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In thepresent study, thedifferences in thekharif crop reflectanceatvariedwavelength regionsand temporal SAR
backscatter (at VV and VH polarizations) during different crop stages were analyzed to classify crop types in
parts of Ranchi district, East India using random forest classifier. The spectral signature of crops was generated
during various growth stages using temporal Sentinel-2MSI (optical) satellite images.The temporal backscatter
profile that depends on the geometric and di-electric properties of cropswere studied using Sentinel-1 SARdata.
The spectral profile exhibited distinctive reflectance at the NIR (0.842 lm) and SWIR (1.610 lm) wavelength
regions for paddy (Oryza sativa;*0.25 at NIR,*0.27 at SWIR), maize (Zea mays;*0.24 at NIR,*0.29 at
SWIR)andfingermillet (Eleusinecoracana,*0.26NIR,*0.31atSWIR)duringpre-sowingseason(mid-June).
Similar variations in crop’s reflectance at their different growth stages (vegetative to harvesting) were observed
at various wavelength ranges. Further, the variations in the backscatter coefficient of different crops were
observed at various growth stages depending upon the differences in sowing–harvesting periods, field conditions,
geometry, and water presence in the crop field, etc. The Sentinel-1 SAR based study indicated difference in the
backscatter of crops (i.e.,*�18.5 dB (VH) and*�10 dB (VV) for paddy,*�14 dB (VH) and*�7.5 dB
(VV) for maize,*�14.5 dB and*�8 dB (VV) for finger millet) during late-July (transplantation for paddy;
early vegetative for maize and finger millet). These variations in the reflectance and backscatter values during
various stages were used to deduce the best combination of the optical and SAR layers in order to classify each
crop precisely. The GLCM texture analysis was performed on SAR for better classification of crop fields with
higher accuracies.TheSAR-MSIbased kharif cropassessment (2017) indicated that the total croppedareaunder
paddy,maize andfingermilletwas 24,544.55, 1468.28 and 632.48 ha, respectively.The resultwas validatedwith
ground observations, which indicated an overall accuracy of 83.87% and kappa coefficient of 0.78. The high
temporal, spatial spectral agility of Sentinel satellite are highly suitable for kharif crop monitoring. The study
signifies the role of combined SAR–MSI technology for accurate mapping and monitoring of kharif crops.

Keywords. Crop monitoring; crop spectral profile; random forest classification; SAR texture; SAR–MSI
image fusion.

1. Introduction

Kharif (referred as monsoon crops) is the prime
crop growing season in India. The kharif crops, viz.,
Oryza sativa (paddy), Zea mays (maize), Sorghum

(jowar), Pennisetum glaucum (bajra), Cajanusca-
jan (tur), Vigna radiata (moong), Vigna mungo
(urad), Gossypium (cotton), Corchoruscapsularis
(jute), Eleusine coracana (finger millet) are grown
with the onset of monsoon from July to November.
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Because of the presence of clouds and rain during
the kharif season, crop monitoring using optical
remote sensing data is not suitable due to its
inability to see through clouds. Therefore, syn-
thetic aperture radar (SAR), having the capability
to see through cloud and light rain is being widely
utilized in crop identification and monitoring
(Forkuor et al. 2014; Du et al. 2015; Oyoshi et al.
2016). Many studies have demonstrated the
potential of SAR in crop classification (Bouman
and Hoekman 1993). The working capability in all
weather conditions and sensitivity to crop’s geo-
metric structure and moisture content, makes SAR
a viable tool in agricultural monitoring (Shao et al.
2001). Previous studies have exhibited the use of
multi-temporal SAR data that can be very useful
for classifying agricultural lands and crop growth
monitoring (Chakraborty et al. 1997; Freeman
2007; Oyoshi et al. 2016). The temporal backscat-
ter intensities can be used to differentiate different
crops based on their canopy architecture and
structural characteristics (Soria-Ruiz et al. 2009;
Bargiel and Herrmann 2011). Researchers have
reported the ability of SAR data for crop moni-
toring due to variations in backscatter character-
istics during varied stages of crops (Kurosu et al.
1995; Aschbacher et al. 1995; Toan et al. 1997;
Chakraborty et al. 1997; Panigrahy et al. 1999;
Torbick et al. 2017). Polarimetric SAR (PolSAR)
data that contains both the amplitude and phase
information have also been used for crop classifi-
cation in many studies (Freeman and Durden 1992;
Turkar et al. 2012). Many researchers have also
used the temporal polarimetric signature of crops
for classifying the crops with higher accuracies
(Skriver et al. 1999; Choudhury and Chakraborty
2006). Sentinel-1 SAR data is highly suitable for
crop monitoring at their various growth stages due
to its high spatial and temporal resolution operat-
ing at C wavelength region. Many studies have
reported that the microwave energy in shorter
wavelength regions (C band) are more suitable for
crop studies, as they interact more with the crops
due to lesser penetration compared with micro-
wave energy at higher wavelength (S and L) band
(Inoue et al. 2002; Brisco and McNairn 2004).
Though, remote sensing can potentially provide

