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Abstract

With the prevalence of Internet access and online services, various big graphs are generated in many real applications (e.g., 

online social networks and knowledge graphs). An important task on analyzing and mining these graphs is keyword search. 

Essentially, given a graph G and query Q associated with a set of keywords, the keyword search aims to find a substructure 

(e.g., rooted tree or subgraph) S in G such that nodes in S collectively cover part of or all keywords in Q, and in the meanwhile, 

S is optimal on some user specified semantics. Keyword search on graphs can be applied in many real-life applications, such 

as point-of-interests recommendation and web search facility. In spite of the great importance of graph keyword search, 

we, however, notice that the latest survey on this topic is far out of date. Consequently, there is prompt need to conduct a 

comprehensive survey in this research direction. Motivated by this, in this survey, we systematically review graph keyword 

search studies by classifying the existing works into different categories according to the specific problem definition. This 

survey aims to provide the researchers a comprehensive understanding of existing graph keyword search solutions.

Keywords Keyword search · Big graph · Algorithm · Index structure

1 Introduction

With the prevalence of Internet access and online services, 

various big graphs are generated in many real applications 

(e.g., online social networks and knowledge graphs). An 

important task on analyzing and mining these graphs is 

keyword search, which can be informally described as fol-

lows. Given a graph G and query Q associated with a set of 

keywords, the keyword search aims to find a substructure 

(e.g., rooted tree or subgraph) S in G such that nodes in S 

collectively cover part of or all keywords in Q, and in the 

meanwhile, S is optimal on some user specified semantics.

Let us illustrate graph keyword search by an example. 

Figure 1a shows a data graph G with 12 vertices, each of 

which contains a set of keywords. Given a query Q = {c, d} , 

we find two candidate result trees T
1
 and T

2
 in Fig. 1b, which 

are returned following the tree-based search model. Then 

if the minimum total edge weights are used to rank the 

answers, T
1
 is considered to be the top-1 result since it has 

least weight.

Keyword search is a prominent operation for analyzing 

graph data, which allows users to query the investigated 

graph data without a prior knowledge of specialized query 

languages. It is applicable to many real-life applications. 

Here are some typical applications, to name a few:

• POIs recommendation. Many location-based services 

provide point-of-interest (POI) recommendation for 

users. Consider a tourist who wants to spend a day 

exploring a city. She might pose a query containing a set 

of keywords, e.g., “hotel”, “restaurant”, “shopping mall”, 

etc. Intuitively, a good recommendation tends to return 

POIs staying close to each other. This implies that the 

query result is a compact subgraph in the road network.

• Web search facility. Keyword search on the Web are ubiq-

uitous in our daily life. For example, a user may be inter-

ested in two actors, e.g., “Jason Statham” and “Dwayne 

Johnson”. A decent keyword search result should present 

to the user the whole picture about the two actors, such 

as the movies they co-acted. This schema-free keyword 
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search has been witnessed a great necessity for nowadays 

web search, especially for large-scale knowledge bases.

• Keyword-aware routing. A user might want to drive in 

a city from one place to another and, at the same time, 

pass through several POIs (e.g., “supermarket”, “gas sta-

tion”, “bank”, etc). A high-quality route plan is required 

to present a route passing through all these POIs with 

least travel time. Clearly, keyword-aware routing in road 

network is another important application of graph key-

word search.

Owing to the great value of real-life application, key-

word search over graphs is an important research topic in 

the past two decades. In spite of this fact, we are surpris-

ingly noticing that the latest surveys [83, 99], to the best of 

our knowledge, for graph keyword search, were conducted 

one decade ago. However, in the past decade, we have wit-

nessed rapid development for graph data analysis, includ-

ing graph keyword search. A lot of works have been pro-

posed in this period of time. Therefore, there is a prompt 

need to conduct a comprehensive up-to-date survey in this 

research direction. Besides, the existing surveys [83, 99] 

mainly focus on keyword search on schema-based graphs, 

such as XML data or relational graphs, which are not suit-

able to deal with the present-day schema-free large graphs. 

For these schema-free graphs, the existing surveys only 

discuss several pioneer approaches, such as BANKS [5, 

49], BLINKS [39], and DPBF [20].

Motivated by the above issues, in this survey, we sys-

tematically review recent advances on keyword search on 

schema-free graphs. In general, this survey focuses on key-

word search algorithms over graph data under different rank-

ing models for the desired answer. As shown in Table 1, we 

provide a systematic classification for studies on graph key-

word search. Particularly, we classify these studies according 

to the answer ranking models, including tree-based keyword 

search, nearest neighbor-based keyword search, subgraph-

based keyword search, and other semantics-based keyword 

search. Compared to the existing surveys [83, 99], the last 

three classes of studies are new, which have attracted much 

research attention in the past decade. For each class of 

works, we first give the formal definition for the specific 

research problem and then review the representative studies.

This paper is organized as follows: In Sect. 2, we intro-

duce basic concepts related to keyword search on graph. 

From Sects.  3 to  6, we comprehensively discuss graph 

keyword search solutions in each category. We review the 

related work in Sect. 7. In Sect. 8, we point out a list of 

future research directions. Finally, we conclude this paper 

in Sect. 9.

2  Preliminaries

In this section, we introduce important concepts and nota-

tions which are used thoughout the paper.

2.1  Data Graph

We consider a weighted and directed graph G = ⟨V , E⟩ , 

where V(G) is a finite set of n vertices (i.e., |V(G)| = n ) 

and E(G) ⊆ V(G) × V(G) is a finite set of m edges (i.e., 

|E(G)| = m ). For ease of exposition, in this paper, we only 

consider the weight on the edges.

In particular, given an edge e ∈ E(G) , the weight on e, 

denoted by ������(e) , is a nonnegative real number, where 

smaller weights are preferred. For example, in a road 

Fig. 1  An example of graph keyword search

Table 1  Classification of works 

of graph keyword search (“P” 

means Problem)

Semantics Problem and References

Tree-based semantics Steiner tree-based P1 [5, 20, 30, 54, 55, 62, 79]

Distinct root tree-based P2 [16, 39, 49, 60]

Nearest neighbor-based semantics Top-k nearest neighbors P3 [3, 41, 48, 70, 81, 109, 113]

Top-k relevant neighbors P4 [1, 66, 73, 111]

Subgraph-based semantics P5 [61], P6 [71], P7 [51, 52, 

107], P8 [7], P9 [114, 115]

Other semantics P10 [102], P11 [27], P12 [27, 

37, 87, 97, 108]
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network, the weight on an edge denotes the estimated travel 

time. A path p = (v1, v2,… , vl) is a sequence of l nodes in 

V(G) such that for each v
i
(1 ≤ i < l) , (v

i
, v

i+1) ∈ E(G) . The 

weight of a path is the total weight of all edges on the path. 

For two vertices u ∈ V(G) and v ∈ V(G) , the distance from 

u to v, denoted by ����(u, v) , is the minimum weight of all 

paths from u to v in G.

Given a vertex v ∈ V(G) , we use ���
��
(v, G) (resp. 

���
���
(v, G) ) to the incoming (resp. outcoming) neighbors 

of v. The degree of a vertex v is the number of neighbors 

of v in G. Specifically, we use �����(v, G) and ������(v, G) 

to denote the in-degree and out-degree of vertex v in 

G, respectively. That is, �����(v, G) = |�����(v, G)| and 

������(v, G) = |������(v, G)| . In the following, for presenta-

tion simplicity, we omit G in the notations if the context is 

obvious and refer to a weighted and directed graph simply 

as a graph.

2.2  Keyword Terminology

In a graph G, each vertex v ∈ V  contains a set of zero or 

more keywords which is denoted as ���(v) , and the union of 

keywords for all vertices in G is denoted as ���(V) . Accord-

ing to the specific application, a keyword may denote the 

label, attribute, or text information of a vertex. Given a 

keyword w, all vertices in graph G containing w are called 

(keyword) hitting vertices of w, which are denoted as ���(w) . 

For a vertex v, if v contains at least one keyword, we call v 

the keyword vertex.

3  Tree-Based Keyword Search

In this section, we review graph keyword search works that 

return tree structures as the desired answer, which is referred 

to as tree-based keyword search. According to the applied 

cost functions for the returned trees, we further classify the 

related works into two categories, namely Steiner tree-based 

semantics and distinct root-based semantics. Next, we dis-

cuss them in detail.

3.1  Steiner Tree‑Based Semantics

The problem based on Steiner tree semantics is formally 

described as follows.

Problem 1 Given a weighted graph G = (V , E) , a set of 

query keywords Q = {w1, w2,… , wl} , and a cost function f, 

return a tree T(V
T
, E

T
) of G, such that 

1. V
T
 covers all keywords in Q;

2. f(T) is minimized among all feasible choices for T, where 

f (T) =
∑

e∈ET
������(e).

It is easy to verify that Problem  1 aims to return 

a Steiner tree T as the result. The leaves of T only 

come from the keyword hitting vertices of G, i.e., 

������(T) ⊆ ���(w
1
) ∪ ���(w

2
) ∪⋯ ∪ ���(w

l
) , since, other-

wise, we can recursively remove all non-hitting leaves of 

T to get a new tree T ′ without breaking the condition 1 in 

Problem 1. Under the Steiner tree-based semantics, Prob-

lem 1 is the well-known group Steiner tree (GST) which is 

NP-complete [21] in general. In [44], Ihler showed that the 

GST problem cannot be approximated within a constant 

performance ratio by any polynomial algorithm unless 

P = NP . In theory, there can be exponentially many fea-

sible choices for T, i.e., O(2m) where m is the number of 

edges in G. This implies that an exact algorithm for solv-

ing Problem 1 will take exponential computation cost, and 

thus, it is impractical for large graphs.

In the literature, many approximate solutions have 

been proposed to solve the GST problem. In the theo-

retical computer science community, several LP (linear 

programming)-based approximation algorithms [9, 29] 

have been devised, which, however, are very hard to han-

dle medium-sized graphs, since these algorithms need to 

invoke the expensive LP procedure. Therefore, we focus 

on the database community and introduce several practi-

cal approximation algorithms [5, 20, 30, 54, 55, 62, 79] 

that are mostly devised for the keyword search application.

