
  

 

 Polson et al. Submitted Manuscript:  Confidential               

 

 

 

Title:  KHS101 disrupts energy metabolism in human glioblastoma cells and 

reduces tumor growth in mice 

Authors:  Euan S. Polson1,†, Verena B. Kuchler1,†, Christopher Abbosh1,9, Edith M. Ross2, Ryan 

K. Mathew1,3, Hester A. Beard4, Bárbara da Silva1, Andrew N. Holding2, Stephane Ballereau2, 

Eulashini Chuntharpursat-Bon1, Jennifer Williams1, Hollie B.S. Griffiths6, Hao Shao5, Anjana 

Patel1, Adam J. Davies1, Alastair Droop1, Paul Chumas3, Susan C. Short1, Mihaela Lorger1, 

Jason E. Gestwicki5, Lee D. Roberts1, Robin S. Bon1,4, Simon J. Allison6, Shoutian Zhu7, 8, 

Florian Markowetz2, and Heiko Wurdak1,* 

Affiliations: 
1 School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.  

2 Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, 

UK. 

3 Department of Neurosurgery, Leeds General Infirmary, Leeds, LS1 3EX, UK 

4 School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. 

5 Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, 

University of California at San Francisco, 675 Nelson Rising Ln., San Francisco, California 

94158, USA. 

6 School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK. 

7 California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La 

Jolla, CA 92037, USA 

8 Current address: Regulus Therapeutics Inc, 10614 Science Center Drive, San Diego, CA 92121, 

USA 

9 Current address: Cancer Research UK Lung Cancer Centre of Excellence London and 

Manchester, University College London Cancer Institute, 72 Huntley Street, London WC1E 

6DD, UK 



2 

 

* To whom correspondence should be addressed:  Heiko Wurdak, Leeds Institute of Cancer and 

Pathology, School of Medicine, University of Leeds, Leeds LS9 7TF, UK. Phone: 113-343-

8636; E-mail: h.wurdak@leeds.ac.uk 

† Euan S. Polson and Verena B. Kuchler contributed equally to this work. 

 

Related Resources: 

http://stm.sciencemag.org/content/10/448/eaar2238 

http://stm.sciencemag.org/content/10/443/eaah6816 

http://stm.sciencemag.org/content/10/430/eaao2731 

http://stm.sciencemag.org/content/10/422/eaam7577 

 

Overline: Brain tumors 

 

One Sentence Summary  

Modulation of energy metabolism with the small molecule KHS101 promoted tumor-selective 

death of human glioblastoma cells and reduced tumor growth in mice. 

 

Abstract  

Pharmacological inhibition of uncontrolled cell growth with small molecule inhibitors is a 

potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain 

cancer. Here, we showed that the synthetic small molecule KHS101 promoted tumor cell death 

in diverse GBM cell models, independent of their tumor subtype, and without affecting the 

viability of non-cancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the 

mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, 

KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy 

metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively 

impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor 
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models in mice, systemic administration of KHS101 reduced tumor growth and increased 

survival without discernible side effects. These findings suggest that targeting of HSPD1-

dependent metabolic pathways might be an effective strategy for treating GBM. 

 

Introduction 

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and 

among the most devastating cancers (1). Its overall median time to recurrence after surgery and 

standard chemoradiotherapy is ~7 months and the 5-year survival rate remains low (<5%) (2). 

Pre-clinical data have shown that small molecules hold therapeutic promises for treating GBM 

through  perturbation of cell death programs (3), epigenetic and transcriptional pathways (4, 5), 

lethal autophagy (6), and GBM stem cell self-renewal (7). However, GBM biology remains 

poorly understood and there is an unmet need for the identification of new targets and the 

development of alternative therapeutic strategies (2). Although presenting several challenges, 

phenotypic drug discovery and profiling using small molecules have the advantage of addressing 

the complexity of diseases, in particular, when the molecular target(s) and the underlying 

mechanisms of action of a small molecule are identified (8, 9).   

GBM consists of diverse cell populations that can differ in their tumor-promoting 

potential (10). Poorly differentiated (stem cell-like) GBM cells can be isolated from patient 

tumors and expanded for their use in chemical screens and diverse biological investigations 

using serum-free culture conditions as well as orthotopic xenografts in immunodeficient mice 

(10–14). Molecular pathways promoting GBM ‘stemness’ have been implicated in tumor 

development and phenotypic and molecular similarities between neural stem cells and poorly 

differentiated GBM cells have been described  (10, 15, 16). In this context, the question arises as 

to whether chemical compounds that induce neural stem cell differentiation may also have a 

potential for reducing GBM growth.  

KHS101 is one such compound that crosses the blood brain barrier (BBB) and selectively 

induces neuronal differentiation of hippocampal neural progenitor cells in vitro and in vivo (17). 

Previous studies have revealed transforming acidic coiled-coil containing protein 3 (TACC3) as 

a biologically relevant target of KHS101 (17, 18). TACC3 is a known regulator of cell division 

(19), and an emerging factor in GBM and tumor biology (20–22). The TACC3-targeting and 
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neural differentiation-promoting features of KHS101 prompted us to investigate the compound 

in human stem cell-like GBM cell models. 

As inter- and intratumor heterogeneity is a major impediment to broadly efficacious 

GBM therapy, we also sought to address whether KHS101 would affect a spectrum of clinically-

relevant GBM subtypes. To achieve this, we established a panel of different patient-derived 

primary and recurrent GBM cell models that were characterized through cytogenetic and single 

cell gene expression analysis. We observed that KHS101 induces a rapid and selective cytotoxic 

response in this heterogeneous spectrum of patient-derived GBM cell lines. Accordingly, we 

sought to identify the mechanisms of action behind the KHS101 anti-GBM activity utilizing 

gene expression analysis, affinity-based target identification, orthogonal chemical validation, and 

quantitative proteomics. These investigations were complemented by the  analysis of energy 

metabolism and mitochondrial dynamics, which have been  previously implicated in cancer 

biology and the regulation of cancer stem cell phenotypes (23–25). Furthermore, we investigated 

the KHS101 anti-GBM activity in established patient-derived tumor xenografts upon systemic 

administration. 

