
Citation: Li, C.; Guo, R.; Tian, X.;

Wang, H. KHV: KVM-Based

Heterogeneous Virtualization.

Electronics 2022, 11, 2631. https://

doi.org/10.3390/electronics11162631

Academic Editors: Gang Chen,

Letian Huang and Di Liu

Received: 15 July 2022

Accepted: 19 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

KHV: KVM-Based Heterogeneous Virtualization
Chunqiang Li 1,*, Ren Guo 2,* , Xianting Tian 2 and Huibin Wang 1

1 Institute of VLSI Design, Zhejiang University, Hangzhou 310000, China
2 Alibaba Group, Hangzhou 310000, China
* Correspondence: chunqiangli@163.com (C.L.); guoren@kernel.org (R.G.)

Abstract: A KVM (Kernel-based Virtual Machine) is subject to the complexity of the Linux kernel
and the difficulty and cost of safety certification; thus, it is not popularized in embedded high-
reliability scenarios. This paper proposes a KVM-based Heterogeneous Virtualization (KHV), which
is independent of hardware virtualization (KVM mandatory virtualization), follows the principle
of static partitioning, localizes the hypervisor, and inherits the KVM software ecosystem. KHV
balances the demands of static partitioning and flexible sharing in the embedded system. The paper
implemented KHV on the RISC-V Xuantie C910 CPU-based SoC and conducted a performance
comparison with KVM. The experiment shows that KHV is 50% smaller than KVM in terms of
fluctuation, and KHV makes the guest OS have the same performance as the bare-metal OS in
scheduler benchmarks, whereas KVM dropped an average of 28%.

Keywords: virtual machine; hypervisor; KVM; bare metal; RISC-V; physical memory protection; FV—
full virtualization; PV—para virtualization; virtio; heterogeneous virtualization; static partitioning

1. Introduction

KVM is an open-source virtualization technology built in Linux and widely used in
cloud computing because of its ecological advantages. After 14 years of development, it
has built a rich software ecosystem and a large user group in cloud computing. It has
become the mainstream virtualization solution in the data center. However, KVM cannot
bring success in the data center to the embedded virtualization scenarios [1]. Compared
with the requirements of data center virtualization scenarios for “massive clients, resources
overcommit, dynamic virtual machine creation, destruction, and migration”, embedded vir-
tualization emphasizes non-interference between guests(ISO 26262 part6), static resources
isolation, reliable performance, and high real-time performance. KVM does not meet
the isolation requirements of embedded virtualization. At present, embedded virtual-
ization scenarios are popular with hypervisors of Static Partitioning (e.g., Jailhouse [2],
Bao [3], ACRN [4], Xen [5], Xvisor [6], QNX Hypervisor, Opensynergy COQOS Hypervisor),
but they have problems such as lack of reliability, poor flexibility, and ecological closure.

This paper proposes a KVM-based Heterogeneous Virtualization (KHV) to overcome
the difficulties of KVM deployment in embedded virtualization. KHV is a static partitioning
technology for embedded scenarios and utilizes the KVM software ecosystem to share
hardware resources flexibly. Regarding reliability, KVM is a hypervisor deeply embedded
in the Linux kernel, which results in the reliability of the guest depending on the Linux
kernel. Even if the guest RTOS reaches a high reliability level, the underlying Linux system
still needs to pass higher reliability certification to meet the reliability requirements of
the guest. It will significantly increase the complexity and cost of reliability certification.
In terms of security, there have been many security vulnerabilities against the virtualization
layer ([7–12]), and attackers exploit these vulnerabilities to attack hypervisors from guests,
obtain sensitive data, and even obtain hypervisor administrator privileges. In addition,
virtualization isolation cannot solve some security vulnerabilities caused by hardware

Electronics 2022, 11, 2631. https://doi.org/10.3390/electronics11162631 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11162631
https://doi.org/10.3390/electronics11162631
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3438-3233
https://orcid.org/0000-0002-7790-8290
https://doi.org/10.3390/electronics11162631
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162631?type=check_update&version=2


Electronics 2022, 11, 2631 2 of 14

defects ([13–15]). KHV reduced the difficulty and cost of reliability certification and elim-
inated the security risks mentioned above by localizing and bypassing the underlying
virtualization. Figure 1 shows the difference between KVM (Linux-based Hypervisor) and
Xen (Embedded Hypervisor). This paper implements KHV with four instances described
in Table 1.

KHV-
ROOT 
(Linux)

Hardware

Dom0
(Linux)

PV
backend

Xen FV

DomU

PV
backend

HardwareHardware

KVM-HOST (Linux) 
FV

PV backend

KVM XEN KHV

…

KVM
GuestKVM
GuestKVM
GuestKVM-
GUEST

PV
frontend

DomUDomUDomU

PV
frontend PV

FrontendPV
Frontend

KHV-BM-
GUEST

PV
frontend

KHV-
HYPERVISOR

FV

Guest
KHV-VM-

GUEST

PV
frontend

Figure 1. KVM vs. XEN vs. KHV.

