
 Open access Proceedings Article DOI:10.1109/ICDE.2002.994756

Keyword searching and browsing in databases using BANKS — Source link

G. Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti ...+1 more authors

Institutions: Indian Institute of Technology Bombay

Published on: 26 Feb 2002 - International Conference on Data Engineering

Topics: Query language, Web search query, Web query classification, Query expansion and Query optimization

Related papers:

 Discover: keyword search in relational databases

 DBXplorer: a system for keyword-based search over relational databases

 Bidirectional expansion for keyword search on graph databases

 Efficient IR-style keyword search over relational databases

 BLINKS: ranked keyword searches on graphs

Share this paper:

View more about this paper here: https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-
3ktuauorb3

https://typeset.io/
https://www.doi.org/10.1109/ICDE.2002.994756
https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3
https://typeset.io/authors/g-bhalotia-37j9ppjujj
https://typeset.io/authors/arvind-hulgeri-23m51ygdyc
https://typeset.io/authors/charuta-nakhe-2j0d5mt9hw
https://typeset.io/authors/soumen-chakrabarti-2pfs8tgwtx
https://typeset.io/institutions/indian-institute-of-technology-bombay-4kw03i7u
https://typeset.io/conferences/international-conference-on-data-engineering-12yajil8
https://typeset.io/topics/query-language-3dnadtki
https://typeset.io/topics/web-search-query-11y8p4cl
https://typeset.io/topics/web-query-classification-3gqmtdst
https://typeset.io/topics/query-expansion-1nixw83r
https://typeset.io/topics/query-optimization-2xo9scn4
https://typeset.io/papers/discover-keyword-search-in-relational-databases-33fmpg1hdg
https://typeset.io/papers/dbxplorer-a-system-for-keyword-based-search-over-relational-362ny4yf0q
https://typeset.io/papers/bidirectional-expansion-for-keyword-search-on-graph-4mset2te7l
https://typeset.io/papers/efficient-ir-style-keyword-search-over-relational-databases-1ofo0w5wq1
https://typeset.io/papers/blinks-ranked-keyword-searches-on-graphs-33b9a6yo6q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3
https://twitter.com/intent/tweet?text=Keyword%20searching%20and%20browsing%20in%20databases%20using%20BANKS&url=https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3
https://typeset.io/papers/keyword-searching-and-browsing-in-databases-using-banks-3ktuauorb3

Keyword Searching and Browsing in Databases using BANKS

Gaurav Bhalotia
�

Arvind Hulgeri
✁

Charuta Nakhe
✂

Soumen Chakrabarti

S. Sudarshan
✄

Computer Science and Engg. Dept., I.I.T. Bombay

bhalotia@cs.berkeley.edu, charuta@pspl.co.in,☎
aru,soumen,sudarsha ✆ @cse.iitb.ac.in

Abstract

With the growth of the Web, there has been a rapid

increase in the number of users who need to access on-

line databases without having a detailed knowledge of the

schema or of query languages; even relatively simple query

languages designed for non-experts are too complicated

for them. We describe BANKS, a system which enables

keyword-based search on relational databases, together

with data and schema browsing. BANKS enables users to

extract information in a simple manner without any knowl-

edge of the schema or any need for writing complex queries.

A user can get information by typing a few keywords, fol-

lowing hyperlinks, and interacting with controls on the dis-

played results.

BANKS models tuples as nodes in a graph, connected by

links induced by foreign key and other relationships. An-

swers to a query are modeled as rooted trees connecting tu-

ples that match individual keywords in the query. Answers

are ranked using a notion of proximity coupled with a notion

of prestige of nodes based on inlinks, similar to techniques

developed for Web search. We present an efficient heuristic

algorithm for finding and ranking query results.

1. Introduction

Relational databases are commonly searched using struc-

tured query languages. The user needs to know the data

schema to be able to ask suitable queries. Search engines on

the Web have popularized an alternative unstructured query-

ing and browsing paradigm that is simple and user-friendly.

Users type in keywords and follow hyperlinks to navigate

from one document to the other. No knowledge of schema

is needed.✝
Current affiliation: University of California, Berkeley✞
Supported by an Infosys Fellowship✟
Current affiliation: Persistent Systems Pvt. Ltd., Pune, India✠
Partly supported by an IBM Faculty Partnership Grant

With the growth of the World Wide Web, there has been

a rapid increase in the number of users who need to ac-

cess online databases without having a detailed knowledge

of schema or query languages; even relatively simple query

languages designed for non-experts are too complicated for

such users. Query languages for semi-structured/XML data

are even more complex, increasing the impedance mismatch

further.

Unfortunately, keyword search techniques used for lo-

cating information from collections of (Web) documents

cannot be used on data stored in databases. In relational

databases, information needed to answer a keyword query is

often split across the tables/tuples, due to normalization. As

an example consider a bibliographic database shown in Fig-

ure 1. This database contains paper titles, their authors and

citations extracted from the DBLP repository. The schema

is shown in Figure 1(A). Figure 1(B) shows a fragment of

the DBLP database. It depicts partial information—paper

title and authors—about a particular paper. As we can see,

the information is distributed across seven tuples related

through foreign key references. A user looking for this

paper may use queries like ”sunita temporal” or ”soumen

sunita”. In keyword based search, we need to identify tu-

ples containing the keywords and ascertain their proximity

through links.

Answers to keyword queries on the Web are often only

the starting point for further browsing to locate required

information. Similar browsing facilities are needed in the

context of searching for information from databases.

In this paper, we describe techniques for keyword

searching and browsing on databases that we have devel-

oped as part of the BANKS system (BANKS is an acronym

for Browsing ANd Keyword Searching). The BANKS

system enables data and schema browsing together with

keyword-based search for relational databases. BANKS en-

ables a user to get information by typing a few keywords,

following hyperlinks, and interacting with controls on the

displayed results; absolutely no query language or program-

Mining Surprising Patterns Using

Temporal Description Length

Cites

Citing

Cited

...