 

Results  

KHS101 selectively induces cytotoxicity in transcriptionally heterogeneous patient-derived GBM 

cell lines, independent of their molecular subtypes 

GBM is characterized by intra- and intertumor heterogeneity that may hinder therapeutic 

success (26–28). To represent this molecular heterogeneity, we established six patient-derived 

tumor cell models from primary GBM (GBM1, 4, 13), recurrent GBM (GBM20), and rare GBM 

subtypes such as gliosarcoma (GBM11) and recurrent giant cell GBM (GBM14) (table S1). We 

hypothesized that single cell quantitative reverse transcription polymerase chain reaction (qRT-

PCR) analysis using a selection of 85 classifier genes from the published proneural, neural, 

classical, and mesenchymal GBM molecular subtypes (28), and an additional selection of  genes 

playing roles in GBM ‘stemness’ and proliferation, and the cell cycle, could indicate the 

molecular subtype heterogeneity within our GBM cell lines. Transcriptome profiling was carried 

out (after microfluidic chip-based  capture of individual cells) by single cell qRT-PCR of ~45 

randomly selected cells from each tumor model, and from the non-cancerous adult brain 

progenitor cell line NP1 (derivation is described in (14)).  Based on the expression of the 
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aforementioned classifier genes, principal component analysis (PCA) indicated transcriptional 

heterogeneity between the different GBM (and NP1) cell lines, and between individual cells 

within each model (Fig. 1A and file S1). Using Computational analysis by cell cycle 

normalization, data discretization, and supervised classification, we stratified our cell lines based 

on their single cell transcriptional phenotypes (file S1). Our analysis showed that the GBM cell 

lines used here possessed either single (mesenchymal or proneural) or double 

(classical/proneural, mesenchymal/proneural) GBM subtype signatures (Fig. 1B and file S1).  

To evaluate the role of KHS101 in tumor cell proliferation, we treated three GBM cell 

lines harboring different molecular signatures with 7.5 µM of KHS101 for 120 hours and 

assessed cell growth by real time imaging. Independent of classical, proneural, and mesenchymal 

molecular subtypes, KHS101 markedly attenuated tumor cell growth as compared to the cells 

treated with the vehicle (Dimethilsulfoxyde, DMSO). KHS101 did not affect cell proliferation in 

the non-cancerous NP1 cell line (Fig. 1C). We then evaluated KHS101in all 6 GBM cell lines 

and showed that KSH101 exhibited dose-dependent cytotoxic properties in all patient-derived 

GBM cell models, and also in the U251 and U87 GBM cell lines (Fig. 1D and fig. S1A). Neither 

bone morphogenetic protein 4 (BMP4)-induced differentiation of GBM cells (29) nor reduced 

oxygen tension (5% O2) (30) interfered with KHS101-induced cytotoxicity, and NP cells were 

refractory to KHS101 treatment under both 21% and 5% O2 conditions (fig. S1B). 

KHS101 promotes autophagy and apoptosis in GBM cells 

To examine the distinct cellular phenotypes of KHS101-treated GBM and NP cells, we 

carried out electron microscopy (EM) and immunocytochemistry-based imaging 12 hours after 

KHS101 (7.5 µM) addition to the GBM cell cultures. KHS101-treated GBM1 cells displayed a 

pronounced development of intracellular vacuoles compared to NP1 cells and to GBM cells 

treated with the vehicle (Fig. 2A top). Concomitantly, Microtubule-associated proteins 1A/1B 

light chain 3B (LC3B)-positive autophagosomal compartments increased in GBM1, and all other 

tested GBM cell models compared to the NP1 line (Fig. 2, A and B). The KHS101-induced 

macro-autophagy phenotype, measured as LC3B-stained cytoplasmic area, was concentration-

dependent in 3 different GBM cell cultures tested (GBM1, GBM11, and GBM20), and was not 

detected in NP1 cells after a 12-hour treatment period (Fig. 2C). The effect of KHS101 on GBM 

autophagic flux was further confirmed by cellular accumulation of the cationic amphiphilic 

tracer dye CYTO-ID in the GBM1 cell line (Fig. 2D). Consistently, EM imaging indicated the 
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degradation of electron-dense cytoplasmic cellular content (Fig. S1D). The KHS101-induced 

autophagic phenotype was accompanied by a pro-apoptotic cell fate shown by marked increase 

in caspase 3/7 activation (luminescent assay) in the GBM1, GBM11, and GBM20 cell lines after 

a 48-hour treatment period (compared with the NP1 model; Fig. 2, E and F). A significant 

accumulation of Annexin V-positive apoptotic cells was also observed in GBM1 cells 48 hours 

after KHS101 treatment (fig. S1E). However, chemical inhibition of late-stage autophagy using 

bafilomycin A1 did not prevent this KHS101-induced apoptotic cell death (fig. S1E), suggesting 

that the latter is not autophagy-dependent.   

KHS101 selectively disrupts metabolic pathways in GBM cells   

TACC3 is a known target of KHS101 in rodent neural progenitor cells (17). KHS101 has 

been shown to cause cellular destabilization of TACC3, hence reducing endogenous TACC3 

protein levels over time (18). Western blot analysis showed that KHS101 did not reduce TACC3 

expression by >20% after a 12-hour treatment period in GBM1 cells; however, TACC3 appeared 

reduced by >40% from 18 hours onwards (fig S2A). Accordingly, KHS101-mediated TACC3 

reduction was not linked to the rapid increase in autophagy marker positivity (from <10 to >80% 

CYTO-ID positive cells) measured over a treatment period of 12 hours in GBM1 cells treated 

with 7.5 µM of KHS101 (Fig. 3A). Consistently, the appearance of GBM cell vacuoles was 

observed ~4 hours after KHS101 addition by time lapse microscopy (movie S1). The KHS101-

induced increased autophagy was not seen in TACC3 knockdown cells (fig. S2, B and C), hence 

excluding TACC3 downregulation as a critical player in mediating KHS101 cytotoxicity in the 

GBM context. Microarray transcriptome profiling (ArrayExpress, accession E-MTAB-5713) and 

gene enrichment analysis of KHS101-treated GBM1 cells (using the hypergeometric 

distribution) indicated that, in addition to differentially-regulated cell cycle pathways (Fig. 3B, 

left), genes associated with oxidative phosphorylation (OXPHOS) and the tricarboxylic acid 

(TCA) cycle were significantly modulated by KHS101 treatment (P<4 x 10-8; Fig. 3B and fig. 