Table 1. KHV instances noun explanation.

Name Description

KHV-ROOT The root system, the first Linux operating system powered on, allocates
system resources to create the remaining instances.

KHV-BM-GUEST Bare-metal guest instances that do not rely on virtualization.
KHV-VM-GUEST Virtualized guest instance.

KHV-HYPERVISOR Passive Hypervisor for KHV-VM-GUEST, a bridge between KHV-ROOT
and KHV-VM-GUEST.

KHV-ROOT, KHV-BM-GUEST and KHV-VM-GUEST run at the same privilege level.
So, KHV is a Nohype system, which eliminates KVM’s poor isolation problem and the
dependency on a low-level virtualization layer.

As shown in Figure 2, KHV-ROOT is the first root system booted by the SoC, which
creates other KHV-BM/VM-GUESTs. KHV-BM-GUEST is a bare-metal guest that does
not rely on CPU hardware virtualization and is an independent heterogeneous system
once started. KHV-VM-GUEST is a virtual machine created by KHV-ROOT through KHV-
HYPERVISOR using CPU hardware virtualization technology. KHV-HYPERVISOR is a
lightweight virtualization layer that supports KHV-VM-GUEST to use virtual physical
memory. It supports discrete physical memory through two-level address translation and
memory sharing between guests. KHV-HYPERVISOR passively manages KHV-VM-GUEST
without occupying CPUs and acts as a bridge for the KHV-ROOT backend service detailed
in the “KHV Hypervisor” and “Virtio balloon” chapters.

KHV inherits the Para-Virtualization software ecosystem of KVM. The virtio-based
communication technology is prevalent in data centers and embedded scenarios. Virtio uses
shared memory and notification mechanism to provide data exchange services between
OSes as the frontend and backend device driver (e.g., block, net, vsock). KHV inherits the
virtio software ecology and user habits of KVM. Figure 3 shows that in the KHV system,
KHV-ROOT provides virtio services for KHV-GUEST through the virtio bus.

This paper implements KHV on the RISC-V SoC platform, and KHV consists of a
Linux kernel driver and a user mode management tool (kvmtool [16]). The motivation
is introduced in the Related Work chapter. The implementation details are introduced in
the Design chapter. KHV and KVM are tested, compared, and analyzed in the Evaluation
chapter. In the Discussion section, we talk about future directions for improvement.



Electronics 2022, 11, 2631 3 of 14

Whole Memory

KHV-HYPERVISOR

RISC-V SoC offline hw pool

RISC-V CPU GPU NPU Muti-Display
Unit

KHV-ROOT

RISC-V CPU

MCU
Network/Storage

KHV-BM-GUEST

RISC-V CPU

RTOS

KHV-BM-GUEST

RISC-V CPU

KHV-VM-GUEST

RISC-V CPU

KHV-VM-GUEST

RISC-V CPU

KHV-VM-GUEST

RISC-V CPU

Memory 
Region 1

Memory 
Region 2

Memory Region 3
(Page-based shared with 3 KHV-VM-GUESTs)

Figure 2. KHV on SoC.

KHV-
HYPERVISOR

OpenSBI

KHV-ROOT

Virtio-backend

RISC-V SoC

Virtio bus

KHV-BM-
GUEST

Virtio-frontend

KHV-VM-
GUEST

Virtio-frontend

KHV-BM-
GUEST

Virtio-frontend

Figure 3. KHV virtio.

2. Related Work

Removal of the virtualization layer is not a fresh topic. It has been widely discussed
and practiced in the literature, such as High-density Multi-tenant Bare-metal Cloud [17],
NoHype in Cloud [18], and Look mum, no VM exits! (almost) [19]. They all attempt to
eliminate the negative influence of virtualization tax on critical tasks for cloud computing,
but none deal with embedded system scenarios. So, we innovate KHV, the bare-metal
hypervisor solution for the embed system.

So far, there have been some existing bare-metal management solutions, such as Intel
Many Integrated Core (MIC) Architecture, which is a heterogeneous scheme on Linux.
However, its Linux backend virtio drivers are only test level and useless. Additionally,
the MIC driver has been removed since Linux-5.10, for Intel does not produce MIC devices.
In contrast, KHV reuses a mature and rich ecosystem of KVM.

3. Design

The KHV proposed in this paper uses the M-mode (Machine), HS-mode (Supervisor +
Hypervisor), U-mode (User), VS-mode (Virtual Supervisor), and VU-mode (Virtual User)
of the RISC-V architecture. The five runtime modes could meet the needs of various
OSes. At the same time, KHV utilizes the Physical Memory Protection (PMP) natively
provided by RISC-V and controls the access permission to the physical address range.
PMP contains several entries (config with 8/16/32/64) to control the memory access of



Electronics 2022, 11, 2631 4 of 14

KHV-GUEST. We can implement different types of hypervisors with RISC-V ISA. Next, We
have a deeper understanding of the architectural design of KHV through the comparison
with RISC-V KVM.