Paper

PaperId

PaperName

...

Writes

AuthorId

PaperId

...

Author

...
AuthorName

AuthorId

Foreign Key Primary Key

AuthorId

AuthorId

PaperId

AuthorName

ChakrabartiSD98 ...

...Byron DomByronDSunita SarawagiSunitaSSoumen ChakrabartiSoumenC

SoumenC ChakrabartiSD98 SunitaS ChakrabartiSD98 ByronD ChakrabartiSD98

Paper Tuple

Author Tuple Author Tuple Author Tuple

PaperId PaperName

Writes Tuple Writes TupleWrites Tuple

(A) The Schema

(B) A Fragment of the Database

Figure 1. The DBLP Bibliography Databases

ming is required.

The contributions of this paper are as follows:

1. We outline a framework for keyword querying of rela-

tional databases. Our framework makes joins implicit

and transparent, and incorporates notions of proximity

and prestige when ranking answers.

There has been a fair amount of earlier work on key-

word querying of databases, including [6, 7, 12, 13].

We describe the connections of the BANKS model to

related work on keyword search in Section 6.

2. We present novel, effi cient heuristic algorithms for ex-

ecuting keyword queries.

3. We describe key features of the BANKS system.

Keyword searching in BANKS is done using proximity

based ranking, based on foreign key links and other types of

links. We model the database as a graph, with the tuples as

nodes and cross references between them as edges. BANKS

allows query keywords to match data (tokens appearing in

any textual attribute), and meta data (e.g., column or rela-

tion name).

The greatest value of BANKS lies in near zero-effort

Web publishing of relational data which would otherwise

remain invisible to the Web [2]. BANKS may be used to

publish organizational data, bibliographic data, and elec-

tronic catalogs. Search facilities for such applications can

be hand crafted: many Web sites provide forms to carry out

limited types of queries on their backend databases. For

example, a university Web site may provide form interface

to search for faculty and students. Searching for depart-

ments would require yet another form, as would searching

for courses offered. Creating an interface for each such task

is laborious, and is also confusing to users since they must

fi rst expend effort fi nding which form to use.

An approach taken in some cases is to export data from

the database to Web pages, and then provide text search on

Web documents. This approach results in duplication of

data, with resultant problems of keeping the versions up-to-

date, in addition to space and time overheads. Further, with

highly connected data, it is not feasible to export every pos-

sible combination. For instance, a bibliographic database

can export details of each paper as a Web document, but a

query that requires fi nding a citation link between two pa-

pers would not be supported.

BANKS provides a rich interface to browse data, and

automatically generates hyperlinks, corresponding to for-

eign keys and other links, on displayed results. BANKS

helps create hierarchical and graphical views of data

with hyperlink facilities built in. The BANKS sys-

tem is developed in Java using servlets and JDBC,

and can be run on any schema without any program-

ming. BANKS is accessible over the Web at the URL:

http://www.cse.iitb.ac.in/banks/

The rest of the paper is organized as follows: Section 2

outlines our graph model for representing connectivity in-

formation, as well as our model for answer relevance. Sec-

tion 3 outlines an algorithm for incrementally fi nding the

best answers to keyword queries. We present an overview

of the browsing features of BANKS in Section 4. Section 5

outlines a preliminary evaluation of our system. We discuss

related work in Section 6. Section 7 outlines directions for

future work and Section 8 concludes the paper.

2. Database and Query Model

In this section we describe how a relational database is mod-

eled as a graph in the BANKS system. First we evaluate var-

ious options available and describe our model informally,

and then formalize it.

2.1. Informal Model Description

We model the database as a directed graph and each tuple

in the database as a node in the graph. Each foreign-key–

primary-key link is modeled as a directed edge between the

corresponding tuples. This can be easily extended to other

type of connections; for example, we can extend the model

to include edges corresponding to inclusion dependencies,

where the values in the referencing column of the referenc-

ing table are contained in the referred column of the referred

table but the referred column need not be a key of the re-

ferred table.

Intuitively, an answer to a query should be a subgraph

connecting nodes matching the keywords. Just by looking

at a subgraph it is not apparent as to what information it con-

veys. We wish to identify a node in the graph as a central

node that connects all the keyword nodes, and strongly re-

flects the relationship amongst them. We therefore consider

an answer to be a rooted directed tree containing a directed

path from the root to each keyword node. (The motivation

for directionality is outlined later in this section.) We call

the root node an information node and the tree a connection

tree. Conceptually this model is similar to the one described

in [13] although there are several differences which are de-

tailed in Section 6.

In general, the importance of a link depends upon the

type of the link i.e. what relations it connects and on its

semantics; for example, in the bibliographic database, the

link between the Paper table and the Writes table is seen as

a stronger link than the link between the Paper table and the

Cites table. The link between Paper and Cites tables would

have a higher weight. The weight of a tree is proportional

to the total of its edge weights, and the relevance of a tree is

inversely related to its weight.

The example in Figure 1 illustrates that some links point

towards the root of the tree, instead of away from the root as

required by our model. For instance, the Writes relation has

foreign keys to the Paper and Author relations, whereas we

require paths from Paper to Author, traversing a foreign key

edge in the opposite direction. However, we cannot simply

regard the edges as undirected.

Ignoring directionality would cause problems because of

“hubs” which are connected to a large numbers of nodes.

For example, in a university database a department with a

large number of faculty and students would act as a hub. As

a result, many nodes would be within a short distance of

many other nodes, reducing the effectiveness of proximity-

based scoring.

To solve the problem, we create for each link/edge �✂✁☎✄✝✆✟✞
a backward edge �✂✆✠✄✝✁✡✞ with a different edge weight; we

model the weight of �☛✆☞✄✌✁✍✞ as directly proportional to num-

ber of links to ✆ from the nodes of the same type as ✁ .