∙ A backward search algorithm. Bhalotia  et al.  [5] 

propose a backward search algorithm, called BANKS-I, 

searching backwards from the hitting vertices. Given a 

query Q = {w1, w2,… , wl} , we first find the hitting vertices 

���(w
i
) for each keyword w

i
 , which can be facilitated by 

using an inverted list index to store the hitting vertices. 

Let H = ���(w
1
) ∪ ���(w

2
) ∪⋯ ∪ ���(w

l
) be the overall hit-

ting vertices in G relevant to query Q. Then, we create |H| 

iterators to concurrently execute |H| copies of Dijkstra’s 

single-source shortest path algorithm, one for each key-

word vertex v in H with v as the source. At any point dur-

ing the execution of the algorithm, we maintain l clusters, 

denoted by C1, C2,… , C
l
 , one for each of the l keywords. 

Cluster C
i
 denotes the set of vertices that we know can 

reach query keyword w
i
 , which is initialized as ���(w

i
) . In 

each search iteration, we choose a previously visited verti-

ces v and select one of its incoming edges backward to the 

source vertex u. Then, any C
i
 containing v now expands to 

include u as well. Once a node is visited, all its incoming 

edges become known to the search and available for choice 

in future iterations. The idea of this concurrent backward 

search is to find a common node from which there exists a 

shortest path to at least one node in each set ���(w
i
) . Such 

paths will define a rooted directed tree with the common 

node as the root and the corresponding hitting vertices as 

the leaves.
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The key to facilitate the search efficiency is which vis-

ited vertex to expand in each iteration. BANKS-I proposes 

two strategies as follows.

Equi-distance expansion in each cluster: This strategy 

decides which node to visit for expanding a keyword. Intu-

itively, the algorithm expands a cluster by visiting vertices 

in increasing order of distance from the leaves. In specific, 

the vertex u to visit next for cluster C
i
 (by following edge 

u → v backward for some v ∈ C
i
 ) is the vertex with the 

shortest distance (among all vertices not in C
i
 ) to ���(w

i
).

Distance-balanced expansion across clusters: This 

strategy decides which keyword to expand next. In a high-

level point of view, the algorithm attempts to balance the 

distance between each leaves to its frontier across all clus-

ters. In particular, let (u, C
i
) be the vertex-cluster pair such 

that u ∉ C
i
 and the distance from u to C

i
 is the shortest 

possible. Then, the cluster to expand next is C
i
.

∙ A dynamic programming algorithm. Although it 

is NP-complete to find the optimal Steiner tree in gen-

eral, Ding et al. [20] propose an efficient dynamic pro-

gramming algorithms, called DPBF, to find the optimal 

Steiner tree for the cases where the number of keywords l 

is small. Let � , �� , �� be a non-empty subset of the query 

Q = {w1, w2,… , wl} . For presentation simplicity, we use 

T(v,�) to denote both the tree and its weight with the mini-

mum weight among all the trees rooted at v and containing 

a set of keywords � . By maintaining trees in a priority 

queue T  , DPBF can find the optimal tree T(v,�) for each 

v ∈ V(G) and � ⊆ Q . Initially, for each keyword vertex v 

and a keyword w ∈ ���(v) , T(v, {w}) is a single vertex tree 

rooted at v with a zero weight, i.e., T(v, {w}) = 0 . For a 

general case where a tree consists of more than one verti-

ces, T(v, {w}) can be computed by the following equations.

Here min means to choose the tree with minimum 

weight, and ⊕ is an operation to merge two trees into a 

new tree. Note that, T(v,�) may not exist for some v and 

� , which implies that vertex v cannot reach the hitting ver-

tices for some keywords in � . In this case, T(v,�) = 0 . In 

general, Eqs. (2) and (3) reflect two tree expanding cases, 

namely tree grow and tree merge, respectively. Since all 

trees are stored in the priority queue by the increasing 

order of weight of trees, DPBF ensures to find the optimal 

tree first among all feasible trees covering all the keywords 

in Q = {w1, w2,… , wl} . Besides, the time complexity of 

(1)T(v,�) = min(Tg(v,�), Tm(v,�))

(2)Tg(v,�) = min
⟨v,u⟩∈E(G)

{⟨v, u⟩⊕ T(u, �)}

(3)T
m
(v,�� ∪ ��) = min

��∩��=�
{T(v,��)⊕ T(v,��)}

DPBF is O(3ln + 2l((l + n) log n + m)) , which is reduced 

to O(n log n + m)) for small and fixed l.

∙ A progressive algorithm. Although it is shown to 

be efficient to find the optimal solution in reasonable 

time when the number of keywords l is very small [13], 

DPBF still suffers two major limitations. First, due to the 

exponential time and space complexity, DPBF quickly 

becomes impractical even for small l (e.g., l = 8 ) in large 

graphs. Second, it cannot generate a solution until the 

algorithm has completed its entire execution. Against this 

background, Li et al. [62] propose an efficient progres-

sive programming algorithm, called PrunedDP, which is 

devised on top of DPBF.

In PrunedDP, a state, denoted by (v, X), corresponds 

to a connected tree rooted at v that covers all keywords in 

X ⊆ Q . Let T(v, X) be the minimum-weight connected tree 

corresponding to state (v, X), and f ∗
T
(v, X) be the weight of 

T(v, X). The general idea of PrunedDP is that we construct 

a feasible solution for an intermediate state (v, X), then 

keep refining the feasible solution until X = Q . To facilitate 

the search processing, for a keyword w ∈ Q , we create a 

virtual node ṽ
w
 , and create an undirected edge (ṽ

w
, v) with 

zero weight for each v ∈ ���(w) . For each state (v, X), let 

X̄ = Q ⧵ X . For a vertex v and label set X̄ , we merge all 

|X̄| pre-computed shortest paths from v to ṽ
w
 for all w ∈ X̄ , 

resulting in a tree denoted by T �(v, X̄) . Then, by uniting trees 

T(v, X) and T �(v, X̄) , we can obtain a minimum spanning tree 

of the united result, i.e., ���(T(v, X) ∪ T
�(v, X̄)) , denoted by 

T̃(v, Q) . Clearly, T̃(v, Q) is a feasible solution, since it covers 

all keywords in Q.

Although the above basic version of PrunedDP is more 

efficient than DPBF, it still needs to search a large num-

ber of states to find the optimal solution. That is because 

the optimal solution is popped later from the priority queue 

than any computed intermediate state (v, X) due to best-first 

search strategy. To avoid such expensive computation cost, 

PrunedDP is further equipped with two advanced tech-

niques, namely optimal-tree decomposition and conditional 

tree merging.

Optimal-tree decomposition theorem states that, for the 

optimal tree T∗(Q) , there always exists a vertex u ∈ T∗(Q) 

such that (i) the tree T∗(Q) rooted at u has k(k ≥ 1 ) subtrees 

T
1
 , T

2
,…, T

k
 , and (ii) each subtree T

i
 has a weight smaller 

than f ∗(Q)∕2 where f ∗(Q) is the weight of T∗(Q) . This result 

motivates us to first compute all optimal subtrees that have 

weights smaller than f(best)/2 where best is the best feasi-

ble solution seen so far and then obtain the optimal tree via 

merging the optimal subtrees.

Conditional tree merging theorem states that, to expand 

a state (v, X) by a tree merging operation in PrunedDP, we 

can merge two subtrees T(v, X) and T(v, X
�) for X′

⊂ Q ⧵ X 

only when the total weight of these two subtrees is no larger 
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than 2∕3 × f (best) . By this theorem, we can further reduce 

a number of states generating in PrunedDP without loss of 

optimality.

To further speed up the PrunedDP, the authors propose 

a novel progressive algorithm, called PrunedDP++, based 

on the A
∗-search strategy over the pruned search space. 

The key of PrunedDP++ is to establish an effective lower 

bound for each state (v, X) in the search space, which is usu-

ally constructed via relaxing the constraints of the optimal 

subtree T(v, X̄) . Let �(v, X) be the constructed lower bound. 

PrunedDP++ makes use of f ∗
T
(v, X) + �(v, X) as the priority 

for each state (v, X) to perform best-first search.

∙ An index-based algorithm. Recently, Shi et al. [79] pro-

pose an index-based method, called KeyKG, to deal with 

keyword search over large knowledge graphs. In a high-level 

viewpoint, KeyKG finds a GST in two stages. First, it greed-

ily selects a set of keyword vertices that are close to each 

other, denoted by U
x
 , which contains one vertex from each 

���(w
i
) for 1 ≤ i ≤ l . Then, it greedily finds a GST to span U

x
 , 

denoted by T
min

 , which is iteratively expanded with shortest 

paths.

In specific, for each vertex v
1
∈ ���(w

1
) , KeyKG finds a 

vertex v
i
 in each remaining ���(w

i
) with minimum distance 

from v
1
 . Let U

v
1

 be the set of all such vertices v
i
 (including 

v
1
 ), and let W

v
1

 be the sum of their distances from v
1
 . Fur-

ther, let x ∈ ���(w
1
) be the vertex with the smallest value 

of W
v

1

 . Clearly, U
x
 covers the query Q and vertices in it are 

intuitively close to each other. Therefore, a GST that spans 

vertices in U
x
 may have a small weight.

To find a promising GST spanning U
x
 , KeyKG attempts 

starting from each vertex u ∈ U
x
 and selects the one with the 

minimum weight among these |U
x
| GSTs. Specifically, each 

T
u
 is initialized with a single vertex u. Then, we iteratively 

span the remaining vertices in U
x
 . In each following round, 

we find a vertex pair (s, t) with the smallest distance where 

s ∈ T
u
 and t ∈ U

x
− T

u
 . A shortest path p between s and t 

is found and added to T
u
 . Following this strategy, we find 

|U
x
| trees, each corresponding to a vertex u ∈ U

x
 . Finally, 

KeyKG returns the tree with minimum weight.

Apparently, the performance of KeyKG heavily relies on 

the computation of shortest distance and path between two 

vertices. To accelerate the performance, KeyKG utilizes the 

Hub Labeling (HL) technique [2]. To construct a compact 

HL, vertices are sorted in descending order of betweenness 

centrality such that labels constructed in earlier iterations to 

support the computation of distances between more pairs 

of vertices. To further boost the performance, the authors 

devise a dynamic HL which is query-relevant and thus is 

online-constructed. By using this dynamic HL, one can 

reduce a number of the merge sort-like operations to find a 

hub in the static label when computing the shortest distance 

between vertex pairs.

