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Abstract

Data-to-text generation has recently attracted

substantial interests due to its wide applica-

tions. Existing methods have shown impres-

sive performance on an array of tasks. How-

ever, they rely on a significant amount of la-

beled data for each task, which is costly to

acquire and thus limits their application to

new tasks and domains. In this paper, we

propose to leverage pre-training and transfer

learning to address this issue. We propose

a knowledge-grounded pre-training (KGPT),

which consists of two parts, 1) a general

knowledge-grounded generation model to gen-

erate knowledge-enriched text. 2) a pre-

training paradigm on a massive knowledge-

grounded text corpus crawled from the web.

The pre-trained model can be fine-tuned on

various data-to-text generation tasks to gener-

ate task-specific text. We adopt three settings,

namely fully-supervised, zero-shot, few-shot

to evaluate its effectiveness. Under the fully-

supervised setting, our model can achieve re-

markable gains over the known baselines. Un-

der zero-shot setting, our model without see-

ing any examples achieves over 30 ROUGE-L

on WebNLG while all other baselines fail. Un-

der the few-shot setting, our model only needs

about one-fifteenth as many labeled examples

to achieve the same level of performance as

baseline models. These experiments consis-

tently prove the strong generalization ability of

our proposed framework1.

1 Introduction

Data-to-text generation, i.e., generating textual de-

scription from structured data, is an important task

with many real-world applications such as gener-

ating weather reports (Liang et al., 2009), sports

news (Wiseman et al., 2017), dialog response (Wen

et al., 2016; Dušek et al., 2019), etc. Neural gener-

1https://github.com/wenhuchen/KGPT

Moses Malone, Hakeem Olajuwon, and James Harden have been 
named the NBA's Most Valuable Player while playing for the 

Rockets, for a total of four MVP awards.

Moses

Houston Rockets

MVP

human

Houston Rockets

NBA

plays for

awarded

instance of

member ofPower Forward

position

malegender

award
instance of

Basketball

sp
o
rt

s

1956

in
ce

ptio
n

Moses;Harden;Hakeem

Description:	American	Basketball	Player

G
ro

u
n

d

L
a

n
g

u
a

g
e

 M
o

d
e

l

Hakeem

Harden

aw
ard

ed

awarded

Figure 1: An example from the constructed KGTEXT,

which pairs a hyperlinked sentence from Wikipedia

with a knowledge subgraph from WikiData.

ation models based on different strategies like soft-

template (Wiseman et al., 2018; Ye et al., 2020),

copy-mechanism (See et al., 2017), content plan-

ning (Reed et al., 2018; Moryossef et al., 2019),

and structure awareness (Liu et al., 2018; Colin and

Gardent, 2019) have achieved impressive results.

However, existing studies are primarily focused

on fully supervised setting requiring substantial

labeled annotated data for each subtask, which re-

stricts their adoption in real-world applications.

In this paper, we are interested in developing

a general-purpose model that can easily adapt to

different domains/tasks and achieve strong perfor-

mance with only a small amount or even zero anno-

tated examples. Our model draws inspiration from

the recent wave of pre-trained language model (De-

vlin et al., 2019; Radford et al., 2019; Dai et al.,

2019) to exploit large-scale unlabeled data from

the web for pre-training. The data pairs are con-

structed through the following procedure. We first

crawl sentences with hyperlinks from Wikipedia,

and then link the hyperlinked entities to Wiki-

https://github.com/wenhuchen/KGPT
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Data (Vrandečić and Krötzsch, 2014) to find their

1-hop knowledge triples. Finally, we build a sub-

graph based on the linked triples. Such automatic

alignment between knowledge graph and texts pro-

vides distant supervision (Mintz et al., 2009) for

pre-training but it is bound to be noisy. Therefore,

we design a selection strategy and only retain plau-

sible alignments with high semantic overlap. The

harvested knowledge-grounded corpus KGTEXT

consists of over 1.8M (knowledge subgraph, text)

pairs, as depicted in Figure 1.

We unify the input of KGTEXT and down-

stream data-to-text tasks into a generalized for-

mat and design a novel architecture KGPT to en-

code it. We use KGTEXT to first pre-train KGPT

and then fine-tune it on downstream data-to-text

tasks like WebNLG (Shimorina and Gardent, 2018),

E2ENLG (Dušek et al., 2019) and WikiBio (Liu

et al., 2018). Experimental results demonstrate

KGPT’s several advantages: 1) with full down-

stream dataset, KGPT can achieve remarkably bet-

ter performance than known competitive baselines,

2) with zero training, KGPT can still achieve a rea-

sonable score on WebNLG. 3) with a few training

instances, KGPT can maintain a high BLEU score

while the non-pre-trained baselines only generate

gibberish text. A quantitative study shows that our

pre-training scheme can reduce annotation costs by

roughly 15x to achieve a decent BLEU score of 30.

Our contribution is summarized as follows:

i). We design a distantly supervised learning al-

gorithm to exploit large-scale unlabeled web text

to pre-train data-to-text models.

ii). The proposed pre-training algorithm can

bring significant performance under different set-

tings, especially zero-shot and few-shot scenarios.