observations for every single field in a region for
every single growing season, crop mapping and
yield estimation using a single date satellite data is
often inaccurate due to heterogeneity prevailed in
the agricultural land (Cong et al. 2013; Lobell
2013). The various crops sown having varied

physical–structural properties at different pheno-
logical stage interact differently with the incoming
energy, which are being utilized for accurate crop
characterization (Cong et al. 2013; Ulaby et al.
1982). The temporal variation of the physiology
and geometric properties over the phenological
growth stages of crops from sowing to harvesting
through vegetative, reproductive, and maturity;
also changes their spectral and backscatter beha-
viour and the generated information can be
exploited for crop type identification and its mon-
itoring (Toan et al. 1997; Lopez-Sanchez et al.
2012). The spectral reflectance of crop depends
upon the physio-structural characteristics of crops,
whereas the SAR backscatter relies upon the crop’s
geometry, shape, biomass, and di-electric proper-
ties of crops. The combined use of optical and SAR
datasets is therefore interesting and useful as it
adds different dimensions in crop’s unique identi-
cation. Many researchers have opted fusion of
optical and SAR in mapping of land surface feature
and resulted in increase of classification accuracy.
Combining data of different systems, resolutions
and wavelengths can be helpful in classifying
dynamic landscapes with higher accuracies. The
combination of SAR and optical data works com-
plementary to each other and therefore yields an
increased classification accuracies as optical data
has rich spectral information and SAR data has
more space texture information (Zhou et al. 2017).
Forkuor et al. (2014) have used a combination of
high-resolution multi-temporal (Rapid Eye) and
dual polarimetric radar data (TerraSAR-X) to map
crops of north-western Benin and shown that the
integration of both the data enhanced the classifi-
cation accuracy by 10–15% over the use of Rapid
Eye data alone. Inglada et al. (2016) jointly used
the multi-temporal SAR and optical data for early
crop identification.
Previous studies have resulted in increased

classification accuracy with inclusion of Grey level
Co-occurrence Matrix (GLCM) texture parameters
such as contrast, dissimilarity, homogeneity,
energy, GLCM mean, GLCM variance and GLCM
correlation (Johansen et al. 2007; Ghimire et al.
2010; Jia et al. 2012; Braun and Hochschild 2015).
These different texture measures as reported in
many studies had provided the classifiers with
information that have helped in discriminating the
land use/land cover (Franklin et al. 2000; Ber-
beroglu and Curran 2004; Pearlstine et al. 2005).
Thus, in the present study, the available temporal
optical satellite data (Sentinel-2) in combination

  230 Page 2 of 13 J. Earth Syst. Sci.         (2019) 128 230 



with the SAR data (Sentinel-1) and their texture
parameters were used for identification of varied
crop fields in parts of Ranchi region. Since most of
the crop fields (other than paddy) in Ranchi were
heterogeneous, planted closed to one another, and
dimensionally small, a temporal crop characteri-
zation based on both the optical and SAR data was
performed to select the input layers that can best
be used for crop classification. The main objective
of this study was to develop the spectral profile
using Sentinel-2 optical dataset and backscatter
profile using Sentinel-1 SAR for three major crops
present in the study area. Based on the crop
spectral and backscatter profile, temporal wave-
length and polarization bands with significant dif-
ferences in reflectance and backscatter values were
selected and used as an input layer for classification
using Random Forest (RF) classifier.