Figure 4 shows KVM running on RISC-V. The kvmtool runs in KVM-HOST and pro-
vides IO emulator and Para-Virtualization (PV) virtio backends service for KVM-GUEST.
KVM-HOST (Linux) is responsible for running device drivers, kernel-mode PV backends
(also known as vhost virtio backends), and Full Virtualization (FV) functionality. Other
processes can also run PV backends (also known as vhost-user). There are two types of
drivers running in KVM-GUEST, one are native IO drivers based on FV full virtualization
(which is served by IO emulator), and the others are virtio-based PV frontends. Because the
entire KVM system relies on KVM Host(Linux) as the base hypervisor, once there is a
problem with Linux, it also affects the upper-layer KVM-GUEST, which violates the design
principle of ISO-26262 part6 that does not interfere with each other between systems.

KVM-GUEST
(Process N)

Firmware (e.g. OpenSBI) M-mode

KVM-HOST (Linux)
HS-

mode

Process N-1…
VS-mode

VU-
modeU-mode

Host device drivers
Guest PV backends (vhost)

Guest User Space

Guest Kernel

Guest PV backends
(vhost-user)

Process 0
Guest Tool

(Qemu-kvm/kvmtool)

Guest IO drivers
Guest PV frontends

FV - CPU 
Virtualization

Guest IO emulators
Guest PV backends

Figure 4. KVM on RISC-V.

Figure 5 shows the KHV based on RISC-V, in which KHV-ROOT is the root OS for the
whole SoC system. We implemented the tool responsible for system virtualization settings,
guest machine configuration, and startup OS. KHV-ROOT manages and isolates the system
memory and KHV-BM/VM-GUEST. Then, KHV-ROOT is no longer the base hypervisor.
Once KHV-GUEST starts up, it has equal privilege with KHV-ROOT (KHV cannot force
control guests like KVM) and only uses the PV services provided by KHV-ROOT.

Firmware (e.g. OpenSBI) M-mode

KHV-ROOT (Linux) KHV-BM-GUEST KHV-HYPERVISOR
HS-

mode

Process 0
Guest Tool

(Qemu-kvm/kvmtool) Process N
Process 

0
Process 

N…
Guest IO emulators
Guest PV backends

Process 
0

Process 
N…

Host device drivers
Guest PV backends (vhost)

Guest IO drivers
Guest PV frontends

FV - CPU Virtualization
Guest PV backends (virtio-balloon)

KHV-VM-GUEST
Guest IO drivers

Guest PV frontends

VS-
mode

VU-mode

U-mode
Guest PV 
backends 
vhost-user

…

Figure 5. KHV on RISC-V.

Moreover, KHV-ROOT creates KHV-BM-GUEST without FV (CPU Full Virtualization)
function and KHV-VM-GUEST with FV of KHV-HYPERVISOR. KHV-VM-GUEST has
equal privilege with KHV-ROOT and only uses the PV service provided by KHV-ROOT.
KHV-HYPERVISOR enables the upper-layer KHV-VM-GUESTs to use memory more effi-
ciently and share memory through the two-level address translation of FV. The following
introduces the internal designs such as KHV Memory Protection, KHV-HYPERVISOR,
KHV virtio-balloon, Hotplug for CPU sharing, and KHV IO Emulation.



Electronics 2022, 11, 2631 5 of 14

3.1. KHV Memory Isolation

In the KVM virtualization memory model, KVM-HOST can access the memory of
KVM-GUEST, but KVM-GUEST cannot access the memory of KVM-HOST. KHV still
follows this model, using the PMP function of the RISC-V ISA to restrict KHV-GUEST’s
access to memory. Figure 6 shows RISC-V SoC’s memory access topology between PMP,
IOPMP, and CPU peripherals.

Physical memory

PMP

MMU
G-stage

PMP

IOMMU
G-stage

IOPMP IOPMP

CPU CPU
DEV DEV

MMU MMU

Figure 6. PMP and IOPMP in RISC-V SoC.

KHV-HYPERVISOR further utilizes the two-level address translation function of MMU
and IOMMU to manage the memory access of KHV-VM-GUEST in a fine-grained manner.

3.2. KHV-HYPERVISOR

This paper innovatively designs a hypervisor shim (KHV-HYPERVISOR) to create
KHV-VM-GUEST. KHV-HYPERVISOR uses the RISC-V MMU G-stage address translation
mechanism to enhance the memory usage efficiency of the entire KHV system. KHV-
HYPERVISOR is a unique form of KHV-BM-GUEST. KHV-HYPERVISOR follows the
static-partitioning role, which does not occupy the CPU but supports KHV-VM-GUESTs’
running. Each virtual CPU is bound to a physical CPU and uses the hot-plug method
(the same with KHV-BM-GUEST) to manage and share CPUs. From the perspective of
CPU management, there is no difference between KHV-VM-GUEST and KHV-BM-GUEST.
However, from a memory management perspective, KHV-HYPERVISOR uses RISC-V
virtualized MMU/IOMMU G-stage translation to achieve page-level memory isolation and
sharing. The KHV-VM-GUESTs of KHV-HYPERVISOR can use non-contiguous physical
memory to improve memory usage efficiency in KHV-HYPERVISOR. Figure 7 shows the
implementation of KHV-HYPERVISOR using MMU/IOMMU G-stage functionality in a
RISC-V SoC. KHV-ROOT and KHV-BM-GUEST directly bypass the G-stage MMU/IOMMU
function only with PMP and IOPMP.

