understanding of existing graph keyword search solutions.

Keywords Keyword search · Big graph · Algorithm · Index structure

1 Introduction

With the prevalence of Internet access and online services,

various big graphs are generated in many real applications

(e.g., online social networks and knowledge graphs). An

important task on analyzing and mining these graphs is

keyword search, which can be informally described as fol-

lows. Given a graph G and query Q associated with a set of

keywords, the keyword search aims to find a substructure

(e.g., rooted tree or subgraph) S in G such that nodes in S

collectively cover part of or all keywords in Q, and in the

meanwhile, S is optimal on some user specified semantics.

Let us illustrate graph keyword search by an example.

Figure 1a shows a data graph G with 12 vertices, each of

which contains a set of keywords. Given a query Q = {c, d} ,

we find two candidate result trees T
1
 and T

2
 in Fig. 1b, which

are returned following the tree-based search model. Then

if the minimum total edge weights are used to rank the

answers, T
1
 is considered to be the top-1 result since it has

least weight.

Keyword search is a prominent operation for analyzing

graph data, which allows users to query the investigated

graph data without a prior knowledge of specialized query

languages. It is applicable to many real-life applications.

Here are some typical applications, to name a few:

• POIs recommendation. Many location-based services

provide point-of-interest (POI) recommendation for

users. Consider a tourist who wants to spend a day

exploring a city. She might pose a query containing a set

of keywords, e.g., “hotel”, “restaurant”, “shopping mall”,

etc. Intuitively, a good recommendation tends to return

POIs staying close to each other. This implies that the

query result is a compact subgraph in the road network.

• Web search facility. Keyword search on the Web are ubiq-

uitous in our daily life. For example, a user may be inter-

ested in two actors, e.g., “Jason Statham” and “Dwayne

Johnson”. A decent keyword search result should present

to the user the whole picture about the two actors, such

as the movies they co-acted. This schema-free keyword

 * Jianye Yang

 jyyang@hnu.edu.cn

 Wu Yao

 wyao@hnu.edu.cn

 Wenjie Zhang

 zhangw@cse.unsw.edu.au

1 Hunan University, Changsha, China

2 University of New South Wales, Sydney, NSW, Australia

http://orcid.org/0000-0003-3417-823X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00154-4&domain=pdf

143Keyword Search on Large Graphs: A Survey

1 3

search has been witnessed a great necessity for nowadays

web search, especially for large-scale knowledge bases.

• Keyword-aware routing. A user might want to drive in

a city from one place to another and, at the same time,

pass through several POIs (e.g., “supermarket”, “gas sta-

tion”, “bank”, etc). A high-quality route plan is required

to present a route passing through all these POIs with

least travel time. Clearly, keyword-aware routing in road

network is another important application of graph key-

word search.

Owing to the great value of real-life application, key-

word search over graphs is an important research topic in

the past two decades. In spite of this fact, we are surpris-

ingly noticing that the latest surveys [83, 99], to the best of

our knowledge, for graph keyword search, were conducted

one decade ago. However, in the past decade, we have wit-

nessed rapid development for graph data analysis, includ-

ing graph keyword search. A lot of works have been pro-

posed in this period of time. Therefore, there is a prompt

need to conduct a comprehensive up-to-date survey in this

research direction. Besides, the existing surveys [83, 99]

mainly focus on keyword search on schema-based graphs,

such as XML data or relational graphs, which are not suit-

able to deal with the present-day schema-free large graphs.

For these schema-free graphs, the existing surveys only

discuss several pioneer approaches, such as BANKS [5,

49], BLINKS [39], and DPBF [20].

Motivated by the above issues, in this survey, we sys-

tematically review recent advances on keyword search on

schema-free graphs. In general, this survey focuses on key-

word search algorithms over graph data under different rank-

ing models for the desired answer. As shown in Table 1, we

provide a systematic classification for studies on graph key-

word search. Particularly, we classify these studies according

to the answer ranking models, including tree-based keyword

search, nearest neighbor-based keyword search, subgraph-

based keyword search, and other semantics-based keyword

search. Compared to the existing surveys [83, 99], the last

three classes of studies are new, which have attracted much

research attention in the past decade. For each class of

works, we first give the formal definition for the specific

research problem and then review the representative studies.

This paper is organized as follows: In Sect. 2, we intro-

duce basic concepts related to keyword search on graph.

From Sects. 3 to 6, we comprehensively discuss graph

keyword search solutions in each category. We review the

related work in Sect. 7. In Sect. 8, we point out a list of

future research directions. Finally, we conclude this paper

in Sect. 9.

2 Preliminaries

In this section, we introduce important concepts and nota-

tions which are used thoughout the paper.

2.1 Data Graph

We consider a weighted and directed graph G = ⟨V , E⟩ ,

where V(G) is a finite set of n vertices (i.e., |V(G)| = n)

and E(G) ⊆ V(G) × V(G) is a finite set of m edges (i.e.,

|E(G)| = m). For ease of exposition, in this paper, we only

consider the weight on the edges.

In particular, given an edge e ∈ E(G) , the weight on e,

denoted by ������(e) , is a nonnegative real number, where

smaller weights are preferred. For example, in a road

Fig. 1 An example of graph keyword search

Table 1 Classification of works

of graph keyword search (“P”

means Problem)

Semantics Problem and References

Tree-based semantics Steiner tree-based P1 [5, 20, 30, 54, 55, 62, 79]

Distinct root tree-based P2 [16, 39, 49, 60]

Nearest neighbor-based semantics Top-k nearest neighbors P3 [3, 41, 48, 70, 81, 109, 113]

Top-k relevant neighbors P4 [1, 66, 73, 111]

Subgraph-based semantics P5 [61], P6 [71], P7 [51, 52,

107], P8 [7], P9 [114, 115]

Other semantics P10 [102], P11 [27], P12 [27,

37, 87, 97, 108]

144 J. Yang et al.

1 3

network, the weight on an edge denotes the estimated travel

time. A path p = (v1, v2,… , vl) is a sequence of l nodes in

V(G) such that for each v
i
(1 ≤ i < l) , (v

i
, v

i+1) ∈ E(G) . The

weight of a path is the total weight of all edges on the path.

For two vertices u ∈ V(G) and v ∈ V(G) , the distance from

u to v, denoted by ����(u, v) , is the minimum weight of all

paths from u to v in G.

Given a vertex v ∈ V(G) , we use ���
��
(v, G) (resp.

���
���
(v, G)) to the incoming (resp. outcoming) neighbors

of v. The degree of a vertex v is the number of neighbors

of v in G. Specifically, we use �����(v, G) and ������(v, G)

to denote the in-degree and out-degree of vertex v in

G, respectively. That is, �����(v, G) = |�����(v, G)| and

������(v, G) = |������(v, G)| . In the following, for presenta-

tion simplicity, we omit G in the notations if the context is

obvious and refer to a weighted and directed graph simply

as a graph.

2.2 Keyword Terminology

In a graph G, each vertex v ∈ V contains a set of zero or

more keywords which is denoted as ���(v) , and the union of

keywords for all vertices in G is denoted as ���(V) . Accord-

ing to the specific application, a keyword may denote the

label, attribute, or text information of a vertex. Given a

keyword w, all vertices in graph G containing w are called

(keyword) hitting vertices of w, which are denoted as ���(w) .

For a vertex v, if v contains at least one keyword, we call v

the keyword vertex.

3 Tree-Based Keyword Search

In this section, we review graph keyword search works that

return tree structures as the desired answer, which is referred

to as tree-based keyword search. According to the applied

cost functions for the returned trees, we further classify the

related works into two categories, namely Steiner tree-based

semantics and distinct root-based semantics. Next, we dis-

cuss them in detail.

3.1 Steiner Tree‑Based Semantics

The problem based on Steiner tree semantics is formally

described as follows.

Problem 1 Given a weighted graph G = (V , E) , a set of

query keywords Q = {w1, w2,… , wl} , and a cost function f,

return a tree T(V
T
, E

T
) of G, such that

1. V
T
 covers all keywords in Q;

2. f(T) is minimized among all feasible choices for T, where

f (T) =
∑

e∈ET
������(e).

It is easy to verify that Problem 1 aims to return

a Steiner tree T as the result. The leaves of T only

come from the keyword hitting vertices of G, i.e.,

������(T) ⊆ ���(w
1
) ∪ ���(w

2
) ∪⋯ ∪ ���(w

l
) , since, other-

wise, we can recursively remove all non-hitting leaves of

T to get a new tree T ′ without breaking the condition 1 in

Problem 1. Under the Steiner tree-based semantics, Prob-

lem 1 is the well-known group Steiner tree (GST) which is

NP-complete [21] in general. In [44], Ihler showed that the

GST problem cannot be approximated within a constant

performance ratio by any polynomial algorithm unless

P = NP . In theory, there can be exponentially many fea-

sible choices for T, i.e., O(2m) where m is the number of

edges in G. This implies that an exact algorithm for solv-

ing Problem 1 will take exponential computation cost, and

thus, it is impractical for large graphs.

In the literature, many approximate solutions have

been proposed to solve the GST problem. In the theo-

retical computer science community, several LP (linear

programming)-based approximation algorithms [9, 29]

have been devised, which, however, are very hard to han-

dle medium-sized graphs, since these algorithms need to

invoke the expensive LP procedure. Therefore, we focus

on the database community and introduce several practi-

cal approximation algorithms [5, 20, 30, 54, 55, 62, 79]

that are mostly devised for the keyword search application.

∙ A backward search algorithm. Bhalotia et al. [5]

propose a backward search algorithm, called BANKS-I,

searching backwards from the hitting vertices. Given a

query Q = {w1, w2,… , wl} , we first find the hitting vertices

���(w
i
) for each keyword w

i
 , which can be facilitated by

using an inverted list index to store the hitting vertices.

Let H = ���(w
1
) ∪ ���(w

2
) ∪⋯ ∪ ���(w

l
) be the overall hit-

ting vertices in G relevant to query Q. Then, we create |H|

iterators to concurrently execute |H| copies of Dijkstra’s

single-source shortest path algorithm, one for each key-

word vertex v in H with v as the source. At any point dur-

ing the execution of the algorithm, we maintain l clusters,

denoted by C1, C2,… , C
l
 , one for each of the l keywords.

Cluster C
i
 denotes the set of vertices that we know can

reach query keyword w
i
 , which is initialized as ���(w

i
) . In

each search iteration, we choose a previously visited verti-

ces v and select one of its incoming edges backward to the

source vertex u. Then, any C
i
 containing v now expands to

include u as well. Once a node is visited, all its incoming

edges become known to the search and available for choice

in future iterations. The idea of this concurrent backward

search is to find a common node from which there exists a

shortest path to at least one node in each set ���(w
i
) . Such

paths will define a rooted directed tree with the common

node as the root and the corresponding hitting vertices as

the leaves.

145Keyword Search on Large Graphs: A Survey

1 3

The key to facilitate the search efficiency is which vis-

ited vertex to expand in each iteration. BANKS-I proposes

two strategies as follows.

Equi-distance expansion in each cluster: This strategy

decides which node to visit for expanding a keyword. Intu-

itively, the algorithm expands a cluster by visiting vertices

in increasing order of distance from the leaves. In specific,

the vertex u to visit next for cluster C
i
 (by following edge

u → v backward for some v ∈ C
i
) is the vertex with the

shortest distance (among all vertices not in C
i
) to ���(w

i
).

Distance-balanced expansion across clusters: This

strategy decides which keyword to expand next. In a high-

level point of view, the algorithm attempts to balance the

distance between each leaves to its frontier across all clus-

ters. In particular, let (u, C
i
) be the vertex-cluster pair such

that u ∉ C
i
 and the distance from u to C

i
 is the shortest

possible. Then, the cluster to expand next is C
i
.

∙ A dynamic programming algorithm. Although it

is NP-complete to find the optimal Steiner tree in gen-

eral, Ding et al. [20] propose an efficient dynamic pro-

gramming algorithms, called DPBF, to find the optimal

Steiner tree for the cases where the number of keywords l

is small. Let � , �� , �� be a non-empty subset of the query

Q = {w1, w2,… , wl} . For presentation simplicity, we use

T(v,�) to denote both the tree and its weight with the mini-

mum weight among all the trees rooted at v and containing

a set of keywords � . By maintaining trees in a priority

queue T , DPBF can find the optimal tree T(v,�) for each

v ∈ V(G) and � ⊆ Q . Initially, for each keyword vertex v

and a keyword w ∈ ���(v) , T(v, {w}) is a single vertex tree

rooted at v with a zero weight, i.e., T(v, {w}) = 0 . For a

general case where a tree consists of more than one verti-

ces, T(v, {w}) can be computed by the following equations.