S3A). The KHS101 effect on metabolism-related gene expression was observed using a selection 

of 25 differentially-expressed (>2-fold) marker mRNAs indicating alterations in glycolytic 

(Hexokinase 2, HK2 (31, 32)), oxidative (Heme Oxygenase 1, HMOX1 (33), and pro-apoptotic 

(Harakiri, BCL2 Interacting Protein, HRK (34)) pathways as well as downregulation of known 

GBM ‘stemness’ markers ( Nitric Oxide Synthase 2, NOS2 (15), Inhibitor Of DNA Binding 1, 

HLH Protein, ID1 (35), and Oligodendrocyte Transcription Factor 2, OLIG2 (36) (Fig. 3B, 
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right). This KHS101-induced gene signature was confirmed by qRT-PCR in both primary 

(GBM1) and recurrent (GBM20) tumor models but was neither observed in KHS101-treated 

NP1 cells nor untreated TACC3-knockdown GBM1 cells (Fig. 3C).  

To investigate whether the observed changes in metabolic gene expression were linked to 

a direct effect of KHS101 on GBM cell metabolism and mitochondrial function, metabolic 

phenotyping was carried out using five different GBM cell models, the NP1 and NP2 lines, and  

Normal (non-transformed) Human Astrocytes (NHA) using protocols described in (37). 

Extracellular flux analysis was carried out upon addition of vehicle or KHS101 and a metabolic 

phenogram was  obtained by plotting the basal oxygen consumption rates (OCR; indicative of 

OXPHOS/mitochondrial respiration) of the different cell models  as a function of their basal 

extracellular acidification rates (ECAR; an approximation of glycolytic activity). In contrast to 

the NP1, NP2, and NHA cell lines, the GBM cell lines exhibited elevated OCR and/or ECAR 

corresponding to ‘aerobic’ (GBM20), ‘aerobic/energetic’ (GBM1, GBM13), and ‘energetic’ 

(GBM11, GBM14) baseline phenotypes (Fig. 3D). Upon acute KHS101 treatment, the non-

cancerous control cells remained within a ‘modest’ energetic phenotype window and exhibited a 

moderate increase in glycolytic activity (≤ 2-fold; P=0.05). In contrast, KHS101 induced a 

significant hypoxic shift (P<0.0001; student’s t-test, two tailed) and switch in metabolic baseline 

phenotype across all tested GBM cell models, independent of their molecular subtypes (Fig. 3D).  

 

KHS101 affects glycolysis and the TCA cycle in GBM cells  

Next, we examined intracellular fractional enrichment of glucose-derived carbon through 

glycolysis and the TCA cycle in the GBM1 and NP1 cell models using stable isotope substrate 

labeling with U-13C glucose (38) (fig. S4).  Four hours after addition of KHS101 (7.5 µM), 13C 

label enrichment was not significantly different for glucose (Fig. 4A) or fructose 6 phosphate 

(Fig. 4B). However we found a selective impairment of glycolysis in GBM1 compared with NP1 

cells as indicated by the differential 13C label enrichment of dihydroxyacetone phosphate 

(DHAP; Fig. 4C), glyceraldehyde 3-phosphate (GAP; Fig. 4D), glycerol 3-phosphate (G3P; Fig. 

4E), phosphoenolpyruvate (PEP; Fig. 4F) and lactate (Fig. 4G). An unlabeled metabolite is 

detected as the molecular ion (M0) in the mass spectrum. Each additional 13C-carbon atom 

introduced to the specific molecule gives rise to an increase in mass of 1 (M1, M2, M3, and so 

forth). The incorporation of the 13C-label into the M2 isotopologues of TCA cycle intermediates 
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citrate (Fig. 4H), succinate (Fig. 4I), and malate (Fig. 4K) significantly decreased in KHS101-

treated GBM1 cells (P<0.05), whereas enrichment of these metabolites remained unchanged in 

NP1 cells, indicating a selective perturbation of label enrichment through glycolysis and 

pyruvate dehydrogenase-initiated TCA cycle reactions. After 24 hours of KHS101 treatment, 

total cellular adenosine triphosphate (ATP) levels were reduced (≥50%) in GBM1 compared 

with NP1 cells (fig. S3B). In addition, we noted a higher fractional enrichment of the M1 

isotopologues of citrate (Fig. 4H), succinate (Fig. 4I), fumarate (Fig 4J) and malate (Fig 4K) in 

control GBM versus NP1 cells, which was selectively reduced by KHS101 in GBM1 cells.  

Relative enrichment of the M3 isotopologues of TCA cycle intermediates was elevated in GBM1 

versus NP1 cells (Fig. 4 H, I, J, and K). Increased labelling of M3 aspartate (a proxy for 

oxaloacetate), through the action of pyruvate carboxylase, was observed in KHS101-treated 

GBM cells (Fig 4L). In summary, these findings indicate that KHS101 selectively impairs 

aerobic glycolysis, mitochondrial respiration-dependent, and malic enzyme-dependent 

biosynthetic pathways in GBM cells. 

 

KHS101 interacts with HSPD1 in GBM cells  

Mitochondrial dynamics are important mediators of tumorigenesis and cancer stem cell 

phenotypes (23, 25). To elucidate the cellular target(s) underlying the reduced mitochondrial and 

metabolic capacity in KHS101-treated GBM cells, we investigated the physical interaction of 

KHS101 with potential cellular protein(s) using an established affinity-based target identification 

protocol (17). The photoaffinity probe KHS101-BP (a KHS101 derivative containing a 

benzophenone moiety and an alkyne substituent) and KHS101 showed similar bioactivity in 

GBM cells (fig. S5). A distinct KHS101-BP-protein complex of ~60 kDa (isoelectric point ~5.7) 

appeared reduced by >50% in presence of a 50-fold excess of unlabeled KHS101, and was 

therefore used for examination of KHS101-interacting protein (Fig. 5A). Proteomics analysis 

revealed that the KHS101-BP-bound protein corresponded to the mitochondrial 60 kDa heat 

shock protein 1 (HSPD1).  