2. Study area and data

2.1 Study area

The study area comprises administrative blocks of
Ranchi district namely, Kanke, Mandar, and Ratu
blocks, located in the eastern India (figure 1). The
study area is located in the southern part of the
Chotanagpur plateau, between 23�190–23�350N and
85�260–84�570Ewithanaverage elevationof650 mand
roughly covering 689.82 km2 in area (Census of India
2011). The main river systems are Subarnarekha,
South Koel and its tributaries. Ranchi has a hilly
topographywithdense tropical forest.The forest cover
of the district is about 1904 km2 (24.73%) (FSI 2011;
http://forest.jharkhand.gov.in). Roughly the tem-
perature ranges from 20� to 42�C during summer and
from 0� to 25�C during winter. The total annual rain-
fall is about 1430 mm (56.34 inch.) out of which about
1100 mm of rainfall occurs from June to September in
rainy season (www.ranchi.nic.in). The geographical
area of Kanke block is 347.11 km2 comprising 105
villages and total 45,390 households.Mandar has total
geographical area of 238.24 km2 in which total 69 vil-
lageshouses22,811 families in theblock. InRatublock,
total 14,418 families are distributed over 38 villages to
roughly cover 104.47 km2 of the geographical area
(Census of India 2011).

2.2 Data used

In the present study, Sentinel-1 (SAR) and Sen-
tinel-2 (MSI) datasets and secondary data,

collected during the field survey were used. The
Sentinel-2 optical data for the kharif crop season
(June, September, October, and November of
2017) were acquired from the Sentinel Scientific
Data Hub (www.scihub.copernicus.eu). Since, in
the present study a combination of Sentinel-1 SAR
and Sentinel-2 Optical data were used to map crops
fields. Sentinel-1 SAR satellite data for the crop
season (June–November) were also acquired from
the Sentinel Scientific Data Hub (www.scihub.
copernicus.eu). Sentinel-1 includes C-band (centre
frequency 5.405 GHz) imaging operating in four
exclusive imaging modes with coverage up to
400 km. It provides dual polarization capability,
very short revisit times and rapid product delivery
(Sentinel-1 user hand book, 2014). Data used in the
study and their specification are illustrated in
table 1. Field surveys were conducted in order to
collect field observations of crops and to record
their geolocations (figure 2b). Their geographic
coordinates were recorded using a hand-held GPS,
which was later used for developing crop profile
and training the classifier.

3. Methodology

The Sentinel-1 SAR and Sentinel-2 MSI were
acquired from the European Space Agency (ESA),
Sentinel Scientific Data Hub (https://scihub.
copernicus.eu) website. The satellite data were
processed using the SNAP software version 5.0.
Different bands in Sentinel-2 have different spatial
resolution; therefore, a resampling was performed
using nearest neighbour interpolation to convert
the multi-size products into single-size products.
Since the satellite image of 15th Oct 2017 was
completely cloud free, and most of the crops were
in their reproductive phase, it was used to create a
land use/land cover map (LULC) of the study area,
which was further used in demarcating agricultural
land.
The level 1 C Sentinel datasets were corrected

following orthorectification and spatial registra-
tion and later subjected to radiometric and geo-
metric corrections. The temporal optical data
were then subset to the area of interest (AOI).
Random forest classifier method was adopted and
the LULC was classified into six classes, viz.,
forest, agriculture, settlement, fallow, waterbody
and others. The LULC map was used to mask
non-agricultural land and cloud cover from all
the temporal dataset. The Sentinel-1 SAR data
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Figure 1. Study area comprising Mandar, Ratu and Kanke blocks of Ranchi district of India overlaid on Sentinel-2 satellite
image (acquired on 15th Oct. 2018) and LULC map of study area.