Here min means to choose the tree with minimum

weight, and ⊕ is an operation to merge two trees into a

new tree. Note that, T(v,�) may not exist for some v and

� , which implies that vertex v cannot reach the hitting ver-

tices for some keywords in � . In this case, T(v,�) = 0 . In

general, Eqs. (2) and (3) reflect two tree expanding cases,

namely tree grow and tree merge, respectively. Since all

trees are stored in the priority queue by the increasing

order of weight of trees, DPBF ensures to find the optimal

tree first among all feasible trees covering all the keywords

in Q = {w1, w2,… , wl} . Besides, the time complexity of

(1)T(v,�) = min(Tg(v,�), Tm(v,�))

(2)Tg(v,�) = min
⟨v,u⟩∈E(G)

{⟨v, u⟩⊕ T(u, �)}

(3)T
m
(v,�� ∪ ��) = min

��∩��=�
{T(v,��)⊕ T(v,��)}

DPBF is O(3ln + 2l((l + n) log n + m)) , which is reduced

to O(n log n + m)) for small and fixed l.

∙ A progressive algorithm. Although it is shown to

be efficient to find the optimal solution in reasonable

time when the number of keywords l is very small [13],

DPBF still suffers two major limitations. First, due to the

exponential time and space complexity, DPBF quickly

becomes impractical even for small l (e.g., l = 8) in large

graphs. Second, it cannot generate a solution until the

algorithm has completed its entire execution. Against this

background, Li et al. [62] propose an efficient progres-

sive programming algorithm, called PrunedDP, which is

devised on top of DPBF.

In PrunedDP, a state, denoted by (v, X), corresponds

to a connected tree rooted at v that covers all keywords in

X ⊆ Q . Let T(v, X) be the minimum-weight connected tree

corresponding to state (v, X), and f ∗
T
(v, X) be the weight of

T(v, X). The general idea of PrunedDP is that we construct

a feasible solution for an intermediate state (v, X), then

keep refining the feasible solution until X = Q . To facilitate

the search processing, for a keyword w ∈ Q , we create a

virtual node ṽ
w
 , and create an undirected edge (ṽ

w
, v) with

zero weight for each v ∈ ���(w) . For each state (v, X), let

X̄ = Q ⧵ X . For a vertex v and label set X̄ , we merge all

|X̄| pre-computed shortest paths from v to ṽ
w
 for all w ∈ X̄ ,

resulting in a tree denoted by T �(v, X̄) . Then, by uniting trees

T(v, X) and T �(v, X̄) , we can obtain a minimum spanning tree

of the united result, i.e., ���(T(v, X) ∪ T
�(v, X̄)) , denoted by

T̃(v, Q) . Clearly, T̃(v, Q) is a feasible solution, since it covers

all keywords in Q.

Although the above basic version of PrunedDP is more

efficient than DPBF, it still needs to search a large num-

ber of states to find the optimal solution. That is because

the optimal solution is popped later from the priority queue

than any computed intermediate state (v, X) due to best-first

search strategy. To avoid such expensive computation cost,

PrunedDP is further equipped with two advanced tech-

niques, namely optimal-tree decomposition and conditional

tree merging.

Optimal-tree decomposition theorem states that, for the

optimal tree T∗(Q) , there always exists a vertex u ∈ T∗(Q)

such that (i) the tree T∗(Q) rooted at u has k(k ≥ 1) subtrees

T
1
 , T

2
,…, T

k
 , and (ii) each subtree T

i
 has a weight smaller

than f ∗(Q)∕2 where f ∗(Q) is the weight of T∗(Q) . This result

motivates us to first compute all optimal subtrees that have

weights smaller than f(best)/2 where best is the best feasi-

ble solution seen so far and then obtain the optimal tree via

merging the optimal subtrees.

Conditional tree merging theorem states that, to expand

a state (v, X) by a tree merging operation in PrunedDP, we

can merge two subtrees T(v, X) and T(v, X
�) for X′

⊂ Q ⧵ X

only when the total weight of these two subtrees is no larger

146 J. Yang et al.

1 3

than 2∕3 × f (best) . By this theorem, we can further reduce

a number of states generating in PrunedDP without loss of

optimality.

To further speed up the PrunedDP, the authors propose

a novel progressive algorithm, called PrunedDP++, based

on the A
∗-search strategy over the pruned search space.

The key of PrunedDP++ is to establish an effective lower

bound for each state (v, X) in the search space, which is usu-

ally constructed via relaxing the constraints of the optimal

subtree T(v, X̄) . Let �(v, X) be the constructed lower bound.

PrunedDP++ makes use of f ∗
T
(v, X) + �(v, X) as the priority

for each state (v, X) to perform best-first search.

∙ An index-based algorithm. Recently, Shi et al. [79] pro-

pose an index-based method, called KeyKG, to deal with

keyword search over large knowledge graphs. In a high-level

viewpoint, KeyKG finds a GST in two stages. First, it greed-

ily selects a set of keyword vertices that are close to each

other, denoted by U
x
 , which contains one vertex from each

���(w
i
) for 1 ≤ i ≤ l . Then, it greedily finds a GST to span U

x
 ,

denoted by T
min

 , which is iteratively expanded with shortest

paths.

In specific, for each vertex v
1
∈ ���(w

1
) , KeyKG finds a

vertex v
i
 in each remaining ���(w

i
) with minimum distance

from v
1
 . Let U

v
1

 be the set of all such vertices v
i
 (including

v
1
), and let W

v
1

 be the sum of their distances from v
1
 . Fur-

ther, let x ∈ ���(w
1
) be the vertex with the smallest value

of W
v

1

 . Clearly, U
x
 covers the query Q and vertices in it are

intuitively close to each other. Therefore, a GST that spans

vertices in U
x
 may have a small weight.

To find a promising GST spanning U
x
 , KeyKG attempts

starting from each vertex u ∈ U
x
 and selects the one with the

minimum weight among these |U
x
| GSTs. Specifically, each

T
u
 is initialized with a single vertex u. Then, we iteratively

span the remaining vertices in U
x
 . In each following round,

we find a vertex pair (s, t) with the smallest distance where

s ∈ T
u
 and t ∈ U

x
− T

u
 . A shortest path p between s and t

is found and added to T
u
 . Following this strategy, we find

|U
x
| trees, each corresponding to a vertex u ∈ U

x
 . Finally,

KeyKG returns the tree with minimum weight.

Apparently, the performance of KeyKG heavily relies on

the computation of shortest distance and path between two

vertices. To accelerate the performance, KeyKG utilizes the

Hub Labeling (HL) technique [2]. To construct a compact

HL, vertices are sorted in descending order of betweenness

centrality such that labels constructed in earlier iterations to

support the computation of distances between more pairs

of vertices. To further boost the performance, the authors

devise a dynamic HL which is query-relevant and thus is

online-constructed. By using this dynamic HL, one can

reduce a number of the merge sort-like operations to find a

hub in the static label when computing the shortest distance

between vertex pairs.

∙ Enumerating with polynomial delay algorithm. Due to

the NP-completeness of Problem 1, the above introduced

algorithms cannot guarantee the quality (i.e., approximation

ratio) of non-first results or the delay between consecutive

results. In [30, 55], the authors aim to enumerate answers

in �-approximate increasing weight/height order with poly-

nomial delay.

�-approximate order. Given an answer tree T, the rank

of T, denoted by ����(T) , is the weight or height of T,

where smaller is better. Let T1, T2,…, T
s
 be a sequence of

all answer trees. Ideally, the trees should be enumerated in

an increasing ranked order. However, it is not practical due

to the intractable nature of Problem 1. Instead, the authors

turn to find �-approximate increasing ranked order, where

�-approximate order means that if one answer precedes

another, then the first is worse than the second by at most a

factor of � . More formally, the answer sequence T1, T2,…,

T
s
 is in a �-approximate order if ����(Ti) ≤ � ⋅ ����(Tj) for

all 1 ≤ i ≤ j ≤ s.

Polynomial delay. The efficiency of an enumeration algo-

rithm is measured in terms of the delay between printing

each pair of consecutive answers. We say that an algorithm

enumerates with polynomial delay if there is a polynomial

p(n), where n is the size of the input (i.e., G and Q), such

that the time needed to produce the next answer is always

bounded by p(n).

In [30, 55], the authors apply shortest-path iterators to

find the first answer, namely a minimal-rank feasible tree,

and then adapt the Lawler’s procedure [59] to enumerate

the remaining answers without redundancies. In specific,

the algorithm uses two types of constraints: inclusion con-

straints and exclusion constraints, each of which contains a

set of edges. An answer tree T satisfies a set I of inclusion

constraints and a set E of exclusion constrains if it includes

all the edges of I and none of E. The key in their algorithm is

to devise a subroutine QSUBTREE(G,Q,I,E). By investigating

the partial answer w.r.t. the query Q, the authors develop

a polynomial-time algorithm for QSUBTREE(G,Q,I,E) with

2-approximation in terms of tree height [30].

3.2 Distinct Root‑Based Semantics

Since the problem under Steiner tree-based semantics (i.e.,

Problem 1) is generally a hard problem, many works resort

to easier semantics. In this section, we discuss another prob-

lem, which is based on distinct root semantics as below.

Problem 2 Given a weighted graph G = (V , E) , a set of

query keywords Q = {w1, w2,… , wl} , and a cost function f,

return a tree T(V
T
, E

T
) of G, such that

1. V
T
 covers all keywords in Q;

147Keyword Search on Large Graphs: A Survey

1 3

2. f(T) is minimized among all feasible choices for T, where

f (T) =
∑l

i=1
����(root(T), leaf (wi)).

Note here that root(T) is the root of T, leaf (wi) is the leaf

node containing keyword w
i
 in T, and ����(root(T), leaf (wi))

is the distance from the root to leaf (wi).

Unlike Problem 1, Problem 2 can be resolved in polyno-

mial time as the number of feasible answer trees is at most

n, which is the number of vertices in G. In particular, for

each vertex v ∈ V(G) , zero or one potential tree rooted at

v can be found by uniting the shortest paths from v to each

keyword wi ∈ Q . The final result is the one with minimum

f(T) value. Next, we introduce approaches, which are pro-

posed to deal with very large graphs in general.

∙ A bidirectional search algorithm. BANKS-I can be

directly applied to handle Problem 2 as it aims to find a

common root vertex in the graph by searching backwards.

However, the backward search may lead to poor perfor-

mance in the following two scenarios. First, the query

contains keywords with high frequency. Since BANKS-I

creates an iterator for each keyword vertex, the algorithm

would generate a large number of iterators in this scenario.

Second, an iterator reaches a vertex with many incoming

edges, which means the algorithm needs to explore a large

number of nodes.

To address the above problems, Kacholiaet al. [49] pro-

pose a bidirectional search algorithm, called BANKS-II. The

main idea of BANKS-II is as follows. First, all the single-

source shortest path iterators from BANKS-I are merged

into a single iterator, which is called incoming iterator.

Second, an outgoing iterator runs concurrently, which fol-

lows the forward edges starting form all vertices explored

by the incoming iterator. Third, spreading activation is used

to prioritize the search, which chooses incoming iterator or

outgoing iterator to be called next. Activation is a kind of

“scent” spread from keyword vertices, and edge weights are

taken into consideration when spreading the activation.

∙ A Bilevel index-based algorithm. In [39], a bilevel

index, called BLINKS, is proposed to speed up BANKS-II,

as no index (except the keyword-vertex index) is used in

BANKS-II. A naive index that precomputes and indexes all

the shortest distances from the vertices to keyword vertices

is not feasible, as it will incur very large index size when

dealing with large graphs and large number of distinct key-

words. To reduce the index size, BLINKS uses a divide-

and-conquer approach to create a bilevel index, which can

be built by first partitioning the graph and then building

intra-block index and block index.

In specific, BLINKS applies vertex-based partitioning

methods to partition a graph into blocks. In a vertex-based

partitioning of a graph, a vertex separator is called a portal

vertex (or portal for short). A block consists of all vertices

in a partition as well as all portals incident to the partition.

A portal is called in-portal if it has at least one incoming

edge from another block and at least one outgoing edge in

this block. Similarly, a portal is called out-portal if it has at

least one outgoing edge to another block and at least one

incoming edge from this block.

For each block b, the intra-block index (IB-index) is built,

which consists of the following data structures, including

Intra-block keyword-vertex lists, Intra-block vertex-keyword

map, Intra-block portal-vertex lists, and Intra-block vertex-

portal distance map. These structures are utilized to effi-

ciently fetch the distance information between keywords,

vertices, and portals. Besides the intro-block index, the

block index is also built, which is a simple data structure

consisting of Keyword-block lists and Portal-block lists.