∙ Enumerating with polynomial delay algorithm. Due to 

the NP-completeness of Problem 1, the above introduced 

algorithms cannot guarantee the quality (i.e., approximation 

ratio) of non-first results or the delay between consecutive 

results. In [30, 55], the authors aim to enumerate answers 

in �-approximate increasing weight/height order with poly-

nomial delay.

�-approximate order. Given an answer tree T, the rank 

of T, denoted by ����(T) , is the weight or height of T, 

where smaller is better. Let T1, T2,…, T
s
 be a sequence of 

all answer trees. Ideally, the trees should be enumerated in 

an increasing ranked order. However, it is not practical due 

to the intractable nature of Problem 1. Instead, the authors 

turn to find �-approximate increasing ranked order, where 

�-approximate order means that if one answer precedes 

another, then the first is worse than the second by at most a 

factor of � . More formally, the answer sequence T1, T2,…, 

T
s
 is in a �-approximate order if ����(Ti) ≤ � ⋅ ����(Tj) for 

all 1 ≤ i ≤ j ≤ s.

Polynomial delay. The efficiency of an enumeration algo-

rithm is measured in terms of the delay between printing 

each pair of consecutive answers. We say that an algorithm 

enumerates with polynomial delay if there is a polynomial 

p(n), where n is the size of the input (i.e., G and Q), such 

that the time needed to produce the next answer is always 

bounded by p(n).

In [30, 55], the authors apply shortest-path iterators to 

find the first answer, namely a minimal-rank feasible tree, 

and then adapt the Lawler’s procedure [59] to enumerate 

the remaining answers without redundancies. In specific, 

the algorithm uses two types of constraints: inclusion con-

straints and exclusion constraints, each of which contains a 

set of edges. An answer tree T satisfies a set I of inclusion 

constraints and a set E of exclusion constrains if it includes 

all the edges of I and none of E. The key in their algorithm is 

to devise a subroutine QSUBTREE(G,Q,I,E). By investigating 

the partial answer w.r.t. the query Q, the authors develop 

a polynomial-time algorithm for QSUBTREE(G,Q,I,E) with 

2-approximation in terms of tree height [30].

3.2  Distinct Root‑Based Semantics

Since the problem under Steiner tree-based semantics (i.e., 

Problem 1) is generally a hard problem, many works resort 

to easier semantics. In this section, we discuss another prob-

lem, which is based on distinct root semantics as below.

Problem 2 Given a weighted graph G = (V , E) , a set of 

query keywords Q = {w1, w2,… , wl} , and a cost function f, 

return a tree T(V
T
, E

T
) of G, such that 

1.  V
T
 covers all keywords in Q;
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2. f(T) is minimized among all feasible choices for T, where 

f (T) =
∑l

i=1
����(root(T), leaf (wi)).

Note here that root(T) is the root of T, leaf (wi) is the leaf 

node containing keyword w
i
 in T, and ����(root(T), leaf (wi)) 

is the distance from the root to leaf (wi).

Unlike Problem 1, Problem 2 can be resolved in polyno-

mial time as the number of feasible answer trees is at most 

n, which is the number of vertices in G. In particular, for 

each vertex v ∈ V(G) , zero or one potential tree rooted at 

v can be found by uniting the shortest paths from v to each 

keyword wi ∈ Q . The final result is the one with minimum 

f(T) value. Next, we introduce approaches, which are pro-

posed to deal with very large graphs in general.

∙ A bidirectional search algorithm. BANKS-I can be 

directly applied to handle Problem 2 as it aims to find a 

common root vertex in the graph by searching backwards. 

However, the backward search may lead to poor perfor-

mance in the following two scenarios. First, the query 

contains keywords with high frequency. Since BANKS-I 

creates an iterator for each keyword vertex, the algorithm 

would generate a large number of iterators in this scenario. 

Second, an iterator reaches a vertex with many incoming 

edges, which means the algorithm needs to explore a large 

number of nodes.

To address the above problems, Kacholiaet al. [49] pro-

pose a bidirectional search algorithm, called BANKS-II. The 

main idea of BANKS-II is as follows. First, all the single-

source shortest path iterators from BANKS-I are merged 

into a single iterator, which is called incoming iterator. 

Second, an outgoing iterator runs concurrently, which fol-

lows the forward edges starting form all vertices explored 

by the incoming iterator. Third, spreading activation is used 

to prioritize the search, which chooses incoming iterator or 

outgoing iterator to be called next. Activation is a kind of 

“scent” spread from keyword vertices, and edge weights are 

taken into consideration when spreading the activation.

∙ A Bilevel index-based algorithm. In  [39], a bilevel 

index, called BLINKS, is proposed to speed up BANKS-II, 

as no index (except the keyword-vertex index) is used in 

BANKS-II. A naive index that precomputes and indexes all 

the shortest distances from the vertices to keyword vertices 

is not feasible, as it will incur very large index size when 

dealing with large graphs and large number of distinct key-

words. To reduce the index size, BLINKS uses a divide-

and-conquer approach to create a bilevel index, which can 

be built by first partitioning the graph and then building 

intra-block index and block index.

In specific, BLINKS applies vertex-based partitioning 

methods to partition a graph into blocks. In a vertex-based 

partitioning of a graph, a vertex separator is called a portal 

vertex (or portal for short). A block consists of all vertices 

in a partition as well as all portals incident to the partition. 

A portal is called in-portal if it has at least one incoming 

edge from another block and at least one outgoing edge in 

this block. Similarly, a portal is called out-portal if it has at 

least one outgoing edge to another block and at least one 

incoming edge from this block.

For each block b, the intra-block index (IB-index) is built, 

which consists of the following data structures, including 

Intra-block keyword-vertex lists, Intra-block vertex-keyword 

map, Intra-block portal-vertex lists, and Intra-block vertex-

portal distance map. These structures are utilized to effi-

ciently fetch the distance information between keywords, 

vertices, and portals. Besides the intro-block index, the 

block index is also built, which is a simple data structure 

consisting of Keyword-block lists and Portal-block lists.

In BLINKS, to support backward search, we use a priority 

queue Q
i
 of cursors for each query keyword w

i
 to simulate 

Dijkstra’s algorithm by utilizing the distance information 

stored in the IB-index. Initially, for each keyword w
i
 , we use 

the keyword-block list to find blocks containing w
i
 . Then, a 

cursor is used to scan each intra-block keyword-vertex list 

for w
i
 and put in query Q

i
 . When we reach an in-portal u of 

the current block, we need to continue backward expansion 

in all blocks that have u as their out-portal, as a shorter path 

may cross several blocks.

∙ An external memory-based algorithm. Dalvi et al. [16] 

study the problem of keyword search on graphs that can not 

fit into main memory. To efficiently address this problem, 

they first partition the graph into small components using a 

clustering algorithm and build a much smaller supernode 

graph, which is defined as follows:

SuperNode: A component is treated as a supernode in 

the top-level graph. Each supernode thus contains a subset 

of V(G), and the contained nodes are called innernodes.

SuperEdge: An superedge is constructed between two 

supernodes s
1
 and s

2
 if there is at least one edge from an 

innernode of s
1
 to an innernode of s

2
 , and the weight of the 

superedge is the minimum weight over all such edges.

The supernode graph is constructed such that it fits into 

the available amount of main memory. Each supernode has 

a fixed number of innernodes and is stored on disk. On top 

of the supernode graph, a multi-granular graph structure is 

proposed to exploit information present in lower-level nodes 

(i.e., innernodes) that are cache-resident at the time a query 

is executed. A multi-granular graph is a hybrid graph that 

contains both supernodes and innernodes.

When searching the multi-granular graph, the answers 

generated may contain supernodes, called supernode answer. 

If an answer does not contain any supernodes, we call it a 

pure answer. The final answer returned to users must be pure 

answer. The Iterative Expansion algorithm is a multistage 

algorithm, which is applicable to multi-granular graphs. 

Each iteration of Iterative Expansion is broken up into two 

phases as follows:
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Explore phase: Run an in-memory search algorithm on 

the current state of the multi-granular graph that is entirely 

in memory. The details of expanded supernodes are stored 

in cache. When the search reaches an expanded supernode, 

it searches on the corresponding innernodes in cache.

Expand phase: Expand the supernodes found in top-s 

( s > k ) results of the previous phase and add them to input 

graph to produce an expanded multi-granular graph.

The graph produced at the end of Expand phase of itera-

tion i acts as the graph for iteration i + 1 . The algorithm 

stops when all top-k results are pure.

∙ A graph summarization-based algorithm. Le et al. [60] 

study keyword search on large RDF data. The authors first 

condense the RDF data into a generic graph by merging the 

entity vertex together with its associated keyword and type 

vertices. To speed up the search performance, the authors 

propose a type-based summarization approach to summa-

rize the graph. The key observation is that neighborhoods in 

close proximity surrounding vertices of the same type often 

share similar structures in how they connect to vertices of 

other types, whereas a similar effort can be seen in [82].

To implement graph summarization, the authors apply a 

very similar strategy that is used in [16]. That is we first split 

the graph into multiple, smaller partitions and then define 

a minimal set of common type-based structures that sum-

marize the partitions. Since the graph partitioning is a well-

studied problem in the literature, the authors focus on how 

to build semantically similar partitions. The summarization 

algorithm identifies a set of templates from the set of parti-

tions. Such templates serve as a summary for the partitions 

P . In addition, the summarization algorithm guarantees that 

every partition in P is homomorphic to one of the templates 

in the summary. This property allows the query optimizer 

to (i) efficiently estimate any path length in the backward 

expansion without frequently accessing the RDF data being 

queried and (ii) efficiently reconstruct the partitions of inter-

est by querying the RDF data without explicitly storing and 

indexing the partitions.

Based on the summarized graph, the authors present an 

exact search algorithm, which performs a two-level back-

ward search: one backward search at the summary level and 

one at the data level. The backward search is only initiated 

at the data level on the partitions that are found to contain all 

the distinct keywords at the summary level and whose score 

could enter the top-k answers. A early termination condi-

tion is devised by maintaining the candidate answers in a 

priority queue.