KHV-HYPERVISOR can reduce the consumption of contiguous physical memory. We
introduce how to implement local memory sharing between KHV-VM-GUESTs in the next
chapter of KHV virtio-balloon.



Electronics 2022, 11, 2631 6 of 14

Physical memory

PMP IOPMP PMP

DEV

IOPMP PMP IOPMP

RISC-V SoC

CPU
DEV

MMU
G-stage

CPU

IOMMU
G-stage

CPU

MMU
G-stage

DEV

IOMMU
G-stage

KHV-ROOT KHV-VM-GUEST0 KHV-VM-GUEST1

KHV-HYPERVISOR

MMU MMU MMU

Figure 7. KHV-HYPERVISOR in a SoC.

3.3. KHV Virtio-Balloon

KVM’s virtio-balloon function is popular in data center virtualization, letting KVM-
HOST reclaim KVM-GUEST’s memory by negotiation.

Figure 8 shows the difference in how virtio-balloon works on KVM and KHV systems.
When KVM-GUEST returns the memory to KVM-HOST, the virtio-balloon front-end driver
of KVM-GUEST will inflate and occupy more pages and then report the occupied memory
to KVM-HOST. The KHV-HOST balloon backend driver unmaps these memory pages and
recycles them into the free memory pool of KVM-HOST, which other guests or processes
would reuse. KHV reuses the front-end driver of KVM but re-implements a new backend
driver in KHV-HYPERVISOR, which only serves the KHV-VM-GUESTs in the current KHV-
HYPERVISOR cluster. KHV-VM-GUEST will let the virtio-balloon frontend drive inflate
when there is remaining memory and let KHV-HYPERVISOR reclaim the memory. When
other KHV-VM-GUESTs have a memory requirement, the virtio-balloon frontend driver
deflates and applies more memory from KHV-HYPERVISOR. In this way, the memory
freed to KHV-HYPERVISOR can be flexibly shared among KHV-VM-GUESTs to improve
the memory usage efficiency of the whole KHV system.

khv-hypervisor

-vm-
guest[0~n]khv-vm-

guest[0~n]

virtio-balloon 
Frontend

virtio-balloon 
backend

KHV-ROOT (Linux)
/dev/khv

khv-hypervisor

-vm-
guest[0~n]khv-vm-

guest[0~n]

virtio-balloon 
Frontend

virtio-balloon 
backend

KHV-HYPERVISOR

-vm-
guest[0~n]-vm-

guest[0~n]KHV-VM-
GUEST

virtio-balloon 
Frontend

virtio-balloon Backend

khv-vm-guest[0~n]

virtio-balloon 
Frontend

KVM-HOST (Linux)

/dev/kvm

-vm-guest[0~n]
-vm-guest[0~n]

KVM-GUEST

virtio-balloon 
Frontend

virtio-balloon Backend

Figure 8. Virtio-balloon (KVM vs. KHV).

3.4. Hotplug For CPU Sharing

The CPU sharing method of KHV is different from that of KVM. It follows the prin-
ciple of Static Partitioning by the hot-plug methodology. This method is also called CPU



Electronics 2022, 11, 2631 7 of 14

pass-through mode. Other SoC hardware resources can also use this method of sharing.
KVM uses Linux threads to simulate vCPUs, which causes the client to be affected by the
Linux scheduler, resulting in performance jitter and the inability to guarantee real-time
performance. KHV directly uses a physical CPU, so there is no such problem. Assuming
that the system has N physical CPUs and requires M KHV guests (N > M), KHV will share
the N-M CPUs between KHV-GUESTs. In this way, KHV achieves the maximum CPU
utilization efficiency.

As shown in Figure 9, KHV implements the CPU hot-plug sharing mechanism based
on OpenSBI. When the system started, all CPUs existed in KHV-ROOT. When KHV creates
KHV-BM/VM-GUEST, CPUs will be unplugged from KHV-ROOT and plugged into KHV-
GUEST. KHV-GUESTs have the same possible CPU slots to accommodate maximum CPU
numbers. When the KHV-GUEST load is low, it will free its CPUs to the offline pool. When
the KHV-GUEST load is high, it will try to request the CPU plug-in through OpenSBI’s
hot-plug API to meet the requirements of computing.

CPU 0

KHV-ROOT

CPU 1

KHV-BM/VM-GUEST

CPU 2 CPU 3

OpenSBI CPU Offline pool

cpu_possible_mask cpu_possible_mask

CPU Online

Figure 9. CPU online and offline diagram (KVM vs. KHV).