Table 1. Details of data used.

Satellite data Specification

Acquisition

date

24.06.2017

30.07.2017

Synthetic Aperture Radar (SAR) 23.08.2017

Sentinel-1 Polarization: VV and VH 04.09.2017

Pixel spacing: 10 m 28.09.2017

Central frequency: 5.404 GHz (C band) 10.10.2017

Temporal resolution: 12 days 03.11.2017

15.11.2017

Multi Spectral Instrument (MSI) 17.06.2017

Resolution 10 m: Blue; Green; Red; NIR 25.09.2017

Sentinel-2 Resolution 20 m: Red-Edge 1,2,3; Narrow NIR; SWIR 15.10.2017

Resolution 60 m: Coastal aerosol; water vapour; SWIR-Cirrus 30.10.2017

Temporal resolution: 5 days at equator 09.11.2017

29.11.2017
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were processed using SNAP software. Orbit file
were firstly applied to the dataset to provide
accurate satellite position and velocity informa-
tion, followed by thermal noise removal. The
dataset was then calibrated to sigma naught. The
calibrated sigma naught values were then con-
verted into decibel using 10*log 10*(intensity
band). Finally, Range Doppler Terrain Correc-
tion (RDTC) was applied to the SAR data. The
geo-location of different crops recorded during
the field survey was used to generate the crop
spectral and backscatter profile.

Based on the crop’s spectral and backscatter
profile generated, wavelength regions and polar-
ization bands with some differences in reflectance
and backscatter values respectively, were together
used as an input layer for classifying the crops
using RF classifier. Additionally, GLCM texture
layers, viz., energy, contrast, entropy, and corre-
lation were also used in combination of SAR and
optical data for classification. Separability analysis
was performed for combined optical, SAR, and
texture layers to assess its capability in discrimi-
nating the three crops present in the study area.

Multi-temporal Sentinel 2 MSI Data

(16.07, 25.09, 15.10, 30.10, 09.11, 

30.11)

Image Processing

(Resampling, Subset image to AOI)

Multi-temporal Sentinel 1 SAR Data

(24.06, 30.07, 23.08, 04.09, 28.09, 

10.10, 03.11, 15.11)

Image Processing

(Orbit file, Thermal noise removal, 

Calibration, Terrain Correction)

Extraction of reflectance value (TOA) for 

different crops at blue, green, red, red-edge, 

NIR, and SWIR bands

Extraction of backscatter value for 

different crops for VH and VV 

polarization bands

Crop Temporal Pattern

(Crop Spectral profile)
Temporal Backscatter Profile

Selection of optical layers for 

classification based on crop 

spectral profile

Selection of SAR layers and their GLCM 

texture (contrast, energy, entropy, GLCM 

correlation) layers for classification based 

on temporal backscatter profile

Combining different layers of information

(Co-registration of selected optical, SAR and 

their texture layers)

Random Forest Classifier

Crop classification and 

analysis

Vector Data

Different crop 

geolocation to train 

the classifier

Separablity 

analysis

Figure 2. (a) Methodology flow chart. (b) Field map and photographs of different crop fields at various growth stages.
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Signature for paddy, maize, and finger millet were
used to compute the separability using transform
divergence method. Its value greater than 1500
represents considerable separability, whereas
values above 1900 show excellent separability.