2 Related Work

Data-to-Text Generation Data-to-text is a long-

standing problem (Kukich, 1983; Reiter and Dale,

1997), which involves generating natural language

surface form from structured data. The tradi-

tional system is primarily built on a template-based

algorithm. Recently, with the development of

deep learning, attention has been gradually shifted

to end-to-end neural generation models, which

achieve significant performances on existing large-

scale datasets like WebNLG (Shimorina and Gar-

dent, 2018), E2ENLG (Dušek et al., 2019), Wik-

iBio (Lebret et al., 2016), ROTOWIRE (Wiseman

et al., 2017), TOTTO (Parikh et al., 2020), Log-

icNLG (Chen et al., 2020a), etc. However, these

neural generation models are mainly focused on

fully supervised learning requiring a huge amount

of human annotation for the specific task. Our pa-

per focuses on building a more generalized model

architecture, which can adapt to specific tasks well

with only a handful of training instances.

Knowledge-Grounded Language Modeling It

is of primary importance to ground language mod-

els on existing knowledge of various forms. The

neural language models (Bengio et al., 2003) have

been shown to well capture the co-occurrences of

n-grams in the sentences, but falls short to main-

tain the faithfulness or consistency to world facts.

To combat such an issue, different knowledge-

grounded language models (Ahn et al., 2016;

Hayashi et al., 2020; Logan et al., 2019) have

been proposed to infuse structured knowledge into

the neural language model. These models are

mainly focused on enhancing the factualness of

unconditional generative models. Inspired by these

pioneering studies, we explore the possibility to

connect the unconditional generative model with

downstream conditional generation tasks. The

most straightforward knowledge-intensive condi-

tional generative task is the data-to-text generation,

which aims to verbatim given knowledge into lexi-

cal format. We demonstrate great potential of the

knowledge-grounded pretraining in enhancing the

model’s factualness on these down-stream data-to-

text tasks and believe such language models can

be applied to broader range of NLP tasks requiring

knowledge understanding.

Pre-trained Language Model Recently, the re-

search community has witnessed the remarkable

success of pre-training methods in a wide range

of NLP tasks (Devlin et al., 2019; Radford et al.,

2018, 2019; Dai et al., 2019; Yang et al., 2019;

Liu et al., 2019b; Keskar et al., 2019; Lan et al.,

2020; Lewis et al., 2019; Raffel et al., 2019). These

models trained on millions or billions of data un-

labeled data demonstrate unprecedented general-

ization ability to solve related down-stream tasks.

However, the existing pre-trained text generation

models (Radford et al., 2019; Keskar et al., 2019;

Raffel et al., 2019) are initially designed to condi-

tion on text input, thus lacking the ability to encode

structured inputs. The work closest to our concept

is Switch-GPT-2 (Chen et al., 2020b), which fits

the pre-trained GPT-2 model as the decoder part
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to perform table-to-text generation. However, their

knowledge encoder is still trained from scratch,

which compromises the performance. In this paper,

we follow the existing paradigm to construct an

unlabeled web data for LM pre-training.

3 Dataset Construction

The construction process has two stages, namely

the crawling stage and the selection stage:

3.1 Hyperlinked Sentence Crawling

We use English Wikidump2 as our data source. For

each Wikipedia page, we split the whole paragraphs

into an array of sentences and then tokenize with

the nltk toolkit (Loper and Bird, 2002). We loop

through each sentence to keep the sentences with

more than 2 Wikipedia anchor links and within

the length of 10 and 50. For each candidate sen-

tence, we use its Wikipedia hyperlink to query

WikiData (Vrandečić and Krötzsch, 2014) and ob-

tain its corresponding entity page3. We retrieve the

neighboring knowledge triples from these entity

pages to construct a local 1-hop graph for each en-

tity. The knowledge triples are divided into two

types: 1) the object of the triple is also an entity like

‘(Roma F.C., country, Italy)’, 2) the object of the

triple is in plain text like ‘(Roma F.C., inception,

7 June 1927)’. In the first case, if the object entity

also appears in the sentence, we use it as the bridge

to build a multi-hop graph like Figure 2. After this

step, we collected roughly 4 million pairs in the

form of (subgraph, sentence) as the candidate for

the following step.

3.2 Data Selection

We observe that the collected pairs are overly

noisy with many sentences totally irrelevant to their

paired subgraphs. Apparently, these pairs cannot

serve our goal to build a knowledge-grounded lan-

guage model. Therefore, we propose a data se-

lection step to suppress the noise and filter out

the data pairs of our interests. An example is de-

picted in Figure 2, the first sentence does not rely

on any information provided by the knowledge

graph, while the second sentence has a tight con-

nection to the facts presented in the knowledge

graph. Ideally, our proposed strategy should favor

the second sentence over the first one.

2https://dumps.wikimedia.org/
3https://www.wikidata.org

To achieve this, we propose a simple lexical-

based selection strategy to perform data selection.

For example, the sentence ‘He was born ...’ in Fig-

ure 2 has two query words ‘Italy’ and ‘Germany’,

we will conduct two rounds of lexical matching.