In BLINKS, to support backward search, we use a priority

queue Q
i
 of cursors for each query keyword w

i
 to simulate

Dijkstra’s algorithm by utilizing the distance information

stored in the IB-index. Initially, for each keyword w
i
 , we use

the keyword-block list to find blocks containing w
i
 . Then, a

cursor is used to scan each intra-block keyword-vertex list

for w
i
 and put in query Q

i
 . When we reach an in-portal u of

the current block, we need to continue backward expansion

in all blocks that have u as their out-portal, as a shorter path

may cross several blocks.

∙ An external memory-based algorithm. Dalvi et al. [16]

study the problem of keyword search on graphs that can not

fit into main memory. To efficiently address this problem,

they first partition the graph into small components using a

clustering algorithm and build a much smaller supernode

graph, which is defined as follows:

SuperNode: A component is treated as a supernode in

the top-level graph. Each supernode thus contains a subset

of V(G), and the contained nodes are called innernodes.

SuperEdge: An superedge is constructed between two

supernodes s
1
 and s

2
 if there is at least one edge from an

innernode of s
1
 to an innernode of s

2
 , and the weight of the

superedge is the minimum weight over all such edges.

The supernode graph is constructed such that it fits into

the available amount of main memory. Each supernode has

a fixed number of innernodes and is stored on disk. On top

of the supernode graph, a multi-granular graph structure is

proposed to exploit information present in lower-level nodes

(i.e., innernodes) that are cache-resident at the time a query

is executed. A multi-granular graph is a hybrid graph that

contains both supernodes and innernodes.

When searching the multi-granular graph, the answers

generated may contain supernodes, called supernode answer.

If an answer does not contain any supernodes, we call it a

pure answer. The final answer returned to users must be pure

answer. The Iterative Expansion algorithm is a multistage

algorithm, which is applicable to multi-granular graphs.

Each iteration of Iterative Expansion is broken up into two

phases as follows:

148 J. Yang et al.

1 3

Explore phase: Run an in-memory search algorithm on

the current state of the multi-granular graph that is entirely

in memory. The details of expanded supernodes are stored

in cache. When the search reaches an expanded supernode,

it searches on the corresponding innernodes in cache.

Expand phase: Expand the supernodes found in top-s

(s > k) results of the previous phase and add them to input

graph to produce an expanded multi-granular graph.

The graph produced at the end of Expand phase of itera-

tion i acts as the graph for iteration i + 1 . The algorithm

stops when all top-k results are pure.

∙ A graph summarization-based algorithm. Le et al. [60]

study keyword search on large RDF data. The authors first

condense the RDF data into a generic graph by merging the

entity vertex together with its associated keyword and type

vertices. To speed up the search performance, the authors

propose a type-based summarization approach to summa-

rize the graph. The key observation is that neighborhoods in

close proximity surrounding vertices of the same type often

share similar structures in how they connect to vertices of

other types, whereas a similar effort can be seen in [82].

To implement graph summarization, the authors apply a

very similar strategy that is used in [16]. That is we first split

the graph into multiple, smaller partitions and then define

a minimal set of common type-based structures that sum-

marize the partitions. Since the graph partitioning is a well-

studied problem in the literature, the authors focus on how

to build semantically similar partitions. The summarization

algorithm identifies a set of templates from the set of parti-

tions. Such templates serve as a summary for the partitions

P . In addition, the summarization algorithm guarantees that

every partition in P is homomorphic to one of the templates

in the summary. This property allows the query optimizer

to (i) efficiently estimate any path length in the backward

expansion without frequently accessing the RDF data being

queried and (ii) efficiently reconstruct the partitions of inter-

est by querying the RDF data without explicitly storing and

indexing the partitions.

Based on the summarized graph, the authors present an

exact search algorithm, which performs a two-level back-

ward search: one backward search at the summary level and

one at the data level. The backward search is only initiated

at the data level on the partitions that are found to contain all

the distinct keywords at the summary level and whose score

could enter the top-k answers. A early termination condi-

tion is devised by maintaining the candidate answers in a

priority queue.

3.3 Discussion

In this section, we review graph keyword search studies that

return tree structures as the desired answer. According to the

applied cost functions for the returned trees, we divide them

into two groups, where the first group [5, 20, 30, 54, 55, 62,

79] employ Steiner tree-based semantics, while the second

group [16, 39, 49, 60] employ distinct root-based semantics.

In particular, the Steiner tree-based semantics uses the

total weight of edges in the answer tree as the cost, which

makes the problem NP-complete in general. The distinct

root-based semantics uses the total weight of paths from

root to keyword vertices as the cost, which makes it solvable

in polynomial time.

4 Nearest Neighbor-Based Keyword Search

In this section, we review graph keyword search works that

return k best vertices as the desired answers, which are usu-

ally the nearest or most relevant neighbors to the query ver-

tex. Based on the specific calculation of scoring function,

we further divide these works into two groups. One group

is top-k nearest neighbor keyword search, which considers

the distance only when ranking vertices. The other is top-k

relevant neighbor keyword search, which combines both tex-

tual relevance and distance. Next, we discuss them in detail.

4.1 Top‑k Nearest Neighbor Keyword Search

The problem of top-k nearest neighbor keyword search is

formally described as follows.

Problem 3 (�-��) Given a weighted graph G = (V , E) and

a query Q = (q, w, k) , where q ∈ V is a query vertex in G,

w is a keyword, and k is a positive integer, return a set of k

keyword vertices, denoted by R = {v1, v2,… , v
k
} ⊆ ���(w) ,

and there does not exist a vertex u ∈ ���(w) ⧵ R such that

����(q, u) < maxv∈R ����(q, v).

A straightforward approach for handling Problem 3 is

to use Dijkstra’s algorithm to compute the shortest paths

from q to all vertices in ���(w) and return the k vertices

with minimum distances to q. The time complexity is

O(|E| + |V| ⋅ log |V|) . Clearly, this straightforward approach

is inefficient when the size of the graph is large. To avoid

such cost-prohibitive computation of shortest paths in query

phase, many solutions [3, 41, 48, 70, 81, 109, 113] in the

literature are proposed to utilize index structures, which are

introduced in detail as below.

∙ A distance oracle-based algorithm. Bahmani and

Goel [3] propose a distance oracle-based method to answer

Problem 3. In general, distance oracle is a technique for esti-

mating the distance of two vertices in a graph [75]. Given a

graph G = ⟨V , E⟩ , a distance oracle is a Voronoi partition of

V determined by a set of randomly selected center vertices.

More specifically, given a number n
c
 , we randomly select n

c

vertices from V as the center vertices to construct a distance

149Keyword Search on Large Graphs: A Survey

1 3

oracle O . Then the partition is constructed by assigning each

vertex v ∈ V to its nearest center vertex c, where the distance

from v to its correspondent center node is precomputed.

After constructing O , for two vertices u and v in G, if u and

v are in the same partition in O with a center vertex c, then

the estimated distance ����O(u, v) = ����O(u, c) + ����O(v, c) .

If u and v are not in the same partition in O , ����O(u, v) = ∞.

To improve the distance estimation accuracy, we usu-

ally construct a set of r = p × log |V| distance oracles

{O1, O2,… , O
r
} , where p is a user-specified param-

eter. Oracle O
i
 contains 2⌈i∕p⌉−1 randomly selected center

vertices. Given r distance oracles, the overall estimated

distance of two vertices u and v in G is then given by

����(u, v) = min1≤i≤r
����O

i

(u, v) . It is shown in [75] that when

p = �(|V|1∕ log |V|) , the estimated distance can be bounded

by ����(u, v) ≤ ����(u, v) ≤ (2 log2 |V| − 1) ⋅ ����(u, v) with a

high probability.

The query processing based on distance oracle is as fol-

lows. For each keyword in a distance oracle O
i
 , an inverted

list is constructed for each keyword in the partition. Specifi-

cally, for a partition with a center vertex c and a keyword

w, the inverted list contains all vertices in the partition that

contain w ranked in non-decreasing order of their distances

to c. Given a query Q = (q, w, k) , the algorithm finds the

partition that q belongs to in an oracle O
i
 . The result w.r.t.

O
i
 , denoted by RO

i

 , is the first k elements in the inverted

list for w in the partition. The final result R is computed by

merging the vertices in each RO
i

 and returning k vertices

with the shortest distances to q. The query time complexity

is O(k ⋅ log |V|).

∙ A shortest path tree-based algorithm. In practice, the

distance error estimated by the distance oracle may be large,

which can greatly distort the ranking of the vertices contain-

ing the query keyword. To alleviate the issue of distance

oracle, Qiao et al. [70] propose to integrate the tree dis-

tance [80] in estimating the distances. In particular, for a

partition of a distance oracle, we construct a shortest path

tree rooted at the randomly selected center vertex of the

partition. For a distance oracle O
i
 , let the set of trees con-

structed in O
i
 be T

i
 , which can be considered as a tree by

adding a virtual root and several virtual edges with weight

+∞ that connect the new virtual root to every root vertex in

T
i
 , respectively. Let R

T
 be the result of �-�� query on tree

T. Finally, we can solve Problem 3 by merging the result R
T

i

on all trees T
i
 , 1 ≤ i ≤ r.

The key of the shortest path tree-based algorithm on solv-

ing Problem 3 is how to compute R
T
 on a tree T, which is

non-trivial. In [70], the authors introduce two algorithms for

answering exact �-�� on a tree T = ⟨V , E⟩ . The first algo-

rithm ����-������ can only handle bounded k values with

query processing time O(k + log |���(w)|) and index size

O(k̄ ⋅ |���(V)| for all keywords where k̄ is an upper bound

value of k, while the second algorithm ����-����� can han-

dle an arbitrary k with query processing time k ⋅ log |V| and

index size O(|���(V)| ⋅ log |V|).

In ����-������ , the authors utilize a data structure, namely

Compact Tree �� , which is defined as follows. For a tree T

and a keyword w, a compact tree ��(w) is a tree that keeps

only two types of vertices in T: a keyword vertex that con-

tains keyword w, and a vertex that has at least two direct

subtrees containing vertices carrying keyword w. The main

idea of ����-������ is to precompute the top-k̄ results for

every keyword w and every vertex on ��(w) . Since the total

size of all compact trees is bounded by O(|���(V)|) , the

total space to store the top-k̄ results of vertices on all com-

pact trees is bounded by O(k̄ ⋅ |���(V)| . Then, given a �-��

query Q = (q, w, k) , if q is on ��(w) , the result can be easily

reported by the precomputed answer on ��(w) . The difficult

case is when q is not in ��(w) . In high level, this case can

be dealt by first finding the entry vertex and entry edge for

q on ��(w) and then merging the candidate answer on the

nearest vertices on ��(w).

In ����-����� , a main observation is as follows. For a

vertex u containing keyword w and an arbitrary vertex v

in a tree T, the path from v to u is unique on T, and can

be divided into two segments, namely the segment from v

to their lowest common ancestor ���(u, v) , and the second

segment from ���(u, v) to u. The basic idea is to compute

the first segment online and precompute the results regard-

ing the second segment offline. In the precomputing phase,

we propagate the keyword vertex u to all its ancestors in T,

such that we can construct a candidate list for each vertex

s in T, which records all distance from s to the keyword

vertex in the subtree rooted at s. Then, given a �-�� query

Q = (q, w, k) , we just need to merge all candidate lists of

vertices starting from q to the root of T by adding a proper

distance. The final answer is the k vertices with shortest dis-

tance. A tree balancing technique against T is further devised

to optimize both the index space and query processing.

∙ A 2-hop labeling-based algorithm. The above two

algorithms for Problem 3 only give approximate answers.

In [48], Jiang et al. propose two exact algorithms based on

2-hop labeling techniques [14], namely forward search (��)

and forward backward search (���).

Particularly, �� is proposed to deal with the scenario

where the keyword is not frequent. For a �-�� query

Q = (q, w, k) , we compute the distance between the query

vertex q and all vertices in ���(w) by using the 2-hop label

index and return the k vertices with minimum distances to

q. In specific, let L be the 2-hop label index, which con-

sists of a set of label entry lists, each for a vertex v ∈ V .

In the list L(v) for vertex v, there are a set of label entries

(u
i
, d

i
) where u

i
∈ V , and d

i
 is the distance between u

i
 and v.

�� finds the answers by forward search from L(q) and L(y)

150 J. Yang et al.

1 3

where y ∈ ���(w) . �� becomes inefficient when the keyword

w has high frequencies resulting in many candidates in ���(w)

to be checked.

