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Abstract. We introduce KFC, a block cipher based on a three round
Feistel scheme. Each of the three round functions has an SPN-like struc-
ture for which we can either compute or bound the advantage of the best
d-limited adaptive distinguisher, for any value of d. Using results from
the decorrelation theory, we extend these results to the whole KFC con-
struction. To the best of our knowledge, KFC is the first practical (in the
sense that it can be implemented) block cipher to propose tight security
proofs of resistance against large classes of attacks, including most classi-
cal cryptanalysis (such as linear and differential cryptanalysis, taking hull
effect in consideration in both cases, higher order differential cryptanaly-
sis, the boomerang attack, differential-linear cryptanalysis, and others).

1 Introduction

Most modern block ciphers are designed to resist a wide range of cryptanalytic
techniques. Among them, one may cite linear cryptanalysis [19,20,23], differential
cryptanalysis [7,8], as well as several variants such as impossible differentials [5],
the boomerang attack [27] or the rectangle attack [6]. Proving resistance against
all these attacks is often tedious and does not give any guarantee that a subtle
new variant would not break the construction. Rather than considering all known
attacks individually, it would obviously be preferable to give a unique proof, valid
for a family of attacks.

In [26], Vaudenay shows that the decorrelation theory provides tools to prove
security results in the Luby-Rackoff model [18], i.e., against adversaries only lim-
ited by the number of plaintext/ciphertext pairs they can access. Denoting d this
number of pairs, the adversaries are referred to as d-limited distinguishers. Un-
fortunately, this class of adversaries does not capture the most widely studied
statistical attacks such as linear and differential cryptanalysis. Instead, these
attacks are formalized by so-called iterated attacks of order d [25]. This class
of attacks was initially inspired by linear and differential cryptanalysis and ac-
tually formalizes most of the possible statistical attacks against block ciphers.
For example, linear cryptanalysis is an iterated attack of order 1, differential
cryptanalysis is of order 2, and higher order differential cryptanalysis [15,16] of
order i is an iterated attack of order d = 2i.

It is proven that resistance against all 2d-limited distinguishers is sufficient
to resist iterated attacks of order d [26]. Consequently, designing a block cipher
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resistant to d-limited distinguishers for a large d is enough to resist most standard
attacks against block ciphers. Obviously, this is not a trivial task as, to the best
of our knowledge, no efficient block cipher was ever designed to resist d-limited
distinguishers for d > 2 [14,26].

In a previous article entitled “Dial C for Cipher” [1], we presented a block
cipher construction provably resistant against (among others) linear and differ-
ential cryptanalysis (where the linear hull [21] and differentials [17] effects are
taken into account, which is unfortunately not usual in typical proofs of security
of block ciphers), several of their variants, 2-limited distinguishers and thus, all
iterated attacks of order 1. Our aim in this article, is to design a block cipher
based on the same principles as C but provably secure against d-limited distin-
guishers for large values of d. We call this construction KFC as it is based on
a Feistel scheme. KFC is practical in the sense that it can be implemented and
reach a throughput of a few Mbits/s. Just as the typical security proofs of block
ciphers do not compare to ours, the encryption speed reached by KFC does not
compare to those of nowadays block ciphers.

Constructions based on the decorrelation theory have already been proposed.
COCONUT98 [24] was one of the first efficient block cipher based on decorre-
lation concepts. It resists 2-limited distinguishers but can be attacked by David
Wagner’s boomerang attack [27], which is an iterated attack of order 4. Of course
this does not prove that the decorrelation theory is useless, but only that decor-
relation results do not prove more than what they claim. KFC is designed to
resist d-limited distinguishers (and consequently, iterated attacks up to a given
order), nothing more.

High Overview and Outline of the Paper. Before building a provably secure
block cipher, we need to define precisely against which class of attacks it should
be resistant. The adversary model and some reminders about the decorrelation
theory are given in Section 2. Then, in Section 3, we give some hints about why
we chose to use a Feistel scheme [13] for KFC. A description of the structure of
the random functions we use in the Feistel scheme is then given in Section 4.
The exact advantage of the best 2-limited distinguisher is computed in Section 5,
and in Section 6, we bound the advantage of higher order adversaries.

2 Security Model

In this paper, a perfectly random function (resp. permutation) denotes a random
function (resp. permutation) uniformly distributed among all possible functions
(resp. permutations). Consequently, when referring to a random function or a
random permutation, nothing is assumed about its distribution.
The Luby-Rackoff Model [18]. We consider an adversary A with unbounded
computational power, only limited by its number of queries d to an oracle O
implementing a random permutation. The goal of A is to guess whether O is
implementing an instance drawn uniformly among the permutations defined by
a block cipher C or among all possible permutations, knowing that these two
events have probability 1

2 and that one of them is eventually true. Such an
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adversary is referred to as a d-limited adaptive distinguisher when he adaptively
chooses his queries depending on previous answers from the Oracle or as a d-
limited non-adaptive distinguisher when all the queries are made at once. In both
cases, the ability of A to succeed is measured by mean of its advantage.