In the first round, we use ‘Italy’ to query its sur-

rounding neighbors in WikiData to the neighboring

unigram, i.e. ‘(Rome, capital, Europe, Continent,

Country, Roma F.C)’. We compute the unigram

overlap with the original sentence ‘(He, was, ...)’,

which is still 0%. In the second round, we use ‘Ger-

many’ to do the same computation and calculate

the lexical overlap, which is still 0%. So the fi-

nal averaged grounding score of two rounds is 0%.

We can follow the same procedure to compute the

grounding score for the second sentence in Figure 2

with four rounds ‘(AS Rome, FB, Rome, Italy)’.

The grounding score is above 30%, which indicates

that the sentence is highly grounded on WikiData

subgraph. In this paper, we use a threshold of 0.13,

which selects the top 7M ‘good’ sentences from

the original 12M Wikipedia corpus.
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capital

Berlin

capital

Roma	F.C.

country
Football

Club

instance

He was born in Italy and raised in Germany.
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Figure 2: Data denoising procedure for the KGTEXT.

After the selection step, we obtain a denoised

knowledge-grounded corpus KGTEXT for pre-

training. However, there still exist noisy false pos-

itives in the corpus, for example, a subgraph con-

tains triple ‘(Roma F.C., country, Italy)’, which is

associated with the text ‘An Italian player plays for

A.S. Roma’. Though the two entities co-occur, they

are not meant to describe the fact triple. By apply-

ing more strict rules, we can suppress such false

positives, but the data capacity could significantly

drop consequently. We experimented with differ-

https://dumps.wikimedia.org/
https://www.wikidata.org
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ent thresholds to balance noise and data capacity

and finally decide on a threshold with an accept-

able noise degree. The detailed statistics of the

KGTEXT is listed in Table 1. We held-out 10,000

sentences for both validation and testing to evaluate

the pre-trained model.

#Sent Length #Ent #Pred #Triple #Ent/Sent

7M 20.2 1.8M 1210 16M 3.0

Table 1: Statistics of collected KGText dataset

4 Model

We formally define the problem setting and

KGPT’s architectures in this section.

4.1 Problem Setting

In this paper, we consider inputs from structured

data with diverse formats, like knowledge subgraph

in KGTEXT, dialog act in E2E (Dušek et al., 2019),

RDF triples in WebNLG (Shimorina and Gardent,

2018) and tables in WikiBio (Lebret et al., 2016).

Here we unify them into a generalized dictionary

format, which uses keys to represent subjects and

values to denote the predicate-object pairs follow-

ing the subject. We showcase the conversion crite-

ria from structured inputs in different data-to-text

datasets into our generalized format in Figure 3.

The generalized input is denoted as X , and the out-

put is denoted as y. Our model encodes X into a

sequence of dense vectors, and then uses the de-

coder to attend and generate y.

4.2 Encoder

The encoder network is crucial to our model to cap-

ture the highly structured graph input. We mainly

experiment with two types of encoders:

Graph Encoder This encoder is mainly based

on graph attention network (Li et al., 2016; Kipf

and Welling, 2017; Veličković et al., 2018) to ex-

plicitly encode the structure information. Specifi-

cally, we view each object, predicates, and subjects

as the leaf nodes, and add [ENT], [TRIPLE] as

pseudo nodes for message passing purposes. The

built graph is depicted in Figure 4.

First of all, we initialize the node representa-

tion with the averaged embedding of its subword

units. For example, the node ‘Moses Malone’ has

a representation of (E[Mos] + E[es] + E[Ma] +

E[lone]) / 4 with E denoting the embedding. After

we obtain the initial node representation, we use

message propagation to update the node represen-

tations based on neighboring information.

In the first layer, we exchange the information

between nodes inside a triple, e.g., ‘Moses Mal-

one’ receives message from siblings ‘Gender’ and

‘Male’. In the second layer, we aggregate infor-

mation from sub/pred/obj nodes to the [TRIPLE]

node, e.g., ‘[TRIPLE1]’ receives message from

children ‘Moses, Gender, Male’. In the third

layer, we aggregate the information from differ-

ent [TRIPLE] to the [ENT] node. In the fourth

layer, we exchange information between different

[ENT] nodes to enhance cross-entity interactions.

Formally, we propose to update the representation

of the i-th node gi ∈ R
D with the multi-head atten-

tion network, which aggregates information from

neighboring nodes gj ∈ Ni as follows:

α
m
j =

e(W
m
Q gi)

T (Wm
K gj)

∑
j∈Ni

e
(Wm

Q
gi)T (Wm

K
gj)

v = concat[
∑

j∈Ni

α
m
j W

m
v (gj)]

ĝi = LayerNorm(MLP (v + gi))

(1)

where m denotes the m-th head in the attention

layer, Wm
Q ,Wm

K ,Wm
V ∈ R

D×D are the matrices

to output query, key, value vectors for m-th head.

The attention output v and the residue connec-

tion from gi are fed through the final MLP and

LayerNorm to update i-th node representation as

ĝi. The output of graph encoder is denoted as

G ∈ R
n×D = {g1, · · · , gn} with n nodes.

Sequence Encoder This encoder is mainly

based on transformer (Vaswani et al., 2017) with

special embedding as an auxiliary input to infuse

the structure information to the sequence model.