To handle the cases where the keywords have high fre-

quencies, ��� incorporates forward search and backward

search on the label index. In addition to the 2-hop label

index L, the authors build two more indices, namely 2-hop

label backward index LB and keyword-lookup tree index

KT. Similar to L, for each vertex v, LB(v) consists of a list

of label entries (u, d), which is constructed as follows. For

each entry (v, d) ∈ L(u) , we add an entry (u, d) into LB(v).

We also sort entries in LB(v) by non-increasing order of the

distance value d. For a �-�� query Q = (q, w, k) , to avoid

scanning all vertices in ���(w) , we now search from each

label entry (x, d) ∈ L(q) . Then, we search for label entries in

the backward index LB(x) with vertices that contain keyword

w, i.e., (y, d�) ∈ LB(x) where y contains w. We can obtain one

possible answer y from the path (q → x → y, d + d�) , that is,

the distance from q to y is d + d
�.

Since LB(v) may contain vertices which do not contain

keyword w, we need a mechanism to look up the entries

of vertices that do contain w efficiently. To this end, the

authors further propose tree index, called keyword-lookup

tree index (KT). Specifically, for each vertex v ∈ V , KT(v) is

a forest built by breaking the set of label entries of LB(v) into

fragments. Each tree node in KT(v) contains some keyword

information of a fragment, so that the entries containing the

query keyword in a fragment can be retrieved efficiently.

∙ An I/O-efficient algorithm. The above methods for Prob-

lem 3 are all main memory oriented, which assume that the

graph as well as the constructed index can fit entirely in

memory. To deal with large-scale networks, Zhu et al. [113]

propose an I/O-efficient approach, which uses a compact

disk index to answer a �-�� query with constant I/Os.

Since the shortest path computation is a key operation

in answering a �-�� query, the authors follow the computa-

tion paradigm proposed in [70] to speed up the calculation,

where a set of spanning trees are used as an approximate

representation of a graph and the shortest distance in trees is

used as an approximation of the shortest distance in a graph.

In particular, they focus on how to lay out the balanced com-

pact tree on disk, such that only a small number of block

accesses are needed to answer a �-�� query, and the index

size on disk is small. To this end, the authors split a balanced

compact tree ���(�) into two levels, where the top level is

stored as paths and the bottom level is stored as subtrees.

In general, the authors lay out ���(�) by paths and sub-

trees blocking into disks in the bottom-up manner. In the

bottom level, for a vertex v ∈ ���(�) , the subtree rooted by

v, denoted by ��(v) , contains all v’s descendants and itself.

To make use the best use of the block, we should choose to

store a set of maximal subtrees, under the condition that the

total size of all candidate lists in ��(v) can fit into a block.

In the top level, we store for the remaining vertices in the

form of paths into blocks. The idea of path blocking is, for

each leaf vertex v in the remaining vertices, we store the path

from v to the root and the associated candidate lists into a

block. Moreover, it is clear that all other inner vertices are

covered by such paths.

∙ A privacy-preserving algorithm. To reduce the busi-

ness running cost, more data owners are motivated to out-

source their graphs to the cloud for storage, management

and retrieval. However, directly outsourcing the graphs

may cause serious privacy concerns. For example, keyword

search on graphs can threat the privacy of data users, as the

graph or the query request may reveal sensitive information

such as user’s addresses or personal information. Under such

circumstances, Teng et al. [81] study Problem 3 in a privacy-

preserving manner, which aims to process �-�� query on

graphs without privacy leakage.

The authors build a two-level index for the shortest dis-

tance trees of the graph which is proposed in [70]. In the

index, the first level indexes the paths from the vertices of

the tree to the root, and the second indexes the routes from

the root to the keyword vertices. To achieve distance com-

putation without privacy breaches, the index is encrypted

using secret sharing encryption. To handle the keyword fil-

tering during the search processing, the authors also propose

a trapdoor generation method for query keywords leveraging

privacy-preserving set-intersection.

To process a �-�� query, we first retrieve the ancestors

of the query node in the first level index and then compute

the candidate nodes with the query keywords in the second

level. The final results are calculated and merged with the

candidates.

∙ A continuous query-oriented algorithm. In [109],

Zheng et al. investigate a continuous variant of �-�� query

on road networks. Formally, given a road network G, and a

moving query Q = (q, w, k) , the query keeps returning the �

-�� results for every new location q of Q. For presentation

simplicity, we denote this variant of �-�� query by �-���.

The key to deal with �-��� query efficiently is to reduce

the number of recomputation as much as possible for query

locations with the same query results. To this end, the

authors make use of the so-called dominance interval or

region on road network, which share the similar intuition

with safe region for processing continuous queries in Euclid-

ean space. To implement the dominance interval with high

efficiency, the authors propose an important index struc-

ture, namely EP index (short for enclosed path index). An

enclosed path, denoted as EP(s, ..., e) , is a path that only

the starting and ending vertices are intersection vertices

among all vertices it passes. Then, for each EP(s, ..., e) we

construct an inverted list for each keyword w contained by

o ∈ EP ⧵ {s, e} , which is a list of the vertices that contain w.

151Keyword Search on Large Graphs: A Survey

1 3

Given a moving query Q = (q, w, k) , we first identify the

enclosed path EP
q
 that q locates on. Then, we compute the �

-�� results for both vertices s and e of EP
q
 by existing algo-

rithms such as [48, 70], denoted by R
s
 and R

e
 , respectively.

Besides, we also obtain all vertices on EP
q
 that contain w by

accessing the EP index of EP
q
 . Finally, we proceed to divide

EP
q
 into dominance intervals by a window sliding approach.

As long as q is on EP
q
 , the query result is simply the result

set with corresponding dominance interval covering q.

In the literature, there are also works on studying �-��

query on other types of graphs, such as temporal graphs [41]

where edges in the graph have time constraint.

4.2 Top‑k Relevant Neighbor Keyword Search

In the literature, many research efforts are devoted to the

problem of most relevant neighbor keyword search where

the ranking function considers both keyword relevance and

network distance. In particular, studies in this category are

mainly focusing on spatial keyword queries on road net-

works [1, 66, 73, 111], which implies that the vertices and

edges also have spatial location information besides the

graph connecting structure. Since the road network contains

extra spatial location information, many spatial-textual index

structures, such as [15, 63, 72], can be utilized to acceler-

ate the query performance. Note that there might be spatial

objects (points of interest) in the road network apart from

the network vertices. To simplify the presentation, we regard

these spatial objects as vertices as well, which can be real-

ized by simply splitting the edge it locates.

The formal definition of top-k relevant neighbor keyword

search is stated as follows.

Problem 4 Given a road network G = (V , E) and a query

Q = (q, k,�) , where q ∈ V is a query vertex in G, k is a posi-

tive integer, and � is a set of query keywords, return a set of

k vertices with the largest scores. The score of each vertex

v is defined in Eq. (4).

here, ���(� , ���(v)) is the textual relevance of vertex v to the

query keywords � , and ����(q, v) is the network distance from

q to o. A widely used metric for textual relevance is cosine

similarity [116].

∙ A Dijkstra-like expansion algorithm. Rocha-Junior et

al. [73], for the first time, investigate Problem 4. To deal

with Problem 4, the authors employ an expansion strategy

similar to Dijkstra’s algorithm [19].

(4)�(v) =
���(� , ���(v))

����(q, v)

Specifically, the k best spatiotextual result vertices are

maintained in a heap R in decreasing order of ranking score

shown in Eq. (4). During the expansion, another heap Q is

used to store the adjacent vertices according to increasing

order of network distance to q.

Initially, the algorithm finds the edge (v, v
�) in which q

locates. Then vertices v and v′ are inserted into Q and marked

as visited. In each expansion step, we dequeue the top vertex

v in Q and insert all its unvisited neighbor vertices into Q .

Note that, whenever we visit a new vertex v, we also update

the result heap R with v by computing the distance between

q and v. The algorithm stops when the remaining vertices

cannot achieve a better score (i.e., score upper bound) than

the score of the k-th vertex already found, or the entire net-

work has been expanded.

In particular, the score upper bound of a vertex v can be

estimated by the distance between v and q, and the maximum

textual relevance (i.e., ���(� , ���(v)) = 1 in Eq. 4). The cor-

rectness of the early termination condition is guaranteed by

the fact that the algorithm always expands the vertex v with

minimum distance to q.

It is worth noticing that, to facilitate the query perfor-

mance, many spatial-textual-related index structures are

employed in this algorithm. For example, � ∗-���� is used

to store road network edges, and ��-���� stores spatial and

keyword information of vertices.

∙ A �-���� -based algorithm. The above Dijkstra-like

expansion algorithm is rather inefficient for the scenario that

vertices in the result set are far away from the query loca-

tion q, since the searching space is in the shape of a circle

with q as the center. To improve the searching performance,

Zhong et al. [111] propose a �-���� [110]-based method.

Similar to its spatial version �-���� [34] that is used to

facilitate the proximity-related search on metric space, �

-���� is devised to compute the shortest-path distances on

road network with high efficiency and good scalability (i.e.,

low storage cost). In general, �-���� is a balanced search

tree constructed by recursively partitioning the road network

into sub-networks where each �-���� node corresponds to a

sub-network. It satisfies the following properties. (i) Each

node represents a subgraph. The root node corresponds to

the graph G. (ii) Each non-leaf node has f (≥ 2) child nodes.

(iii) Each leaf node contains at most �(≥ 1) vertices. All leaf

nodes appear at the same level. (iv) Each node maintains its

border set and a distance matrix. For non-leaf nodes, the

distance matrix maintains the distance between two borders

in its child nodes. For leaf nodes, the distance matrix stores

the distances between all vertices and the borders in this

node. (v) For keyword queries, each node also stores addi-

tional information, such as inverted list. Note that, given a

subgraph G
i
 of G, a vertex u ∈ V(G

i
) is called a border if

∃(u, v) ∈ E(G) and v ∉ V(G
i
).

152 J. Yang et al.

1 3

Example 1 Figure 2b shows the �-���� of the road network in

Fig. 2a. The borders of each node are shown in the rectangle

box under the node. The distance matrix of each node is

listed around the tree node. For G
1
 , its children G

3
 and G

4

contain five borders {v1, v6, v7, v8, v10} ; thus, the rows/col-

umns of G
1
 ’s distance matrix are the five borders. The set of

vertices of each leaf node are shown in the circled numbers.

For instance, in G
4
 ’s distance matrix, the rows are borders

{v8, v10} and the columns are vertices {v8, v9, v10, v11} . Then

entry (v8, v11) = 11 since the distance between borders v
8

and v
11

 is 11.

Given a query Q = (q, k,�) for Problem 4, we first locate

the leaf node of q. Then we create a maximum priority query

Q to store an entry e according to decreasing order of the

ranking score (i.e., �(e) in Eq. 4), where e is a vertex or a �

-���� node. Note that �(e) is possible maximum value for a

vertex in the corresponding subgraph if e is a �-���� node,

which can be computed by the possible maximum textual

relevance of vertices in e and the minimum distance between

q and borders in e. Next, we start from the leaf node in which

q locates, expand upwards in �-���� , and insert the sibling

nodes of current node e into Q . In each iteration, we dequeue

the top entry in Q and insert all its unvisited children into Q .

The algorithm stops once we have collected k vertices or the

tree has been completely expanded.

∙ A keyword separated indexing-based algorithm. The

above-discussed methods all use the technique of keyword

aggregation for road networks, which is used extensively by

spatial keyword query techniques in Euclidean space [10, 15,

88, 103]. However, the disadvantage of keyword aggrega-

tion is the generation of many false positives. Computing

distance in Euclidean space is quick arithmetic operation,

but in road networks computing distance is a complex graph

operation and far more expensive. Consequently, the compu-

tation overhead for incurring false positives in road networks

is significantly higher than in Euclidean space. Therefore,

keyword aggregation is far less effective for road networks.

Abeywickrama et al. [1] resort to keyword separated

indexing techniques to delay and avoid the expensive net-

work distance computation. The key of this method is

the on-demand inverted heap H for each keyword w. An

important property of this heap is as follows. Given the cur-

rent top vertex v in H for keyword w and its lower-bound

distance ����
��
(q, v) from query vertex q, any vertex u con-

taining w, not yet extracted from H , has network distance

����(q, v) ≥ ����
��
(q, v) . This property allows our query algo-

rithms to access keyword vertices in ���(w) in order of their

lower-bound network distances from q.