Definition 1. The advantage of A of distinguishing two random functions F0

and F1 is defined by AdvA(F0, F1) =
∣∣ Pr[A(F0) = 0]− Pr[A(F1) = 0]

∣∣.
Informally, a secure block cipher C (i.e., a random permutation) should be in-
distinguishable from a perfectly random permutation C∗, i.e., the advantage
AdvA(C, C∗) of any adversary A should be negligible. A secure random func-
tion F should be indistinguishable from a perfectly random function F ∗, i.e., the
advantage AdvA(F, F ∗) of any adversaryA should be negligible. Apart from very
specific (and usually non-practical) constructions, computing the exact advan-
tage of the best d-limited distinguisher is not straightforward. The decorrelation
theory [26] gives some tools that will allow us to compute (or at least bound)
this advantage for KFC.
Reminders on the Decorrelation Theory. Let F : {0, 1}n → {0, 1}n be a
random function. The distribution matrix [F ]d of F at order d is a 2nd × 2nd

matrix defined by [F ]d(x1,...,xd),(y1,...,yd) = PrF [F (x1) = y1, . . . , F (xd) = yd]. If F1

and F2 are two independent random functions, we have [F2◦F1]d = [F1]d× [F2]d.
The advantage of the best distinguisher between F and F ∗ only depends on the
distance between [F ]d and [F ∗]d, whose exact definition will depend on whether
the considered distinguisher is adaptive or not.

Definition 2. Let A ∈ {0, 1}nd × {0, 1}nd be a matrix indexed by d-tuples of
elements in {0, 1}n. We let:

|||A|||∞ = max
x1,...,xd

∑
y1,...,yd

∣∣A(x1,...,xd),(y1,...,yd)

∣∣ and

‖A‖a = max
x1

∑
y1

· · ·max
xd

∑
yd

∣∣A(x1,...,xd),(y1,...,yd)

∣∣ .

Property 3 (Theorems 10 and 11 in [26]). Let F be a random function
and F ∗ be a perfectly random function. The advantage of the best d-limited
non-adaptive distinguisher A is such that AdvA(F, F ∗) = 1

2 |||[F ]d − [F ∗]d|||∞
whereas the advantage of the best d-limited adaptive distinguisher Aa is such
that AdvAa = 1

2‖[F ]d − [F ∗]d‖a.

An iterated attack of order d consists in iterating independent non-adaptive
d-limited attacks with random inputs. The algorithm of Fig. 1 gives a more
formal definition of this concept. For example, linear cryptanalysis is an iterated
attack of order 1 where T (X,Y ) = a•X⊕b•Y (where a and b respectively denote
the input and output masks) and where X is an uniformly distributed random
variable on text space. Similarly, differential cryptanalysis is an iterated attack
of order 2 where T ((X1, X2), (Y1, Y2)) is 1 when Y1 ⊕ Y2 = b and 0 otherwise
and where X1 is a uniformly distributed random variable and X2 = X1 ⊕ a.
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Parameters: a complexity n, a distribution on X, a test function T
outputting one bit, a set S
Oracle: a permutation C
1: for i = 1, . . . , n do
2: pick X = (X1, . . . , Xd) at random
3: get Y = (C(X1), . . . , C(Xd))
4: set Ti = T (X, Y )
5: end for
6: if (T1, . . . , Tn) ∈ S then output 1 else output 0 end if

Fig. 1. Iterated attack of order d.

As proved in Theorem 18 in [26] bounding the advantage of the best 2d-limited
non-adaptive adversary is sufficient to bound the advantage of any adversary
performing an iterated attack of order d. Roughly speaking, a block cipher C
with a negligible order 2d decorrelation |||[C]2d−[C∗]2d|||∞ is resistant to iterated
attacks of order d.

3 From the SPN of C to the Feistel Scheme of KFC

The block cipher C (introduced in [1, 2]) is based on the same substitution-
permutation network (SPN) as the AES [11], except that the fixed substitution
boxes are replaced by mutually independent and perfectly random permutations.
It achieves goals similar to those we want to achieve with KFC: being resistant
against 2-limited adversaries, it is secure against all iterated attacks of order 1.
These results were obtained by exploiting strong symmetries (induced by intrin-
sic symmetries of the confusion and diffusion layers) in the order 2 distribution
matrix of C. Unfortunately, we were not able to exhibit similar symmetries for
higher orders. It appears that layers of perfectly random permutations are suit-
able for proving security results at order 2, not above.