4. Results and discussion

4.1 Crop characterization using multispectral
satellite imaging

Due to the presence of cloud during most of the kharif
cropping season, the optical Sentinel-2A satellite
images of selected dates were taken into considera-
tion under various crop growth stages, viz., pre-sown
period (17th June 2017), vegetative stage (25th
September 2017), reproductive stage (15th October
2017), mature stage (30th October 2017), harvesting
stage (9th November 2017), and post-harvesting
stages (29th November 2017). The spectral crop
profiles of the crops (paddy, maize, and finger millet)

were prepared to study the variations in spectral
behaviour of the various crops at different growth
stages in various wavelength regions.
Most of the kharif crops are sown with the onset

of monsoon in the month of July and are harvested
in the month of November–December. June month
corresponds to the pre-sown field conditions. Dur-
ing this period, high reflectance in the red region
(0.67 lm) and relatively lower reflectance values at
the NIR region (0.84 lm) than their respective
values during vegetative stage (September) were
observed (figure 3a, b) which also signifies the
absence of crops in the fields during June and the
presence of crop at vegetative stage during
September. Observed increase in reflectance in
NIR region (0.27 in June to 0.32 in September) and
decrease in the RED region (0.16 in June to 0.12)
indicate that crops at grown stage absorbs energy
strongly in the visible region due to the presence of
leaf pigments like carotenoids and chlorophyll and
reflects very less energy back to the sensor, whereas

Figure 2. (Continued)
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in the NIR region the leaf pigment and the leaf
water does not interact with radiation and there-
fore reflects most of the energy incident upon it.
The incoming radiation in the NIR region when
passes the palisade layer (presence of pigments)
most of the energy is reflected without selective
absorption. Therefore, when the incoming radia-
tion interacts with green leaves, the reflectance
values are lower for the visible region but it is
comparatively higher in the NIR region. No sig-
nificant increase in reflectance were observed
between the vegetative (September) and repro-
ductive stage (mid-October) (figure 3c). With crop
maturing by early November, decline in the
reflectance are observed in the NIR region (0.28 in
15th October to 0.23 in 30th October) and an
increase in RED wavelength region (0.08–0.11)
(figure 3d) were observed. The increase of reflec-
tance in the RED region and decrease in NIR
region is because of very sharp reduction in
chlorophyll contents. Figure 3(e) illustrates
decrease in reflectance values in the NIR region
from 0.25 in 30th October to 0.22 in 09th Novem-
ber and further decreased to 0.20 for 29th
November (figure 3f).

4.2 Temporal backscatter profile of crops

The backscatter value is a function of the ground
surface conditions, crop water content, di-electric
constant, geometry, and management practices.
The SAR backscatter is dynamic, it changes as the
crop field condition changes from the time of sow-
ing to harvesting (table 2). Paddy crop requires a
lot of water, thus paddy fields are flooded with
water in the early stages mainly at the time of
sowing. Whereas, maize and finger millet crop
fields do not require such flooded conditions. This

is very evident in figure 4(a and b) that represents
the temporal variation at VH and VV polarization.
During 30th of July significant difference in the
backscatter value of paddy and other two crops
was observed. Because of the specular reflection
from the flooded paddy fields, low backscatter of
*�18.6 dB in VH and *�9.8 dB in VV was
observed in comparison to maize *(�13.9 dB in
VH and �7.6) and finger millet*(�14.1 dB in VH
and �8.2 dB in VV). Now as the crop grows and
attains vegetative stage, increase in the backscat-
ter values is observed because of increase in the
plant height and biomass and volumetric scattering
from crops canopy. The backscatter value during
this stage increased from �18.5 dB (VH), �10 dB
(VV) to �16 dB (VH), �7 dB (VV) for paddy as
shown in figure 4(a and b). During the reproduc-
tive stage, no or very less change in the backscatter
is observed due to nominal changes in crop biomass
and geometry. With crop attaining mature stage,
decrease in the backscatter was observed due to
significant decrease in the crop’s water content as
the plant dries. The backscatter dropped from
�15 dB (VH), �10 dB (VV) to �16.2 dB (VH),
�11 dB (VV) for paddy; �14.5 dB (VH), �8 dB
(VV) to �16.5 dB (VH), �8.5 dB (VV) for maize;
and �14 dB (VH), �9.5 dB (VV) to �15.5 dB
(VH), �10.5 dB (VV) for finger millet.