3.3  Discussion

In this section, we review graph keyword search studies that 

return tree structures as the desired answer. According to the 

applied cost functions for the returned trees, we divide them 

into two groups, where the first group [5, 20, 30, 54, 55, 62, 

79] employ Steiner tree-based semantics, while the second 

group [16, 39, 49, 60] employ distinct root-based semantics.

In particular, the Steiner tree-based semantics uses the 

total weight of edges in the answer tree as the cost, which 

makes the problem NP-complete in general. The distinct 

root-based semantics uses the total weight of paths from 

root to keyword vertices as the cost, which makes it solvable 

in polynomial time.

4  Nearest Neighbor-Based Keyword Search

In this section, we review graph keyword search works that 

return k best vertices as the desired answers, which are usu-

ally the nearest or most relevant neighbors to the query ver-

tex. Based on the specific calculation of scoring function, 

we further divide these works into two groups. One group 

is top-k nearest neighbor keyword search, which considers 

the distance only when ranking vertices. The other is top-k 

relevant neighbor keyword search, which combines both tex-

tual relevance and distance. Next, we discuss them in detail.

4.1  Top‑k Nearest Neighbor Keyword Search

The problem of top-k nearest neighbor keyword search is 

formally described as follows.

Problem 3 (�-�� ) Given a weighted graph G = (V , E) and 

a query Q = (q, w, k) , where q ∈ V  is a query vertex in G, 

w is a keyword, and k is a positive integer, return a set of k 

keyword vertices, denoted by R = {v1, v2,… , v
k
} ⊆ ���(w) , 

and there does not exist a vertex u ∈ ���(w) ⧵ R such that 

����(q, u) < maxv∈R ����(q, v).

A straightforward approach for handling Problem 3 is 

to use Dijkstra’s algorithm to compute the shortest paths 

from q to all vertices in ���(w) and return the k vertices 

with minimum distances to q. The time complexity is 

O(|E| + |V| ⋅ log |V|) . Clearly, this straightforward approach 

is inefficient when the size of the graph is large. To avoid 

such cost-prohibitive computation of shortest paths in query 

phase, many solutions [3, 41, 48, 70, 81, 109, 113] in the 

literature are proposed to utilize index structures, which are 

introduced in detail as below.

∙ A distance oracle-based algorithm. Bahmani and 

Goel [3] propose a distance oracle-based method to answer 

Problem 3. In general, distance oracle is a technique for esti-

mating the distance of two vertices in a graph [75]. Given a 

graph G = ⟨V , E⟩ , a distance oracle is a Voronoi partition of 

V determined by a set of randomly selected center vertices. 

More specifically, given a number n
c
 , we randomly select n

c
 

vertices from V as the center vertices to construct a distance 
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oracle O . Then the partition is constructed by assigning each 

vertex v ∈ V to its nearest center vertex c, where the distance 

from v to its correspondent center node is precomputed. 

After constructing O , for two vertices u and v in G, if u and 

v are in the same partition in O with a center vertex c, then 

the estimated distance ����O(u, v) = ����O(u, c) + ����O(v, c) . 

If u and v are not in the same partition in O , ����O(u, v) = ∞.

To improve the distance estimation accuracy, we usu-

ally construct a set of r = p × log |V| distance oracles 

{O1, O2,… , O
r
} , where p is a user-specified param-

eter. Oracle O
i
 contains 2⌈i∕p⌉−1 randomly selected center 

vertices. Given r distance oracles, the overall estimated 

distance of two vertices u and v in G is then given by 

����(u, v) = min1≤i≤r
����O

i

(u, v) . It is shown in [75] that when 

p = �(|V|1∕ log |V|) , the estimated distance can be bounded 

by ����(u, v) ≤ ����(u, v) ≤ (2 log2 |V| − 1) ⋅ ����(u, v) with a 

high probability.

The query processing based on distance oracle is as fol-

lows. For each keyword in a distance oracle O
i
 , an inverted 

list is constructed for each keyword in the partition. Specifi-

cally, for a partition with a center vertex c and a keyword 

w, the inverted list contains all vertices in the partition that 

contain w ranked in non-decreasing order of their distances 

to c. Given a query Q = (q, w, k) , the algorithm finds the 

partition that q belongs to in an oracle O
i
 . The result w.r.t. 

O
i
 , denoted by RO

i

 , is the first k elements in the inverted 

list for w in the partition. The final result R is computed by 

merging the vertices in each RO
i

 and returning k vertices 

with the shortest distances to q. The query time complexity 

is O(k ⋅ log |V|).

∙ A shortest path tree-based algorithm. In practice, the 

distance error estimated by the distance oracle may be large, 

which can greatly distort the ranking of the vertices contain-

ing the query keyword. To alleviate the issue of distance 

oracle, Qiao et al. [70] propose to integrate the tree dis-

tance [80] in estimating the distances. In particular, for a 

partition of a distance oracle, we construct a shortest path 

tree rooted at the randomly selected center vertex of the 

partition. For a distance oracle O
i
 , let the set of trees con-

structed in O
i
 be T

i
 , which can be considered as a tree by 

adding a virtual root and several virtual edges with weight 

+∞ that connect the new virtual root to every root vertex in 

T
i
 , respectively. Let R

T
 be the result of �-�� query on tree 

T. Finally, we can solve Problem 3 by merging the result R
T

i

 

on all trees T
i
 , 1 ≤ i ≤ r.

The key of the shortest path tree-based algorithm on solv-

ing Problem 3 is how to compute R
T
 on a tree T, which is 

non-trivial. In [70], the authors introduce two algorithms for 

answering exact �-�� on a tree T = ⟨V , E⟩ . The first algo-

rithm ����-������ can only handle bounded k values with 

query processing time O(k + log |���(w)|) and index size 

O(k̄ ⋅ |���(V)| for all keywords where k̄ is an upper bound 

value of k, while the second algorithm ����-����� can han-

dle an arbitrary k with query processing time k ⋅ log |V| and 

index size O(|���(V)| ⋅ log |V|).

In ����-������ , the authors utilize a data structure, namely 

Compact Tree �� , which is defined as follows. For a tree T 

and a keyword w, a compact tree ��(w) is a tree that keeps 

only two types of vertices in T: a keyword vertex that con-

tains keyword w, and a vertex that has at least two direct 

subtrees containing vertices carrying keyword w. The main 

idea of ����-������ is to precompute the top-k̄ results for 

every keyword w and every vertex on ��(w) . Since the total 

size of all compact trees is bounded by O(|���(V)|) , the 

total space to store the top-k̄ results of vertices on all com-

pact trees is bounded by O(k̄ ⋅ |���(V)| . Then, given a �-�� 

query Q = (q, w, k) , if q is on ��(w) , the result can be easily 

reported by the precomputed answer on ��(w) . The difficult 

case is when q is not in ��(w) . In high level, this case can 

be dealt by first finding the entry vertex and entry edge for 

q on ��(w) and then merging the candidate answer on the 

nearest vertices on ��(w).

In ����-����� , a main observation is as follows. For a 

vertex u containing keyword w and an arbitrary vertex v 

in a tree T, the path from v to u is unique on T, and can 

be divided into two segments, namely the segment from v 

to their lowest common ancestor ���(u, v) , and the second 

segment from ���(u, v) to u. The basic idea is to compute 

the first segment online and precompute the results regard-

ing the second segment offline. In the precomputing phase, 

we propagate the keyword vertex u to all its ancestors in T, 

such that we can construct a candidate list for each vertex 

s in T, which records all distance from s to the keyword 

vertex in the subtree rooted at s. Then, given a �-�� query 

Q = (q, w, k) , we just need to merge all candidate lists of 

vertices starting from q to the root of T by adding a proper 

distance. The final answer is the k vertices with shortest dis-

tance. A tree balancing technique against T is further devised 

to optimize both the index space and query processing.

∙ A 2-hop labeling-based algorithm. The above two 

algorithms for Problem 3 only give approximate answers. 

In [48], Jiang et al. propose two exact algorithms based on 

2-hop labeling techniques [14], namely forward search ( �� ) 

and forward backward search ( ���).

Particularly, �� is proposed to deal with the scenario 

where the keyword is not frequent. For a �-�� query 

Q = (q, w, k) , we compute the distance between the query 

vertex q and all vertices in ���(w) by using the 2-hop label 

index and return the k vertices with minimum distances to 

q. In specific, let L be the 2-hop label index, which con-

sists of a set of label entry lists, each for a vertex v ∈ V  . 

In the list L(v) for vertex v, there are a set of label entries 

(u
i
, d

i
) where u

i
∈ V  , and d

i
 is the distance between u

i
 and v. 

�� finds the answers by forward search from L(q) and L(y) 
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where y ∈ ���(w) . �� becomes inefficient when the keyword 

w has high frequencies resulting in many candidates in ���(w) 

to be checked.

To handle the cases where the keywords have high fre-

quencies, ��� incorporates forward search and backward 

search on the label index. In addition to the 2-hop label 

index L, the authors build two more indices, namely 2-hop 

label backward index LB and keyword-lookup tree index 

KT. Similar to L, for each vertex v, LB(v) consists of a list 

of label entries (u, d), which is constructed as follows. For 

each entry (v, d) ∈ L(u) , we add an entry (u, d) into LB(v). 

We also sort entries in LB(v) by non-increasing order of the 

distance value d. For a �-�� query Q = (q, w, k) , to avoid 

scanning all vertices in ���(w) , we now search from each 

label entry (x, d) ∈ L(q) . Then, we search for label entries in 

the backward index LB(x) with vertices that contain keyword 

w, i.e., (y, d�) ∈ LB(x) where y contains w. We can obtain one 

possible answer y from the path (q → x → y, d + d�) , that is, 

the distance from q to y is d + d
�.

Since LB(v) may contain vertices which do not contain 

keyword w, we need a mechanism to look up the entries 

of vertices that do contain w efficiently. To this end, the 

authors further propose tree index, called keyword-lookup 

tree index (KT). Specifically, for each vertex v ∈ V  , KT(v) is 

a forest built by breaking the set of label entries of LB(v) into 

fragments. Each tree node in KT(v) contains some keyword 

information of a fragment, so that the entries containing the 

query keyword in a fragment can be retrieved efficiently.