A specific interaction between KHS101 and HSPD1 was further observed by in vitro 

pull-down experiments using human recombinant HSPD1 protein (Fig. 5B). Cellular 

fractionation followed by Western blot analysis showed that HSPD1 was overexpressed in 

GBM1 cells and predominantly localized to the mitochondria as indicated by a marked increase 
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in the mitochondrial to cytoplasmic ratio compared with NP1 cells (P<0.01; Fig. 5C). Reduction 

of HSPD1 expression by lentiviral short hairpin (sh)RNA in GBM1 cells by 50-65% (P<0.01; 

fig. S6A) was associated with an increase in mRNA expression of stress-inducible chaperone 

Heat Shock Protein Family A (Hsp70) Member 1A (HSPA1A; >5-fold; P<0.05), which has been 

linked to mitochondrial proteostasis in cancer cells (fig. S6B) (39). In agreement with a reported 

role for HSPD1 in glioma cell line proliferation (40), a decline in mitochondrial 

activity/OXPHOS (~50%; fig. S6C), and a significant decrease in proliferation (~50%, 

P<0.0001), was observed in the HSPD1 shRNA-harboring (low HSPD1-expressing) GBM1 cells 

(fig. S6D; note that KHS101 addition further reduced the growth of HSPD1 knockdown GBM1 

cells). KHS101 altered neither HSPD1 protein levels nor HSPD1 mRNA expression (Fig. 5D, 

and E, and fig. S6E), suggesting that the KHS101-GBM cytotoxicity is independent of HSPD1 

mRNA/protein downregulation. 

 

KHS101 aggregates HSPD1 and metabolic enzymes in GBM cells promoting their metabolic 

exhaustion 

To investigate whether KHS101 directly inhibits HSPD1 function, HSPD1/Heat Shock 

Protein Family E (Hsp10) Member 1 (HSPE1) chaperonin complex activity was assessed upon 

KHS101 addition in vitro. A concentration-dependent inhibition of HSPD1-dependent substrate 

re-folding was readily detected in presence of KHS101 (IC50=14.4 µM) (Fig. 6A). Re-folding 

activity remained unaffected upon addition of a structurally closely related KHS101 analog 

(HB072; Fig. 6B, file S3), which was phenotypically-inactive in GBM cells (fig. S7A). In 

contrast, the mitochondrial HSPD1-targeting natural product myrtucommulone (MC (41)) 

elicited a concentration dependent decrease in HSPD1/HSPE1 re-folding activity (Fig. 6B). 

Moreover, MC and KHS101 shared mitochondrial and bioenergetic stress-promoting activities as 

observed by reduced mitochondrial respiration capacity, upregulation of DNA Damage Inducible 

Transcript 3 (DDIT3) and HMOX1 mRNA, and ATP depletion (fig. S7, B to D). Consistently, 

MC recapitulated the KHS101-induced autophagy and cell death phenotype in GBM cells (fig. 

S7, E and F).     

We next asked whether KHS101 disrupts mitochondrial HSPD1 function in a cell-based 

in vitro system. To this end, we quantified protein aggregation by fractionation of detergent-

insoluble mitochondrial proteins in GBM1 compared with NP1 cells upon compound addition. 
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Silver staining indicated that aggregated proteins (pellet) were enriched by ~4-fold (P<0.01), 

whereas soluble protein enrichment was not significantly affected in GBM1 compared with NP1 

cells 1 hour after KHS101 treatment (Fig. 6C). Proteomics analysis determined that HSPD1 and 

enzymes with functions in glycolysis (Aldolase, Fructose-Bisphosphate A, ALDOA), TCA cycle 

(Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

complex, DLST), OXPHOS (ATP Synthase F1 Subunit Alpha, ATP5A1), and mitochondrial 

integrity (Lon Peptidase 1, Mitochondrial, LONP1 (42)) were specifically enriched in the 

aggregated protein fractions of GBM1 compared to NP1 cells (table S2). Consistently, the 

aggregated proteins readily integrated into a predicted HSPD1-centered protein-protein 

interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING; (43); Fig. 6D). In addition to mitochondrial fractionation, a quantitative global 

proteomics analysis of KHS101-treated GBM1 cells (data deposited at the PRoteomics 

IDEntifications (PRIDE) database , identifier PXD009429) showed that the following aggregated 

proteins of the predicted HSPD1 interaction network were significantly downregulated 1-hour 

after KHS101 treatment (P<7.5 x 10-7): DLST, ATP5A1, Solute Carrier Family 25 Member 3 

(SLC25A3), ALDOA, Pyruvate Kinase M1/2 (PKM2), Phosphoenolpyruvate Carboxykinase 2, 

Mitochondrial (PCK2), Serine Hydroxymethyltransferase 2 (SHMT2), Phosphoglycerate 

Dehydrogenase (PHGDH), HSPD1, Heat Shock Protein 90 Alpha Family Class B Member 1 

(HSP90AB1), and LONP1 (Fig. 6E and file S3). Changes in the KHS101-regulated GBM 

proteome were time-dependent as indicated by PCA and differential peptide abundances (fig. S8, 

A and B). Global protein abundance was decreased by KHS101 at both the 1-hour and 12-hour 

time points. Compared with t0, 9500 and 9607 polypeptides were significantly downregulated 

(P≤0.05), whereas only 93 and 16 proteins were markedly upregulated at the 1- and 12-hour time 

points, respectively (Fig. 6E and fig. S8C, and file S3). Protein set enrichment analysis indicated 

that mitochondrial rather than endoplasmic reticulum (ER) pathways were affected (Fig. 6E, fig. 

S8C, file S3). In summary, these findings corroborate a link between the KHS101-mediated 

disruption of mitochondrial HSPD1 activity and metabolic stress in GBM cells. 

 

KHS101 attenuates tumor growth and invasion in vivo 

To investigate the potential pharmacological effects of KHS101 on GBM in vivo, 

xenograft tumors were allowed to establish for 6 weeks after injection of GBM1 cells (1 x 105 
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cells) into the forebrain striatum and treated with vehicle or KHS101 for 10 days (s.c., 6 mg/kg, 

twice daily). Subsequently, Nicotinamide adenine dinucleotide (NADH)/Nicotinamide adenine 

dinucleotide phosphate (NAD(P)H) and Flavin adenine dinucleotide (FAD) autofluorescence 

(AF; fig. S9A) was examined as an indicator of metabolic and mitochondrial activity in situ (44). 

Analysis of tumor tissue sections showed that the AF signal area was predominantly cytoplasmic 

and significantly upregulated after systemic delivery of KHS101 compared with the vehicle 

control (P<0.01; Fig. 7A and fig. S9, A and B). Consistently, fluorescence-lifetime imaging 

microscopy (FLIM) revealed an elevated cytoplasmic fluorescence (corresponding to free 

NAD(P)H)) 1 hour after KHS101 addition in cultured GBM1 cells (fig. S9C).  