4.3 Selection of input layers for classification

Data redundancy can reduce classification accura-
cies and computational efficiencies. Thus, proper
assessment of the available datasets is necessary for
selecting optimal feature space (bands) that helps
in increasing the classification accuracies. The
optimal layers were selected based on the spectral
and backscatter profile generated at their different

Table 2. Temporal backscatter values (dB) of paddy, maize, and finger millet at VH and VV
polarization.

Observation

date

Paddy Maize Finger millet

VH VV VH VV VH VV

24.06.17 �14.37 �7.01 �15.92 �8.63 �16.79 �8.87

30.07.17 �18.61 �9.72 �13.94 �7.70 �14.09 �8.10

23.08.17 �16.12 �7.20 �13.88 �7.91 �13.98 �8.59

04.09.17 �15.81 �9.20 �14.82 �7.85 �15.34 �8.74

28.09.17 �16.82 �11.48 �14.74 �7.81 �14.87 �9.13

10.10.17 �15.21 �10.15 �14.42 �8.50 �13.92 �8.34

03.11.17 �15.61 �10.62 �16.65 �9.02 �15.18 �9.47

15.11.17 �16.10 �10.89 �16.39 �8.68 �16.51 �10.25
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growth stages for the three major crops present in
the study area.

4.3.1 Selection of layers from available optical
(Sentinel-2) dataset

The varied spectral response of different crops
depends on their growth stages, pre-post field
conditions, internal structure and geometry.
Figure 3(a) represents the spectral profile for 17th
June that corresponds to the pre-sown conditions
of the crop fields. During this period, crops fields
resulted in distinctive reflectance values at NIR
region (0.25 for paddy, 0.24 for maize, 0.26 for
finger millet) and SWIR wavelength regions (0.28
for paddy, 0.26 for maize, 0.31 for finger millet).
The crops reflectance at their vegetative stages
(25th September; figure 3b) resulted in separable
values at RED (0.07 for paddy, 0.12 for maize, 0.10
for finger millet), RedEdge-1 (0.10 for paddy, 0.13
for maize, 0.12 for finger millet), and SWIR (0.15
for paddy, 0.25 for maize, 0.20 for finger millet)
wavelength regions. At their reproductive stage
(15th October; figure 3c), separable reflectance at
RED (0.07 for paddy, 0.11 for maize, 0.08 for finger
millet), RedEdge-3 (0.28 for paddy, 0.26 for maize,
0.27 for finger millet), and NIR (0.28 for paddy,
0.25 for maize, 0.26 for finger millet) wavelength
regions were observed. Similar, differences in the
reflectance were observed for RedEdge-3 (0.24 for
paddy, 0.26 for maize, 0.25 for finger millet) band,
and SWIR (0.17 for paddy, 0.24 for maize, 0.23 for
finger millet) at maturing stage of crops (30th
October; figure 3d). Distinguished reflectance

between crops were observed for the harvesting
stage (09th November; figure 3e) at RedEdge-2
(0.19 for paddy, 0.21 for maize, 0.20 for finger
millet), Red-Edge-3 (0.22 for paddy, 0.24 for maize,
0.23 for finger millet), and SWIR (0.20 for paddy,
0.23 for maize, 0.25 for finger millet) wavelength
regions. Figure 3(f) represents the varied reflec-
tance of different crops post-harvesting of the
crops. They inferred distinct reflectance depending
upon the crop’s field condition post-harvesting.
The wavelength regions with distinctive reflectance
values were selected to be used as input layers for
classification. The above-mentioned differences in
the reflectance of different crops at different
wavelength regions were exploited in order to
classify the crops.