Instead of explicitly computing the advantage of a d-limited distinguisher
we will try to bound it by a function of the advantage of the best (d − 1)-
limited distinguisher, and apply this bound recursively down to order 2 (which
we know how to compute). This seems clearly impossible with layers of random
permutations as two distinct inputs will always lead to two correlated outputs.
However, this is not the case anymore when considering a layer of mutually
independent and perfectly random functions. For instance, two distinct inputs
of a perfectly random function yield two independent outputs. Similarly, if the
two inputs of a layer of functions are distinct on each function input, the outputs
are independent. This extends well to a set of d texts: if one text is different from
all the others on all function inputs, the corresponding output is independent
from all other outputs. A formal treatment of this idea is given in Section 4.

However, layers of random functions cannot always be inverted and thus do
not fit in a classical SPN structure. The straightforward solution is to use a
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Fig. 2. Increasing the decorrelation order using a layer made of small independent and
perfectly random functions.

Feistel scheme [13]. Moreover, decorrelation results on the round functions of a
Feistel scheme extend well to the whole construction.

Theorem 4 (Theorem 21 in [26]). Let F ∗ be a uniformly distributed ran-
dom function on {0, 1}n. Let F1, . . . , Fr be r independent random functions on
{0, 1}n such that AdvA(Fi, F

∗) ≤ ε (i = 1, . . . , r) for any adversary A. Let
C = Ψ(F1, . . . , Fr) be an r round Feistel cipher on {0, 1}2n. For any adversary
A limited to d queries and for any integer k ≥ 3, we have:

AdvA(C, C∗) ≤ 1
2

(
2kε +

2d2

2n/2

)br/kc
.

This theorem shows that if we can instantiate independent random functions
secure against all d-limited distinguishers, we can obtain a block cipher provably
secure against any d-limited distinguisher. In the following sections, we focus on
building a round function FKFC following the ideas we have introduced here.

4 A Good Round Function FKFC for the Feistel Scheme

To analyze the behavior of a layer of random functions, we analyze the construc-
tion F = S3 ◦ F2 ◦ F1 where F1 : {0, 1}n → {0, 1}n is a random function, S3 is a
random permutation, and F2 is a layer made of small independent and perfectly
random functions (see Fig. 2(a)). We assume that F1, F2, and S3 are mutually
independent. We obtain an interesting property, making it possible to relate the
order d decorrelation of F to its order d−1 decorrelation. We consider a set of d
inputs of the function F and denote the corresponding random outputs of F1 by
X1, . . . , Xd, where Xk = (Xk,1, . . . , Xk,N ) for k = 1, . . . , d. Let α be the event
{∃k s.t. ∀j Xk,j /∈ {X1,j , . . . , Xk−1,j , Xk+1,j , . . . , Xd,j}}, that is, α is the event
that one of the inputs is different from all the others on the N blocks. If α oc-
curs, at least one of the outputs of the functions layer is a uniformly distributed
random variable independent from the others. More formally, if we denote Ad
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the best d-limited adversary trying to distinguish F from F ∗, we have:

AdvAd
(F, F ∗) =

∣∣1− 2 · Pr[Ad(F ) = 1]
∣∣

= |1− 2 · (Pr[Ad(F ) = 1|α] Pr[α] + Pr[Ad(F ) = 1|α] Pr[α]) |
≤ AdvAd−1(F, F ∗) Pr[α] + |1− 2 · Pr[Ad(F ) = 1|α] |Pr[α]
≤ AdvAd−1(F, F ∗) + Pr[α], (1)

where the first inequality comes from the fact that if α occurs, at least one output
of F is completely independent from all the others. As S3 is a permutation, it
preserves this independence. Therefore, when α occurs, a d-limited distinguisher
cannot be more efficient than the best (d− 1)-limited distinguisher (this is for-
mally proven in Appendix A by looking at the definition of the decorrelation
norms).

Why this is not Enough. From the previous inequality, it seems natural to
consider a substitution-permutation-like construction made of an alternance of
layers of independent and perfectly random functions and layers of linear diffu-
sion (as shown on Fig. 2(b)). Intuitively, one could think that (as it is the case
when iterating random permutations) iterating random functions is sufficient
to decrease the advantage of a distinguisher. However, this is definitely not the
case. Indeed, consider a 2-limited attack where the two plaintexts are equal on
N−1 blocks and different on the last block. There is a non-negligible probability
2−` that, after the first layer of functions, both outputs are completely equal,
thus leading to a distinguisher with advantage 2−`. For practical values of ` (e.g.,
` = 8), this is not acceptable. This means that we need a good resistance against
2-limited adversaries to initialize the recurrence relation of equation (1).