(Equations for computing the weights are presented in Sec-

tion 2.2.) In the example from Figure 1, the backward edges

ensure that there is a directed tree rooted at the paper, with

a path to each leaf. To illustrate the effect of backward edge

weights, let us return to the university department exam-

ple. A forward edge from a student to her department and

a back edge from the department to another student would

form a path between each pair of students in the department.

If there are more students in a department, the back edges

would be assigned a higher weight, resulting in lower prox-

imity (due to the department) for each pair of students, than

if there are fewer students registered. In contrast, in the bib-

liographic database, papers (typically) have smaller num-

bers of authors, and the backward edge weights from Paper

to Writes nodes would be less resulting in higher proximity

between co-authors.

We may restrict the information node to be from a se-

lected set of nodes of the graph; for example, we may ex-

clude the nodes corresponding to the tuples from a specifi ed

set of relations, such as Writes, which we believe are not

meaningful root nodes (this is similar to the scheme in [13]).

In the example from Figure 1(B), let the keyword nodes be

SunitaS, SoumenC and ByronD. These nodes, which are au-

thor nodes, have a relationship induced due to paper node

ChakrabartiSD98. The tree shown in Figure 1(B) (with

backward edges from the Paper node to the Writes nodes)

would be a connection tree for the keyword nodes, with the

paper node as the information node.

We incorporate another interesting feature, namely node

weights, inspired by prestige rankings such as PageRank

in Google [4]. With this feature, nodes that have multi-

ple pointers to them get a higher prestige. In our current

implementation we set the node prestige to the indegree of

the node. Higher node weight corresponds to higher pres-

tige. E.g., in a bibliography database containing citation

information, if the user gives a query Query Optimization

our technique would give higher prestige to the papers with

more citations. As another example, in a TPCD database

storing information about parts, suppliers, customers and

orders, the orders information contains references to parts,

suppliers and customers. As a result, if a query matches two

parts (or suppliers, or customers) the one with more orders

would get a higher prestige.

Node weights and tree weights need to be combined to

get an overall relevance score as discussed in Section 2.3.

2.2. Formal Database Model

Based on the discussion thus far, our model comprises

nodes with node weight and edges with forward and back-

ward edge weights, and a similarity measure between rela-

tions.

Nodes/vertices: For each tuple � in the database, the

graph has a corresponding node ✁✂✁ . We will speak inter-

changeably of a tuple and the corresponding node in the

graph.

Node weights: Each node ✁ in the graph is assigned a

weight ✄ �✂✁✡✞ which depends upon the prestige of the node.

In our current implementation we set the node prestige to a

function of the indegree of the node. Extensions to handle

transfer of prestige (as is done, e.g., in Google’s PageRank

[4]) can be easily added to the model.

Edges: For each pair of tuples �✆☎ and �✞✝ such that there

is a foreign key from �✆☎ to �✞✝ , the graph contains an edge

from ✁ ✁✠✟ to ✁ ✁☛✡ and a back edge from ✁ ✁☛✡ to ✁ ✁☞✟ (this can

be extended to handle other types of connections).

Similarity between relations: Let ✌ �✎✍✏☎ ✄✑✍✒✝ ✞ be the (gen-

erally asymmetric) similarity from relation ✍✏☎ to relation

✍✓✝ where ✍✔☎ is the referencing relation and ✍✕✝ is the refer-

enced relation. The similarity ✌ �✎✍✏☎ ✄✑✍✒✝ ✞ depends upon the

type of the link from relation ✍✔☎ to relation ✍✒✝ . ✌ �✎✍✔☎ ✄✖✍✓✝ ✞
is set to infi nity if relation ✍ ☎ doesn’t refer to relation ✍ ✝ .
Edge weights: In our model, the weight of a forward link

along a foreign key relationship reflects the strength of the

proximity relationship between two tuples and is set to 1

by default. It can be set to any desired value to reflect the

importance of the link (small values correspond to greater

proximity).

Consider two nodes ✁ and ✆ in the database. Let ✍ �✂✁✡✞
and ✍ �✂✆✟✞ be the respective relations that they belong to.

The weight of the directed edge �☛✁ ✄✌✆ ✞ depends on two con-

ditions: whether the database has a link from ✁ to ✆ , and

whether it has a link from ✆ to ✁ . Neither, one or both links

may exist.

If �✂✁☎✄✝✆✟✞ exists but �✂✆✠✄✝✁✡✞ does not, we can simply as-

sign the weight ✌ �✗✍ �✂✁✡✞ ✄✑✍ �☛✆ ✞✌✞ to �✂✁☎✄✝✆✟✞ . If �☛✁ ✄✌✆ ✞ does not

exist and �✂✆✠✄✝✁✡✞ does, according to our earlier arguments,

we ought to assign weight ✘✙✄✛✚ �✂✁✡✞✜✌ �✎✍ �✂✆✟✞ ✄✖✍ �✂✁✡✞✝✞ to �✂✁☎✄✝✆✟✞ ,
where ✘✢✄ ✚ �✂✁✡✞ is the indegree of ✁ contributed by the tuples

belonging to relation ✍ �✂✆✟✞ .
If both �✂✁☎✄✝✆✟✞ and �☛✆☞✄✌✁✍✞ exist in the graph, we assign the

weight ✣ �✂✁☎✄✝✆✟✞ as the minimum of the two values, i.e.,

✤✦✥★✧✪✩ ✌ �✎✍ �☛✁✍✞ ✄✑✍ �✂✆✟✞✝✞ ✄✑✘✢✄ ✚ �✂✁✡✞✜✌ �✎✍ �☛✆ ✞ ✄✑✍ �✂✁✡✞✝✞✬✫✙✭ (1)

Other choices are possible. For instance, if one were to view

the two weights as resistances in an electrical network, one

may use the equivalent parallel resistance.