The concept of special embedding was initially pro-

posed by BERT (Devlin et al., 2019), more recently,

it has been adopted by Herzig et al. (2020) to infuse

structural information. We visualize the embedding

layer in Figure 5, where we leverage additional en-

tity embedding, triple embedding, and property

embedding to softly encode the structure of the

subgraph as a linearized sequence. For example,

the entity embedding can inform the model which

entity the current token belongs to, while the triple

embedding can indicate which triple the current

token belongs to and the property embedding indi-

cates whether the token is a subject, predicate, or a

subject. Such an encoding mechanism is designed

to softly encode the graph structure into the em-

bedding space for further self-attention. Compared
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<triple> Stuart_Parker_(footballer) | club | Chesterfield_F.C.
<triple> 1_Decembrie_1918_University | nickname | Uab.

Stuart Parker: [(club, Chesterfield F.C.), …], 
1 Decembrie 1918 University: [(nickname, Uab), …]

Born Education Employer Article

September 1972 Northwestern Houston Rockets Morey
WikiBio

WebNLG

Daryl Morey: [(Born, 1972), (Education, Northwester), 
(Employer, Houston Rockets), … ]

name[The Eagle], eatType[coffee shop], priceRange[moderate] The Eagle: [(eat type, coffee shop), (price range, moderate)] E2ENLG

Figure 3: The conversion criterion to unify different structured data input into our generalized format.
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Figure 4: Graph Encoder with hierarchical propagation, where we propagate the information from bottom to top.
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Figure 5: Encoding of the knowledge graph as a sequence using special embedding.

to the graph encoder, the sequence encoder does

not enforce the structure as a hard constraint and

allows more flexibility for the model to perform

cross-triple and cross-entity interactions. Formally,

the dot-product self-attention follows the definition

of Transformer (Vaswani et al., 2017):

fatt(Q,K, V ) = softmax(
QKT

√
D

V )

Gm = fatt(QW
m
Q ,KW

m
K , V W

m
V )

G = MLP (Concat(G1, · · · , Gm))

(2)

where Q,K, V are the computed from the input

embedding, m represents m-th head and fatt is the

core attention function, the final output is denoted

as G ∈ R
n×D with n denoting the sequence length.

4.3 Decoder

Our decoder architecture is mainly based on Trans-

former (Vaswani et al., 2017) and copy mecha-

nism (See et al., 2017). At each decoding time

step, the model has a copy gate pgen to select yi
should be generated from the vocabulary w ∈ V or

copied from the input tokens x:

αj =
eo

T
i Gj

∑
j′
e
oT
i
Gj′

, pgen = σ(MLP (oi))

P (yi = w) = pgenPvoc(w) + (1− pgen)
∑

j:xj=w

αj

(3)

where oi is the last layer hidden state of the decoder

at i-th time step, αj is the copy probability over the

whole input token sequences x.

4.4 Optimization

As we have defined our encoder-decoder model,

we will simply represent it as pencdec(x) to output

a distribution over word yi ∈ V at the i-th time step.

During pre-training, we optimize the log-likelihood

function on DKGText. After pre-training, we con-

vert the downstream task’s input into the defined

dictionary format and denote the dataset as Ddown,

and then further optimize the log-likelihood objec-

tive with θ initialized from the pre-training stage.

The pre-train and fine-tuning procedure is dis-

played in Figure 6, where we first use KGTEXT to

pre-train KGPT, and then fine-tune with different
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types of inputs using the standard auto-regressive

log-likelihood objective.

Encoder

ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑛𝑎𝑚𝑒𝑑

Decoder

Embedding

Attention
𝑏𝑒𝑒𝑛 𝑛𝑎𝑚𝑒𝑑

𝑡ℎ𝑒

𝑡ℎ𝑒 𝑁𝐵𝐴

Pre-training

RDF Triples

Attribute-Value Pairs

Semi-Structured Tables

Encoder Decoder

Attention

Embedding

𝑦! 𝑦" 𝑦# 𝑦$

𝑦" 𝑦# 𝑦$ 𝑦%

Fine-Tuning

Initialize

Figure 6: Overall pre-training and fine-tuning proce-

dures for KGPT. The downstream knowledge data for-

mats are converted into the generalized format.

5 Experiments

We experiment with three different down-stream

tasks, which covers various table-to-text appli-

cations to verify the generalization capability of

KGPT. Besides the fully supervised learning, we

also evaluate zero-shot and few-shot learning.

5.1 Datasets

We use WebNLG (Shimorina and Gardent, 2018),

E2ENLG (Dušek et al., 2019) and WikiBio (Lebret

et al., 2016) to evaluate the performance of KGPT.

Their basic statistics are listed in Table 2. WebNLG

and E2ENLG are both crowd-sourced by human

annotator while WikiBio is from the Web.