The Sandwich Technique. As proven in [1], an SPN using layers of mutually
independent and perfectly random permutations is efficient against 2-limited
distinguishers. Intuitively, this means that any set of d inputs will lead to a
set of d pairwise independent outputs. As we will see in Section 6, pairwise
independence is exactly what we need to apply the recursive relation (1).

For these reasons the construction we chose for FKFC consists in sandwich-
ing the construction sketched on Figure 2(b) between two SPN using layers of
mutually independent and perfectly random permutations.

Description of FKFC. The round function FKFC used in the Feistel scheme
defining KFC is based on three different layers:
• a substitution layer S made of N mutually independent and perfectly random

` bit permutations,
• a function layer F made of N mutually independent and perfectly random `

bit functions,
• a linear layer L which is a N × N matrix of elements in GF(2`) defining an

MDS code (for optimal diffusion), which requires N ≤ 2`−1.
Let r1 and r2 be two integers. The round function FKFC of KFC is defined as:

FKFC = FKFC[r1,r2] = S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 .
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5 Computing the Advantage of the Best 2-limited
Distinguisher against FKFC

As all layers of FKFC are mutually independent, the order 2 distribution matrix
[FKFC]2 can be expressed as

[FKFC]2 = [S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 ]2 = ([S]2 × [L]2)r1 × ([F]2 × [L]2)r2 × [S]2.

Each of these matrices is a 22n × 22n square matrix, which makes direct com-
putations impossible for practical parameters. In the rest of this Section we
will exploit symmetries in order to reduce the computation to a product of
(N + 1)× (N + 1) square matrices. For simplicity, we respectively denote by S,
F, and L the distribution matrices [S]2, [F]2, and [L]2 and let q = 2`.

5.1 Conversion Matrices

Definition 5. Considering a ∈ {0, 1}n as a N -tuple of elements in {0, 1}`,
the support of a is the binary N -tuple with 1’s at the non-zero positions of
a and 0 elsewhere. It is denoted supp(a). The weight of the support, denoted
w(supp(a)) or w(a), is the Hamming weight of the support. When considering
a pair x, x′ ∈ {0, 1}n, the support of the pair is supp(x⊕ x′).

Distribution matrices at order 2 are indexed by pairs of texts. Using symmetries
at two levels, we will first shrink them to 2N × 2N matrices indexed by supports
of pairs and then to (N + 1) × (N + 1) matrices indexed by weights. To do so,
we define the following conversion matrices.

Pair of texts ↔ Support of pair. We let PS (resp. SP ) denote the matrix
that converts a pair of texts into a support (resp. a support into a pair of texts)
in a uniform way. That is:

PS(x,x′),γ = 1γ=supp(x⊕x′) and SPγ′,(y,y′) = 1γ′=supp(y⊕y′)q
−N (q − 1)−w(γ′),

where x, x′, y, y′ ∈ {0, 1}n and γ, γ′ ∈ {0, 1}N . One can note that SP×PS = Id.

Support of pair ↔ Weight. Similarly, we let WS (resp. SW ) denote the
matrix that converts a support into a weight (resp. a weight into a support) in
a uniform way. That is:

SWγ,w = 1w(γ)=w and WSw′,γ′ = 1w(γ′)=w′
(

N
w′

)−1
,

where γ, γ′ ∈ {0, 1}N and w, w′ ∈ {0, . . . , N}. We have WS × SW = Id.

Pair of texts ↔ Weight. Finally we let PW = PS×SW and WP = WS×SP
so that we obtain:

PW(x,x′),w = 1w(x⊕x′)=w and WPw′,(y,y′) = 1w(y⊕y′)=w′
(

N
w′

)−1
q−N (q−1)−w′ .

Again, we have WP × PW = Id.
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5.2 Shrinking F and S, the First Step

Let x, x′, y, y′ ∈ GF(q)N . As the N random functions of the F layer are mutually
independent, we can express the coefficients of the distribution matrix F as

F(x,x′),(y,y′) = q−q·N
N∏

i=1

#{fi : GF(q) → GF(q) : fi(xi) = yi , fi(x′i) = y′i}.

In the case where supp(y ⊕ y′) * supp(x⊕ x′), we have F(x,x′),(y,y′) = 0. When
supp(y ⊕ y′) ⊆ supp(x⊕ x′), the uniform distribution of the fi’s leads to:

F(x,x′),(y,y′) = q−q·Nq−w(x⊕x′)+q·N−N = q−w(x⊕x′)−N ,

and we see that F only depends on support of pairs. Consequently,

F(x,x′),(y,y′) = 1supp(y⊕y′)⊆supp(x⊕x′)q
−w(x⊕x′)−N

=
∑

γ,γ′
1γ=supp(x⊕x′)1γ′=supp(y⊕y′)1γ′⊆γq−w(γ)−N

=
∑

γ,γ′
PS(x,x′),γ1γ′⊆γq−w(γ)(q − 1)w(γ′)SPγ′,(y,y′).