3.5. KHV IO Emulation

As shown in Figure 10, KVM IO Emulation is implemented based on CPU hardware
virtualization. KHV creates a virtual IO address range (e.g., MMIO) by G-stage address
translation for the guest. When the GUEST accesses the virtual IO address, it will trap
into the KHV-ROOT backend driver, and then VM Exit happens and notifies the relevant
processing thread by the eventfd. When the IO emulation thread finishes the GUEST trap
request, it returns to the KHV-GUEST trap point with the VM Enter context switch.

Guest OS

VM Exit
HOST 

KERNEL
IO Emulation in

QEMU VM Enter

Guest OS

Involves context
switch between host
kernel and QEMUIO

Event

Time

VU/VS 
mode

HS/U 
mode

1 2 3 4

KVM-GUEST

KVM-HOST

Figure 10. KVM IO emulation process.

KHV does not rely on CPU hardware virtualization and uses an “interrupt notification”
and “shared memory” mechanism to implement KHV IO-emulation. It encapsulates a set
of KHV-IO APIs for GUEST and solves spin–wait blocking problems with a FIFO queue
design. As shown in Figure 11, the guest initiates an IO access interrupt request to the
host through the KHV-IO API and enters the spin–wait state. After the KHV-ROOT driver
receives the interrupt, it will use the eventfd mechanism to notify the relevant processing
threads. Depending on the backend driver implementation, these working threads may
be in user or kernel mode. After the IO Emulation backend driver thread completes the
task, it returns to the KHV host driver and releases the guest spin–waiting state so the
guest can continue executing. Therefore, the typical KHV-IO access implementation has



Electronics 2022, 11, 2631 8 of 14

the problem of spin–wait blocking. There is no impact in the negotiation scenarios between
frontend and backend devices. However, the virtio notify scenario will cause performance
degradation. Therefore, we introduce a FIFO queue to solve the problem.

Guest OS 
continues

Guest OS
KHV-IO access

KHV interrupt handler
with eventfd

GUEST spin timeout wait for 
ROOT Emulation complete

Time

KHV-BM-GUEST
KHV-VM-GUEST

KHV-ROOT

1

2

Interrupt Notify

3

5

Release GUEST 
spin wait

4

IO Emulation from Qemu 
/ vhost / vhost-user

Figure 11. KHV IO emulation process.

As shown in Figure 12, notify is a special KHV-IO write operation. When KHV-GUEST
writes the NOTIFY IO-emulation address, it will insert the request into the free slot of
the FIFO queue. If the FIFO queue is empty, GUEST will raise an interrupt notification
to KHV-ROOT. If the FIFO queue is non-empty, KHV-ROOT is still polling the FIFO ring
and the GUEST need not raise interrupt. When the FIFO queue is full (no free slot for
GUEST inserts), the GUEST will enter the spin–waiting state. The KHV-GUEST would
block normal KHV-IO emulation read and write until the “Notify FIFO queue” is empty.
So, KHV-IO transactions have a strong consistency.

Guest code KHV-
IO write Notify

KHV interrupt handler
with eventfd

Guest code continues without spin wait

Time

1 2

Interrupt notify

Time

2 3

IO Emulation for
Qemu / vhost / vhost-user

Notify fifo-ring

KHV-BM-GUEST
KHV-VM-GUEST

KHV-ROOT

Figure 12. KHV notify IO emulation process.

3.6. Summary of Design

KHV follows the principle of static partitioning and does not rely on CPU hardware
virtualization, which is the most significant difference from KVM. KHV has better guest
isolation than KVM by “Memory Isolation with PMP” and has the same efficiency as
KVM by memory and CPU resources sharing by “khv-hypervisor”, “virtio-balloon”, and
“CPU hot-plug”. Moreover, in the IO emulation, KHV naturally inherits KVM’s para-
virtualization mechanism and makes virtio-blk/net/vsock/console/rng/balloon run on
the KHV system.

4. Evaluation
4.1. Methodology Clarification

Since the RISC-V Xuantie 910 CPU does not support hardware-assisted virtualization,
it is impossible to directly compare the performance differences between KHV and KVM on
the same platform. Therefore, we chose the SoC platform of RISC-V Xuantie 910 CPU and
the SoC platform (Raspberry Pi 4b) of ARM Cortex-A72 CPU for comparative measurement



Electronics 2022, 11, 2631 9 of 14

as they have similar performance. The difference between the virtual machine running
system and the native running system was used to compare KHV and KVM in real-time
performance and stability (i.e., Difference Comparison Method):

Obtain the test result 1 on KHV-BM-GUEST and result 2 on KHV-ROOT for the
same test item A, then ‘result 1/result 2’ is the ratio of KHV-BM-GUEST to KHV-ROOT.
For example, if the ratio is 0.95, it means that KHV-BM-GUEST can only achieve 95 percent
of the performance of KHV-ROOT for test item A. Similarly, obtain the test result result 3
on KVM-GUEST and result 4 on KVM-HOST, then ‘result 3/result 4’ is the ratio of KVM-
GUEST to KVM-HOST. For example, if the ratio is 0.85, it means that KVM-GUEST can
only achieve 85 percent of the performance of KVM-HOST; thus, we conclude that KHV
outperforms KVM (0.95 > 0.85) for test item A. Table 2 lists the platforms’ parameters of
the experiment.