To examine whether the observed mitochondrial/redox anomaly was associated with 

reduced tumor progression, we adapted the KHS101 dosing regimen from previous neurogenesis 

work in rats (17) using a 10-week tumor treatment strategy (s.c., 6 mg/kg, twice a day, and bi-

weekly treatment alternating five and three treatment days per week). Immunohistological 

analysis of the vehicle (V)- and KHS101 (K)-treated tumors at the 16-week endpoint showed an 

increase in HK2-positive tumor area in KHS-treated tumors (Fig. 7B and fig. S10A), which was 

in line with the KHS101-induced increase in HK2 mRNA in GBM cell cultures. Concomitantly, 

tumor cell proliferation was markedly reduced in KHS101-treated tumors (~2-fold) as assessed 

by MKI67 staining (Fig. 7B and fig. S10A). This finding was consistent with a homogenous 

decrease in MKI67 expression and abrogation of clonal growth capacity in individually profiled 

GBM1 cells in vitro (Fig. 7, C and D). KHS101-treated tumors showed signs of elevated cell 

death (reduced cellularity/increased pyknosis) compared with tumors treated with vehicle control 

(Fig. 7E and fig. S10B). The highly invasive phenotype of the GBM1 xenograft tumor model 

(14) enabled quantification of caudal tumor expansion and tumor cell migration across the 

corpus callosum into the contralateral hemisphere (a pathological hallmark of advanced GBM). 

KHS101 treatment markedly reduced both frontal-to-caudal tumor expansion (Fig. 7F), and 

corpus callosum invasion of Vimentin-positive GBM1 cells (≥2-fold) (Fig. 7G). Histological 

analysis demonstrated preserved hepatic architecture in KHS101-treated animals (fig. S10C). 

 

KHS101 treatment increases survival of xenograft tumor-bearing mice  

Consistent with the notion of a pro-tumorigenic effect of elevated HSPD1 (45), 

exploration of the REpository of Molecular BRAin Neoplasia DaTa set (REMBRANDT (46); 
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http://www.betastasis.com/glioma/rembrandt/) suggested thatHSPD1 mRNA expression 

negatively correlated with glioma survival (Fig. 8A). Accordingly, we further investigated 

whether KHS101 prolonged survival in a xenograft model of GBM. To this end, we used a giant 

cell GBM-based model, established with exclusively in vivo-propagated primary cells (GBMX1; 

onset of morbidity: 10-13 weeks). We found that the survival of animals carrying GBMX1-

tumors (established 2 or 6 weeks before treatment) was markedly increased by the KHS101 

treatment regimen for 10 weeks (Fig. 8B). None of the mice had to be removed from the study 

due to adverse side effects of the treatment. An additional experiment using a continuous 

KHS101 treatment regime until the experimental endpoints, also showed a marked increase in 

the survival of GBMX1-bearing animals (Fig. 8C). Histological endpoint analysis of KHS101- 

and vehicle-treated animals confirmed a significantly decreased tumor size in KHS101-treated 

mice (~2-fold, P<0.01; Fig. 8D). In summary, these results indicate significant anti-GBM effects 

of KHS101 in vivo, without discernible adverse toxicity. 

 

Discussion  

GBM is a devastating cancer with limited treatment options and correspondingly poor 

patient outcomes. We began our investigation with the hypothesis that GBM tumor stem cell-like 

cells might be eradicated by a small molecule-mediated pro-differentiation phenotype (12). In 

this context, the compound KHS101 shows BBB penetrability as well as non-toxic neuronal 

differentiation properties by targeting TACC3 (17, 47). However, instead of a ‘forced’ pro-

differentiation phenotype that reduces GBM tumorigenicity in a cell death-independent manner 

(14, 29), we observed a cytotoxic lethal GBM cell fate, characterized by autophagy-driven 

cellular self-destruction.  

One challenge for GBM target discovery and validation is to incorporate the ever-

changing composition of molecularly and phenotypically diverse tumor cell populations (26, 27, 

48) into preclinical disease modeling. To this end, transcriptional diversity among and within our 

six patient-derived models was revealed by microfluidic single cell qRT-PCR analysis. We 

adapted computational approaches that robustly indicated classical, proneural, and mesenchymal 

GBM subtype compartments in our GBM models, that were independent of GBM subtype 

features, pro-differentiation signaling (14, 29), low oxygen culture conditions, and parental 

tumor origin (primary versus recurrent GBM, and MGMT methylation status).  
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Consistent with previous work (18), KHS101 treatment decreased endogenous TACC3 

protein in GBM cells over time. The resulting TACC3 degradation kinetics (onset 管18 hours) 

was not involved in the more rapidly-evolving autophagy and cytoplasmic degradation processes 

in GBM cells. However, the KHS101-mediated decrease in TACC3 levels may have contributed 

to the alterations in GBM cell cycle and mitotic pathways as indicated by microarray gene 

expression analysis 24 hours after KHS101 addition. KHS101-induced gene expression changes 

(observed for SLC2A1, HK2, HMOX1, and DDIT3) suggested a yet unexplored KHS101 

bioactivity in regards to metabolic and mitochondrial pathway perturbation. Consistent with the 

notion that altered energy metabolism is a hallmark of cancers and a potential tumor cell 

vulnerability (24), the GBM cell models persistently exhibited elevated bioenergetic demands 

compared with NP and astrocyte cell lines. Both intracellular and extracellular metabolic 

phenotyping indicated that KHS101 disrupted GBM cell energy metabolism. Glucose transporter 

gene expression (SLC2A1 and SLC2A3) was increased in GBM cells after a 24-hour treatment 

period. Moreover, HK2 expression increased after KHS101 treatment in vitro and in vivo. HK2 

is a key enzyme for enhanced glucose turnover that depends on ATP availability (32), which was 

reduced in KHS101-treated GBM cells at the 24-hour time point. Fractional enrichment of 

glucose-derived carbon through glycolysis and the TCA cycle was impaired in the GBM cells 

and the latter was indicated by a reduction in 13C-label incorporation into the M2 isotopologues 

of TCA cycle intermediates. The M1 isotopologues of TCA cycle intermediates were likely 

derived from the generation of M1-labelled pyruvate, by the action of malic enzyme 1 (ME1), 

which subsequently re-enters the TCA cycle either by the action of pyruvate carboxylase or the 

reverse ME1 reaction. ME1 is overexpressed in cancer cells to meet redox balancing and lipid 

biosynthetic demands, and its inhibition has been suggested to impair cancer cell growth (49). 