Before illustrating the query algorithm, we clarify that the

ranking score used in [1] is inverse of the ranking score

shown in Eq. (4). Now, given a query (q, k,�) , we aim to find

the k vertices with the smallest scores. To deal with query

efficiently, the algorithm uses a minimum priority queue Q

where the value of an entry is a well-observed lower-bound

score. First, we create an on-demand inverted heap H
i
 for

each keyword w
i
∈ � . Then, we insert the top vertex in each

H
i
 into Q . In each iteration, we extracted a candidate vertex

c from Q that has not already been processed and insert into

Q the next vertex in the heap containing c. After that, we

compute the lower-bound score using its actual textual rel-

evance and lower-bound network distance, i.e.,
����

��
(q, c)

���(� , ���(c))
 . If this lower-bound score is smaller than the

current best kth result R
k
 , then its actual score is computed

using its exact network distance ����(q, c) . If its actual score

is smaller than R
k
 , then the result list R and R

k
 are updated

accordingly. The algorithm terminates when Q is empty or

the top of Q is no less than R
k
.

A crucial operation in the above algorithm is to create an

on-demand inverted heap for each query keyword. A simple

approach to insert all vertices in ���(w) in the heap with their

Fig. 2 An example for G-tree index structure [110]

153Keyword Search on Large Graphs: A Survey

1 3

lower-bound distances. However, this is not feasible as it

would be required for every query. In the paper, the authors

utilize the network Voronoi diagram (NVD) [56] that allows

inverted heaps to be populated lazily. The main idea is that

we build an NVD on vertices in ���(w) for each keyword w

offline. With the help of NVDs, we can maintain the inverted

heap incrementally by expanding the NVD one layer at a

time.

4.3 Discussion

In this section, we review graph keyword search works that

return k best vertices as the desired answers, which can be

further divided into two groups based on the specific cal-

culation of scoring function. One group [3, 41, 48, 70, 81,

109, 113] is top-k nearest neighbor keyword search, which

considers the distance only when ranking vertices. The other

group [1, 66, 73, 111] is top-k relevant neighbor keyword

search, which combines both textual relevance and distance.

5 Subgraph-Based Keyword Search

Both categories of keyword search reviewed in Sects. 3

and 4 have some limitations. For tree-based methods dis-

cussed in Sect. 3), an answer result may only show partial

information about how those vertices in the result are con-

nected. For nearest neighbor-based methods discussed in

Sect. 4, an answer result is simply a single vertex in the

graph. In some application scenarios, a subgraph is more

desired for inspecting the whole picture. In this section, we

review graph keyword search works that return compact

subgraphs as the desired answers. Next, we discuss them

in detail according to the specific definition of the desired

answer subgraph.

5.1 r‑Radius Steiner Graph‑Based Semantics

Definition 1 (Centric distance) Given a graph G = (V , E)

and any vertex v in G, the centric distance of v, denoted as

��(v) , is the maximal value among the distances between

v and any vertex u in G, i.e., ��(v) = max
u∈G

{����(v, u)}.

Definition 2 (Radius) The radius of a graph G, denoted as

�(G) , is the minimal value among the centric distances of

every vertex in G, i.e., �(G) = min
v∈G

{��(v)} . G is called

an r-radius graph if the radius of G is exactly r.

Definition 3 (r-Radius Steiner graph) Given an r-radius

graph G and a keyword set � , vertex s in G is called a Steiner

vertex if there exist two keyword vertices u and v regarding

� , and s is on the path between u and v. The subgraph of G

composed of the Steiner nodes and associated edges is called

an r-radius Steiner graph. The radius of an r-radius Steiner

graph must satisfy that �(G) ≤ r.

Problem 5 Given a graph G = (V , E) and a query

Q = (r, k,�) , where r is a positive real value, k is a positive

integer, and � is a set of query keywords, return k r-radius

Steiner graphs in G with the largest relevance score regard-

ing �.

Li et al. [61] study the r-radius Steiner graph problem. To

facilitate efficient retrieval of r-radius graphs, they construct

a novel graph index. The entries of the graph index are key-

words contained in the graph, and each entry preserves the

r-radius graphs that contain the keyword. For each keyword

w
i
 , we keep the set of all r-radius graphs that contains w

i
 ,

denoted as I
w

i

.

To process a query Q = (r, k,�) , we first retrieve the set

I
w

i

 of those r-radius graphs which contain w
i
 based on the

graph index and then union every I
w

i

 to compute ∪m

i=1
I

w
i

 ,

which is the set of r-radius graphs that contain all or a por-

tion of the keywords in � . Finally, we extract the r-radius

Steiner graphs by removing the non-Steiner vertices from

the corresponding r-radius graphs, and rank the results to

return the top-k answers.

5.2 Multicenter Community‑Based Semantics

Definition 4 (Multicenter community) Given a graph

G = (V , E) and a set of keywords � , a community, denoted

as R = (V
R
, E

R
) , is a multicenter induced subgraph of G.

Here, V
R
 is a union of three subsets, i.e., VR = Vc ∪ Vl ∪ Vp .

(1) V
l
 is a set of keyword vertices. Every vertex v

l
∈ V

l
 con-

tains at least a keyword in � and all keywords in � must

appear in at least one vertex in V
l
 . (2) V

c
 represents a set

of vertices called center vertices. For any vertex v
c
∈ V

c
 ,

there exists at least a single path such that ����(v
c
, v

l
) ≤ �

���

between v
c
 and every v

l
∈ V

l
 , where �

���
 is a user-given

radius threshold. (3) Vp represents a set of path vertices,

which appear on any path from a vertex v
c
∈ V

c
 to a vertex

v
l
∈ V

l
 if ����(v

c
, v

l
) ≤ �

���
.

Fig. 3 An graph G for multicenter community query [71]

154 J. Yang et al.

1 3

Example 2 Consider the graph in Fig. 3. Let �
���

= 8 . For

a 3-keyword query {a, b, c} , five communities are shown in

Fig. 4. For example, for R
5
 (Fig. 4e), the keyword vertices

are V
l
= {v13, v8, v11} , center vertices are V

c
= {v11, v12} , and

path vertices are Vp = {v
10
}.

For a community R, a cost function can be defined,

denoted by ����(R) , as the minimum total distance from a

center vertex to every keyword node. For example, con-

sider community R
5
 (Fig. 4e). There are two centers, v

11

and v
12

 . The total edge weight over the shortest paths

from v
11

 to the 3 keyword vertices, v
8
 , v

11
 , and v

13
 , is

11 = (2 + 3) + 0 + (3 + 3) . Similarly, we can get the total

weight for v
12

 is 14. Therefore, ����(R
5
) = 11.

Problem 6 Given a graph G = (V , E) and a query

Q = (�
���

, k,�) , return the top-k multicenter communities.

Qin et al. [71] study the problem of finding multi-

center communities. A key observation is that a com-

munity R is uniquely determined by keyword vertices V
l
 ,

which is called the core of the community, denoted by

C = [c1, c2,… , c
l
] . To efficiently find the top-k communi-

ties with minimum cost, the authors use a Fibonacci heap

H to maintain the generated communities.

Initially, we find the first best core C = {c1, c2,… , c
l
}

in the entire space V
1
× V

2
×⋯ × V

l
 , and we ensure

the first core found is the core for the top-1 commu-

nity. Note that the next best core can be found in the

nex t l s ubspaces : S
1
∶ (V

1
− {c

1
}) × V

2
×⋯ × V

l
 ,

S2 ∶ V1 × (V2 − {c2}) ×⋯ × V
l
,… , S

l
∶ V1 × V2 ⋯ × (V

l
− {c

l
}) .

It is important to know the following facts. (i)

V
1
× V

2
×⋯V

l
= C ∪ S

1
∪ S

2
∪⋯ ∪ S

l
 . (ii) Si ∩ Sj = �(i ≠ j)

.

After that, we enheap C with other information into

heap H and enter a while loop. In the while loop, we

first deheap the core C, which is the current best result.

Then, we attempt to find the next best core in each of the

l subspaces, S
1
 , S2,… S

l
 , individually. If we find the best

core, C
i
 , in S

i
 , for 1 ≤ i ≤ l , we enheap C

i
 to H . With H ,

the next best core can be selected in the next iteration

from all cores kept in H . We repeat this process until k

cores are found, which are the top-k results.

5.3 r‑Clique‑Based Semantics

Definition 5 (r-Clique) Given a graph G and a set of query

keywords Q = {w1, w2,… , wl} , an r-clique of G with respect

to Q is a set of keyword vertices that together cover all key-

words in Q and in which the distance between each pair of

keyword vertices is no larger than r.

Definition 6 (Weight ofr-clique) For a given r-clique C, sup-

pose that the vertices of C are denoted as {v1, v2,… , v
l
} .

Then, the weight C is defined as

In [51, 52], r-cliques with smaller weights are considered

to be better. The problem of find r-clique is formally stated

as follows.

Problem 7 Given a distance threshold r, a graph G and a

set of input keywords, find an r-clique in G with minimum

weight.

Kargar et al. [51, 52] propose the r-clique problem and

show that the problem is NP-hard. The authors first present

a branch and bound algorithm for finding all r-cliques in

a graph. The candidate partial r-cliques are store in a list

called rList. The basic idea of the algorithm is as follows.

First, the keyword vertices containing the first keyword

are added to rList. Then, for the second keyword w
2
 , we

compute the distance between each vertices in ���(w
2
) and

each node in rList. If the distance is within r, a new can-

didate that combines the corresponding vertices in ���(w
2
)

and rList is added to a new candidate list called newRList.

After all pairs of vertices in ���(w
2
) and rList have been

checked, the content of rList is replaced by the content

of newRList. The process continues in the same way to

consider all of the remaining keywords. The final content

of rList is the set of all r-cliques.

Because the branch and bound algorithm is slow when

the number of keywords is large. Also, it does not rank the

generated r-cliques. To speed up the process, the authors

propose an approximation algorithm with approximation

ratio of 2 for finding r-cliques with polynomial delay.

Zhao et al. [107] extend r-clique to road networks to

retrieve the POIs (Points of Interest). Particularly, they

advocate the popularity-aware collective keyword (PACK)

(5)������(C) =

l
∑

i=1

l
∑

j=i+1

����(vi, vj)

Fig. 4 Five communities [71]

155Keyword Search on Large Graphs: A Survey

1 3

query in road networks, which aims to find a group of pop-

ular POIs that cover the query’s keywords and satisfy the

distance requirements, such that the sum of rating scores

over these vertices for the query keywords is maximized.

The authors show that the PACK query is NP-hard. Exact

and heuristic solutions on small and large road networks

are then developed.

5.4 Strongly Connected Subgraph‑Based Semantics

The above-mentioned studies all utilize the shortest path

distance to evaluate the compactness of the answers. In [7],

Bryson et al. argue that this method may lack robustness

since it may not reflect the overall structure of the answer

subgraph. Therefore, they propose a random walk-based

approach to measure the distance between vertices con-

taining the query keywords.

Definition 7 (Candidate answer) Given a graph G and a

query Q = {w1, w2,… , wl} , a candidate answer C is a sub-

graph of G whose vertices cover all keywords in Q.

Definition 8 (Connection score of a candidate answer)

Given a candidate answer C for query Q = {w1, w2,… , wl} ,

suppose that the vertex in C containing w
i
 is v

i
 for 1 ≤ i ≤ l .

Then, the connection score of C is defined as

Here ��(vi, vj) is the connection score between vertices

v
i
 and vj defined by random walk. The higher the score

��(vi, vj) , the stronger the relationship between vertices v
i

and vj in graph G.

Problem 8 Given a graph G and a query Q, return a can-

didate answer C for Q with a maximal connection score

�����(C).

The authors prove that Problem 8 is NP-hard. There-

fore, they propose an heuristic method to solve it in poly-

nomial time. The idea is as follows.

For a given query Q, take each vertex containing the

rarest keyword and form a subgraph (candidate answer)

around that vertex. The answer’s score is initialized to 0.

Then, in each iteration, we include one of the uncovered

keywords. In order to do that, we run the RWR and set

the restart vertices to the current vertices of the subgraph.

At the beginning, the only vertex in the subgraph is the

one with the rarest keyword. When the RWR process is fin-

ished, the vertex with the highest score that also covers the

current required keyword is selected as the best vertex of

(6)�����(C) =

l
∑

i=1

l
∑

j=i+1

��(vi, vj)

the subgraph. Among all the candidate subgraphs that are

formed around the vertex containing the rarest keywords,

the one with the highest sum of RWR scores is selected as

the best subgraph.