∙ An I/O-efficient algorithm. The above methods for Prob-

lem 3 are all main memory oriented, which assume that the 

graph as well as the constructed index can fit entirely in 

memory. To deal with large-scale networks, Zhu et al. [113] 

propose an I/O-efficient approach, which uses a compact 

disk index to answer a �-�� query with constant I/Os.

Since the shortest path computation is a key operation 

in answering a �-�� query, the authors follow the computa-

tion paradigm proposed in [70] to speed up the calculation, 

where a set of spanning trees are used as an approximate 

representation of a graph and the shortest distance in trees is 

used as an approximation of the shortest distance in a graph. 

In particular, they focus on how to lay out the balanced com-

pact tree on disk, such that only a small number of block 

accesses are needed to answer a �-�� query, and the index 

size on disk is small. To this end, the authors split a balanced 

compact tree ���(�) into two levels, where the top level is 

stored as paths and the bottom level is stored as subtrees.

In general, the authors lay out ���(�) by paths and sub-

trees blocking into disks in the bottom-up manner. In the 

bottom level, for a vertex v ∈ ���(�) , the subtree rooted by 

v, denoted by ��(v) , contains all v’s descendants and itself. 

To make use the best use of the block, we should choose to 

store a set of maximal subtrees, under the condition that the 

total size of all candidate lists in ��(v) can fit into a block. 

In the top level, we store for the remaining vertices in the 

form of paths into blocks. The idea of path blocking is, for 

each leaf vertex v in the remaining vertices, we store the path 

from v to the root and the associated candidate lists into a 

block. Moreover, it is clear that all other inner vertices are 

covered by such paths.

∙ A privacy-preserving algorithm. To reduce the busi-

ness running cost, more data owners are motivated to out-

source their graphs to the cloud for storage, management 

and retrieval. However, directly outsourcing the graphs 

may cause serious privacy concerns. For example, keyword 

search on graphs can threat the privacy of data users, as the 

graph or the query request may reveal sensitive information 

such as user’s addresses or personal information. Under such 

circumstances, Teng et al. [81] study Problem 3 in a privacy-

preserving manner, which aims to process �-�� query on 

graphs without privacy leakage.

The authors build a two-level index for the shortest dis-

tance trees of the graph which is proposed in [70]. In the 

index, the first level indexes the paths from the vertices of 

the tree to the root, and the second indexes the routes from 

the root to the keyword vertices. To achieve distance com-

putation without privacy breaches, the index is encrypted 

using secret sharing encryption. To handle the keyword fil-

tering during the search processing, the authors also propose 

a trapdoor generation method for query keywords leveraging 

privacy-preserving set-intersection.

To process a �-�� query, we first retrieve the ancestors 

of the query node in the first level index and then compute 

the candidate nodes with the query keywords in the second 

level. The final results are calculated and merged with the 

candidates.

∙ A continuous query-oriented algorithm. In  [109], 

Zheng et al. investigate a continuous variant of �-�� query 

on road networks. Formally, given a road network G, and a 

moving query Q = (q, w, k) , the query keeps returning the �

-�� results for every new location q of Q. For presentation 

simplicity, we denote this variant of �-�� query by �-���.

The key to deal with �-��� query efficiently is to reduce 

the number of recomputation as much as possible for query 

locations with the same query results. To this end, the 

authors make use of the so-called dominance interval or 

region on road network, which share the similar intuition 

with safe region for processing continuous queries in Euclid-

ean space. To implement the dominance interval with high 

efficiency, the authors propose an important index struc-

ture, namely EP index (short for enclosed path index). An 

enclosed path, denoted as EP(s, ..., e) , is a path that only 

the starting and ending vertices are intersection vertices 

among all vertices it passes. Then, for each EP(s, ..., e) we 

construct an inverted list for each keyword w contained by 

o ∈ EP ⧵ {s, e} , which is a list of the vertices that contain w.
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Given a moving query Q = (q, w, k) , we first identify the 

enclosed path EP
q
 that q locates on. Then, we compute the �

-�� results for both vertices s and e of EP
q
 by existing algo-

rithms such as [48, 70], denoted by R
s
 and R

e
 , respectively. 

Besides, we also obtain all vertices on EP
q
 that contain w by 

accessing the EP index of EP
q
 . Finally, we proceed to divide 

EP
q
 into dominance intervals by a window sliding approach. 

As long as q is on EP
q
 , the query result is simply the result 

set with corresponding dominance interval covering q.

In the literature, there are also works on studying �-�� 

query on other types of graphs, such as temporal graphs [41] 

where edges in the graph have time constraint.

4.2  Top‑k Relevant Neighbor Keyword Search

In the literature, many research efforts are devoted to the 

problem of most relevant neighbor keyword search where 

the ranking function considers both keyword relevance and 

network distance. In particular, studies in this category are 

mainly focusing on spatial keyword queries on road net-

works [1, 66, 73, 111], which implies that the vertices and 

edges also have spatial location information besides the 

graph connecting structure. Since the road network contains 

extra spatial location information, many spatial-textual index 

structures, such as [15, 63, 72], can be utilized to acceler-

ate the query performance. Note that there might be spatial 

objects (points of interest) in the road network apart from 

the network vertices. To simplify the presentation, we regard 

these spatial objects as vertices as well, which can be real-

ized by simply splitting the edge it locates.

The formal definition of top-k relevant neighbor keyword 

search is stated as follows.

Problem 4 Given a road network G = (V , E) and a query 

Q = (q, k,�) , where q ∈ V is a query vertex in G, k is a posi-

tive integer, and � is a set of query keywords, return a set of 

k vertices with the largest scores. The score of each vertex 

v is defined in Eq. (4).

here, ���(� , ���(v)) is the textual relevance of vertex v to the 

query keywords � , and ����(q, v) is the network distance from 

q to o. A widely used metric for textual relevance is cosine 

similarity [116].

∙ A Dijkstra-like expansion algorithm. Rocha-Junior et 

al. [73], for the first time, investigate Problem 4. To deal 

with Problem 4, the authors employ an expansion strategy 

similar to Dijkstra’s algorithm [19].

(4)�(v) =
���(� , ���(v))

����(q, v)

Specifically, the k best spatiotextual result vertices are 

maintained in a heap R in decreasing order of ranking score 

shown in Eq. (4). During the expansion, another heap Q is 

used to store the adjacent vertices according to increasing 

order of network distance to q.

Initially, the algorithm finds the edge (v, v
�) in which q 

locates. Then vertices v and v′ are inserted into Q and marked 

as visited. In each expansion step, we dequeue the top vertex 

v in Q and insert all its unvisited neighbor vertices into Q . 

Note that, whenever we visit a new vertex v, we also update 

the result heap R with v by computing the distance between 

q and v. The algorithm stops when the remaining vertices 

cannot achieve a better score (i.e., score upper bound) than 

the score of the k-th vertex already found, or the entire net-

work has been expanded.

In particular, the score upper bound of a vertex v can be 

estimated by the distance between v and q, and the maximum 

textual relevance (i.e., ���(� , ���(v)) = 1 in Eq. 4). The cor-

rectness of the early termination condition is guaranteed by 

the fact that the algorithm always expands the vertex v with 

minimum distance to q.

It is worth noticing that, to facilitate the query perfor-

mance, many spatial-textual-related index structures are 

employed in this algorithm. For example, � ∗-���� is used 

to store road network edges, and ��-���� stores spatial and 

keyword information of vertices.

∙ A �-���� -based algorithm. The above Dijkstra-like 

expansion algorithm is rather inefficient for the scenario that 

vertices in the result set are far away from the query loca-

tion q, since the searching space is in the shape of a circle 

with q as the center. To improve the searching performance, 

Zhong et al. [111] propose a �-����  [110]-based method.

Similar to its spatial version �-����  [34] that is used to 

facilitate the proximity-related search on metric space, �

-���� is devised to compute the shortest-path distances on 

road network with high efficiency and good scalability (i.e., 

low storage cost). In general, �-���� is a balanced search 

tree constructed by recursively partitioning the road network 

into sub-networks where each �-���� node corresponds to a 

sub-network. It satisfies the following properties. (i) Each 

node represents a subgraph. The root node corresponds to 

the graph G. (ii) Each non-leaf node has f (≥ 2) child nodes. 

(iii) Each leaf node contains at most �(≥ 1) vertices. All leaf 

nodes appear at the same level. (iv) Each node maintains its 

border set and a distance matrix. For non-leaf nodes, the 

distance matrix maintains the distance between two borders 

in its child nodes. For leaf nodes, the distance matrix stores 

the distances between all vertices and the borders in this 

node. (v) For keyword queries, each node also stores addi-

tional information, such as inverted list. Note that, given a 

subgraph G
i
 of G, a vertex u ∈ V(G

i
) is called a border if 

∃(u, v) ∈ E(G) and v ∉ V(G
i
).
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Example 1 Figure 2b shows the �-���� of the road network in 

Fig. 2a. The borders of each node are shown in the rectangle 

box under the node. The distance matrix of each node is 

listed around the tree node. For G
1
 , its children G

3
 and G

4
 

contain five borders {v1, v6, v7, v8, v10} ; thus, the rows/col-

umns of G
1
 ’s distance matrix are the five borders. The set of 

vertices of each leaf node are shown in the circled numbers. 

For instance, in G
4
 ’s distance matrix, the rows are borders 

{v8, v10} and the columns are vertices {v8, v9, v10, v11} . Then 

entry (v8, v11) = 11 since the distance between borders v
8
 

and v
11

 is 11.

Given a query Q = (q, k,�) for Problem 4, we first locate 

the leaf node of q. Then we create a maximum priority query 

Q to store an entry e according to decreasing order of the 

ranking score (i.e., �(e) in Eq. 4), where e is a vertex or a �

-���� node. Note that �(e) is possible maximum value for a 

vertex in the corresponding subgraph if e is a �-���� node, 

which can be computed by the possible maximum textual 

relevance of vertices in e and the minimum distance between 

q and borders in e. Next, we start from the leaf node in which 

q locates, expand upwards in �-���� , and insert the sibling 

nodes of current node e into Q . In each iteration, we dequeue 

the top entry in Q and insert all its unvisited children into Q . 

The algorithm stops once we have collected k vertices or the 

tree has been completely expanded.