Table 2. Introduction to the test platform.

KHV: RISC-V XuanTie 910 SoC Platform KVM: ARM Cortex-A72 SoC Platform

CPU T-HEAD XuanTie 910 × 4 ARM Cortex-A72 × 4
CPU freq 1.8 Ghz 1.5 Ghz
L2 cache 1 M 1 M
L1 icache 64 KB 48 KB
L1 dcache 64 KB 32 KB

RAM 4 G LPDDR4X-3733 4 GB LPDDR4-2400
GUEST 2 harts, 1 GB RAM 2 harts, 1 GB RAM

User tool kvmtool (khv-backend) kvmtool (arm-backend)

4.2. Context Switch Comparison

In this section, we compare the OS scheduling performance of KHV and KVM with
Hackbench and Lmbench (context switch). The configurations of the test items are shown
in Table 3.

Table 3. Hackbench and Lmbench context switch.

Hackbench Lmbench Context Switch

Function description

Use Hackbench to create 750 pairs of reading and writing tasks.
Each writing task sends 200 times × 512 bytes of data to the
reading task through the pipeline, the reading task reads
the data and finally checks the execution time of the test
program (the shorter the time, the better)

Use Lmbench (context switch) to create a test environment
with a total of 8 parent and child processes. The amount of
data exchanged when switching between parent and child
processes is 16 Kbytes. Finally, check the execution time of
the test program (the shorter the time, the better)

Test cmd hackbench -s 512 -l 200 -g 15 -f 25-p′′ lat_ctx -s 16 8

We tested Hackbench and Lmbench (context switch) 50 times, respectively, plotted the
results of the 50 tests into a graph, and obtained the variance of the test data (variance is
used to measure the degree of deviation between a set of sample values and their mean,
it is the mean of the squared values of the difference between each sample value and
the mean). As shown in Figure 13, the curve marked KHV represents the test result on
KHV-BM-GUEST, and the curve marked KVM represents the test result on KVM-GUEST.
As shown on the left, the variance of the KHV curve (0.022) in the Hackbench test is smaller
than the variance of the KVM curve (0.060); as shown on the right, the variance of the
KHV curve (0.392) in the Lmbench (context switch) test is smaller than that of the KVM
curve (0.960). The experimental shows that KHV is 50% smaller than KVM in terms of
fluctuation. So, KHV has less impact on the scheduling performance of the guest OS and
better real-time performance and stability than KVM.



Electronics 2022, 11, 2631 10 of 14

5.5

6

6.5

7

7.5

8

8.5

9

9.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Hackbench
KHV KVM

8

10

12

14

16

18

20

2

4

6

8

10

12

14

Lmbench (context_switch)

KHV KVM

Se
cs

M
ic

ro
 s

ec
s

Se
cs

M
ic

ro
 s

ec
s

AVERAGE：
3.940
VARIANCE: 
0.022

AVERAGE：7.582
VARIANCE: 0.392

AVERAGE：
7.512
VARIANCE: 
0.060

AVERAGE：13.417
VARIANCE: 0.960

KHV KVM KHV KVM

Figure 13. Context switch performance fluctuation graph.

Similarly, use Hackbench and Lmbench (context switch) to compare the GUEST per-
formance drop of KHV and KVM. As shown in Figure 14, the value marked as KHV in
the figure represents the ratio of KHV-BM-GUEST to KHV-ROOT, and the value marked
as KVM represents the ratio of KVM-GUEST to KVM-HOST. Regardless of Hackbench
or Lmbench (context switch), KHV-BM-GUEST performance is on par with KHV-ROOT.
However, KVM-GUEST performance can only reach 86 percent (Hackbench) and 58 percent
(Lmbench) of KVM-HOST. The experiment shows that KHV lets the guest OS have the
same performance with bare-metal OS, whereas KVM dropped an average of 28%. So,
KHV is significantly better than KVM in guest OS isolation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KHV KVM

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 n
at

iv
e 

Hackbench Lmbench (context_switch)

Figure 14. Performance KHV-BM-GUEST to KHV-ROOT (for KVM, KVM-GUEST to KVM-HOST).

4.3. Benchmark Comparison

We conducted a comparison test of the difference between KHV and KVM virtualiza-
tion technologies by multiple popular benchmarks. The results in Figure 15 show that the
performance of KHV-BM-GUEST has no performance impact compared with KHV-ROOT,
but KVM has a small performance drop. This is because KHV does not rely on hardware
virtualization technology, whereas KVM-GUEST requires hardware virtualization, resulting
in a virtualization tax and slightly lower performance than KVM-HOST.



Electronics 2022, 11, 2631 11 of 14

0.9

0.92

0.94

0.96

0.98

1

Benchmarks Test

KHV KVM

Dhrystone

Coremark

Lmbench - Mhz

Stream
- add

Stream
- Copy

Stream
- Scale

Stream
- traid

Eembc – tblook01_lite
Eembc – bitmnp01_lite
Eembc – a2time01_lite

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 n
at

iv
e 

Figure 15. Benchmark test results.