2.3. Query and Answer Model

Generally, a query consists of ✮ ✯ ✰ search terms✱ ☎ ✄ ✱ ✝ ✄✲✭☛✭✲✭ ✄ ✱✴✳ . The fi rst step is to locate nodes matching

search terms. A node is relevant to a search term if it con-

tains the search term as part of an attribute value or metadata

(such as column, table or view names). E.g., all tuples be-

longing to a relation named AUTHOR would be regarded as

relevant to the keyword ‘author’. For each search term
✱✖✵

in

the query we fi nd the set of nodes ✶ ✵ that are relevant to
✱✷✵

.

Let ✶✹✸ �✺✶ ☎ ✄✻✶ ✝ ✄✻✶✪✼ ✄☛✭✲✭☛✭ ✄✖✶ ✳ ✞ .
Extensions of the model to incorporate queries such as

“author:Levy” which would require the keyword “Levy” to

be in an author name attribute, can be easily incorporated.

Approximate matching of keywords to words present in tu-

ples can also be supported, by extending the model to in-

corporate node relevances. These features are not currently

implemented in our prototype, and we omit further details.

An answer to a query is a rooted directed tree contain-

ing at least one node from each ✶ ✵ . Note that the tree may

also contain nodes not in any ✶ ✵ and is therefore a Steiner

tree. The relevance score of an answer tree is computed

from the relevance scores of its nodes and its edge weights.

(The condition that one node from each ✶ ✵ must be present

can be relaxed to allow answers containing only some of the

given keywords.)

Figure 2 shows a sample result of a query containing

the keywords soumen and sunita executed on the biblio-

graphic database. Each result is a tree containing node tu-

ples (including intermediate nodes) along with the resp. ta-

ble names and column names. Indentation is used to depict

the tree structure, and nodes containing keywords are distin-

guished from intermediate nodes by the color of the nodes.

Each answer tree has to be assigned a relevance score,

and answers have to be presented in decreasing order of that

score. Scoring involves a combination of relevance clues

from nodes and edges. Node weights and edge weights pro-

vide two separate measures of relevance. We desire a fi nal

relevance score in the range [0,1]. We also wish to control

the variation in individual weights so that a few nodes or

edges with very large weights do not skew the results ex-

cessively. We therefore take the following approach.

✽ We scale individual node weights to ✄✿✾❁❀✑❂ , the max-

imum node weight in the graph. We can addition-

ally depress the scale using logarithms (as with ‘IDF’

weighting in Information Retrieval); accordingly, the

normalized score ✄❃✌☞❄❆❅✠❇❉❈ �✂✆✟✞ of a node ✆ is defi ned

as ✄ �✂✆✟✞✑❊❆✄ ✾❁❀✑❂ or ❋★●■❍✍�✴✰❑❏▲✄ �✂✆✟✞✑❊✬✄ ✾❁❀✑❂ ✞ respectively.

These are both scale-free quantities in ▼ ◆ ✄✲✰❆❖ (if log is

to base 2).

Figure 2. Result of query “soumen sunita”

To get the overall node score ✄❃✌☞❄❆❅✠❇❉❈ , we take the av-

erage of the node scores. To favor meaningful root

nodes, and to reduce the effect of intermediate nodes,

we consider only leaf nodes (containing the keywords)

and the root node when computing the average. A node

containing multiple search terms is counted as many

times as the number of search terms it contains, to

avoid giving extra weight to trees with separate nodes

for each keyword.

✽ We get the normalized edge score � ✌☞❄❆❅✠❇❉❈ �✎❈ ✞ of an

edge by dividing the edge weight by ✣❑✾✂✁ ✄ , the mini-

mum edge weight in the graph, to make it scale-free,

and may additionally depress the scale by defi ning the

edge score of ❈ as ❋★●■❍✍�✴✰ ❏ ✣ �✗❈ ✞✖❊✠✣✆☎ ✵ ✳ ✞ .
The overall edge score is then defi ned to be � ✌☞❄❆❅✠❇❉❈✔✸
✰✠❊ �✴✰ ❏✞✝✠✟✡� ✌☞❄❆❅✠❇❉❈ �✎❈ ✞✌✞ , since we wish to give lower

relevance to large trees. This quantity is also in the

range ▼ ◆ ✄☛✰❆❖ .
✽ Finally, we can combine the overall edge score and

node score, to get an overall relevance score, either by

addition or by multiplication; in both cases, a factor ☛
controlling their relative weightage. The additive com-

bination uses the formula �✷✰✌☞✍☛✠✞✎� ✌☞❄❆❅✠❇❉❈ ❏✏☛✆✄❃✌☞❄❆❅✠❇❉❈ ,

while the multiplicative combination uses the formula

� ✌☞❄❆❅✠❇❉❈✒✑ ✄ ✌☛❄✲❅✠❇✠❈✔✓ .
There are a total of eight combinations, since we have

three options (for edge score, node score and combination)

each of which can take two values. In our evaluation we

discarded three combinations: those that involve log scaling

and multiplication as these scores tended to become quite

small, and compared the remaining combinations.

While inspired by standard IR weighting and smoothing

practice, the choices and parameters above are somewhat

ad-hoc, but this appears to be inescapable in all related sys-

tems that we have reviewed [7, 17].

3. Searching for the Best Answers

The computation of minimum Steiner trees is already a hard

(NP complete) problem, and is made complicated by node

weight considerations, required to compute the overall rel-

evance of a tree. We are interested in not just the most rele-

vant tree, but also in other trees with high relevance scores,

since they may be part of what the user is searching for. We

also wish to generate answers incrementally to avoid gener-

ating answers of low relevance that the user may never look

at.

In this section, we present an outline of the backward

expanding search algorithm which offers a heuristic solu-

tion for incrementally computing query results. Complete

details can be found in the full version of the paper [3].