∙ A keyword separated indexing-based algorithm. The 

above-discussed methods all use the technique of keyword 

aggregation for road networks, which is used extensively by 

spatial keyword query techniques in Euclidean space [10, 15, 

88, 103]. However, the disadvantage of keyword aggrega-

tion is the generation of many false positives. Computing 

distance in Euclidean space is quick arithmetic operation, 

but in road networks computing distance is a complex graph 

operation and far more expensive. Consequently, the compu-

tation overhead for incurring false positives in road networks 

is significantly higher than in Euclidean space. Therefore, 

keyword aggregation is far less effective for road networks.

Abeywickrama et al.  [1] resort to keyword separated 

indexing techniques to delay and avoid the expensive net-

work distance computation. The key of this method is 

the on-demand inverted heap H for each keyword w. An 

important property of this heap is as follows. Given the cur-

rent top vertex v in H for keyword w and its lower-bound 

distance ����
��
(q, v) from query vertex q, any vertex u con-

taining w, not yet extracted from H , has network distance 

����(q, v) ≥ ����
��
(q, v) . This property allows our query algo-

rithms to access keyword vertices in ���(w) in order of their 

lower-bound network distances from q.

Before illustrating the query algorithm, we clarify that the 

ranking score used in [1] is inverse of the ranking score 

shown in Eq. (4). Now, given a query (q, k,�) , we aim to find 

the k vertices with the smallest scores. To deal with query 

efficiently, the algorithm uses a minimum priority queue Q 

where the value of an entry is a well-observed lower-bound 

score. First, we create an on-demand inverted heap H
i
 for 

each keyword w
i
∈ � . Then, we insert the top vertex in each 

H
i
 into Q . In each iteration, we extracted a candidate vertex 

c from Q that has not already been processed and insert into 

Q the next vertex in the heap containing c. After that, we 

compute the lower-bound score using its actual textual rel-

evance and lower-bound network distance, i.e., 
����

��
(q, c)

���(� , ���(c))
 . If this lower-bound score is smaller than the 

current best kth result R
k
 , then its actual score is computed 

using its exact network distance ����(q, c) . If its actual score 

is smaller than R
k
 , then the result list R and R

k
 are updated 

accordingly. The algorithm terminates when Q is empty or 

the top of Q is no less than R
k
.

A crucial operation in the above algorithm is to create an 

on-demand inverted heap for each query keyword. A simple 

approach to insert all vertices in ���(w) in the heap with their 

Fig. 2  An example for G-tree index structure [110]
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lower-bound distances. However, this is not feasible as it 

would be required for every query. In the paper, the authors 

utilize the network Voronoi diagram (NVD) [56] that allows 

inverted heaps to be populated lazily. The main idea is that 

we build an NVD on vertices in ���(w) for each keyword w 

offline. With the help of NVDs, we can maintain the inverted 

heap incrementally by expanding the NVD one layer at a 

time.

4.3  Discussion

In this section, we review graph keyword search works that 

return k best vertices as the desired answers, which can be 

further divided into two groups based on the specific cal-

culation of scoring function. One group [3, 41, 48, 70, 81, 

109, 113] is top-k nearest neighbor keyword search, which 

considers the distance only when ranking vertices. The other 

group [1, 66, 73, 111] is top-k relevant neighbor keyword 

search, which combines both textual relevance and distance.

5  Subgraph-Based Keyword Search

Both categories of keyword search reviewed in Sects. 3 

and 4 have some limitations. For tree-based methods dis-

cussed in Sect. 3), an answer result may only show partial 

information about how those vertices in the result are con-

nected. For nearest neighbor-based methods discussed in 

Sect. 4, an answer result is simply a single vertex in the 

graph. In some application scenarios, a subgraph is more 

desired for inspecting the whole picture. In this section, we 

review graph keyword search works that return compact 

subgraphs as the desired answers. Next, we discuss them 

in detail according to the specific definition of the desired 

answer subgraph.

5.1  r‑Radius Steiner Graph‑Based Semantics

Definition 1 (Centric distance) Given a graph G = (V , E) 

and any vertex v in G, the centric distance of v, denoted as 

��(v) , is the maximal value among the distances between 

v and any vertex u in G, i.e., ��(v) = max
u∈G

{����(v, u)}.

Definition 2 (Radius) The radius of a graph G, denoted as 

�(G) , is the minimal value among the centric distances of 

every vertex in G, i.e., �(G) = min
v∈G

{��(v)} . G is called 

an r-radius graph if the radius of G is exactly r.

Definition 3 (r-Radius Steiner graph) Given an r-radius 

graph G and a keyword set � , vertex s in G is called a Steiner 

vertex if there exist two keyword vertices u and v regarding 

� , and s is on the path between u and v. The subgraph of G 

composed of the Steiner nodes and associated edges is called 

an r-radius Steiner graph. The radius of an r-radius Steiner 

graph must satisfy that �(G) ≤ r.

Problem  5 Given a graph G = (V , E) and a query 

Q = (r, k,�) , where r is a positive real value, k is a positive 

integer, and � is a set of query keywords, return k r-radius 

Steiner graphs in G with the largest relevance score regard-

ing �.

Li et al. [61] study the r-radius Steiner graph problem. To 

facilitate efficient retrieval of r-radius graphs, they construct 

a novel graph index. The entries of the graph index are key-

words contained in the graph, and each entry preserves the 

r-radius graphs that contain the keyword. For each keyword 

w
i
 , we keep the set of all r-radius graphs that contains w

i
 , 

denoted as I
w

i

.

To process a query Q = (r, k,�) , we first retrieve the set 

I
w

i

 of those r-radius graphs which contain w
i
 based on the 

graph index and then union every I
w

i

 to compute ∪m

i=1
I

w
i

 , 

which is the set of r-radius graphs that contain all or a por-

tion of the keywords in � . Finally, we extract the r-radius 

Steiner graphs by removing the non-Steiner vertices from 

the corresponding r-radius graphs, and rank the results to 

return the top-k answers.

5.2  Multicenter Community‑Based Semantics

Definition 4 (Multicenter community) Given a graph 

G = (V , E) and a set of keywords � , a community, denoted 

as R = (V
R
, E

R
) , is a multicenter induced subgraph of G. 

Here, V
R
 is a union of three subsets, i.e., VR = Vc ∪ Vl ∪ Vp . 

(1) V
l
 is a set of keyword vertices. Every vertex v

l
∈ V

l
 con-

tains at least a keyword in � and all keywords in � must 

appear in at least one vertex in V
l
 . (2) V

c
 represents a set 

of vertices called center vertices. For any vertex v
c
∈ V

c
 , 

there exists at least a single path such that ����(v
c
, v

l
) ≤ �

���
 

between v
c
 and every v

l
∈ V

l
 , where �

���
 is a user-given 

radius threshold. (3) Vp represents a set of path vertices, 

which appear on any path from a vertex v
c
∈ V

c
 to a vertex 

v
l
∈ V

l
 if ����(v

c
, v

l
) ≤ �

���
.

Fig. 3  An graph G for multicenter community query [71]
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Example 2 Consider the graph in Fig. 3. Let �
���

= 8 . For 

a 3-keyword query {a, b, c} , five communities are shown in 

Fig. 4. For example, for R
5
 (Fig. 4e), the keyword vertices 

are V
l
= {v13, v8, v11} , center vertices are V

c
= {v11, v12} , and 

path vertices are Vp = {v
10
}.

For a community R, a cost function can be defined, 

denoted by ����(R) , as the minimum total distance from a 

center vertex to every keyword node. For example, con-

sider community R
5
 (Fig. 4e). There are two centers, v

11
 

and v
12

 . The total edge weight over the shortest paths 

from v
11

 to the 3 keyword vertices, v
8
 , v

11
 , and v

13
 , is 

11 = (2 + 3) + 0 + (3 + 3) . Similarly, we can get the total 

weight for v
12

 is 14. Therefore, ����(R
5
) = 11.

Problem  6 Given a graph G = (V , E) and a query 

Q = (�
���

, k,�) , return the top-k multicenter communities.

Qin et al.  [71] study the problem of finding multi-

center communities. A key observation is that a com-

munity R is uniquely determined by keyword vertices V
l
 , 

which is called the core of the community, denoted by 

C = [c1, c2,… , c
l
] . To efficiently find the top-k communi-

ties with minimum cost, the authors use a Fibonacci heap 

H to maintain the generated communities.

Initially, we find the first best core C = {c1, c2,… , c
l
} 

in the entire space V
1
× V

2
×⋯ × V

l
 , and we ensure 

the first core found is the core for the top-1 commu-

nity. Note that the next best core can be found in the 

nex t  l  s ubspaces :  S
1
∶ (V

1
− {c

1
}) × V

2
×⋯ × V

l
 , 

S2 ∶ V1 × (V2 − {c2}) ×⋯ × V
l
,… , S

l
∶ V1 × V2 ⋯ × (V

l
− {c

l
}) . 

It is important to know the following facts. (i) 

V
1
× V

2
×⋯V

l
= C ∪ S

1
∪ S

2
∪⋯ ∪ S

l
 . (ii) Si ∩ Sj = �(i ≠ j)

.

After that, we enheap C with other information into 

heap H and enter a while loop. In the while loop, we 

first deheap the core C, which is the current best result. 

Then, we attempt to find the next best core in each of the 

l subspaces, S
1
 , S2,… S

l
 , individually. If we find the best 

core, C
i
 , in S

i
 , for 1 ≤ i ≤ l , we enheap C

i
 to H . With H , 

the next best core can be selected in the next iteration 

from all cores kept in H . We repeat this process until k 

cores are found, which are the top-k results.

5.3  r‑Clique‑Based Semantics

Definition 5 (r-Clique) Given a graph G and a set of query 

keywords Q = {w1, w2,… , wl} , an r-clique of G with respect 

to Q is a set of keyword vertices that together cover all key-

words in Q and in which the distance between each pair of 

keyword vertices is no larger than r.

Definition 6 (Weight ofr-clique) For a given r-clique C, sup-

pose that the vertices of C are denoted as {v1, v2,… , v
l
} . 

Then, the weight C is defined as

In [51, 52], r-cliques with smaller weights are considered 

to be better. The problem of find r-clique is formally stated 

as follows.

Problem 7 Given a distance threshold r, a graph G and a 

set of input keywords, find an r-clique in G with minimum 

weight.