4.3.2 Selection of layers from available SAR
(Sentinel-1) dataset

SAR backscatter varies for different land covers in
general and crops in particular depending upon
their properties such as di-electric constant, bio-
mass, and geometry. Significant differences in the
crop’s backscatter at VV and VH polarization were
observed at different growth stages as shown in
figure 4(a and b). Considerable differences in the
backscatter of paddy and other two crops were
observed in both VV (*�9.8 dB for paddy;
*�7.7 for maize; *�8.3 for finger millet) and VH
(*�18.5 dB for paddy; *�13.8 for maize;
*�14.2 for finger millet) polarizations during 30th
July 2017. This is due to the presence of water in
paddy field and early vegetative stages of maize

Figure 4. SAR backscatter profile for Kharif crops in (a) VH and (b) VV polarizations.
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and finger millet. Similarly, distinct backscatter
were observed for 4th September (Vegetative
stage), where paddy was having lower biomass
results in lower backscatter as compared to maize
and finger millet at both VV (*�9.3 dB for paddy;
*�7.9 for maize;*�8.7 for finger millet) and VH
(*�15.9 dB for paddy; *�14.8 for maize;
*�15.4 for finger millet) polarization. Significant
differences in backscatter of the crops (*�11.5 dB
for paddy; *�7.8 for maize; *�9.1 for finger
millet) were observed during the late vegetative
stage (29th September) at the VV polarization

only. Whereas the backscatter was comparable at
VH polarization during this period. During late
vegetative stage (10th October), varied backscat-
ter were observed for VH polarization (*�15.3 dB
for paddy; *�14.3 for maize; *�13.9 for finger
millet), no such differences were observed in VV.
During the crop’s mature stage (3rd November)
variations in the backscatter were observed for
both VV (*�10.6 dB for paddy; *�9 for maize;
*�9.4 for finger millet) and VH (*�15.5 dB for
paddy; *�16.5 for maize; *�15.2 for finger mil-
let) polarization.

4.4 Crop classification using combined optical
and SAR data

The SAR data for the above-mentioned periods
along with their GLCM texture layers, and the
wavelength bands with distinctive reflectance were
combined for classifying the crops using random

Table 3. Transformed divergence separablity matrix for the
three crops.

Paddy Maize Finger millet

Paddy 0 2000 1843.8

Maize 2000 0 1548.73

Finger millet 1843.8 1548.73 0

Figure 5. Map showing paddy, maize and finger millet crop area for kharif season 2017.
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forest classifier. Classification based on machine
learning such as random forest helps in accurate
classification when a set of significant input layers
are used. Further, separability analysis based on
transformed divergence performed on the com-
bined optical and SAR layers resulted in consid-
erable separability among the three crops as shown
in table 3. Excellent separability was observed
between paddy and maize (2000), whereas the
separability between paddy and finger millet was
found to be 1843.8. A relatively low but consider-
able separability was observed between maize and
finger millet (1548.73). The above-mentioned
spectral and backscatter profile was therefore use-
ful in selecting various wavelength and polarization
bands that can be best used in classification. Many
previous research studies have shown that the
classification based on integration of optical, SAR
and its texture components yield highly accurate
classification.
The selected input layers based on the spectral

and backscatter profile were used to classify the
crops using RF classifier in which the geographic
coordinate of crop field points recorded during
the field visit were used to train the classifier.
The area under paddy and other three major
corps was mapped in the regions during kharif
season 2017 (figure 5). The total 24,554.55 ha
area was cropped with paddy, 1468.28 ha with

maize and 632.48 ha with finger millet during
the kharif season 2017.

5. Validation and accuracy assessment

The agricultural data from the District Agriculture
Office (DAO), Ranchi was collected to validate the
crop maps. In the data provided by the DAO, the
total crop area of different crops for kharif season
2017 is given (table 5). It also contains the pro-
duction and yield data of major kharif crops.
According to the data given by the DAO, the total
area cropped under paddy in Kanke, Ratu, and
Mandar block is 27,369 ha. The cropped area under
paddy calculated on the basis of classified satellite
data is 24,554.55 ha, which is almost 89.71% of the
total cropped area reported by DAO. The area
cropped under maize as per the classified image is
1468.29 ha and that reported by the DAO is
1841 ha. The total area under finger millet for
kharif season 2017 is 476 ha as reported by DAO,
whereas the area calculated based on the classified
satellite data is 632.48 ha. Also, confusion matrix
for the crop classification is represented in table 4.