We assume that the graph fi ts in memory. This is not

unreasonable, even for moderately large databases, because

the in-memory node representation need not store any at-

tribute of the corresponding tuple other than the RID. The

only other in-memory structure is an index to map RIDs to

the graph nodes. Indices to map keywords to RIDs can be

disk resident. As a result the graphs of even large databases

with millions of nodes and edges can fi t in modest amounts

of memory.

Given a set of keywords, fi rst we fi nd, for each keyword

term
✱ ✵

, the set of nodes, ✶ ✵ , that are relevant to the keyword

by using disk resident indices on keywords.

Let ✕ ✸✗✖❁✶ ✵ . The backward expanding search al-

gorithm concurrently runs ✘ ✕✙✘ copies of Dijkstra’s single

source shortest path algorithm, one for each keyword node

✮ in ✕ , with ✮ as the source. The copies of the algorithm

Global: #Keywords = n; Keywords: �✂✁☎✄✂✆✝✁✟✞✠✆☎✡✂✡✂✡✂✆✝✁☞☛✍✌ ,
Keyword node sets: �✏✎✑✄✒✆✟✎✓✞✏✆✂✡☎✡✂✡✂✆✔✎✕☛✖✌ , ✗✙✘✛✚✜✎✕✢
IteratorHeap = ✣ ; OutputHeap = ✣
For each keyword node, ✤✦✥✧✗

Create a single source shorest path iterator with ✤
as the source and put it in IteratorHeap

ordered on the distance of the first node it will output

while IteratorHeap is not empty and more results required

Iterator = remove top iterator from IteratorHeap★ = Get next node from Iterator

If Iterator has more nodes to output

Insert Iterator again in IteratorHeap ordered on

the distance of the next node it will output

if ★ is not visited before by any iterator then

for i = 1 to n: Create ★ ✡ ✩ ✢ and set ★ ✡ ✩ ✢ ✘✪✣
CrossProduct = origin ✫✭✬ ✢✯✮✰✲✱ ★ ✡ ✩ ✱
where origin is the origin of Iterator and origin ✥✦✎ ✢
/* CrossProduct is empty if any ★ ✡ ✩ ✱ is empty */

Insert origin in ★ ✡ ✩ ✢
for each tuple ✥ CrossProduct

create ResultTree from tuple

/* ResultTree is rooted at ★ and contains a path

from ★ to each origin node in ✁☞✳✵✴✍✶✸✷ */

if root of ResultTree has only one child

continue /* duplicate result */

if OutputHeap is full

Output and remove top result from OutputHeap

Insert ResultTree into OutputHeap

ordered by its relevance score

Figure 3. Backward Expanding Search

are run concurrently by creating an iterator interface to the

shortest path algorithm, and creating an instance of the iter-

ator for each keyword node.

Each copy of the single source shortest path algorithm

traverses the graph edges in reverse direction. The idea is

to fi nd a common vertex from which a forward path exists

to at least one node in each set ✶ ✵ . Such paths will defi ne a

rooted directed tree with the common vertex as the root and

the corresponding keyword nodes as the leaves. The tree

thus formed is a connection tree and root of the tree is the

information node.

In the example from Figure 1(B), let the keyword nodes

be SunitaS, SoumenC and ByronD. The algorithm will have

three shortest path iterators one starting from each keyword

node. All the iterators will visit paper node Chakrabar-

tiSD98. Thus, the algorithm generates a connection tree

rooted at the paper node (the information node in the tree)

with the keyword nodes as the leaf nodes. The tree shown

in Figure 1(B) is the connection tree with all edges directed

away from the paper node. (Note that each edge in the fi g-

ure has a corresponding opposite edge in the graph but is

not shown.) Note, that the algorithm may generate more re-

sults as it may detect other information nodes, e.g., if the

authors have coauthored more than one paper.

Figure 3 shows (high-level) pseudocode for the back-

ward expanding search algorithm. In each iteration, the al-

gorithm picks an iterator whose next vertex to be output is at

the least distance from the source vertex of the iterator. (The

distance measure can be extended to include node weights

of nodes matching keywords.)

To fi nd information nodes and the corresponding con-

nection trees incrementally, within each vertex (visited by

any iterator), say ✆ , we maintain a nodelist ✆✆✭ ✹ ✵ for each

search term
✱ ✵

. ✆ ✭ ✹ ✵✻✺ ✶ ✵ and is empty initially. Consider

an iterator started from a keyword node, say ✁✽✼ ✶ ✵ , vis-

iting node ✆ . Some other iterators might have already vis-

ited node ✆ and the keyword nodes corresponding to those

iterators are already in resp. ✆ ✭ ✹ ✵ ’s. All possible connec-

tion trees rooted at node ✆ and containing keyword nodes

from ✆ ✭ ✹ ✵ ’s are already generated. Thus we need to gener-

ate the new connection trees containing node ✁ . We gener-

ate a cross product of node ✁ with the rest of the nodelists✩ ✁✿✾ ✬ ✵✝❀❁❃❂ ✆✆✭ ✹ ✵ ✫ and each cross product tuple corresponds

to a connection tree rooted at node ✆ . Trees whose root has

only one child are discarded, since the tree formed by re-

moving the root node would also have been generated, and

would be a better answer.1 After generating all connection

trees, we insert node ✁ in list ✆ ✭ ✹ ✵ .
The connection trees generated by the algorithm are

only approximately sorted in the increasing order of their

weights. (The weight of a tree is the sum of the weights

of the edges.) The relevance of a tree is computed using

the tree weight and the node weights as discussed in Sec-

tion 2.3. Currently, node weights are not considered while

generating the connection trees. As a result, trees may not

be generated in exact decreasing relevance order.

We could generate all connection trees and then sort

them in decreasing relevance order, but this would increase

computation costs and leads to a greatly increased time

to generate initial results. To avoid these overheads, as a

heuristic, we maintain a small fi xed-size heap of generated

connection trees. The heap is ordered on the relevance of

the trees. We keep adding trees to the heap as they are gen-

erated, without outputing them. When the heap is full, and

we want to add a new tree, we output the tree of highest

relevance and replace it in the heap. When all answers have

been generated, the remaining trees in the heap are output in

decreasing order of relevance. While this heuristic does not

guarantee that the trees are generated in decreasing order,

we have found it works well even with a reasonably small

heap size.