Kargar et al. [51, 52] propose the r-clique problem and 

show that the problem is NP-hard. The authors first present 

a branch and bound algorithm for finding all r-cliques in 

a graph. The candidate partial r-cliques are store in a list 

called rList. The basic idea of the algorithm is as follows. 

First, the keyword vertices containing the first keyword 

are added to rList. Then, for the second keyword w
2
 , we 

compute the distance between each vertices in ���(w
2
) and 

each node in rList. If the distance is within r, a new can-

didate that combines the corresponding vertices in ���(w
2
) 

and rList is added to a new candidate list called newRList. 

After all pairs of vertices in ���(w
2
) and rList have been 

checked, the content of rList is replaced by the content 

of newRList. The process continues in the same way to 

consider all of the remaining keywords. The final content 

of rList is the set of all r-cliques.

Because the branch and bound algorithm is slow when 

the number of keywords is large. Also, it does not rank the 

generated r-cliques. To speed up the process, the authors 

propose an approximation algorithm with approximation 

ratio of 2 for finding r-cliques with polynomial delay.

Zhao et al. [107] extend r-clique to road networks to 

retrieve the POIs (Points of Interest). Particularly, they 

advocate the popularity-aware collective keyword (PACK) 

(5)������(C) =

l
∑

i=1

l
∑

j=i+1

����(vi, vj)

Fig. 4  Five communities [71]
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query in road networks, which aims to find a group of pop-

ular POIs that cover the query’s keywords and satisfy the 

distance requirements, such that the sum of rating scores 

over these vertices for the query keywords is maximized. 

The authors show that the PACK query is NP-hard. Exact 

and heuristic solutions on small and large road networks 

are then developed.

5.4  Strongly Connected Subgraph‑Based Semantics

The above-mentioned studies all utilize the shortest path 

distance to evaluate the compactness of the answers. In [7], 

Bryson et al. argue that this method may lack robustness 

since it may not reflect the overall structure of the answer 

subgraph. Therefore, they propose a random walk-based 

approach to measure the distance between vertices con-

taining the query keywords.

Definition 7 (Candidate answer) Given a graph G and a 

query Q = {w1, w2,… , wl} , a candidate answer C is a sub-

graph of G whose vertices cover all keywords in Q.

Definition 8 (Connection score of a candidate answer) 

Given a candidate answer C for query Q = {w1, w2,… , wl} , 

suppose that the vertex in C containing w
i
 is v

i
 for 1 ≤ i ≤ l . 

Then, the connection score of C is defined as

Here ��(vi, vj) is the connection score between vertices 

v
i
 and vj defined by random walk. The higher the score 

��(vi, vj) , the stronger the relationship between vertices v
i
 

and vj in graph G.

Problem 8 Given a graph G and a query Q, return a can-

didate answer C for Q with a maximal connection score 

�����(C).

The authors prove that Problem 8 is NP-hard. There-

fore, they propose an heuristic method to solve it in poly-

nomial time. The idea is as follows.

For a given query Q, take each vertex containing the 

rarest keyword and form a subgraph (candidate answer) 

around that vertex. The answer’s score is initialized to 0. 

Then, in each iteration, we include one of the uncovered 

keywords. In order to do that, we run the RWR and set 

the restart vertices to the current vertices of the subgraph.

At the beginning, the only vertex in the subgraph is the 

one with the rarest keyword. When the RWR process is fin-

ished, the vertex with the highest score that also covers the 

current required keyword is selected as the best vertex of 

(6)�����(C) =

l
∑

i=1

l
∑

j=i+1

��(vi, vj)

the subgraph. Among all the candidate subgraphs that are 

formed around the vertex containing the rarest keywords, 

the one with the highest sum of RWR scores is selected as 

the best subgraph.

5.5  Cohesive Subgraph‑Based Semantics

In [114, 115], Zhu et al. advocate the problem of querying 

cohesive subgraphs by keywords. Particularly, the authors 

employ k-truss [42] to model the cohesiveness of a sub-

graph, which is formally defined as follows.

Definition 9 (Connected k-truss) Given a graph G and an 

integer k, a connected k-truss is a connected subgraph S ⊆ G , 

such that ∀e ∈ E(S) , ���
S
(e) ≤ k − 2 . Here ���

S
(e) is the sup-

port of an edge e = (u, v) in G, which is the number of trian-

gles in which e appears.

Problem  9 (Minimal dense truss search by keywords) 

Given a graph G = (V , E) and a set of query keywords 

Q = {w1, w2,… , wl} , return a subgraph S of G, such that 

1. V(S) covers all keywords in Q;

2. S is a connected truss in G that maximizes the trussness;

3. Any subgraph of S cannot satisfy Conditions 1 and 2 at 

the same time.

Here the trussness of a subgraph S ⊆ G is the minimum 

support of all edges in S plus 2.

Example 3 Consider the example in Fig.  5. Suppose 

Q = {DB, ML} . H
1
 and H

2
 are 4-truss and 3-truss contain-

ing Q. Clearly, H
1
 is a dense truss over Q. We also have 

another 4-truss induced by {v1, v2, v3, v4, v5} containing Q, 

but it is not minimal. Thus H
1
 is the minimal dense truss for 

the query Q.

Zhu et al.  [114, 115] propose a keyword-truss index 

(KT-Index)-based algorithm. In particular, KT-Index is 

designed to include two parts: truss index and keyword 

index. Truss index is a multilayer structure, where we index 

Fig. 5  A graph G for cohesive subgraph keyword query [114, 115]
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the information of all the connected k-truss in the k-th layer. 

In each layer, there are a set of connected components. In 

the keyword index, we first store a inverted keyword list to 

keep the vertex IDs that contain each keyword. Meanwhile, 

we record the upper bound of trussness ��(w
i
) for each key-

word. Moreover, for each keyword, we record IDs of the 

component CID
k
 it occurs in the k-th layer.

Given a query Q, the search algorithm checks each layer 

of truss index by a binary search to avoid the worst case of 

checking all the value of k
max

 . In the k-th layer, we obtain the 

set of components IDs CC that contains all the keywords. If 

CC is empty, we will search layers with truss value smaller 

than current k; otherwise, we will search layers with truss 

value larger than current k. After we find the set of com-

ponent IDs CC that containing all the keywords, we select 

the component with the minimum size as dense truss G
den

 . 

Then, we extract the minimal dense truss S by using the anti-

monotonic property of k-truss.

5.6  Discussion

In this section, we review graph keyword search studies that 

return compact subgraphs as the desired answers. In par-

ticular, five different types of subgraph-based semantics are 

introduced [7, 51, 61, 71, 114, 115].

There are also some other more complicated query inten-

tion-based studies, such as target-aware query result-based 

keyword search [76], keyword search on public–private net-

works [47], and parallel keyword search for large knowledge 

bases [95, 96].

6  Other Graph-Based Keyword Search

In this section, we review other graph keyword search stud-

ies, including a generic ontology-based indexing framework, 

spatial keyword query on road networks, and keyword rout-

ing on road networks.

6.1  A Generic Ontology‑Based Indexing Framework

Jiang et al. [46] propose a generic ontology-based index-

ing framework for keyword search, called Bisimulation 

of Generalized Graph Index (BiG-index), to enhance the 

search performance. The novelties of BiG-index reside in 

using an ontology graph G
ont

 to summarize and index a data 

graph G iteratively, to form a hierarchical index structure G . 

BiG-index is generic since it only requires keyword search 

algorithms to generate query answers from summary graphs 

having two simple properties.

To process a query Q, we transform Q into Q according 

to G
ont

 in runtime. The transformed query is searched on the 

summary graphs in G . The efficiency is guaranteed due to the 

small sizes of the summary graphs and the early pruning of 

semantically irrelevant subgraphs. They authors also show 

that the existing popular keyword search algorithms (i.e., 

BLINKS [39] and r-clique [51]) can be easily implemented 

on top of BiG-index.

6.2  Spatial Keyword Query on Road Networks

∙ Diversified spatial keyword search. Zhang et al. [102] study 

the problem of diversified spatial keyword search on road 

networks.

Definition 10 (SK Query) Given a road network G and 

a query Q = (q,� , �max) , where q is the query location, 

� = {w1, w2,… , w
l
} is a set of query keywords, and �

max
 

is the network distance threshold, a spatial keyword query 

retrieves vertices each of which contains all query keywords 

in � and is within network distance �
max

 from q.

Definition 11 (Bi-criteria objective function) Given a set S 

of vertices with |S| = k , the bi-criteria objective function, 

denoted by f, is defined as

Here, Rel(S) is the relevance of S measured by the net-

work distances of vertices in S to the query location q, 

Div(S) is the diversity of S captured by their pairwise net-

work distances, and �(0 ≤ � ≤ 1) is a parameter specifying 

the trade-off between the relevance and the diversity.

Problem  10 Given a road network G and a query 

Q = (q, k,� , �max) , return a set S of vertices in G such that 

1. |S| = k;

2. S ⊆ SK(q,� , �max);

3. f(S) is maximized.

To efficiently deal with Problem 10, an efficient signa-

ture-based inverted indexing technique is proposed in [102]. 

Besides, an efficient incremental network expansion algo-

rithm is proposed as well such that the spatial keyword 

pruning and diversity pruning techniques can be seamlessly 

integrated and hence significantly reduce the overall cost.

∙ Collective spatial keyword search. Gao et al. [27] study 

the problem of collective spatial keyword search on road 

networks, which is formally defined as below.

Problem 11 Given a road network G and a query Q = (q,�) 

where q is a query location and � = {w1, w2,… , w
l
} is a 

set of keywords, a collective spatial keyword query on road 

networks aims to find a set S of vertices, such that 

(7)f (S) = � × Rel(S) + (1 − �) × Div(S)
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1. vertices in S collectively cover all keywords in �;

2. f(S) is minimized among all possible choices of S.

Here the cost function f(S) is defined as follows

Gao et al. [27] prove that Problem 11 is NP-complete. 

In light of this, the authors propose two approximate algo-

rithms with guaranteed approximation errors. The first is 

network expansion-based algorithm, denoted by NEB. The 

main idea of NEB is to find a set of POIs that are close to 

the given query location q and cover the query keywords in 

� . A min-priority queue Q is utilized to keep tracks of the 

edges that have been visited, and such edges are sorted in 

ascending order of their distances to q. Whenever a POI o 

having some uncovered keywords, o, is added to the result 

set S. The expansion proceeds until all keywords in � are 

covered. The authors show that NEB can achieve a 3-factor 

approximate guarantee.