Defining the 2N × 2N matrix F by Fγ,γ′ = 1γ′⊆γq−w(γ)(q − 1)w(γ′) we obtain:

F = PS × F× SP. (2)

Similarly, for the S layer we have:

S(x,x′),(y,y′) = 1supp(x⊕x′)=supp(y⊕y′)q
−N (q−1)−w(x⊕x′) =

∑
γ

PS(x,x′),γSPγ,(y,y′)

and thus,
S = PS × SP. (3)

5.3 Shrinking L, the Second Step

Given the structure of FKFC, each linear layer L is surrounded by S or F layers.
From equations (2) and (3), this means that each matrix L is surrounded by the
conversion matrices PS and SP . Denoting L = SP × L× PS we obtain:

Lγ,γ′ =
∑

(x,x′)

∑

(y,y′)

SPγ,(x,x′)L(x,x′),(y,y′)PS(y,y′),γ′

= q−N (q − 1)−w(γ)
∑

(x,x′)

1γ=supp(x⊕x′)1γ′=supp(L(x⊕x′))

= (q − 1)−w(γ)
∑

x

1γ=supp(x)1γ′=supp(L(x)).
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The sum in this equation is the number of texts of a given support γ that are
mapped by the MDS linear layer L on a text of support γ′. The number of
codewords with given supports can be explicitly computed for any MDS code
(see Theorem 3 in [12]) and, amazingly, only depends on the weights of the
supports γ and γ′. We obtain the following formula:

Lγ,γ′ = (q − 1)−w(γ) E(w(γ) + w(γ′))(
2N

w(γ)+w(γ′)

) ,

where E(i) =
(
2N
i

)∑i
j=N+1

(
i
j

)
(−1)i−j(qj−N − 1) for i > N , E(0) = 1, and

E(i) = 0 for 0 < i ≤ N . As the previous equation only depends on the weights
of γ and γ′, we can shrink L even more:

Lγ,γ′ =
∑

w,w′
1w(γ)=w1w(γ′)=w′(q − 1)−w E(w + w′)(

2N
w+w′

)

=
∑

w,w′
SWγ,w

(
N

w′

)
(q − 1)−w E(w + w′)(

2N
w+w′

) WSw′,γ′ .

Defining the (N + 1)× (N + 1) matrix L by Lw,w′ =
(

N
w′

)
(q − 1)−w E(w+w′)

( 2N
w+w′)

,

L = SW × L×WS. (4)

A Brief Summary of the Situation. We started from [FKFC]2 = (S× L)r1 ×
(F × L)r2 × S. To makes things clearer, we consider the case where r1 = 1 and
r2 = 2. Using equations (2), (3), and (4) we obtain:

[FKFC]2 = S× L× F× L× F× L× S

= PS × SP × L× PS × F× SP × L× PS × F× SP × L× PS × SP

= PS × SW × L×WS × F× SW × L×WS × F× SW × L×WS × SP

= PW × L×WS × F× SW × L×WS × F× SW × L×WP.

Now we focus on the simplification of WS × F.

5.4 Shrinking WS × F, the Third (and Last) Step

We have:

(WS × F)w,γ′ =
∑

γ

WSw,γFγ,γ′ =
(
N
w

)−1
q−w(q − 1)w(γ′)

∑
γ

1w(γ)=w1γ′⊆γ

=
(
N
w

)−1
q−w(q − 1)w(γ′)1w≥w(γ′)

(
N−w(γ′)

N−w

)
,

so that (WS × F)w,γ′ only depends on w and on the weight of γ′. Conse-
quently, letting F be the (N + 1)× (N + 1) matrix defined by Fw,w′ = q−w(q −
1)w′1w≥w′

(
w
w′

)
, we obtain:

WS × F = F×WS.
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Final Summary of the Situation. From the previous summary and the last
shrinking step, we finally obtain that:

[FKFC]2 = PW × L× F×WS × SW × L× F×WS × SW × L×WP

= PW × L× F× L× F× L×WP.

In the general case, this means that [FKFC]2 = PW × (L)r1 × (F× L)r2 ×WP .

5.5 Practical Computation of the Advantage

The expression we just obtained for [FKFC]2 leads to a simple practical expression
for ‖[FKFC]2 − [F ∗]2‖a. Noting that an adversary cannot increase his advantage
asking twice the same query, we have:

‖[FKFC]2 − [F ∗]2‖a = max
x

∑
y

max
x′ 6=x

∑

y′

∣∣∣[FKFC]2(x,x′),(y,y′) − q−2N
∣∣∣ .