Increased labeling of M3 aspartate (a proxy for oxaloacetate) may represent a compensatory 

carbon entry into the TCA cycle in KHS101-treated GBM cells via increased, pyruvate 

carboxylase-mediated, pyruvate anaplerosis, which has previously been described in lung 

metastases (50). Consistent with bioenergetic changes, stress response genes (DDIT3 and 

HMOX1 indicating mitochondrial stress in glioma depending on the experimental context (51, 

52)) were upregulated by KHS101. Moreover, a NAD(P)H cytoplasmic accumulation (indicating 

mitochondrial/redox anomalies (44, 53)) was observed in GBM cells and xenograft tumors upon 

KHS101 treatment. It is plausible that, concomitant with KHS101-induced advances in 
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bioenergetic insufficiencies, cellular stress evolved and spread across the GBM cell organelle 

system, for example via the mitochondrial unfolded protein response (as indicated by the 

upregulation of DDIT3 and TRIB3 mRNA expression in treated GBM1 cells; (54, 55)).  

 In agreement with a KHS101 interference with mitochondrial dynamics, affinity-based 

target identification suggested a physical interaction between KHS101 and the mitochondrial 

chaperone HSPD1 in GBM cells. The reduction of HSPD1 using shRNAs expectedly affected 

GBM cell growth and mitochondrial capacity (40), and a potential compensation for reduced 

HSPD1 expression via HSPA1A mRNA upregulation was observed. However, KHS101 did not 

affect cellular HSPD1 mRNA and protein levels, highlighting the importance of recognizing 

differences between genetic and small-molecule target inhibition (reviewed in (56)). As affinity-

based target identification provides important, but not sufficient, evidence for small molecule 

mechanisms of action investigations (9), we sought to address whether KHS101 disrupted 

HSPD1 function. The activity of the HSPD1/HSPE1 complex was reduced by KHS101 in a 

concentration-dependent fashion in vitro. A structurally-related KHS101 analog that did not 

affect HSPD1/HSPE1 chaperone activity (HB072), remained phenotypically-inactive in GBM 

cells. In contrast, a structurally-unrelated positive control for mitochondrial HSPD1 inhibition 

((MC; (57)), fully recapitulated the KHS101-induced GBM cell cytotoxicity.  

A selective aggregation of HSPD1 and its potential client proteins was observed in GBM 

cells 1 hour after KHS101 addition. The acute deregulation of a predicted HSPD1-centered 

enzymatic network, including ALDOA (regulating glycolysis), DLST (regulating TCA cycle), 

ATP5A1 (regulating OXPHOS), and the chaperone LONP1 (regulating mitochondrial integrity 

in cancer cells (42) provides an explanation for the rapidly-evolving metabolic stress that was not 

uniquely mitochondrial. Mitochondrial fractionation of aggregated ALDOA and PKM2 proteins 

suggests close association of these enzymes with GBM cell mitochondria, a phenomenon 

reported for HK2 in the cancer cell context (32). 

Selective effects of KHS101 towards brain cancer cells were observed throughout our 

study at protein, metabolite, mRNA, and organelle levels. Cellular self-degradation processes 

were markedly pronounced in GBM but not NP cells 12 hours after KHS101 treatment. The loss 

of stem cell-like features and the significant increase in apoptotic cell death over time (>24 

hours) indicates that GBM cells failed to compensate for the KHS101-mediated impairment of 

critical metabolic and mitochondrial fitness and ATP production. Taken together, these results 
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support a causative relationship between the KHS101-induced HSPD1 disruption and a lethal 

GBM cellular phenotype.  

KHS101 activity has not been associated with toxicity in non-cancer contexts in vitro and 

in vivo  (17, 18, 47, 58). KHS101 showed favorable in vivo properties including accelerated 

neuronal differentiation in adult rats (without affecting apoptosis of brain cells (17, 47)). 

Consistent with the specific KHS101 cytotoxicity in GBM compared with NP cells, the 

compound markedly decreased the progression of established xenograft tumors, whereas adverse 

effects (liver toxicity) were not observed in mice after prolonged (10-week) systemic 

administration.  

There are some limitations to our study. KHS101 is an experimental/preclinical 

compound that may require chemical and pharmacological optimization before KHS101-like 

bioactivities can be tested in clinical applications. The exact molecular nature of the KHS101-

HSPD1 interaction, and the role of HSPD1 in the metabolic reprogramming that drives brain 

tumorigenesis remain to be further investigated.  

  In summary, this experimental small molecule phenotype and target profiling study 

identifies HSPD1 enzymatic function as a specific molecular vulnerability linked to energy 

metabolism in GBM cell models. A lethal GBM cell fate can be selectively triggered in a 

heterogeneous spectrum of GBM cells by a single agent. These findings highlight the potential 

for using KHS101-like compounds for therapeutic developments.  

 

 

Materials and Methods 

Study design 

Our objective was to characterize the effect of the synthetic small molecule KHS101 in 

the GBM cellular context in vitro and in vivo. The control and treatment groups and the number 

of biological replicates (sample sizes) for each experiment are specified in the figure legends. 

For in vivo tumor xenograft studies, no power analysis was performed to predetermine the 

sample size, animals were randomly allocated to the control and treatment groups and housed 

together to minimize environmental differences and experimental bias. Analysis of endpoint 

readouts were carried out in a blinded fashion.        

Statistical analysis  
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A minimum of 3 independent biological repeats were analyzed using the student’s t-test 

(two tailed, equal variance), One-way or two-way ANOVA (Tukey post-hoc), or Benjamini-

Hochberg procedure (for false discovery rates) as specified in the figure legends. Data were 

expressed as mean ± SD. One biological repeat comprised a minimum of 3 technical replicates. 

Approximate normal distribution of data was assumed. For xenograft tumor analysis, the Mann-

Whitney U-test was used (one tailed). For Kaplan-Meier xenograft tumor analysis, the 

significance was calculated using the log-rank test.  