Note that NEB does not consider the proximity of vertices 

in S and thus has a loose approximation. Based on this, the 

authors further propose an iterative NEB-based algorithm, 

namely IEB. They show that this new approximate algorithm 

IEB can achieve a 2-factor approximate guarantee.

In the literature, many other spatial keyword queries on 

road networks are investigated, such as reverse spatial key-

word query [26, 105], why-not questions query [104], and 

diversified geo-social keyword query [106].

6.3  Keyword Routing on Road Networks

In a road network, a route is a path such that it goes through 

a sequence of vertices following the relevant edges in the 

road network. In [8], an optimal route is defined based on 

two attributes on each edge (vi, vj) , namely (i) the objective 

value of this edge, which is denoted by o(vi, vj) (e.g., the 

popularity), and (ii) the budget value of this edge, which is 

denoted by b(vi, vj) (e.g., the travel time).

Definition 12 (Objective Score and Budget Score) Given a 

route R = ⟨v0, v1,… , v
n
⟩ , the objective score of R is defined 

as the sum of the objective values of all edges in R:

and the budget score is defined as the sum of the budget 

values of all the edges in R:

(8)f (S) = � × max
v∈S

����(q, v) + (1 − �) × max
v1,v2∈S

����(v1, v2)

(9)��(R) =

n
∑

i=1

o(v
i−1, v

i
)

(10)��(R) =

n
∑

i=1

b(v
i−1, v

i
)

Problem  12 (��� ) Given a road network G, the key-

word-aware optimal route query Q = (vs, vt,� , �) , where 

v
s
 and v

t
 are the source and target locations, respectively, 

� = {w1, w2,… , w
l
} is a set of keywords, and � specifies the 

budget limit, aims to find the route R starting from v
s
 and 

ending at v
t
 such that 

1. vertices in R collectively cover all keywords in �;

2. ��(R) ≤ �;

3. R = arg min
R
��(R).

Cao et al. [8] show that Problem 12 is NP-hard. There-

fore, the authors resort to approximate solutions. In specific, 

an approximation algorithm called ��������� is proposed. In 

��������� , we first scale the objective value of every edge to 

an integer by a parameter � to obtain a scaled graph denoted 

by G
�
.

Specifically, in the scaled graph G
�
 , each partial route is 

represented by a “label”, which records the query keywords 

already covered by the partial route, the scaled objective 

score, the original objective score, and the budget score of 

the route. At each node, we maintain a list of “useful” labels 

corresponding to the routes that go to that node. Starting 

from the source node, we keep creating new partial routes 

by extending the current “best” partial route to generate 

new labels, until all the potentially useful labels on the tar-

get node are generated. Finally, the route represented by 

the label with the best objective score at the target node is 

returned.

The authors prove that ��������� returns routes with 

objective scores no worse than 
1

1 − �

 times of that of the 

optimal route. To improve the performance of ��������� , 

the authors further propose an approximate algorithm, 

namely ����������� , which not only returns better approxi-

mate guarantees, but is more efficient than ���������.

In the literature, a string of other keyword-aware routing 

problems are studied [37, 38, 50, 87, 97, 108]. All these 

works aim at finding optimal routes by considering keywords 

and other application-specified constraints at the same time.

7  Related Work

In this section, we briefly review related studies, including 

query interpretation-oriented keyword search, community 

search on attributed graphs, team formation in social net-

works, spatial keyword search, and keyword-based similarity 

query.
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7.1  Query Interpretation‑Oriented Keyword Search

Query interpretation-oriented keyword search is an orthog-

onal task to the studies reviewed in previous sections. In 

general, the aim of query interpretation is to first transform 

the keyword search into a structured query pattern and then 

execute the query using underlying engine of the graph to 

retrieve answers. Methods based on query interpretation usu-

ally consider the query keyword sequence entered by the 

user as a query intent. Besides, most of the studies focus 

on the RDF data or knowledge base as graph data. Some 

representative works [25, 28, 36, 77, 78, 82, 94, 112] can be 

found in the literature.

7.2  Community Search on Attributed Graphs

Recently, community search on attributed graphs has 

attracted a lot of research efforts [22, 43, 64, 65]. In an 

attributed graph, nodes may contain a set of attributes which 

capture theirs properties. Take the collaboration network for 

example, node attributes (e.g., DB, ML) represent authors’ 

topics of expertise. Community search on such attributed 

graphs often tend to be more complicated than keyword 

search, since it takes more factors into consideration, such 

as participation of query nodes, cohesiveness of candidate 

subgraph, attribute coverage and correlation and communi-

cation cost.

7.3  Team Formation in Social Networks

Another related problem to graph keyword search is team 

formation in expert networks, introduced by  [58]. Each 

expert possesses a set of skills, and experts are connected to 

each other based on their past experience. Given a network 

of experts, and a set of required skills to complete a pro-

ject, the goal is to find a subgraph of this network in which 

members of the subgraph collectively cover all the required 

skills. To rank a subgraph, objective functions that favor 

connectedness and minimize communication cost are uti-

lized. The original team formation problem is similar to the 

graph keyword search problem, meaning that the solutions 

to the latter problem can be directly applied to the former 

problem. However, due to the nature of expert networks and 

special circumstances, a variety of methods were proposed 

over the last decade to address different requirements [53, 

68, 85, 98].

7.4  Spatial Keyword Search

A parallel problem to graph keyword search is spatial key-

word search, which have been extensively studied in the 

past two decades. Given a query q with a set of keywords 

and a location, the related spatial keyword queries can be 

roughly divided into two categories, namely soft cover and 

hard cover. For soft cover, we do not require that the answer 

covers all query keywords. A hybrid way, which uses a 

parameter � to trade off the balance between text relevancy 

and location proximity, is adopted to evaluate the quality of 

a candidate result. Representative studies in this category 

include [15, 74, 88, 103]. For hard cover, an answer must 

cover all query keywords. Representative studies in this 

category include [12, 23, 33, 93, 100, 101]. For a detailed 

survey of spatial keyword search, please refer to the recent 

survey paper [11].

7.5  Keyword‑Based Similarity Join

Given a collection of records, each of which consists a set 

of keywords, keyword-based similarity join aims to retrieve 

the similar records. This problem can be divided into two 

groups, namely set similarity join and set containment join, 

according to the specific similarity definition. In the litera-

ture, both types of problem have been extensively studied. 

In particular, set similarity join [4, 17, 18, 24, 69, 84, 86, 89, 

90] aims to find the record pair with a similarity score (i.e., 

Jaccard similarity) no smaller than a user-given threshold, 

while set containment join [6, 57, 67, 91, 92] retrieves record 

pairs such that keywords in one record are all contained in 

the other.

8  Future Research

There are many remaining challenges in the area of keyword 

search on graphs. In this section, we point out a list of prom-

ising future research directions as follows.

8.1  Other Types of Graphs

In recent years, many novel graph models have been pro-

posed and the representative ones are as follows:

• Knowledge graph [46, 79]. Given a knowledge graph 

G, it is usually accompanied with an ontology graph G , 

which encodes the ontology information, such as infor-

mation of properties, classes, and their super classes. 

These ontology information can substantially improve 

the performance of keyword search algorithm on these 

knowledge graphs, in terms of both efficiency and effec-

tiveness.

• Public–private network  [47, 81]. In a public–private 

network, there is a public graph G, containing a set of 

vertices and a set of edges that are visible to all users. 

Besides, each vertex u has its private network G
u
 , which 
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is only known to u. Keyword search on such public–pri-

vate networks must combine both public and private net-

works.

• Uncertain graph [40]. In many real applications (e.g., 

biology), the graph data are often noisy and inaccurate. 

An common way is to model them as uncertain graphs, 

where each edge is associated with a value denoting its 

existence probability. Thus, keyword search on such 

uncertain graph needs to consider existence probability 

of an answer.

8.2  Utilizing Graph Embedding

In recent years, graph embedding (also known as network 

representation learning) [32, 35] is one of the most success-

ful techniques in the area of machine learning and data min-

ing. Given a graph, graph embedding aims to map each node 

as a dense vector embedding in a low-dimensional Euclidean 

space. These node embeddings can then be fed to down-

stream machine learning systems and aid in tasks such as 

node classification, clustering, and link prediction.

Although graph embedding has proved extremely useful 

for a wide variety of prediction and graph analysis tasks, we 

do not notice any existing works on using it to solve keyword 

search problem. This is because graph embedding is gener-

ally to encode graph structure information into node embed-

dings, and they can be used as node features to aid learning 

tasks. However, keyword search usually targets to find a set 

of nodes in the graph to match the keywords, which is more 

a search task. Thus, it is not natural to direct use the node 

embeddings in keyword search.

A possible way to combine graph embedding and key-

word search is to develop novel problem semantics. For 

example, apart from the keywords, we also consider the 

similarity of nodes in the query answer. That is the nodes in 

an answer should be similar to each other in terms of their 

embeddings, rather than the network distances.

8.3  Real Big Graphs

Most existing graph keyword search studies assume that the 

graphs can fit the main memory of a single machine, only a 

few of them consider external memory oriented [16] or I/O-

efficient techniques [113]. However, in many real applica-

tions (e.g., Facebook), the graphs might contain billions of 

vertices and edges. As a result, how to efficiently perform 

online keyword search on such big graphs is a challeng-

ing task. To deal with such big graphs, a possible research 

direction is to utilize distributed computation platforms (e.g., 

GraphX [31]) or GPU systems [45].

9  Conclusion

In this paper, we conduct a comprehensive survey on the 

topic of keyword search over large graphs. We systemati-

cally review about 30 research articles, which covers all 

representative studies in the field of keyword search over 

graphs. Particularly, we classify these studies according to 

the answer ranking models, including tree-based keyword 

search, nearest neighbor-based keyword search, subgraph-

based keyword search, and other semantics-based keyword 

search. For each class of works, we first give the formal 

definition for the research problem and then review the 

representative studies. In summary, our survey provides an 

overview of the state-of-the-art research advances on the 

topic of graph keyword search.
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