Dataset Train Val Test Input

WebNLG 34,338 4,313 4,222 RDF Triple
E2ENLG 42,061 4,672 4,693 Dialog Act
WikiBio 582,657 72,831 72,831 Table

Table 2: Statistics of different data-to-text datasets

WebNLG This dataset (Shimorina and Gardent,

2018) aims to convert RDF triples into a human

annotated textual description. We use the recent

release 2.0 from GitLab4. It contains sets with

up to 7 triples each along with one or more ref-

erences. The number of KB relations modeled in

this scenario is potentially large and generation in-

volves solving various subtasks (e.g. lexicalisation

4https://gitlab.com/shimorina/

webnlg-dataset

and aggregation). As the input RDF triples were

modified from the original triples in DBPedia, we

first need to check whether there are seen triples

in pre-training dataset KGTEXT. We verify that

there is zero RDF triple seen during pre-training

though 31% entities are seen. Therefore, we can

confirm the comparison with other baselines is still

fair given no information from test/dev is leaked.

E2ENLG This dataset (Dušek et al., 2019) aims

to convert dialog act-based meaning representa-

tion into a spoken dialog response. It aims to pro-

vide higher-quality training data for end-to-end lan-

guage generation systems to learn to produce more

naturally sounding utterances. In this dataset, each

meaning representation is associated with on aver-

age with 8.65 different reference utterances.

WikiBio This dataset (Lebret et al., 2016) aims

to generate the first sentence of biography descrip-

tion based on a Wikipedia infoboxes table, with

each table associated with only one reference. Un-

like the previous two human-annotated datasets

from different domains, WikiBio is also scraped

from Wikipedia. Therefore, we filtered out the in-

stances of KGTEXT from the first paragraph of the

biography domain to ensure no overlap or leakage

about Wikibio’s dev/test set.

5.2 Experimental Setup

We apply the standard GPT-2 (Radford et al., 2019)

tokenizer from Hugginface Github5 to tokenize the

text input, which has a vocabulary of over 50K

subword units. We test with both graph encoder

and sequence encoder. We set their hidden size

to 768 and stack 6 layers for both encoder and

decoder with 8 attention heads. During pre-training,

we run the model on KGTEXT on 8 Titan RTX

GPUs with a batch size of 512 for 15 epochs using

Adam (Kingma and Ba, 2015) optimizer with a

learning rate of 1e-4. The pre-training procedure

takes roughly 8 days to finish. We use a held-out

validation set to select the best checkpoint. During

fine-tuning, we use a learning rate of 2e-5.

In our following experiments, we compare with

the known best models from different datasets. As

none of these models are pre-trained, we also add

Template-GPT-2 (Chen et al., 2020a) and Switch-

GPT-2 (Chen et al., 2020b) as our pre-trained base-

lines. Both models apply GPT-2 (Radford et al.,

5https://github.com/huggingface/

transformers

https://gitlab.com/shimorina/webnlg-dataset
https://gitlab.com/shimorina/webnlg-dataset
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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2019) as the generator to decode description from

a table. For the ablation purposes, we list the per-

formance of all non-pre-trained KGPT to see the

performance gain brought by pre-training alone.

All the best models are selected based on the vali-

dation set score, and the numbers are reported in the

following tables are for test split. For evaluation,

we report the performance with BLEU (Papineni

et al., 2002), METEOR (Banerjee and Lavie, 2005)

and ROUGE-L (Lin, 2004) using e2e-metric6. It’s

worth noting that we perform comprehensive data

contamination studies in the following experiments

to make sure the pre-training data contains very lit-

tle overlap with the test split in downstream tasks.

We filter out potentially information-leaking pages

during the data crawling process.

5.3 Preliminary Study on KGTEXT

In the preliminary study, we evaluate our pre-

trained model’s performance on the held-out set of

KGTEXT to conduct ablation study over KGPT.

Specifically, we investigate 1) which encoding

mechanism is better, 2) whether we need copy

mechanism or copy supervision. As demonstrated

in Table 3, we observe that the trivial difference

between two encoder designs. With the copy mech-

anism, KGPT can greatly decrease the perplexity.

However, supervising the copy attention does not

have much influence on the performance. There-

fore, in the following experiments, we will run ex-

periments for both encoding schemes with a copy

mechanism without copy loss.

Model BLEU-4 Perplexity

KGPT-Graph 24.71 4.86
KGPT-Graph + Copy Loss 24.77 4.91
KGPT-Graph w/o Copy 22.69 7.23

KGPT-Seq 24.49 4.95
KGPT-Seq + Copy Loss 24.31 4.93
KGPT-Seq w/o Copy 22.92 7.11

Table 3: Ablation Study on held-out set of KGTEXT.

5.4 Fully-Supervised Results

We experiment with KGPT under the standard

fully-supervised setting to compare its performance

with other state-of-the-art algorithms.

WebNLG Challenge We list WebNLG’s exper-

imental results in Table 4, here we compare with

6https://github.com/tuetschek/

e2e-metrics

the known models under the unconstrained set-

ting. The baseline models (Shimorina and Gar-

dent, 2018) uses sequence-to-sequence attention

model (Luong et al., 2015) as the backbone and

propose delexicalization and copy mechanism to

enhance model’s capability to handle rare items

from the input. The GCN model (Marcheggiani

and Perez-Beltrachini, 2018) uses graph convolu-

tional neural encoder to encode the structured data

input. Its implementation is from Github7. As

can be seen, KGPT without pre-training already

achieves better performance than the GCN base-

line. With pre-training, the performance is further

boosted by 1-2 BLEU-4, which reflects the effec-

tiveness of our method.