Let U be the (N + 1)× (N + 1) matrix defined by Uw,w′ = q−N (q− 1)w′
(

N
w′

)
, so

that for all x, x′, y, y′ we have (PW ×U×WP )(x,x′),(y,y′) = q−2N . Consequently,
‖[FKFC]2 − [F ∗]2‖a is equal to:

max
x

∑
y

max
x′ 6=x

∑

y′

∣∣∣∣
(
PW × (

(L)r1 × (F× L)r2 − U
)×WP

)
(x,x′),(y,y′)

∣∣∣∣ .

As the inner matrix only depends on w(x⊕ x′) and of w(y ⊕ y′), we get

‖[FKFC]2 − [F ∗]2‖a = max
w 6=0

∑

w′

∣∣∣∣
(
(L)r1 × (F× L)r2 − U

)
w,w′

∣∣∣∣

Similar computations show that |||[FKFC]2 − [F ∗]2|||∞ = ‖[FKFC]2 − [F ∗]2‖a.

Theorem 6. Let L, F, and U be (N + 1) × (N + 1) matrices defined as above.
The advantage of the best 2-limited distinguisher A (whether adaptive or not)
against FKFC = S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 is given by:

AdvA(FKFC, F ∗) =
1
2

max
w 6=0

∑

w′

∣∣∣∣
(
(L)r1 × (F× L)r2 − U

)
w,w′

∣∣∣∣ .

Explicit values of this advantage for some typical values of N, q, r1 and r2 are
given in Table 1. We note that r1 = 3 is enough (at least for these parameters).
Moreover, the advantage increases with the value of r2. The reason is that the
more F layers there is, the higher is the probability of an internal collision.
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Table 1. Advantage of the best 2-limited distinguisher against FKFC.

N = 8 and q = 28 N = 8 and q = 216 N = 16 and q = 28

@
@r1

r2 0 1 10 100 0 1 10 100 0 1 10 100

0 1 2−5 2−8 2−8 1 2−13 2−16 2−16 1 2−4 2−8 2−8

1 2−5 2−50 2−52 2−49 2−13 2−114 2−116 2−113 2−4 2−95 2−104 2−103

2 2−46 2−53 2−52 2−49 2−110 2−117 2−116 2−113 2−87 2−104 2−104 2−103

3 2−62 2−53 2−52 2−49 2−128 2−117 2−116 2−113 2−120 2−104 2−104 2−103

6 Bounding the Advantage of the Best d-limited
Distinguisher against FKFC for d > 2

6.1 Replacing F by F ◦ S

To simplify the proofs, we will replace each F layer of FKFC by F ◦ S. Both
constructions are completely equivalent in the sense that any decorrelation result
holding for the latter also holds for the original construction, the reason being
that [F ◦ S]d = [F]d (see Appendix B for a proof). From now on, we thus study
the following equivalent construction:

FKFC = FKFC[r1,r2] = S ◦ (L ◦ F ◦ S)r2 ◦ (L ◦ S)r1 .

Assumption 7. For r1 > 2, any i ∈ {0, . . . , r2} and any 2-limited distinguisher
A2, we have AdvA2(FKFC[r1,r2], F

∗) ≥ AdvA2(FKFC[r1,i], F
∗).

This assumption seems natural from Table 1, although it might prove wrong in
the general case (in particular, the threshold for r1 might be different for other
values of N and q). However, we experimentally verified it for all values of the
parameters we consider in the rest of this paper.

In practice, Assumption 7 means that, when the advantage of the best 2-
limited distinguisher against FKFC is negligible, this is also the case before any F

layer. The inputs of any F layer can thus be considered as pairwise independent.

6.2 Taking Advantage of the Pairwise Independence

Let i ∈ {0, . . . , r2}. Referring to Section 4, we denote αi−1 the event α and let
F1 = FKFC[r1,i−1], F2 = F, and S3 = S ◦ L. We these notations, FKFC[r1,i] =
S3 ◦ F2 ◦ F1, so that equation (1) gives

AdvAd
(FKFC[r1,i], F

∗) ≤ AdvAd−1(FKFC[r1,i], F
∗) + Pr[αi−1].

Bounding Pr[αi−1] for all i allows to recursively bound AdvAd
(FKFC[r1,i], F

∗). As
in Section 4, we denote the output of F1 by X1, . . . , Xd where, for k = 1, . . . , d,
we have Xk = (Xk,1, . . . , Xk,N ). Let 0 ≤ λ ≤ d be the number of Xk’s different
from all other texts on all N blocks. We have:

λ =
d∑

k=1

N∏

b=1

d∏

j=1
j 6=k

1Xk,b 6=Xj,b
.
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Using the linearity of the mean and the mutual independence of the N blocks,
we obtain E(λ) = d · (Pr[X1,1 /∈ {X2,1, . . . , Xd,1}]

)N .