For all other Materials and Methods, see Supplementary Materials. 
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Figure legends 

Fig. 1. KHS101 exhibits cytotoxicity in molecularly-diverse GBM models. (A) Principle 

component analysis in individual cells within the patient-derived GBM and NP1 lines. (B) Radar 

plots depicting the GBM subtype compartments (classical (C), proneural (P), mesenchymal (M) 

and neural (N)) of the GBM1 (left), GBM11 (middle) and GBM20 (right) models. (C) Real time 

assessment of cellular confluency (normalized to t0 values) in GBM1, GBM11, GBM20, and 

NP1 models before and after treatment (arrowheads) with DMSO (0.1%) or KHS101 (7.5 たM). 

A single experiment out of three biological replicates is shown (see file S2 for all data). ***, 

P<0.001, ****, P<0.0001, two-way ANOVA. (D) Dose-response curves (normalized to the 

DMSO control) and the corresponding IC50 values (たM, with 95% confidence intervals) are 

shown for the indicated cell models and KHS101 concentrations after a 5-day treatment period. 

Data are mean ± SD of three biological replicates. 

Fig. 2. KHS101 selectively induces an autophagic and pro-apoptotic cell fate across a 

spectrum of GBM cell models. (A) EM and immunocytochemistry (Phase contrast (Phc); anti-

LC3B; DAPI) images (scale bars: 5 and 25 たm, respectively) of GBM1 and NP1 cells 12 hours 

after KHS101 (7.5 たM) or DMSO (0.1%) treatments. (B) Immunocytochemistry (Phase contrast 

(Phc); anti-LC3B; DAPI) images (scale bar: 30 たm) of indicated cell models 12 hours after 

KHS101 (7.5 たM) or DMSO (0.1%) treatments. (C) Quantification of the LC3B-positive 

cytoplasmic area (%) 12 hours after treatment with KHS101 (at the indicated concentrations) or 

DMSO (D; 0.1%) using the specified cell models. (D) Quantification of CYTO-ID-positive 
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GBM1 cells 12 hours after treatment with DMSO (D; 0.1%) or KHS101 (at the indicated 

concentrations). (E) Kinetics of caspase 3/7 activation in GBM1 cells treated with KHS101 (7.5 

たM) or DMSO (0.1%; data were normalized to to). (F) Relative caspase 3/7 activation (at the 48-

hour time point) in response to DMSO (D; 0.1%) or KHS101 (K; 7.5 たM) in the specified cell 

models. N: negative control (K; 7.5 たM + pan-caspase inhibitor Z-VAD-FMK; 2 たM), P: 

Positive control (Staurosporine; 1 たM). Data are mean ± SD of three biological replicates, **, 

P<0.01, student’s t-test (two tailed). 

Fig. 3. KHS101 induces acute metabolic stress in GBM cells. (A) Kinetics of autophagy 

induction in CYTO-ID-labeled GBM1 cells upon KHS101 (7.5 たM) or DMSO (0.1%) addition. 

Data are mean ± SD of three biological replicates. (B) Hypergeometric gene enrichment test 

(left; OXPHOS and TCA cycle gene set enrichment is highlighted), and radar plot (right) 

indicating marked (>2-fold) alterations in cell cycle/mitosis, metabolic, and stemness pathways 

in GBM1 cells 24 hours after KHS101 treatment (7.5 たM) compared with the DMSO control 

(0.1%). FC indicates fold change. (C) qRT-PCR radar charts depicting KHS101-induced (7.5 

たM) mRNA expression changes (in relation to the DMSO control; FC range: >-10 and <30) in 

GBM1 and GBM20 cell models (left, middle) and the lack of a similar response in NP1 cells, or 

by TACC3 silencing in GBM1 cells (right). (D) Metabolic phenogram. Basal extracellular flux 

rates (OCR and ECAR) of the specified cell types are shown in response to vehicle (DMSO; 

0.1%) or KHS101 (7.5 µM) treatments. Quadrants indicate the specified metabolic phenotypes. 

Data are mean ± SD of three biological replicates. 

Fig. 4. KHS101 impairs relative incorporation of glucose-derived carbon through glycolysis 

and the TCA cycle in GBM cells. (A) Gas Chromatography-Mass Spectrometry stable isotope 

analysis of methoximation and silylation-derivatized metabolites extracted from NP1 and GBM1 

cells following a 4 hour treatment with KHS101 (7.5 µM) or DMSO (0.1%) in media containing 

U-13C glucose. Graph shows the fractional enrichment (%) in the isotopologues of glucose. (B to 

L) Fractional enrichments of fructose 6-phosphate (F6P, B), dihydroxyacetone phosphate 

(DHAP, C), glyceraldehyde 3-phosphate (GAP, D), glycerol 3-phosphate (G3P, E), 

phosphoenolpyruvate (PEP, F), lactate (G), citrate (H), succinate (I), fumarate (J),  malate (K), 

and aspartate (L). The X-axis indicates the mass isotopomers (which are designated as M0, M1, 

M2…Mn, where n is the number of labeled atoms in the molecule) in the specified metabolites 

(corrected for13C natural abundance; lactate M2 not shown as enrichment above natural 
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abundance was not detected). Data are mean ± SEM of three biological replicates. *, P<0.05; **, 

P<0.01; ***, P<0.001; ****, P<0.0001, one-way ANOVA (Tukey post-hoc). 

Fig. 5. KHS101 interacts with mitochondrial HSPD1. (A) Two-dimensional SDS/PAGE and 

Western blotting of GBM1 cell lysates (20-40% ammonium sulfate-precipitated fraction) 

detecting KHS101-BP-labeled protein in presence or absence of unlabeled KHS101 (as 

specified) after photocrosslinking (30 minutes) and biotin-tag labeling (click chemistry reaction 

using biotin-azide). Asterisk: 60 kDa. Right inlay shows the relative reduction of candidate 

compound-protein complex signal (%; spots 1-4) in presence of unlabeled KHS101. Median of 

three technical repeats (back dots) is shown. Spot 1 corresponded to HSPD1 (identified by 

proteomics analysis after protein spot excision). (B) Specific in vitro binding of recombinant 

human HSPD1 with biotinylated KHS101 (KHS101-bio) was detected by silver staining of 

SDS/PAGE gels in the presence/absence of unlabeled KHS101, precipitated with streptavidin-

conjugated agarose beads. Asterisk: 60 kDa.  (C) HSPD1 mitochondrial (M) to cytoplasmic (C) 

ratio in GBM1 and NP1 cells as assessed by immunoblot quantification.. Black dots represent 

biological replicates (Median ±SD is shown) **, P<0.01, student’s t-test (2-tailed; equal 

variance). (D) Relative mitochondrial HSPD1 protein expression (%, normalized to control 

values as assessed by immunoblot) 6 hours after DMSO (0.1%, D) or KHS101 (7.5 たM, K) 

treatment in GBM1 cells. (E) HSPD1 mRNA expression (fold changes) in GBM1 cells treated 

with DMSO (D; 0.1%) or KHS101 (K; 7.5 たM). SD of three biological repeats (black dots) is 

shown. 