The algorithm may generate trees that are isomorphic

1Generally the smaller tree would have higher relevance, although if

the root of the larger tree has a higher node weight it is possible for the

larger tree to have higher relevance.

modulo direction; that is, their undrected versions are same.

We call such trees as duplicate trees. They represent the

same result, except with different information nodes. We re-

tain only the one with the highest relevance and discard the

rest. We mainatin a list of all the results generated so far to

allow duplicate detection. When a new result is generated,

if a duplicate is in the heap, and its relevance is smaller than

the that of the new result, we remove the duplicate from the

heap and insert the new result into the heap. This can hap-

pen since results are not necessarily generated in decreasing

order of relevance. In fact, a duplicate of the result might

have already been output; in that case we discard the new

result even if its relevance is higher that a duplicate that was

output earlier.

4. Browsing

The BANKS system provides a rich interface to browse data

stored in a relational database. The browsing system auto-

matically generates browsable views of database relations

and query results; no content programming or user inter-

vention is required.

Every displayed foreign key attribute value becomes a

hyperlink to the referenced tuple. In addition, primary key

columns can be browsed backwards, to fi nd referencing tu-

ples, organized by referencing relations (a specifi c referenc-

ing relation can be selected by the user).

Each table displayed comes with a variety of tools for

interacting with data.

✽
Columns can be projected away (dropped)

✽ Selections can be imposed on any column

✽ For foreign key columns, clicking on “join” results in

the referenced table being joined in, and its columns

also displayed. This eliminates the need for explicitly

writing join queries for the normal case of foreign key

join. The join feature can also be used in the other

direction, from a primary key to a referencing foreign

key.

✽
Results can be grouped-by on a column; this results

in only the distinct values for that column being dis-

played. The user can click on any of the values to see

the tuples associated with that value.

✽
Tuples in the displayed table can be sorted by a speci-

fi ed column

Controls for these operations can be accessed by clicking on

the column names in the table header. In addition, displayed

data is paginated, and schema browsing is supported.

Figure 4 shows the result of browsing the thesis database

starting with the student relation, using a pop-up menu on

the roll number attribute to effect a join with the thesis re-

lation and dropping columns. The join is made possible

Figure 4. Sample browsing session.

since the thesis relation has a foreign-key attribute referenc-

ing the student relation. A sample pop-up menu is shown

for the femail attribute which references the faculty table.

Underlined attribute values are hyperlinks.

BANKS templates provide several predefi ned ways of

displaying any data. Template instances are customized,

stored in the database, and given a hyperlink name, which is

used to access the template. The BANKS system currently

provides four types of templates:

✽
Cross-tabs (similar to OLAP cross-tabs).

✽
The group by template provides for hierarchical view

of data, by specifying a sequence of grouping at-

tributes. For example, grouping a student relation by

department and program attributes initially displays all

departments; clicking on a department shows all pro-

grams in the department, and clicking on a program

then shows all students in that program in the selected

department.

✽
Folder views are similar to grouping, but are modeled

after the folder view of fi les and directories supported

in many environments such as Windows Explorer.

✽
The graphical interface template permits information

to be displayed in bar chart, line chart or pie chart for-

mat. Hyperlinks are provided on the graphical data via

HTML image maps; clicking on a bar of a bar chart, or

a slice of a pie chart shows tuples with the associated

value.

Another interesting feature of templates is that they can be

composed together in a hyperlinked, visual manner. The

action associated with a hyperlink may be scripted to take

the user to another template, instead of showing the detailed

tuples.

5. Experience and Performance

We have implemented BANKS using servlets, with JDBC

connections to an IBM Universal Database. We have ex-

perimented with two datasets. The fi rst dataset contained a

part of the DBLP information, represented in structured re-

lational format. There are about 100000 nodes and 300000

edges in the resultant BANKS graph. The other dataset

had information about Masters and Phd dissertations in IIT

Bombay, and its graph had thousands of nodes and tens of

thousands of edges.

There are no agreed-upon benchmarks for evaluating

ranking algorithms in this domain. To work around this,

we selected data sets that we as academics and database re-

searchers can relate to, and picked queries that illustrated

different ways of querying this information (e.g. keywords

from two authors who are coauthors, authors who have a

common coauthor, an author and a title, keywords from ti-

tles alone, and so on). Across all the queries (with proper

parameter settings, discussed later) we found the system re-

turning the most intuitive answers ahead of less intuitive

ones in almost all cases.

5.1. Anecdotes

We give a few examples of queries and the answers returned

by BANKS. For the query “Mohan” on the DBLP database,

C. Mohan came out at the top of the ranking, with Mohan

Ahuja and Mohan Kamat following. This was due to the

prestige conferred by the writes relation which had many

tuples for these authors. The query “transaction” returned

Jim Gray’s classic paper and the book by Gray and Reuter

as the top two answers.

As another example, on the thesis database, the query

“computer engineering” returned the Computer Science and

Engineering department with a higher relevance than a

number of thesis that had these two words in their title, since

the larger number of references to the department gave it a

higher node weight. The query “sudarshan aditya” returned

a thesis written by Aditya whose advisor is Sudarshan.

On the DBLP database, the query “soumen sunita” re-

turned the answer shown in Figure 2. The query “seltzer

sunita” returned Stonebraker as the root, with connections

to Sunita and Seltzer through papers co-authored by Stone-

braker with each of them separately. Without log scaling on

edges, this answer got a lower rank than other less meaning-

ful answers with large trees, since the backward edge from

Stonebraker to the Writes tuples has a very high weight due

to the large number of papers written by Stonebraker.