Model BLEU METEOR ROUGE

Seq2Seq† 54.0 37.0 64.0

Seq2Seq+Delex† 56.0 39.0 67.0

Seq2Seq+Copy† 61.0 42.0 71.0
GCN 60.80 42.76 71.13

KGPT-Graph w/o Pre 62.30 44.33 73.00
KGPT-Seq w/o Pre 61.79 44.39 72.97

KGPT-Graph w/ Pre 63.84 46.10 74.04
KGPT-Seq w/ Pre 64.11 46.30 74.57

Table 4: Experimental results on WebNLG’s test set, w/

Pre refers to the model with pre-training, otherwise it

refers to the model training from scratch. † results are

copied from Shimorina and Gardent (2018).

E2E Challenge We list E2ENLG’s experimen-

tal results in Table 5, here we compare with the

state-of-the-art systems on the leaderboard of E2E

challenge8. These baselines methods are based

on neural template model (Wiseman et al., 2018),

syntax-enhanced algorithms (Dušek and Jurcicek,

2016), slot alignment (Juraska et al., 2018) and con-

trolling mechanism (Elder et al., 2018). As is seen

from the table, KGPT can beat the SOTA systems

by a remarkable margin. Overall, the improvement

brought by pre-training is roughly 0.5-1.0 in terms

of BLEU-4, which is less significant than WebNLG.

Such a phenomena is understandable given that this

dataset contains limited patterns and vocabulary in

the input meaning representation, a full training

set over 40K instances is more than enough for the

generation model to memorize. In the following

few-shot experiments, we will show the strength

of KGPT to generate high-quality faithful descrip-

tions with only 0.1% of training data.

7https://github.com/diegma/

graph-2-text
8http://www.macs.hw.ac.uk/

InteractionLab/E2E/

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
https://github.com/diegma/graph-2-text
https://github.com/diegma/graph-2-text
http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/
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Model BLEU METEOR ROUGE

NTemp 55.17 38.75 65.01
TGen 65.93 44.83 68.50
SLUG2SLUG 66.19 44.54 67.72
Adapt 67.37 45.23 70.89

KGPT-Graph w/o Pre 66.47 44.20 67.78
KGPT-Seq w/o Pre 67.67 45.33 70.39

KGPT-Graph w/ Pre 67.87 44.50 70.00
KGPT-Seq w/ Pre 68.05 45.80 70.92

Table 5: Experimental results on E2E’s test set. NTemp

is from Wiseman et al. (2018), TGen is from Dušek and

Jurcicek (2016), SLUG2SLUG is from Juraska et al.

(2018) and Adapt is from Elder et al. (2018).

WikiBio Dataset We list WikiBio’s experimen-

tal results in Table 6 and compare with models like

Table2Seq(Bao et al., 2018), Order Planning (Sha

et al., 2018), Field Gating (Liu et al., 2018),

Background-KB Attention (Chen et al., 2019), Hy-

brid Hierarchical Model (Liu et al., 2019a) trained

with multiple auxiliary loss functions. We also

train Template-GPT-2 on this dataset to observe

pre-trained model’s performance. As can be seen

from the table, KGPT can achieve better results

than the mentioned baseline models. Pre-training

can yield an improvement of roughly 0.5 BLEU-

4. As this dataset trainin/testing have similar table

schema and the large number of training instances

already teach the model to memorize the generation

patterns, exploiting an external corpus of on par

size (1.8M) does not bring a significant boost. So

is the template-GPT-2 (Chen et al., 2020a), which

performs on par with Field Gating (Liu et al., 2018).

However, in the few-shot setting, we will show the

25+ BLEU gain brought by pre-training.

Model BLEU

Table NLM (Lebret et al., 2016) 34.70
Table2Seq (Bao et al., 2018) 40.26
Order Planning (Sha et al., 2018) 43.91
Field-Gating (Liu et al., 2018) 44.71
KBAtt (Chen et al., 2019) 44.59
Hierarchical+Auxiliary Loss (Liu et al., 2019a) 45.01

Template-GPT-2 44.67
KGPT-Graph w/o Pre 44.64
KGPT-Seq w/o Pre 44.58

KGPT-Graph w/ Pre 45.10
KGPT-Seq w/ Pre 45.06

Table 6: Experimental results on WikiBio’s test set.

5.5 Few-Shot Results

The few-shot learning setting aims to study the

potential of the proposed pre-training to decrease

annotation labor in data-to-text generation tasks.

Under this setting, we not only compare with non-

pre-trained baselines to observe how pre-training

can benefit the model’s few-shot learning capability

but also compare with other pre-trained LM (Chen

et al., 2020b,a) to see the benefit of KGPT over

existing pre-trained LM.

Model 0.5% 1% 5% 10%

Seq2Seq 1.0 2.4 5.2 12.8
Seq2Seq+Delex 4.6 7.6 15.8 23.1
KGPT-Graph w/o Pre 0.6 2.1 5.9 14.4
KGPT-Seq w/o Pre 0.2 1.7 5.1 13.7
Template-GPT-2 8.5 12.1 35.3 41.6

KGPT-Graph w/ Pre 22.3 25.6 41.2 47.9
KGPT-Seq w/ Pre 21.1 24.7 40.2 46.5

Table 7: Few-shot results on WebNLG’s test set.