Property 8. For d > 0 we have Pd = Pr[X1,1 /∈ {X2,1, . . . , Xd,1}] ≥ 1 − d−1
q

and thus, E(λ) ≥ d · (1− d−1
q

)N .

Proof. The proof is done by induction on d. For d = 1 the result is trivial.
Assume Pd ≥ 1− (d− 1)/q for an arbitrary d. As stated in Section 6.1, we can
assume that the Xi’s are pairwise independent and thus:

Pd+1 = Pd − Pr[X1,1 /∈ {X2,1, . . . , Xd,1} , X1,1 = Xd+1,1]
≥ Pd − Pr[X1,1 = Xd+1,1] = Pd − 1

q .

The expression we obtained for E(λ) leads to the final result. ut
Using this result, we can easily bound Pr[αi] as E(λ) =

∑d
k=1 k Pr[λ = k] ≤

dPr[λ 6= 0] = d Pr[αi], so that, for all i ∈ {0, . . . , r2},

Pr[αi] ≤ 1− E(λ)
d ≤ 1−

(
1− d−1

q

)N

. (5)

6.3 Piling-up the Rounds

Obviously, the bound on Pr[αi] we just obtained cannot be used directly to obtain
a meaningful bound on the advantage of high order distinguishers. Consequently,
we will consider t successive αi events and give an upper bound on the proba-
bility that none of them occurs. We have Pr[α1, . . . , αt] = Pr[αt|α1, . . . , αt−1] ·
Pr[α1, . . . , αt−1]. As the bound on E(λ) only relies on the pairwise indepen-
dence of the inputs of the i-th round, the bound given by equation (5) can also
be proven for Pr[αt|α1, . . . , αt−1]. By induction, we finally obtain that:

Pr[α1, . . . , αt] ≤
(

1−
(
1− d−1

q

)N
)t

.

Theorem 9. Assume that the advantage of the best 2-limited distinguisher on
FKFC[r1,r2] is bounded by ε. For any d and set of integers {t3, . . . , td} such that∑d

i=3 ti ≤ r2, the advantage of the best d-limited distinguisher Ad on FKFC[r1,r2]

is such that:

AdvAd
(FKFC[r1,r2], F

∗) ≤ ε +
d∑

i=3

(
1−

(
1− i−1

q

)N
)ti

.

Fixing r1 = 3, the previous theorem bounds, for any value of d, the advantage
of the best d-limited distinguisher against a given number of rounds r2 of FKFC.
In Table 2 we give the best bounds we obtain for various values of r2, d, N , and
q. If one aims at a specific value of d and wants to select r2 in order to bound
the advantage of the best d-limited distinguisher, the best choice is probably to
select the ti’s such that Pr[α1, . . . , αti ] < ε, which bounds the advantage by d · ε.
The following theorem generalizes this idea.
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Table 2. Bounds on AdvAd for r1 = 3 and various parameters.

N = 8 and q = 2
8 N = 8 and q = 2

16

Q
QQ

r2
d 2 3 4 8 16 32 64 2 3 4 8 16 32 64

10 2
−52

2
−40

2
−17

2
−2

1 1 1 2
−116

2
−116

2
−57

2
−11

1 1 1

100 2
−49

2
−49

2
−49

2
−46

2
−11

1 1 2
−113

2
−113

2
−113

2
−113

2
−66

2
−23

2
−5

250 2
−48

2
−48

2
−48

2
−48

2
−33

2
−5

1 2
−112

2
−112

2
−112

2
−112

2
−112

2
−69

2
−25

1000 2
−46

2
−46

2
−46

2
−46

2
−46

2
−35

2
−2

2
−110

2
−110

2
−110

2
−110

2
−110

2
−110

2
−110

N = 16 and q = 2
8

Q
QQr2

d 2 3 4 8 16 32 64

10 2
−104

2
−31

2
−12

1 1 1 1

100 2
−103

2
−103

2
−103

2
−31

2
−5

1 1

250 2
−103

2
−103

2
−103

2
−81

2
−18

1 1

1000 2
−102

2
−102

2
−102

2
−102

2
−82

2
−12

1

Theorem 10. Assume that the advantage of the best 2-limited distinguisher
against FKFC[r1,r2] is bounded by ε. Let:

td(β) = min
t
{Pr[α1, . . . , αt] < β · ε} =

⌈
log(β·ε)

log
(
1−

(
1− d−1

q

)N)
⌉
.

For any d such that
∑d

i=3 ti(β) ≤ r2, the advantage of the best d-limited distin-
guisher Ad against FKFC[r1,r2] is such that:

AdvAd
(FKFC[r1,r2], F

∗) ≤ ε +
d∑

i=3

(
1−

(
1− i−1

q

)N
)ti(β)

≤ ε · (1 + (d− 2) · β).