5.2. Space and Time

For a bibliographic database with 100K nodes and 300K

edges, memory utilization was around 120 MB. Java imple-

mentations are notorious for wasting space. The graph cur-

0.00.20.50.81.0
0

1

0

2

4

6

8

10

12

14

16

Lambda
EdgeLog

S
c
a
le

d
E

rr
o
r

Figure 5. Error scores vs. parameter choices.

rently takes about 2 minutes to load initially, with almost all

the time spent in Java structure creation. We expect much

smaller memory utilization and loading/running time with a

properly tuned Java/C implementation.

Once the database graph is loaded, queries take about

a second to a few seconds for most queries on the biblio-

graphic database. Overall, even with a prototype which has

not been tuned carefully, it is feasible to use BANKS for

moderately large databases.

5.3 Effect of Parameters

Our performance evaluation was conducted using 7 differ-

ent queries whose form was outlined earlier. For each query

we chose answers that we felt were the most meaningful,

and we call these the ideal answers; there were an average

of 4 such answers per query. We ran our algorithm on each

query, with different combinations of the parameters (edge

and node scoring functions and score combination), stop-

ping at 10 answers. For each query, for each parameter set-

ting, we computed the absolute value of the rank difference

of the ideal answers with their rank in the answers for that

parameter setting. The sum of these rank differences gives

the raw error score for that parameter setting. We scaled the

scores to set the worst possible error score to 100. We con-

sidered answers to be the same if their trees were the same,

even if the roots were different. For answers that were miss-

ing at a parameter setting, the rank difference was assumed

to be 11 (one more than the number of answers examined).

Figure 5 shows error scores against ☛ and log-scaling

of edge weights (EdgeLog=1 represents log-scaling). The

following conclusions can be drawn from our performance

study.

✽
It was important to keep the effect of node ranking rel-

atively small, but non-zero. Setting ☛ to 0.2 with log

scaling of edge weights did best, with an error score

of ◆ ✭ ◆ , while setting ☛ to 0.5 with log scaling of edge

weights did almost as well with error scores of around

3. Setting ☛ to 1 (ignore edge weights) did the worst,

with error scores of around 15, followed by ☛ ✸ 0.8

and ☛ ✸ 0 (ignore node weights) with scores of be-

tween 8 and 12, with and without log scaling of edge

weights respectively.

Note that the absolute values of the error scores are

relatively small, even when we ignore edge weights.

This is because results are generated in increasing or-

der of edge weight and then sorted by relevance score

using a limited buffer, and our heuristic of discarding

trees where the root node has only one child eliminates

larger trees even if their root nodes have high node

weight.

✽
Reducing the edge weight range by log-scaling was

important, otherwise back edges from some popular

nodes had a high weight and resulted in some intu-

itively correct answers getting a very poor relevance

rank. With good settings for other parameters, using

log scores reduced the error score by around 5.

✽ The “mode” of score combination (addi-

tive/multiplicative) has almost no impact on the

ranking (and as a result on error scores), although the

absolute values of the relevance scores were different.

✽ For node weights, log scaling gave the same ranking

as no log scaling on our examples, although we can

construct scenarios where log scaling does better.

In conclusion, the rankings are relatively stable across

different choices of parameter values, but ☛ ✸ 0.2 coupled

with log scaling of edge weights does best.

6. Related Work

BANKS is closely related to the DataSpot system [6, 12,

13]. (Dataspot is now part of the Mercado software system.)

In particular, the model of query answers as rooted trees cor-

responds to the DataSpot model, where the roots are called

“fact nodes”. DataSpot also computes relevance scores

for trees, and returns trees of maximum relevance. How-

ever, the details of the underlying graph formalisms differ.

BANKS currently assumes a model where only those refer-

ences corresponding to equivalence edges in DataSpot are

explicitly represented. Since edges in our model can have

attributes such as type and weight, we can model contain-

ment (as in DataSpot and in nested XML) simply as edges

of a new type. (We are currently working on adding XML

support to BANKS.) The BANKS technique of assigning

weights to back edges based on indegree as well as its use

of node weights have no counterpart in DataSpot. The use

of node weights based on prestige has proved critical in Web

search, and our anecdotal evidence shows their importance

in the context of database search as well. BANKS also takes

the effect of metadata queries into account, which is not

made explicit in DataSpot.

The idea of proximity search in databases represented as

graphs was also proposed by Goldman et al. [7]. They sup-

port queries of form find object near object. They restrict

results to tuples from one relation near a set of keywords,

whereas we permit results to be structured as trees which

helps explain how we arrive at an answer. Unlike BANKS,

they do not consider node and edge weighting techniques.

EasyAsk (www.easyask.com) is another commer-

cial system that provides natural language search (includ-

ing keyword search) on data stored in relational databases.

EasyAsk does a variety of tasks such as approximate word

matching and natural language understanding. However,

details of how they handle keyword queries are not publicly

available.

Web search provides another natural application where

the best response may comprise a graph of connected pages

rather than a single page. Like us, Li et al. [9] couch this

problem in terms of Steiner trees. However, in their for-

mulation, the graphs are not directed, and they do not han-

dle queries that exploit meta-data. Proximity is the primary

concern in their setting, whereas BANKS combines prox-

imity with link-based prestige. Unlike BANKS, they do not

consider structured data sources such as databases.

Another system for keyword search and browsing of

databases is Mragyati, by Sarda and Jain [14]. Their im-

plementation does not handle paths of length greater than

two. Their ranking system can use user-specifi ed criteria,

but the default ranking system uses indegree, which is one

of many criteria in BANKS.

Miller et al. [10] describe a system for querying and

browsing of data stored in databases. They concentrate

on dynamically generating multiple hierarchical views for

users to drill down to fi nd required data. They allow selec-

tion predicates but do not consider keyword queries. Object

oriented database browsers such as OdeView [1] and Pesto

[5] provide navigation by clicking on object references, but

do not support keyword search. Our system also provides

more powerful browsing facilities. BBQ [11] presents an

interface for blended browsing and querying but querying

in BBQ requires the user to know the database schema.