5.5 Cohesive Subgraph‑Based Semantics

In [114, 115], Zhu et al. advocate the problem of querying

cohesive subgraphs by keywords. Particularly, the authors

employ k-truss [42] to model the cohesiveness of a sub-

graph, which is formally defined as follows.

Definition 9 (Connected k-truss) Given a graph G and an

integer k, a connected k-truss is a connected subgraph S ⊆ G ,

such that ∀e ∈ E(S) , ���
S
(e) ≤ k − 2 . Here ���

S
(e) is the sup-

port of an edge e = (u, v) in G, which is the number of trian-

gles in which e appears.

Problem 9 (Minimal dense truss search by keywords)

Given a graph G = (V , E) and a set of query keywords

Q = {w1, w2,… , wl} , return a subgraph S of G, such that

1. V(S) covers all keywords in Q;

2. S is a connected truss in G that maximizes the trussness;

3. Any subgraph of S cannot satisfy Conditions 1 and 2 at

the same time.

Here the trussness of a subgraph S ⊆ G is the minimum

support of all edges in S plus 2.

Example 3 Consider the example in Fig. 5. Suppose

Q = {DB, ML} . H
1
 and H

2
 are 4-truss and 3-truss contain-

ing Q. Clearly, H
1
 is a dense truss over Q. We also have

another 4-truss induced by {v1, v2, v3, v4, v5} containing Q,

but it is not minimal. Thus H
1
 is the minimal dense truss for

the query Q.

Zhu et al. [114, 115] propose a keyword-truss index

(KT-Index)-based algorithm. In particular, KT-Index is

designed to include two parts: truss index and keyword

index. Truss index is a multilayer structure, where we index

Fig. 5 A graph G for cohesive subgraph keyword query [114, 115]

156 J. Yang et al.

1 3

the information of all the connected k-truss in the k-th layer.

In each layer, there are a set of connected components. In

the keyword index, we first store a inverted keyword list to

keep the vertex IDs that contain each keyword. Meanwhile,

we record the upper bound of trussness ��(w
i
) for each key-

word. Moreover, for each keyword, we record IDs of the

component CID
k
 it occurs in the k-th layer.

Given a query Q, the search algorithm checks each layer

of truss index by a binary search to avoid the worst case of

checking all the value of k
max

 . In the k-th layer, we obtain the

set of components IDs CC that contains all the keywords. If

CC is empty, we will search layers with truss value smaller

than current k; otherwise, we will search layers with truss

value larger than current k. After we find the set of com-

ponent IDs CC that containing all the keywords, we select

the component with the minimum size as dense truss G
den

 .

Then, we extract the minimal dense truss S by using the anti-

monotonic property of k-truss.

5.6 Discussion

In this section, we review graph keyword search studies that

return compact subgraphs as the desired answers. In par-

ticular, five different types of subgraph-based semantics are

introduced [7, 51, 61, 71, 114, 115].

There are also some other more complicated query inten-

tion-based studies, such as target-aware query result-based

keyword search [76], keyword search on public–private net-

works [47], and parallel keyword search for large knowledge

bases [95, 96].

6 Other Graph-Based Keyword Search

In this section, we review other graph keyword search stud-

ies, including a generic ontology-based indexing framework,

spatial keyword query on road networks, and keyword rout-

ing on road networks.

6.1 A Generic Ontology‑Based Indexing Framework

Jiang et al. [46] propose a generic ontology-based index-

ing framework for keyword search, called Bisimulation

of Generalized Graph Index (BiG-index), to enhance the

search performance. The novelties of BiG-index reside in

using an ontology graph G
ont

 to summarize and index a data

graph G iteratively, to form a hierarchical index structure G .

BiG-index is generic since it only requires keyword search

algorithms to generate query answers from summary graphs

having two simple properties.

To process a query Q, we transform Q into Q according

to G
ont

 in runtime. The transformed query is searched on the

summary graphs in G . The efficiency is guaranteed due to the

small sizes of the summary graphs and the early pruning of

semantically irrelevant subgraphs. They authors also show

that the existing popular keyword search algorithms (i.e.,

BLINKS [39] and r-clique [51]) can be easily implemented

on top of BiG-index.

6.2 Spatial Keyword Query on Road Networks

∙ Diversified spatial keyword search. Zhang et al. [102] study

the problem of diversified spatial keyword search on road

networks.

Definition 10 (SK Query) Given a road network G and

a query Q = (q,� , �max) , where q is the query location,

� = {w1, w2,… , w
l
} is a set of query keywords, and �

max

is the network distance threshold, a spatial keyword query

retrieves vertices each of which contains all query keywords

in � and is within network distance �
max

 from q.

Definition 11 (Bi-criteria objective function) Given a set S

of vertices with |S| = k , the bi-criteria objective function,

denoted by f, is defined as

Here, Rel(S) is the relevance of S measured by the net-

work distances of vertices in S to the query location q,

Div(S) is the diversity of S captured by their pairwise net-

work distances, and �(0 ≤ � ≤ 1) is a parameter specifying

the trade-off between the relevance and the diversity.

Problem 10 Given a road network G and a query

Q = (q, k,� , �max) , return a set S of vertices in G such that

1. |S| = k;

2. S ⊆ SK(q,� , �max);

3. f(S) is maximized.

To efficiently deal with Problem 10, an efficient signa-

ture-based inverted indexing technique is proposed in [102].

Besides, an efficient incremental network expansion algo-

rithm is proposed as well such that the spatial keyword

pruning and diversity pruning techniques can be seamlessly

integrated and hence significantly reduce the overall cost.

∙ Collective spatial keyword search. Gao et al. [27] study

the problem of collective spatial keyword search on road

networks, which is formally defined as below.

Problem 11 Given a road network G and a query Q = (q,�)

where q is a query location and � = {w1, w2,… , w
l
} is a

set of keywords, a collective spatial keyword query on road

networks aims to find a set S of vertices, such that

(7)f (S) = � × Rel(S) + (1 − �) × Div(S)

157Keyword Search on Large Graphs: A Survey

1 3

1. vertices in S collectively cover all keywords in �;

2. f(S) is minimized among all possible choices of S.

Here the cost function f(S) is defined as follows

Gao et al. [27] prove that Problem 11 is NP-complete.

In light of this, the authors propose two approximate algo-

rithms with guaranteed approximation errors. The first is

network expansion-based algorithm, denoted by NEB. The

main idea of NEB is to find a set of POIs that are close to

the given query location q and cover the query keywords in

� . A min-priority queue Q is utilized to keep tracks of the

edges that have been visited, and such edges are sorted in

ascending order of their distances to q. Whenever a POI o

having some uncovered keywords, o, is added to the result

set S. The expansion proceeds until all keywords in � are

covered. The authors show that NEB can achieve a 3-factor

approximate guarantee.

Note that NEB does not consider the proximity of vertices

in S and thus has a loose approximation. Based on this, the

authors further propose an iterative NEB-based algorithm,

namely IEB. They show that this new approximate algorithm

IEB can achieve a 2-factor approximate guarantee.

In the literature, many other spatial keyword queries on

road networks are investigated, such as reverse spatial key-

word query [26, 105], why-not questions query [104], and

diversified geo-social keyword query [106].

6.3 Keyword Routing on Road Networks

In a road network, a route is a path such that it goes through

a sequence of vertices following the relevant edges in the

road network. In [8], an optimal route is defined based on

two attributes on each edge (vi, vj) , namely (i) the objective

value of this edge, which is denoted by o(vi, vj) (e.g., the

popularity), and (ii) the budget value of this edge, which is

denoted by b(vi, vj) (e.g., the travel time).

Definition 12 (Objective Score and Budget Score) Given a

route R = ⟨v0, v1,… , v
n
⟩ , the objective score of R is defined

as the sum of the objective values of all edges in R:

and the budget score is defined as the sum of the budget

values of all the edges in R:

(8)f (S) = � × max
v∈S

����(q, v) + (1 − �) × max
v1,v2∈S

����(v1, v2)

(9)��(R) =

n
∑

i=1

o(v
i−1, v

i
)

(10)��(R) =

n
∑

i=1

b(v
i−1, v

i
)

Problem 12 (���) Given a road network G, the key-

word-aware optimal route query Q = (vs, vt,� , �) , where

v
s
 and v

t
 are the source and target locations, respectively,

� = {w1, w2,… , w
l
} is a set of keywords, and � specifies the

budget limit, aims to find the route R starting from v
s
 and

ending at v
t
 such that

1. vertices in R collectively cover all keywords in �;

2. ��(R) ≤ �;

3. R = arg min
R
��(R).

Cao et al. [8] show that Problem 12 is NP-hard. There-

fore, the authors resort to approximate solutions. In specific,

an approximation algorithm called ��������� is proposed. In

��������� , we first scale the objective value of every edge to

an integer by a parameter � to obtain a scaled graph denoted

by G
�
.

Specifically, in the scaled graph G
�
 , each partial route is

represented by a “label”, which records the query keywords

already covered by the partial route, the scaled objective

score, the original objective score, and the budget score of

the route. At each node, we maintain a list of “useful” labels

corresponding to the routes that go to that node. Starting

from the source node, we keep creating new partial routes

by extending the current “best” partial route to generate

new labels, until all the potentially useful labels on the tar-

get node are generated. Finally, the route represented by

the label with the best objective score at the target node is

returned.

The authors prove that ��������� returns routes with

objective scores no worse than
1

1 − �

 times of that of the

optimal route. To improve the performance of ��������� ,

the authors further propose an approximate algorithm,

namely ����������� , which not only returns better approxi-

mate guarantees, but is more efficient than ���������.

In the literature, a string of other keyword-aware routing

problems are studied [37, 38, 50, 87, 97, 108]. All these

works aim at finding optimal routes by considering keywords

and other application-specified constraints at the same time.

7 Related Work

In this section, we briefly review related studies, including

query interpretation-oriented keyword search, community

search on attributed graphs, team formation in social net-

works, spatial keyword search, and keyword-based similarity

query.

158 J. Yang et al.

1 3

7.1 Query Interpretation‑Oriented Keyword Search

Query interpretation-oriented keyword search is an orthog-

onal task to the studies reviewed in previous sections. In

general, the aim of query interpretation is to first transform

the keyword search into a structured query pattern and then

execute the query using underlying engine of the graph to

retrieve answers. Methods based on query interpretation usu-

ally consider the query keyword sequence entered by the

user as a query intent. Besides, most of the studies focus

on the RDF data or knowledge base as graph data. Some

representative works [25, 28, 36, 77, 78, 82, 94, 112] can be

found in the literature.

7.2 Community Search on Attributed Graphs

Recently, community search on attributed graphs has

attracted a lot of research efforts [22, 43, 64, 65]. In an

attributed graph, nodes may contain a set of attributes which

capture theirs properties. Take the collaboration network for

example, node attributes (e.g., DB, ML) represent authors’

topics of expertise. Community search on such attributed

graphs often tend to be more complicated than keyword

search, since it takes more factors into consideration, such

as participation of query nodes, cohesiveness of candidate

subgraph, attribute coverage and correlation and communi-

cation cost.

7.3 Team Formation in Social Networks

Another related problem to graph keyword search is team

formation in expert networks, introduced by [58]. Each

expert possesses a set of skills, and experts are connected to

each other based on their past experience. Given a network

of experts, and a set of required skills to complete a pro-

ject, the goal is to find a subgraph of this network in which

members of the subgraph collectively cover all the required

skills. To rank a subgraph, objective functions that favor

connectedness and minimize communication cost are uti-

lized. The original team formation problem is similar to the

graph keyword search problem, meaning that the solutions

to the latter problem can be directly applied to the former

problem. However, due to the nature of expert networks and

special circumstances, a variety of methods were proposed

over the last decade to address different requirements [53,

68, 85, 98].

7.4 Spatial Keyword Search

A parallel problem to graph keyword search is spatial key-

word search, which have been extensively studied in the

past two decades. Given a query q with a set of keywords

and a location, the related spatial keyword queries can be

roughly divided into two categories, namely soft cover and

hard cover. For soft cover, we do not require that the answer

covers all query keywords. A hybrid way, which uses a

parameter � to trade off the balance between text relevancy

and location proximity, is adopted to evaluate the quality of

a candidate result. Representative studies in this category

include [15, 74, 88, 103]. For hard cover, an answer must

cover all query keywords. Representative studies in this

category include [12, 23, 33, 93, 100, 101]. For a detailed

survey of spatial keyword search, please refer to the recent

survey paper [11].

7.5 Keyword‑Based Similarity Join

Given a collection of records, each of which consists a set

of keywords, keyword-based similarity join aims to retrieve

the similar records. This problem can be divided into two

groups, namely set similarity join and set containment join,

according to the specific similarity definition. In the litera-

ture, both types of problem have been extensively studied.