Fig. 6. KHS101 induces HSPD1-dependent aggregation of metabolic enzymes. (A) 

HSPD1/HSPE1 substrate refolding activity in presence of KHS101 (IC50=14.4 たM). Data are 

mean ± SD of three replicates (B) HSPD1 complex substrate refolding activity in presence of 

HB072 (inactive KHS101 analog) and MC (mitochondrial HSPD1-binding compound). Data are 

mean ± SD of three replicates. (C) Left, silver staining of aggregated (pellet) and soluble 

(supernatant) mitochondrial fractions (solubilized with 0.5% NP-40) from NP1 and GBM1 cells 

treated with DMSO (D; 0.1%) or KHS101 (K; 7.5 たM) for 1 hour. Right, KHS101-induced 

protein enrichment as assessed for the aggregated/pellet (P) and soluble/supernatant (S) fractions 

in GBM1 versus NP1 cells. Data are GBM1/NP1 ratios of three biological replicates ± SD). 

**P<0.01, student’s t-test (two-tailed, equal variance). Aggregated proteins were identified by 

mass spectrometry (table S2). . (D) KHS101-GBM protein aggregation represented in a predicted 
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(STRING) interaction network of proteins (homo sapiens; network edges: confidence; line 

thickness indicating strength of data support). Only GAPDH (italic) was shared between NP1 

and GBM1 cells. Green, red, blue, and yellow colors represent enzymatic functions in protein 

folding, glycolysis, OXPHOS, and glycine metabolism, respectively. (E) Quantitative proteome 

analysis identifying differentially-regulated proteins and the specified enrichment sets in GBM1 

cells treated with KHS101 (7.5 たM) for 1 hour. Data (logFC) are calculated from change in 

average protein levels between 1 hour and t0. The -log10 of the Benjamini and Hochberg false-

discovery-rate adjusted P-values were obtained from group-wise comparison (red line depicts 

P=0.05).  

Fig. 7. KHS101 significantly attenuates GBM growth in vivo. (A) Confocal microscopic 

images (scale bar: 40 たm) and quantification of NAD(P)H autofluorescence (AF) in the vehicle 

(n=4) or KHS101 (n=4) treatment  groups (using 3 different tissue sections per specimen). 

Nuclei were stained with propidium iodide (PI) (B) Immunocytochemistry-based quantification 

of HK2- and MKI67-positive tumor area in the vehicle (V; n=5) or KHS101 (K; n=6) treatment 

groups (using ≥3 different tumor sections per specimen). (C) Bean plot of MKI67 mRNA 

expression in single GBM1 cells 5 days after DMSO (D; 0.1%) or KHS101 (K; 7.5 µM) 

treatment. (D) Clonal growth capacity of individual GBM1 cells in presence of DMSO (D; 0.1%) 

or KHS101 (K; 1 or 7.5 たM). (E) Quantification of acellular/pyknotic areas in anterior GBM1 

tumor sections; V: vehicle, K: KHS101. Dots represent individual tumor measurements. (F) 

GBM1 xenograft tumor size (% tumor area of sectioned brain) in vehicle- (V) or KHS101 (K)-

treated animals assessed by Hematoxylin and Eosin staining in sequential brain areas (frontal to 

caudal; scale bar: 2 mm). Dots represent individual tumors. (G) Imaging and quantification of 

Vimentin-positive GBM1 xenograft tumor cells infiltrating the corpus callosum (CC) of the 

hemisphere contralateral to the injection site in animals of the vehicle (n=5) or KHS101 (n=6) 

treatment groups (using ≥3 sections per xenograft tumor). Dotted line indicates border of CC and 

Striatum (S). Scale bar: 300 たm. All boxplots show the 10-90 percentile and median, *, P<0.05; 

**, P<0.01, Mann Whitney U-test (one tailed). 

Fig. 8. KHS101 treatment increases survival in the GBMX1 in vivo model. (A) Survival 

analysis of the specified glioma subtype categories and median preset thresholds for HSPD1 

mRNA expression (using default settings available from 

http://www.betastasis.com/glioma/rembrandt/kaplan_meier_survival_curve/). (B) Kaplan-Meier 
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(log-rank test) analysis of GBMX1 tumor-carrying animals. Tumors were established over a 2 

week period followed by 10 weeks of vehicle (n=8) or KHS101 (n=8) treatment. (C): Kaplan-

Meier (log-rank test) analysis of GBMX1 tumors that were allowed to establish over a 6 week 

period followed by continuous vehicle (n=4) or KHS101 (n=5) treatment until the endpoint 

(arrowhead). (D) GBMX1 xenograft tumor size (% tumor area of sectioned brain) in vehicle- or 

KHS101-treated brains at their respective endpoints (shown in C) assessed by Hematoxylin and 

Eosin staining (using ≥4 sections per specimen; scale bar: 2 mm). Boxplot shows the 10-90 

percentile and median, and dots represent individual (brain section) values. **, P<0.01, Mann 

Whitney U-test (one tailed). 
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Fig. 1. KHS101 exhibits cytotoxicity in molecularly-diverse GBM models. 
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Fig. 2. KHS101 selectively induces an autophagic and pro-apoptotic cell fate across a 

spectrum of GBM cell models. 
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Fig. 3. KHS101 induces acute metabolic stress in GBM cells. 
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Fig. 4. KHS101 impairs relative incorporation of glucose-derived carbon through glycolysis 

and the TCA cycle in GBM cells. 
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Fig. 5. KHS101 interacts with mitochondrial HSPD1. 
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Fig. 6. KHS101 induces HSPD1-dependent aggregation of metabolic enzymes. 
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Fig. 7. KHS101 significantly attenuates GBM growth in vivo. 
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Fig. 8. KHS101 treatment increases survival in the GBMX1 in vivo model. 