Model 0.1% 0.5% 1% 5%

TGen 3.6 27.9 35.2 57.3
KGPT-Graph w/o Pre 2.5 26.8 34.1 57.8
KGPT-Seq w/o Pre 3.5 27.3 33.3 57.6
Template-GPT-2 22.5 47.8 53.3 59.9

KGPT-Graph w/ Pre 39.8 53.3 55.1 61.5
KGPT-Seq w/ Pre 40.2 53.0 54.1 61.1

Table 8: Few-shot results on E2ENLG’s’s test set.

WebNLG & E2ENLG Dataset In these two

datasets, we use 0.1%, 0.5%, 1%, 5%, 10% of

training instances to train the model and observe

its performance curve in terms of BLEU-4.

For WebNLG challenge, the few-shot situation

will pose a lot of unseen entities during test time.

From Table 7, we can observe that the delexi-

calization mechanism can remarkably help with

the few-shot situation. However, the improvement

brought by delexicalization is much weaker than

our proposed pre-training. Under the 5% setting,

while the non-pre-trained baselines are only able

to generate gibberish text, pre-trained KGPT can

maintain a high BLEU score over 40.0 due to its

strong generalization ability.

For E2E challenge, the task is comparatively

simpler with rather limited items. From Table 8,

we can observe that TGen (Dušek and Jurcicek,

2016) is achieving similar performance as our non-

pre-trained KGPT, they both perform quite well

even under 1% training instances. However, after

we further reduce the training samples to roughly

0.1%, the baseline models fail while pre-trained

KGPT still maintains a decent BLEU over 40.0.

WikiBio Dataset In this dataset, we adopt the

same setting as Switch-GPT-2 (Chen et al., 2020b)

and Pivot (Ma et al., 2019) to use 50, 100, 200

and 500 samples from the training set to train the

generation model. From the results in Table 9, we

observe that KGPT can achieve best scores and out-
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perform both Template-GPT-2 and Switch-GPT-2

under most cases. Though Template-GPT-2 is get-

ting slightly better score with 500 training samples,

the overall performance on three datasets are re-

markably lower than KGPT, especially under more

extreme cases. It demonstrates the advantage of our

knowledge-grounded pre-training objective over

the naive LM pre-training objective.

Model 50 100 200 500

Field-Infusing 1.3 2.6 3.1 8.2
KGPT-Graph w/o Pre 0.2 1.1 3.8 9.7
KGPT-Seq w/o Pre 0.6 1.7 3.0 8.9

Pivot† 7.0 10.2 16.8 20.3

Switch-GPT-2† 17.2 23.8 25.4 28.6
Template-GPT-2 19.6 25.2 28.8 30.8

KGPT-Graph w/ Pre 24.5 27.5 28.9 30.1
KGPT-Seq w/ Pre 24.2 27.6 29.1 30.0

Table 9: Few-shot results on Wikibio’s test set. † results

are copied from Chen et al. (2020b).

Quantitative Study We further investigate how

much sample complexity KGPT can reduce.

Specifically, we specify a BLEU-4 score and vary

the training data size to observe how much train-

ing samples are required to attain the performance.

We specify BLEU=30 as our standard and display

our results in Table 10. We compute the ratio of

Model WebNLG E2ENLG WikiBio

KGPT w/o Pre ∼10000 ∼300 ∼8000
KGPT w/ Pre ∼700 ∼20 ∼500
Ratio 14x 15x 16x

Table 10: Required number of training samples to reach

designated BLEU on different dataset.

sample quantity to characterize the benefits from

pre-training. Roughly speaking, pre-training can

decrease the sample complexity for training by 15x,

which suggests the great reduction rate the anno-

tation cost with pre-trained KGPT to achieve the

desired ‘promising’ performance.

5.6 Zero-Shot Results

We further evaluate KGPT’s generalization capabil-

ity under the extreme zero-shot setting and dis-

play our results for WebNLG in Table 11. As

can be seen, all the non-pre-trained baselines

and Template-GPT-2 fail under this setting, while

KGPT can still manage to generate reasonable

outputs and achieve a ROUGE-L score over 30.

Given that no input knowledge triples in WebNLG

were seen during pre-training, these results reflect

KGPT’s strong generalization ability to cope with

out-of-domain unseen knowledge inputs.

Model BLEU METEOR ROUGE

All Baselines 0 0 1.2
Template-GPT-2 0.3 0.5 3.4

KGPT-Graph w/ Pre 13.66 19.17 30.22
KGPT-Seq w/ Pre 13.86 20.15 30.23

Table 11: Zero-shot results on WebNLG’s test set.
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Figure 7: Human evaluation of the factual consistency

of different models on WebNLG samples.