In particular, set similarity join [4, 17, 18, 24, 69, 84, 86, 89,

90] aims to find the record pair with a similarity score (i.e.,

Jaccard similarity) no smaller than a user-given threshold,

while set containment join [6, 57, 67, 91, 92] retrieves record

pairs such that keywords in one record are all contained in

the other.

8 Future Research

There are many remaining challenges in the area of keyword

search on graphs. In this section, we point out a list of prom-

ising future research directions as follows.

8.1 Other Types of Graphs

In recent years, many novel graph models have been pro-

posed and the representative ones are as follows:

• Knowledge graph [46, 79]. Given a knowledge graph

G, it is usually accompanied with an ontology graph G ,

which encodes the ontology information, such as infor-

mation of properties, classes, and their super classes.

These ontology information can substantially improve

the performance of keyword search algorithm on these

knowledge graphs, in terms of both efficiency and effec-

tiveness.

• Public–private network [47, 81]. In a public–private

network, there is a public graph G, containing a set of

vertices and a set of edges that are visible to all users.

Besides, each vertex u has its private network G
u
 , which

159Keyword Search on Large Graphs: A Survey

1 3

is only known to u. Keyword search on such public–pri-

vate networks must combine both public and private net-

works.

• Uncertain graph [40]. In many real applications (e.g.,

biology), the graph data are often noisy and inaccurate.

An common way is to model them as uncertain graphs,

where each edge is associated with a value denoting its

existence probability. Thus, keyword search on such

uncertain graph needs to consider existence probability

of an answer.

8.2 Utilizing Graph Embedding

In recent years, graph embedding (also known as network

representation learning) [32, 35] is one of the most success-

ful techniques in the area of machine learning and data min-

ing. Given a graph, graph embedding aims to map each node

as a dense vector embedding in a low-dimensional Euclidean

space. These node embeddings can then be fed to down-

stream machine learning systems and aid in tasks such as

node classification, clustering, and link prediction.

Although graph embedding has proved extremely useful

for a wide variety of prediction and graph analysis tasks, we

do not notice any existing works on using it to solve keyword

search problem. This is because graph embedding is gener-

ally to encode graph structure information into node embed-

dings, and they can be used as node features to aid learning

tasks. However, keyword search usually targets to find a set

of nodes in the graph to match the keywords, which is more

a search task. Thus, it is not natural to direct use the node

embeddings in keyword search.

A possible way to combine graph embedding and key-

word search is to develop novel problem semantics. For

example, apart from the keywords, we also consider the

similarity of nodes in the query answer. That is the nodes in

an answer should be similar to each other in terms of their

embeddings, rather than the network distances.

8.3 Real Big Graphs

Most existing graph keyword search studies assume that the

graphs can fit the main memory of a single machine, only a

few of them consider external memory oriented [16] or I/O-

efficient techniques [113]. However, in many real applica-

tions (e.g., Facebook), the graphs might contain billions of

vertices and edges. As a result, how to efficiently perform

online keyword search on such big graphs is a challeng-

ing task. To deal with such big graphs, a possible research

direction is to utilize distributed computation platforms (e.g.,

GraphX [31]) or GPU systems [45].

9 Conclusion

In this paper, we conduct a comprehensive survey on the

topic of keyword search over large graphs. We systemati-

cally review about 30 research articles, which covers all

representative studies in the field of keyword search over

graphs. Particularly, we classify these studies according to

the answer ranking models, including tree-based keyword

search, nearest neighbor-based keyword search, subgraph-

based keyword search, and other semantics-based keyword

search. For each class of works, we first give the formal

definition for the research problem and then review the

representative studies. In summary, our survey provides an

overview of the state-of-the-art research advances on the

topic of graph keyword search.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http:// creat iveco

mmons. org/ licen ses/ by/4. 0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

Funding Funding was provided by National Natural Science Founda-

tion of China (Grant No. 62002108).

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Abeywickrama T, Cheema MA, Khan A (2020) K-spin: Effi-

ciently processing spatial keyword queries on road networks.

Trans Knowl Data Eng 32:983–997

 2. Abraham I, Delling D, Goldberg AV, Werneck RFF (2011) A

hub-based labeling algorithm for shortest paths in road networks.

In: SEA, pp 230–241

 3. Bahmani B, Goel A (2012) Partitioned multi-indexing: bringing

order to social search. In: WWW, pp 399–408

 4. Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similar-

ity search. In: WWW, pp 131–140

 5. Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S

(2002) Keyword searching and browsing in databases using

banks. In: ICDE, pp 431–440

 6. Bouros P, Mamoulis N, Ge S, Terrovitis M (2015) Set contain-

ment join revisited. Knowl Inf Syst 49:375–402

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

160 J. Yang et al.

1 3

 7. Bryson S, Davoudi H, Golab L, Kargar M, Lytvyn Y, Mierze-

jewski P, Szlichta J, Zihaya M (2020) Robust keyword search in

large attributed graphs. Inf Retriev J 23:502–524

 8. Cao X, Chen L, Cong G, Xiao X (2012) Keyword-aware optimal

route search. VLDB 5:1136–1147

 9. Charikar M, Chekuri C, Goel A, Guha S (1998) Rounding via

trees: deterministic approximation algorithms for group Steiner

trees and k-median. In: STOC

 10. Chen L, Cong G, Jensen CS, Wu D (2013) Spatial keyword query

processing: an experimental evaluation. VLDB 6:217–228

 11. Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a

survey. Geoinformatica 24:85–106

 12. Choi DW, Pei J, Lin X (2016) Finding the minimum spatial key-

word cover. In: ICDE, pp 685–696

 13. Coffman J, Weaver AC (2014) An empirical performance evalu-

ation of relational keyword search techniques. TKDE 26:30–42

 14. Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reach-

ability and distance queries via 2-hop labels. SIAM J Comput

32:1338–1355

 15. Cong G, Jensen CS, Wu D (2009) Efficient retrieval of the top-k

most relevant spatial web objects. VLDB 2(337):348

 16. Dalvi BB, Kshirsagar M, Sudarshan S (2008) Keyword search on

external memory data graphs. VLDB. https:// doi. org/ 10. 14778/

14538 56. 14539 82

 17. Deng D, Li G, Wen H, Feng J (2015) An efficient parti-

tion based method for exact set similarity joints. VLDB

10(14778/2856318):2856330

 18. Deng D, Tao Y, Li G (2018) Overlap set similarity joins with

theoretical guarantees. In: SIGMOD, pp 905–920

 19. Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numer Math 7:48–50

 20. Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Find-

ing top-k min-cost connected trees in databases. In: ICDE, pp

836–845

 21. Dreyfus SE, Wagner RA (1971) The Steiner problem in graphs.

Networks 132:185–207

 22. Fang Y, Cheng R, Luo S, Hu J (2016) Effective community

search for large attributed graphs. VLDB. https:// doi. org/ 10.

14778/ 29945 09. 29945 38

 23. Felipe ID, Hristidis V, Rishe N (2008) Keyword search on

spatial databases. In: ICDE, pp 656–665

 24. Fier F, Augsten N, Bouros P, Leser U, Freytag JC (2018)

Set similarity joins on mapreduce: an experimental survey.

PVLDB 11(10):1110–1122

 25. Fu H, Anyanwu K (2011) Effectively interpreting keyword

queries on RDF databases with a rear view. In: International

semantic web conference, pp 193–208

 26. Gao Y, Qin X, Zheng B, Chen G (2015) Efficient reverse top-k

boolean spatial keyword queries on road networks. Trans

Knowl Data Eng 27:1205–1218

 27. Gao Y, Zhao J, Zheng B, Chen G (2016) Efficient collective

spatial keyword query processing on road networks. TITS

17:469–480

 28. Garca G, Izquierdo Y, Menendez E, Dartayre F, Casanova MA

(2017) RDF keyword-based query technology meets a real-

world dataset. In: EDBT, pp 656–667

 29. Garg N, Konjevod G, Ravi R (2000) A polylogarithmic approx-

imation algorithm for the group Steiner tree problem. J Algo-

rithms 37:66–84

 30. Golenberg K, Kimelfeld B, Sagiv Y (2008) Keyword proximity

search in complex data graphs. In: SIGMOD, pp 927–940

 31. Gonzalez J, Xin R, Dave A, Crankshaw D, Franklin M, Stoica

I (2014) Graphx: graph processing in a distributed dataflow

framework. In: OSDI, pp 599–613

 32. Grover A, Leskovec J (2016) node2vec: Scalable feature learn-

ing for networks. In: KDD

 33. Guo T, Cao X, Cong G (2015) Efficient algorithms for answer-

ing the m-closest keywords query. In: SIGMOD, pp 405–418

 34. Guttman A (1984) R-trees: a dynamic index structure for spa-

tial searching. In: SIGMOD, pp 47–57

 35. Hamilton WL, Ying R, Leskovec J (2017) Inductive representa-

tion learning on large graphs. In: NIPS

 36. Han S, Zou L, Yu JX, Zhao D (2017) Keyword search on

RDF graph—a query graph assembly approach. In: CIKM, pp

227–236

 37. Hao J, Niu B, Qin X (2019) A keyword-aware optimal route

query algorithm on large-scale road networks. In: 2019 20th

IEEE international conference on mobile data management

(MDM), pp 587–592

 38. Haryanto AA, Islam MS, Taniar D, Cheema MA (2019) Ig-

tree: an efficient spatial keyword index for planning best path

queries on road networks. In: WWW, pp 1359–1399

 39. He H, Wang H, Yang J, Yu PS (2007) Blinks: ranked keyword

searches on graphs. In: SIGMOD, pp 305–316

 40. Hu J, Cheng R, Huang Z, Fang Y, Luo S (2017) On embedding

uncertain graphs. In: CIKM, pp 157–166

 41. Huang W, Dai G, Ge Y, Liu Y (2019) Top-k nearest keyword

search in public transportation networks. In: 2019 15th interna-

tional conference on semantics, knowledge and grids, pp 67–74

 42. Huang X, Cheng H, Qin L, Tian W, Yu JX (2014) Querying

k-truss community in large and dynamic graphs. In: SIGMOD,

pp 1311–1322

 43. Huang X, Lakshmanan LVS (2017) Attribute-driven commu-

nity search. VLDB 10:949–960

 44. Ihler E (1991) The complexity of approximating the class

Steiner tree problem. In: 17th international workshop, WG

 45. Jia Z, Kwon Y, Shipman G, McCormick P, Erez M, Aiken A

(2018) A distributed multi-GPU system for fast graph processing.

In: SIGMOD, pp 297–310

 46. Jiang J, Choi B, Xu J, Bhowmick SS (2019) A generic ontol-

ogy framework for indexing keyword search on massive graphs.

Trans Knowl Data Eng. https:// doi. org/ 10. 1109/ TKDE. 2019.

29565 35

 47. Jiang J, Huang X, Choi B, Xu J, Bhowmick SS, Xu L (2020)

Ppkws: An efficient framework for keyword search on public-

private networks. In: ICDE, pp 457–468

 48. Jiang M, Fu AW, Wong RC (2015) Exact top-k nearest keyword

search in large networks. In: SIGMOD, pp 393–404

 49. Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Kar-

ambelkar H (2005) Bidirectional expansion for keyword search

on graph databases. In: VLDB ’05: Proceedings of the 31st inter-

national conference on very large data bases, pp 505–516

 50. Kaffes V, Belesiotis A, Skoutas D, Skiadopoulos S (2018)

Finding shortest keyword covering routes in road networks. In:

SSDBM

 51. Kargar M, An A (2011) Keyword search in graphs: finding

r-cliques. VLDB 10(14778/2021017):2021025

 52. Kargar M, An A (2012) Efficient top-k keyword search in graphs

with polynomial delay. In: ICDE, pp 1269–1272

 53. Kargar M, Zihayat M, An A (2013) Finding affordable and col-

laborative teams from a network of experts. In: Proceedings of

the 2013 SIAM international conference on data mining, pp

587–595

 54. Kasneci G, Ramanath M, Sozio M, Suchanek FM, Weikum G

(2009) Star: Steiner-tree approximation in relationship graphs.

In: ICDE

 55. Kimelfeld B, Sagiv Y(2006) Finding and approximating top-k

answers in keyword proximity search. In: Proceedings of the

twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pp 173–182

https://doi.org/10.14778/1453856.1453982
https://doi.org/10.14778/1453856.1453982
https://doi.org/10.14778/2994509.2994538
https://doi.org/10.14778/2994509.2994538
https://doi.org/10.1109/TKDE.2019.2956535
https://doi.org/10.1109/TKDE.2019.2956535

161Keyword Search on Large Graphs: A Survey

1 3

 56. Kolahdouzan M, Shahabi C (2004) Voronoi-based k near-

est neighbor search for spatial network databases. VLDB, pp

840–851

 57. Kunkel A, Rheinländer A, Schiefer C, Helmer S, Bouros+3 P,

Leser U (2016) Piejoin: Towards parallel set containment joins.