4.4. Virtio Performance Comparison

We compared the impact of KHV and KVM on the throughput and IO-delay perfor-
mance of virtio-blk by SD-card and Ramdisk. Testing with an SD card as the backend of
virtio-blk can more realistically reflect the impact of KHV and KVM in actual application
scenarios. Testing with Ramdisk as the backend of virtio-blk can eliminate the effect of
slow physical block devices.

We used the same SD card as the Virtio-blk backend storage device of KHV-BM-GUEST
and KVM-GUEST. The experimental involves 4 kinds of operations (read, write, randread,
and randwrite). The test results Figure 16 shows that the IO delay and the throughput
of KHV-BM-GUEST are closer to KHV-ROOT, especially the performance of read and
randread is significantly better than that of KVM-GUEST. From the throughput view, both
KHV-BM-GUEST and KVM-GUEST can achieve the expected performance of bare metal
because the bottleneck is on the SD card.

0

0.2

0.4

0.6

0.8

1

Throughput of SD card 

KHV KVM

Randread

W
rite

Read

Randwrite

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 n
at

iv
e 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IO delay of SD card

KHV KVM

Randread

W
rite

Read

Randwrite

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 
na

tiv
e 

Figure 16. IO delay and throughput of SD card.

Since the SD card is the bottleneck of performance, the performance of KHV is the
same as KVM. Therefore, we use ramdisk as the virtio-blk backend storage device. The test
results in Figure 17 show that KHV outperforms KVM.



Electronics 2022, 11, 2631 12 of 14

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17

IO delay of Ramdisk

KHV KVM

Randread

W
rite

Read

Randwrite

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 n
at

iv
e 

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

Throughput of Ramdisk

KHV KVM
Randread

W
rite

Read

Randwrite

Pe
rfo

rm
an

ce
 re

la
tiv

e 
to

 n
at

iv
e 

Figure 17. IO delay and throughput of ramdisk.

5. Discussion
5.1. The Critical Aspects of the Results

The experimental result shows that the performance of KHV-BM-GUEST is not differ-
ent from that of KHV-ROOT. However, KVM turning on hardware virtualization drops the
hackbench and Lmbench context switch performance. Additionally, the experimental result
shows that KHV is smaller than KVM in terms of fluctuation, which proves the isolation of
KHV is better because KHV does not depend on hardware virtualization and eliminates
the tax of virtualization.

5.2. Shared Resource Contention

The current hypervisors based on Static Partition all have the problem of guest compe-
tition for system cache and memory bandwidth in one SoC. Because Static Partition only
solves the problem of address space isolation, the CPU and peripherals in the SoC still share
the memory bandwidth and system cache, leading to bouncing or low memory bandwidth.
So, it would cause a performance jitter, negatively affecting critical tasks’ real time and
reliability. This problem is called “noisy neighbor”, a known problem of a traditional static
partitioning hypervisor. KHV also has this problem, and some solutions have already
appeared (e.g., Bao Hypervisor [3] partitions the last level cache of the CPU based on the
cache coloring mechanism with the G-stage address translation of CPU virtualization).
Bao’s method also has apparent disadvantages:

• It relies on the G-stage translation of CPU virtualization;
• The problem of memory bandwidth allocation cannot be solved;
• Unable to use hugepage;
• Divides the physical memory into pieces.

There are better QoS solutions than Bao’s, such as Intel’s RDT technology [20], which
allocates and prioritizes system cache and memory bandwidth through CAT and MBA. In-
tel’s RDT can satisfy processors, virtual machines, containers, applications, cache isolation,
and memory bandwidth allocation requirements to ensure enough system resources for
critical tasks. In the future, we will research the combination of KHV and QoS tech to solve
problems such as shared resource contention.

6. Conclusions

The innovation of KHV is to implement a static partitioning hypervisor independent of
virtualization and an optional localized hypervisor. KHV aims to bring the KVM software
ecosystem from the data center to the embedded field and meet the requirements of
embedded reliability and security. KHV follows the principle of static partitioning, uses the
hypervisor locally, and inherits the KVM software ecosystem. KHV balances the demands
of static partitioning and flexible sharing in the embedded system. The experiment shows
that KHV is 50% smaller than KVM in terms of fluctuation, and KHV makes KHV-BM-
GUEST achieve the same performance as the bare-metal OS in scheduler benchmarks,



Electronics 2022, 11, 2631 13 of 14

whereas KVM dropped an average of 28%. RISC-V is still a blank piece of paper in the
field of embedded virtualization, and few companies have entered the RISC-V embedded
virtualization market. KHV does not rely on hardware virtualization technology, and it
meets the new opportunity to lead the development of RISC-V architecture in the field of
embedded virtualization.