5.7 Human Evaluation

We conduct human evaluation to assess the factual

accuracy of the generated sentences. Specifically,

we sample 100 test samples from WebNLG and

observe the model’s factual consistency with given

fact triples. We use AMT to distribute each gen-

erated sentence to four high-quality workers (95%

approval rate, 500+ approved jobs) to choose from

the three ratings. The majority voted rating is the

final rating. We compare four different systems,

i.e., non-pre-trained and pre-trained KGPT. Con-

ditioned on the fact triples, we categorize the gen-

erated samples into the following categories: 1)

hallucinating non-existing facts, 2) missing given

facts without hallucination, 3) accurate description

of given facts. We visualize the results in Figure 7,

from which we observe that pre-trained KGPT are

less prone to the known hallucination issue and

generate more accurate text. The human evaluation

suggests that pre-training can enhance the model’s

understanding over rare entities, thus reducing the

over-generation of non-existent facts.

5.8 Conclusion

In this paper, we propose a pre-training recipe to

exploit external unlabeled data for data-to-text gen-

eration tasks. Our proposed model has achieved

significant performance under zero-shot and few-

shot settings. Such a framework provides a plau-

sible solution to greatly reduce human annotation

costs in future NLG applications.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. ICLR.
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A Learning Curve

Here we observe the learning trend of both non-pre-

trained and pre-trained models by evaluating the

validation BLEU at each epoch end, here we show

our findings in Figure 8. As can be seen from the

figure, the pre-trained model converges much faster

to the best score. More specifically, it only takes

20 epochs for the model to reach BLEU-4 over 60

while it takes 80-90 epochs for a non-pre-trained

model to reach equivalent performance.
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Figure 8: The learning curve of different models during

training for the WebNLG dataset.

B Predicate Distribution

Here we demonstrate the most popular predicates

in Figure 9. As can be seen, the most popular pred-

icates are ‘instance of’, ‘occupation’, ‘country’,

‘located in’, etc. There are over 1000 predicates in

our dataset, which covers the commonly seen cate-

gories in different domains like politics, athletics,

music, news, etc.

C Case Study

Here we demonstrate some empirical study over

the generated samples from our models in Fig-

ure 10. As can be seen, KGPT has developed a

really strong generation capability to output fluent

and coherent sentences. In the first line, the de-

coded sentence is mostly correct, just the name of

‘municipality’ should be ‘Belgrade’ rather than ‘Ze-

mun’ itself according to https://www.wikidata.

org/wiki/’Q189419. In the second line, the sen-

tence is mostly correct, the error comes from the

end date of Annibale. The third sentence is com-

pletely correct. The fourth sentence also suffers

from a factual error, the relationship should be ‘mar-

ried’ rather than ‘daughter’.

From these sentences, it’s understandable that

the model can achieve reasonable zero-shot perfor-

mance on the WebNLG dataset given that WebNLG

also comes from a similar domain. The case study

reveals that our generation model though generates

fluent and relevant sentences from the given knowl-

edge triples, the groundedness is still questionable

with quite an amount of hallucination issues.

https://www.wikidata.org/wiki/'Q189419
https://www.wikidata.org/wiki/'Q189419
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Figure 9: Predicate distribution over the knowledge triples in KGTEXT.

Input 'Q189419', 'Q403'

Decoded Zemun is a village in the municipality of Zemun, Serbia.

Reference Zemun Polje railway station is the rail station in Zemun Polje, Zemun, Serbia.

Input 'TITLE:::Q566851', 'Q548320', 'Q190353', 'Q50001', 'Q49757'

Decoded Annibale Caro ( 6 June 177 – 11 November 1766 ) was an Italian poet.

Reference Fra' Annibale Caro , K.M. , ( 6 June 150717 November 1566 ) was an Italian writer and poet .

Input 'TITLE:::Q7151519', 'Q50054', 'Q5925', 'Q99', 'Q286803'

Decoded Watford was born in Garden Grove, Orange County, California, and graduated from Laguna Beach High School.

Reference Watford was born in Garden Grove in Orange County , California and graduated from Laguna Beach High School in 1985.

Input 'TITLE:::Q4738713', 'Q6257160', 'Q578478', 'Q23129'

Decoded She was the daughter of John Scudamore, sheriff of Herefordshire.

Reference Alys is known to have married Sir John Scudamore a sheriff of Herefordshire .

Input 'Q5372', 'Q3741166'

Decoded The Iran national basketball team represents Iran in international basketball and is controlled by the Islamic Republic of Iran 

Federation of Basketball Iran.

Reference The Iranian national basketball team represents Iran in international basketball competitions , and is controlled by the IR Iran 

Basketball Federation .

Input 'Q5472010', 'Q16', 'Q7940062'

Decoded Fort Selkirk volcanic field is a Canadian stratovolcano located on Volcano Mountain in the Yukon Territory.

Reference The Fort Selkirk Volcanic Field in central Yukon is the northernmost Holocene volcanic field in Canada , including the young active 

cinder cone , Volcano Mountain .

Figure 10: Randomly generated samples from KGTEXT, where the inputs are the WikiData entities, you can

search it online to see it information. For example, the entity ’Q403’ and its fact triples can be seen from https:

//www.wikidata.org/wiki/Q403.

https://www.wikidata.org/wiki/Q403
https://www.wikidata.org/wiki/Q403