In: SSDBM, p 11

 58. Lappas T, Liu K, Terzi E (2009) Finding a team of experts in

social networks. In: KDD, pp 467–476

 59. Lawler EL (1972) A procedure for computing the k best solu-

tions to discrete optimization problems and its application to the

shortest path problem. Manag Sci. https:// doi. org/ 10. 1287/ mnsc.

18.7. 401

 60. Le W, Li F, Kementsietsidie A, Duan S (2014) Scalable keyword

search on large RDF data. TKDE 26:2774–2788

 61. Li G, Ooi BC, Feng J, Wang J, Zhou L (2008) Ease: an effective

3-in-1 keyword search method for unstructured, semi-structured

and structured data. In: SIGMOD, pp 903–914

 62. Li RH, Qin L, Yu JX, Mao R (2016) Efficient and progressive

group Steiner tree search. In: SIGMOD, pp 91–106

 63. Li Z, Lee KC, Zheng B, Lee WC, Lee D, Wang X (2010) Ir-tree:

an efficient index for geographic document search. TKDE

 64. Liu Q, Zhu Y, Zhao M, Huang X, Xu J, Gao Y (2020) Vac: Ver-

tex-centric attributed community search. In: ICDE, pp 937–948

 65. Luo J, Cao X, Xie X, Qu Q, Xu Z, Jensen CS (2020) Efficient

attribute-constrained co-located community search. In: ICDE, pp

1201–1212

 66. Luo S, Luo Y, Zhou S, Cong G, Guan J (2012) Disks: A system

for distributed spatial group keyword search on road networks.

VLDB 5:1966–1969

 67. Luo Y, Fletcher GH, Hidders J, De Bra P (2015) Efficient and

scalable trie-based algorithms for computing set containment

relations. In: ICDE, pp 303–314

 68. Majumder A, Datta S, Naidu K (2012) Capacitated team forma-

tion problem on social networks. In: KDD, pp 1005–1013

 69. Mann W, Augsten N, Bouros P (2016) An empirical evaluation

of set similarity join techniques. PVLDB 9(9):636–647

 70. Qiao M, Qin L, Cheng H, Yu JX, Tian W (2013) Top-k nearest

keyword search on large graphs. VLDB, pp 901–912

 71. Qin L, Yu JX, Chang L, Tao Y (2009) Querying communities in

relational databases. In: ICDE, pp 724–735

 72. Rocha-Junior JB, Gkorgkas O, Jonassen S, Norvag K (2011)

Efficient processing of top-k spatial keyword queries. In: SSTD

 73. Rocha-Junior JB, Norvag K (2012) Top-k spatial keyword queries

on road networks. In: EDBT, pp 168–179

 74. Rocha-Junior JB, Vlachou A, Doulkeridis C, Nørvåg K (2010)

Efficient processing of top-k spatial preference queries. VLDB

4:93–104

 75. Sarma AD, Gollapudi S, Najork M, Panigrahy R (2010) A

sketch-based distance oracle for web-scale graphs. In: WSDM,

pp 401–410

 76. Shan Y, Li M, Chen Y (2017) Constructing target-aware results

for keyword search on knowledge graphs. DKE, pp 1–23

 77. Shekarpour S, Marx E, Ngomo ACN, Auer S (2015) Sina:

Semantic interpretation of user queries for question answering

on interlinked data. J Web Seman 30:39–51

 78. Shi J, Wu D, Mamoulis N (2016) Top-k relevant semantic place

retrieval on spatial RDF data. SIGMOD 29:893–917

 79. Shi Y, Cheng G, Kharlamov E (2020) Keyword search over

knowledge graphs via static and dynamic hub labelings. In:

WWW, pp 235–245

 80. Tao Y, Papadopoulos S, Sheng C, Stefanidis K (2011) Nearest

keyword search in xml documents. In: SIGMOD, pp 589–600

 81. Teng Y, Cheng X, Su S, Bi R (2016) Privacy-preserving top-k

nearest keyword search on outsourced graphs. In: 2016 IEEE

Trustcom/BigDataSE/ISPA, pp 815–822

 82. Tran T, Wang H, Rudolph S, Cimiano P (2009) Top-k exploration

of query candidates for efficient keyword search on graph-shaped

(RDF) data. In: ICDE, pp 405–416

 83. Wang H, Aggarwal CC (2009) A survey of algorithms for key-

word search on graph data. In: Managing and mining graph data,

pp 249–273

 84. Wang J, Li G, Feng J (2012) Can we beat the prefix filtering?: An

adaptive framework for similarity join and search. In: SIGMOD

 85. Wang W, He Z, Shi P, Wu W, Jiang Y, An B, Hao Z, Chen B

(2018) Strategic social team crowdsourcing: forming a team of

truthful workers for crowdsourcing in social networks. IEEE

Trans Mobile Comput 18:1419–1432

 86. Wang X, Qin L, Lin X, Zhang Y, Chang L (2017) Leveraging set

relations in exact set similarity join. PVLDB 10(9):925–936

 87. Wen YT, Yeo J, Peng WC, Hwang SW (2017) Efficient keyword-

aware representative travel route recommendation. IEEE Trans

Knowl Data Eng 29:1639–1652

 88. Wu D, Cong G, Jensen CS (2012) A framework for efficient

spatial web object retrieval. VLDB 21:797–822

 89. Xiao C, Wang W, Lin X, Yu JX, Wang G (2011) Efficient similar-

ity joins for near-duplicate detection. ACM TODS. https:// doi.

org/ 10. 1145/ 20008 24. 20008 25

 90. Yang J, Zhang W, Wang X, Zhang Y, Lin X (2020) Distributed

streaming set similarity join. In: ICDE

 91. Yang J, Zhang W, Yang S, Zhang Y, Lin X (2017) Tt-join: Effi-

cient set containment join. In: ICDE

 92. Yang J, Zhang W, Yang S, Zhang Y, Lin X, Yuan L (2018) Effi-

cient set containment join. VLDB J 27:471–495

 93. Yang J, Zhang W, Zhang Y, Wang X, Lin X (2017) Categorical

top-k spatial influence query. WWWJ. https:// doi. org/ 10. 1007/

s11280- 016- 0383-3

 94. Yang M, Ding B, Chaudhuri S, Chakrabarti K (2014) Finding

patterns in a knowledge base using keywords to compose table

answers. VLDB. https:// doi. org/ 10. 14778/ 27330 85. 27330 88

 95. Yang Y, Agrawal D, Jagadish H, Tung AKH, Wu S (2019) An

efficient parallel keyword search engine on knowledge graphs.

In: ICDE, pp 338–349

 96. Yang Y, Tung AKH (2020) Efficient radial pattern keyword

search on knowledge graphs in parallel. arXiv:Databases

 97. Yao B, Tang M, Li F (2011) Multi-approximate-keyword rout-

ing in GIS data. In: Proceedings of the 19th ACM SIGSPATIAL

international conference on advances in geographic information

systems, pp 201–210

 98. Yin X, Qu C, Wang Q, Wu F, Liu B, Chen F, Chen X, Fang D

(2018) Social connection aware team formation for participatory

tasks. IEEE Access 6:20309–20319

 99. Yu JX, Qin L, Chang L (2010) Keyword search in relational

databases: a survey. IEEE BULLETIN, pp 67–78

 100. Zhang C, Zhang Y, Zhang W, Lin X (2013) Inverted linear

quadtree: efficient top k spatial keyword search. In: ICDE, pp

1706–1721

 101. Zhang C, Zhang Y, Zhang W, Lin X (2016) Inverted linear

quadtree: efficient top k spatial keyword search. IEEE Trans

Knowl Data Eng 28(7):1706–1721

 102. Zhang C, Zhang Y, Zhang W, Lin X, Cheema MA, Wang X

(2013) Diversified spatial keyword search on road networks. In:

EDBT, pp 367–378

 103. Zhang D, Chan CY, Tan KL (2014) Processing spatial keyword

query as a top-k aggregation query. In: SIGIR, pp 355–364

 104. Zhao J, Gao Y, Chen G, Chen R (2018) Why-not questions on

top-k geo-social keyword queries in road networks. In: ICDE, pp

965–976

 105. Zha, J, Gao Y, Chen G, Jensen CS, Chen R, Cai D (2017) Reverse

top-k geo-social keyword queries in road networks. In: ICDE, pp

387–398

https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1007/s11280-016-0383-3
https://doi.org/10.1007/s11280-016-0383-3
https://doi.org/10.14778/2733085.2733088

162 J. Yang et al.

1 3

 106. Zhao J, Gao Y, Ma C, Jin P, Wen S (2020) On efficiently diversi-

fied top-k geo-social keyword query processing in road networks.

Inf Sci 512:813–829

 107. Zhao S, Cheng X, Su S, Shuang K (2017) Popularity-aware

collective keyword queries in road networks. GeoInformatica

21:485–518

 108. Zhao S, Zhao L, Su S, Cheng X, Xiong L (2018) Group-based

keyword-aware route querying in road networks. Inf Sci. https://

doi. org/ 10. 1016/j. ins. 2018. 03. 058

 109. Zheng B, Zheng K, Xiao X, Su H, Yin H, Zhou X, Li G (2016)

Keyword-aware continuous KNN query on road networks. In:

ICDE, pp 871–882

 110. Zhong R, Li G, Tan KL, Zhou L (2013) G-tree: an efficient index

for KNN search on road networks. In: CIKM, pp 39–48

 111. Zhong R, Li G, Tan KL, Zhou L, Gong Z (2015) G-tree: an

efficient and scalable index for spatial search on road networks.

IEEE Trans Knowl Data Eng 27:2175–2189

 112. Zhou Q, Wang C, Xiong M, Wang H, Yu Y (2007) Spark: adapt-

ing keyword query to semantic search. In: International semantic

web conference, pp 694–707

 113. Zhu Q, Cheng H, Huang X (2017) I/O-efficient algorithms

for top-k nearest keyword search in massive graphs. VLDBJ

26:563–583

 114. Zhu Y, Zhang Q, Qin L, Chang L, Yu JX (2018) Querying cohe-

sive subgraphs by keywords. In: ICDE, pp 1324–1327

 115. Zhu Y, Zhang Q, Qin L, Chang L, Yu JX (2020) Cohesive sub-

graph search using keywords in large networks. IEEE Trans

Knowl Data Eng. https:// doi. org/ 10. 1109/ TKDE. 2020. 29757 93

 116. Zobel J, Moffat A (2006) Inverted files for text search engines.

ACM Comput Surv. https:// doi. org/ 10. 1145/ 11329 56. 11329 59

https://doi.org/10.1016/j.ins.2018.03.058
https://doi.org/10.1016/j.ins.2018.03.058
https://doi.org/10.1109/TKDE.2020.2975793
https://doi.org/10.1145/1132956.1132959

	Keyword Search on Large Graphs: A Survey
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data Graph
	2.2 Keyword Terminology

	3 Tree-Based Keyword Search
	3.1 Steiner Tree-Based Semantics
	3.2 Distinct Root-Based Semantics
	3.3 Discussion

	4 Nearest Neighbor-Based Keyword Search
	4.1 Top-k Nearest Neighbor Keyword Search
	4.2 Top-k Relevant Neighbor Keyword Search
	4.3 Discussion

	5 Subgraph-Based Keyword Search
	5.1 r-Radius Steiner Graph-Based Semantics
	5.2 Multicenter Community-Based Semantics
	5.3 r-Clique-Based Semantics
	5.4 Strongly Connected Subgraph-Based Semantics
	5.5 Cohesive Subgraph-Based Semantics
	5.6 Discussion

	6 Other Graph-Based Keyword Search
	6.1 A Generic Ontology-Based Indexing Framework
	6.2 Spatial Keyword Query on Road Networks
	6.3 Keyword Routing on Road Networks

	7 Related Work
	7.1 Query Interpretation-Oriented Keyword Search
	7.2 Community Search on Attributed Graphs
	7.3 Team Formation in Social Networks
	7.4 Spatial Keyword Search
	7.5 Keyword-Based Similarity Join

	8 Future Research
	8.1 Other Types of Graphs
	8.2 Utilizing Graph Embedding
	8.3 Real Big Graphs

	9 Conclusion
	References