6. Conclusion

In the present study, crop spectral profile based on
Sentinel-2 MSI and backscatter profile using Sen-
tinel-1 SAR data were used for improved classifi-
cation of crops employing RF classifiers. The
profiles resulted in distinctive reflectance at varied
wavelength region and backscatter at VV and VH
polarization for various crops at their different
growth stages were useful in crop identification.
Combined use of optical and SAR data add two
dimensions in identification of crops as spectral
reflectance is majorly governed by the physio-

Table 4. Accuracy assessment.

Pixel Paddy Maize

Finger

millet Others

User accuracy

(%)

Paddy 28 0 2 1 90.32

Maize 1 15 0 3 78.94

Finger millet 3 0 13 2 72.23

Others 0 1 2 22 88.00

Producer accuracy (%) 87.5 93.75 76.47 78.57

Overall accuracy = 83.87%, Kappa coefficient = 0.78.

Table 5. Area coverage of major crops and its comparison
with data of District Agricultural in parts of Ranchi district.

Crop

Area statistics (ha)

As reported by

DAO

Based on classification of

satellite data

Paddy 27,369.00 24,554.55

Maize 1841.00 1468.29

Finger

millet

476.00 632.48
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structural characteristic of crops, whereas the SAR
backscatter primarily depends upon the geometry,
biomass, and di-electric properties of crops. The
high temporal, spatial spectral agility of Sentinel
satellites is highly suitable for crop monitoring.
The Sentinel-2 based kharif crops study indi-

cated variations in the reflectance of different crops
at various wavelength regions. Crop’s reflectance
at blue (0.49 lm) and green (0.56 lm) wavelength
regions were not useful in crop classification as they
inferred similar reflectance for the three crops.
Crop’s reflectance at red (0.67 lm) wavelength
region resulted in distinctive reflectance between
the three crops at vegetative, reproductive, and
mature stages of crop. The reflectance curve also
indicated separable reflectance for crops at NIR
(0.84 lm) region for crop’s vegetative and repro-
ductive stages. Crop’s reflectance at NIR wave-
length were not separable at their mature and
harvesting stages, whereas at RedEdge-2 (0.74 lm)
and RedEdge-3 (0.78 lm) wavelength regions they
resulted in distinctive reflectance values and were
therefore useful in crop classification. SWIR
(1.61 lm) wavelength region resulted in varied
reflectance for crops during the pre- and post-crop
field conditions. Further, the SAR backscatter of
crops at various crop stages also resulted in dis-
tinctive values and was useful in their identifica-
tion. Crop’s backscatter during 30th July
(transplanting stage for paddy and vegetative for
maize and finger millet) resulted in significant
difference between paddy and other two crops at
both VV (*�9.8 dB for paddy; *�7.7 for maize;
*�8.3 for finger millet) and VH (*�18.5 dB for
paddy; *�13.8 for maize; *�14.2 for finger mil-
let) polarization. Similarly, distinctive backscatter
at VV polarization was observed during 23rd
August (vegetative stage); 28th September (late-
vegetative); 3rd November (mature stage). For
cross-polarized VH, crops resulted in varied
backscatter during 4th September (vegetative);
10th October (reproductive stage); and (3rd
November) mature stage. Further, the GLCM
texture parameters viz. contrast, energy, entropy
and correlation of the selected SAR layers were
also used in crop classification to increase classifi-
cation accuracy.
The Sentinel-2A based LULC classification

indicated that the 60.59% area of study area was
under active agriculture and used for crop charac-
terization. The major crops grown in the study area
are paddy, maize and finger millet. The total
cropped area with paddy, maize and finger millet

for kharif season 2017 are 24,544.55, 1468.28 and
632.48 ha, respectively. The combined use of SAR
and optical data in the present study showed an
overall accuracy of 83.87% and kappa coefficient of
0.78. This method of crop mapping can also be used
for mapping of other crops and land features. The
polarimetric SAR data with all the four polariza-
tions and phase information can be helpful in
mapping of crops with much more higher
accuracies.
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