Shneiderman et al. [15] [16] have developed systems to dis-

play chemical elements, search for homes or movies, and so

on, based on the concept of dynamic queries. Their systems

focus on graphical user interface and do not consider key-

word queries, unlike BANKS.

Hulgeri et al [8] provide a more detailed survey of related

work in this area; our graph model and query model are

presented in that paper, but many details of the model, and

details of query evaluation algorithms and browsing are new

to this paper.

7. Ongoing and Future Work

We are currently extending the BANKS system to han-

dle browsing and keyword searching of XML data. We

plan to implement attribute:keyword queries such

as author:Levy. We are investigating authority trans-

fer (a form of spreading activation), wherein nodes pointed

to by heavy nodes (perhaps via user feedback) become

heavier. We are considering implementing some form

of approximate matching, such as concurrency ap-

prox(1988) to look for papers about concurrency pub-

lished around 1988.

We also want to summarize the output, i.e., group the

output tuples into sets that have the same tree structure, and

allow the user to look for further answers with a particular

tree structure.

We are exploring support for external links, such as

HTML HREFs, to aid in browsing. Such support is par-

ticularly useful when integrating information from multiple

databases. Other planned system features include autho-

rization mechanisms to selectively expose data to different

users.

Query evaluation with keywords matching metadata can

be relatively slow, since a large number of tuples may be

defi ned to be relevant to the keyword. This problem also

arises with non-metadata keywords that match large number

of nodes. We are working on techniques to speed up such

queries by not performing backward search from large num-

bers of nodes, and instead searching forwards from proba-

ble information nodes corresponding to more selective key-

words.

8 Conclusions

We have developed BANKS, an integrated browsing and

keyword querying system for relational databases. BANKS

allows users with no knowledge of database systems or

schema to query and browse relational database with ease.

BANKS greatly reduces the effort involved in publishing

relational data on the Web and making it searchable. Ex-

amples of the types of data that could be published using

BANKS include organizational data, bibliographic data and

product catalogs.

We have proposed a framework for answering keyword

queries, and implemented an algorithm to fi nd query an-

swers incrementally. We have evaluated our prototype

in terms of speed and meaningfulness of answers using

academic and bibliographic databases. Our observations

are that BANKS is practical to use on moderately large

databases, and that the results are intuitive and useful.

Acknowledgments: We wish to thank B. Aditya, Urmila

Kelkar, Megha Meshram and Parag for implementing some

parts of the BANKS system, and helping with the perfor-

mance evaluation.

References
[1] R. Agrawal, N. H. Gehani, and J. Srinivasan. OdeView: The

graphical interface to Ode. In Proc. of ACM SIGMOD, pages

34–43, 1990.
[2] P. Bailey, N. Craswell, and D. Hawking. Dark matter on the

Web. In Poster Proceedings, 9th World-Wide Web Confer-

ence, 2000.
[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases

using BANKS. Technical report, Indian Institute of Technol-

ogy, Bombay, November 2001.
[4] S. Brin and L. Page. The anatomy of a large-scale hyper-

textual Web search engine. Computer Networks and ISDN

Systems, 30(1–7), 1998.
[5] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams.

PESTO : An integrated query/browser for object databases.

In Proc. of the Int’l Conf. on VLDB, pages 203–214, 1996.
[6] S. Dar, G. Entin, S. Geva, and E. Palmon. DTL’s DataSpot:

Database exploration using plain language. In Proc. of the

Int’l Conf. on VLDB, pages 645–649, 1998.
[7] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and

H. Garcia-Molina. Proximity search in databases. In Proc.

of the Int’l Conf. on VLDB, pages 26–37, 1998.
[8] A. Hulgeri, G. Bhalotia, C. Nakhe, S. Chakrabarti, and

S. Sudarshan. Keyword search in databases. IEEE Data

Engineering Bulletin, 24(3):22–31, Sept. 2001.
[9] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving

and organizing Web pages by “information unit”. In 10th

World-wide Web Conference, 10, pages 230–244, 2001.
[10] R. J. Miller, O. G. Tsatalos, and J. H. Williams. DataWeb:

Customizable database publishing for the web. IEEE Multi-

Media, 4(4):14–21, 1997.
[11] K. D. Munroe and Y. Papakonstantinou. BBQ: A visual in-

terface for integrated browsing and querying of XML. In

Visual Database Systems, May 2000.
[12] E. Palmon. Associative search method for heterogeneous

databases with an integration mechanism confi gured to com-

bine schema-free data models such as a hyperbase. United

States Patent Number 5,740,421, Granted April 14, 1998,

fi led in 1995. Available at www.uspto.gov, 1998.
[13] E. Palmon and S. Geva. Associative search method with

navigation for heterogeneous databases including an inte-

gration mechanism confi gured to combine schema-free data

models such as a hyperbase. United States Patent Number

5,819,264, granted October 6, 1998, fi led in 1995. Available

at www.uspto.gov, 1998.
[14] N. L. Sarda and A. Jain. Mragyati: A system for keyword-

based searching in databases. Report No. cs.DB/011052 on

CORR (http://xxx.lanl.gov/archive/cs), 2001.
[15] B. Shneiderman. Dynamic queries for visual information

seeking. IEEE Software, 11(6):70–77, 1994.
[16] B. Shneiderman. Dynamic queries, starfi eld dis-

plays, and the path to Spotfi re. Feb. 1999.

http://www.cs.umd.edu/hcil/spotfi re/.
[17] R. Weiss, B. Vélez, M. A. Sheldon, C. Nemprempre, P. Szi-

lagyi, A. Duda, and D. K. Gifford. HyPursuit: A hierarchi-

cal network search engine that exploits content-link hyper-

text clustering. In Proc. of ACM Hypertext, pages 180–193,

1996.