7 Conclusion

We introduced KFC, a block cipher based on a three round Feistel scheme. Each
of the three round functions has an SPN-like structure for which we can either
compute or bound the advantage of the best d-limited adaptive adversary, for any
value of d. Using results from the Decorrelation Theory, we extend these results
to the whole KFC construction. At this time, no key schedule has been specified
for KFC. We suggest to use the same trick as in [1], i.e., use a key schedule based
on a cryptographically secure pseudo-random generator (for example the good
old BBS [10] or a faster generator like QUAD [3, 4]). This way, all the results
we have proven assuming the mutual independence of the random functions and
permutations remain valid when implementing KFC in practice with a 128 bit
secret key. We propose two sets of parameters:
Regular KFC: N = 8, q = 28, r1 = 3, r2 = 100. These parameters
lead to provable security against 8-limited adaptive distinguishers. Consequently,
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Regular KFC is resistant to iterated attacks of order 4, which include linear and
differential cryptanalysis, the boomerang attack and others. Based on existing
implementation results on C, we estimate the encryption speed of Regular KFC
to 15-25 Mbits/s on a Pentium IV 2GHz. The key schedule needs to generate
approximatively 222 cryptographically secure pseudo-random bits.
Extra Crispy KFC: N = 8, q = 216, r1 = 3, r2 = 1000. Using these quite
extreme parameters, we manage to obtain provable security against 70-limited
adaptive adversaries, but encryption rate could probably never reach more than
1 Mbit/s. Also, the key schedule should produce 235 pseudo random bits, which
means that Extra Crispy KFC requires at least 4 GB of memory.

To the best of our knowledge, KFC is the first practical block cipher to propose
tight security proofs of resistance against large classes of attacks, including most
classical cryptanalysis (such as linear and differential cryptanalysis, taking hull
effect in consideration in both cases, higher order differential cryptanalysis, the
boomerang attack, differential-linear cryptanalysis, or the rectangle attack).
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A Proof of |1 − 2 · Pr[Ad(F ) = 1 | α]| = AdvAd−1
(F, F ∗)

Without loss of generality, we can assume that the adversary does not make the
same query twice (as this would not increase its advantage) and that the event α
is true for the dth query. In this case, we know that (F2 ◦F1)(xd) is a uniformly
distributed random variable independent of (F2 ◦F1)(xi) for all i < d. As S3 is a
permutation, this property is still true for (S3 ◦ F2 ◦ F1)(xd) = F (xd). Denoting
by Y this random variable we have:

Pr[F (x1) = y1, . . . , F (xd) = yd|α] = Pr[F (x1) = y1 . . . F (xd−1) = yd−1, Y = yd]
= 2−n Pr[F (x1) = y1 . . . F (xd−1) = yd−1].
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Let A = |1− 2 · Pr[Ad(F ) = 1 | α]|. Similarly to the proof of Theorem 10 in [26]
we know that:

A =
1
2

max
x1

∑
y1

· · ·max
xd

∑
yd

∣∣Pr[F (x1) = y1, . . . , F (xd) = yd|α]− 2−d·n∣∣ .

From the two previous equations we obtain that:

A =
1
2

max
x1

∑
y1

· · ·max
xd

∑
yd

2−n
∣∣∣Pr[F (x1) = y1 . . . F (xd−1) = yd−1]− 2−(d−1)·n

∣∣∣

=
1
2

max
x1

∑
y1

· · ·max
xd−1

∑
yd−1

∣∣∣Pr[F (x1) = y1 . . . F (xd−1) = yd−1]− 2−(d−1)·n
∣∣∣

= AdvAd−1(F, F ∗).

B Proof that [F ◦ S]d = [F]d

For any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ {0, 1}nd we have:

[F ◦ S]d(x,y) = Pr[(x1, . . . , xd)
F◦S−−→ (y1, . . . , yd)]

=
d∏

i=1

Pr[(x1,i, . . . , xd,i)
F∗◦C∗−−−−→ (y1,i, . . . , yd,i)]

=
d∏

i=1

1
2`!

∑
c

Pr[(c(x1,i), . . . , c(xd,i))
F∗−−→ (y1,i, . . . , yd,i)]

=
d∏

i=1

1
2`!

∑
c

Pr[(x1,i, . . . , xd,i)
F∗−−→ (c−1(y1,i), . . . , c−1(yd,i))]

=
d∏

i=1

Pr[(x1,i, . . . , xd,i)
F∗−−→ (y1,i, . . . , yd,i)]

= Pr[(x1, . . . , xd)
F−→ (y1, . . . , yd)]

= [F]d(x,y)