Author Contributions: Conceptualization, C.L. and R.G.; methodology, C.L. and R.G.; software, C.L.,
R.G. and X.T.; validation, H.W.; project administration, C.L.; funding acquisition, C.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: Patel, A.; Daftedar, M.; Shalan, M.; El-Kharashi, M.W. Embedded hypervisor
xvisor: A comparative analysis, and Zhang, X.; Zheng, X.; Wang, Z.; Yang, H.; Shen, Y.; Long, X.
High-density multi-tenant bare-metal cloud.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Heiser, G. Virtualizing embedded systems-why bother? In Proceedings of the 2011 48th ACM/EDAC/IEEE Design Automation

Conference (DAC), San Diego, CA, USA, 5–9 June 2011; pp. 901–905.
2. Sinitsyn, V. Jailhouse. Linux J. 2015, 2015, 2.
3. Martins, J.; Tavares, A.; Solieri, M.; Bertogna, M.; Pinto, S. Bao: A lightweight static partitioning hypervisor for modern multi-core

embedded systems. In Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2020); Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik: Wadern, Germany 2020.

4. Li, H.; Xu, X.; Ren, J.; Dong, Y. ACRN: A big little hypervisor for IoT development. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Providence, RI, USA, 14 April 2019; pp. 31–44.

5. Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of
virtualization. ACM SIGOPS Oper. Syst. Rev. 2003, 37, 164–177. [CrossRef]

6. Patel, A.; Daftedar, M.; Shalan, M.; El-Kharashi, M.W. Embedded hypervisor xvisor: A comparative analysis. In Proceedings of
the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Turku, Finland, 4–6
March 2015; pp. 682–691.

7. Kortchinsky, K. Hacking 3D (and Breaking out of VMWare). BlackHat USA 2009, 2.
8. Hacker, A. Xbox 360 Hypervisor Privilege Escalation Vulnerability, 2007. Available online: http://www.h-online.com/security/

news/item/Xbox-360-hack-was-the-real-deal-732391.html (accessed on 14 July 2022).
9. CVE-2007-4993. MITRE, CVE-ID CVE-2007-4993. Available online: https://nvd.nist.gov/vuln/detail/CVE-2007-4993 (accessed

on 14 July 2022).
10. CVE-2007-5497. MITRE, CVE-ID CVE-2007-5497. Available online: https://nvd.nist.gov/vuln/detail/CVE-2007-5497 (accessed

on 14 July 2022).
11. Wojtczuk, R. Subverting the Xen hypervisor. Black Hat USA 2008, 2008.
12. CVE-2008-2100. MITRE, CVE-ID CVE-2008-2100. Available online: https://nvd.nist.gov/vuln/detail/CVE-2008-2100 (accessed

on 14 July 2022).
13. Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; Hamburg, M. Meltdown.

arXiv 2018, arXiv:1801.01207.
14. Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher, T.; et al. Spectre

attacks: Exploiting speculative execution. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 19–23 May 2019; pp. 1–19.

15. L1 Terminal Fault 2018. Available online: https://software.intel.com/security-software-guidance/software-guidance/l1
-terminal-fault (accessed on 14 July 2022).

16. Native Linux KVM Tool. Available online: https://git.kernel.org/pub/scm/linux/kernel/git/will/kvmtool.git/ (accessed on 14
July 2022).

17. Zhang, X.; Zheng, X.; Wang, Z.; Yang, H.; Shen, Y.; Long, X. High-density multi-tenant bare-metal cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 16–20 March 2020; pp. 483–495.

http://doi.org/10.1145/1165389.945462
http://www.h-online.com/security/news/item/ Xbox-360-hack-was-the-real-deal-732391.html
http://www.h-online.com/security/news/item/ Xbox-360-hack-was-the-real-deal-732391.html
https://nvd.nist.gov/vuln/detail/CVE-2007-4993
https://nvd.nist.gov/vuln/detail/CVE-2007-5497
https://nvd.nist.gov/vuln/detail/CVE-2008-2100
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://git.kernel.org/pub/scm/linux/kernel/git/will/kvmtool.git/


Electronics 2022, 11, 2631 14 of 14

18. Keller, E.; Szefer, J.; Rexford, J.; Lee, R.B. Nohype: Virtualized cloud infrastructure without the virtualization. In Proceedings of
the 37th Annual International Symposium on Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 350–361.

19. Ramsauer, R.; Kiszka, J.; Lohmann, D.; Mauerer, W. Look mum, no VM exits! (almost). arXiv 2017, arXiv:1705.06932.
20. Intel Resource Director Technology. Available online: https://intel.github.io/cri-resource-manager/stable/docs/policy/rdt.html

(accessed on 14 July 2022).

https://intel.github.io/cri-resource-manager/stable/docs/policy/rdt.html

	Introduction
	Related Work
	Design
	KHV Memory Isolation
	KHV-HYPERVISOR
	KHV Virtio-Balloon
	Hotplug For CPU Sharing
	KHV IO Emulation
	Summary of Design

	Evaluation
	Methodology Clarification
	Context Switch Comparison
	Benchmark Comparison
	Virtio Performance Comparison

	Discussion
	The Critical Aspects of the Results
	Shared Resource Contention

	Conclusions
	References

