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It is shown that spin vortices are created through the Kibble-Zurek mechanism in the quantum phase

transition of a spin-1 ferromagnetic Bose-Einstein condensate when the applied magnetic field is quenched to

below a critical value. It is also shown that the spin correlation functions have finite correlation lengths, and

that the magnetization at widely separated positions grows in random directions, resulting in spontaneous

creation of spin vortices. We numerically confirm the scaling laws that the winding number of spin vortices is

proportional to the square root of the length of a closed path and, for a slow quench, is proportional to �Q
−1/6

with �Q being the quench time. The relevance of spin conservation to the Kibble-Zurek mechanism is

discussed.
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I. INTRODUCTION

Spontaneous symmetry breaking in phase transitions can

produce local domains of an order parameter. If these do-

mains are separated by a great distance such that they cannot

exchange information, the local domains initially grow with

random phases and eventually give rise to topological de-

fects when they overlap. This scenario of topological-defect

formation in continuous-symmetry breaking is known as the

Kibble-Zurek �KZ� mechanism �1,2�. The mechanism was

originally proposed to predict cosmic-string and monopole

formation in the early Universe �1� and has since been ap-

plied to a wide variety of systems. The KZ mechanism has

been experimentally studied in liquid crystals �3,4�, super-

fluid 4He �5� and 3He �6,7�, an optical Kerr medium �8�,
Josephson junctions �9,10�, and superconducting films �11�.

Spontaneous magnetization in a spinor Bose-Einstein con-

densate �BEC� has recently attracted broad interest as a new

system for studying the KZ mechanism �12–15�. In an ex-

periment performed by the Berkeley group �12�, a BEC of

F=1 87Rb atoms was prepared in the m=0 state, where F is

the hyperfine spin and m is its projection in the direction of

the magnetic field. By quenching the magnetic field, say in

the z direction, magnetization appears in the x-y plane. Since

the spinor Hamiltonian is axisymmetric with respect to the z

axis, magnetization in the x-y plane breaks the U�1� symme-

try in the spin space. Thus local domain formation can be

expected to lead to topological defects, i.e., spin vortices,

through the KZ mechanism.

Another mechanism for spin-vortex creation in spontane-

ous magnetization of a spinor BEC is dynamical instability

�16�. In Ref. �13�, we have performed numerical simulations

for the same parameters as those in the Berkeley experiment

�12� and found that the main experimental results can be

explained by dynamical instability triggered by residual at-

oms in the m= ±1 components. Moreover, as shown in Fig.

3�b� in Ref. �12�, the spin correlation function oscillates and

extends over at least several tens of �m. To realize a

situation where the KZ mechanism applies, in which mag-

netic domains should grow independently, the size of the

system must be much larger than the spin correlation length

and there must be no residual m= ±1 atoms in the initial

state. The aim of the present paper is to show that under

these conditions spin vortices are generated through the KZ

mechanism.

In the present paper we will consider one-dimensional

�1D�-ring and two-dimensional �2D�-disk geometries. We

will show that for a 1D ring, the average spin winding num-

ber after a quench is proportional to the square root of the

circumference of the ring, which is in agreement with the KZ

prediction �2�. For a 2D disk, the winding number along a

path of radius R is proportional to R1/2 as long as R is much

larger than the vortex spacing, while it is proportional to R

for small R. When the magnetic field is quenched slowly, the

winding number is shown to be proportional to �Q
−1/6, with �Q

being the quench time. This power law can be explained by

Zurek’s simple discussion �2�.
The spinor BEC is different from other systems in which

the KZ mechanism has been observed, in that the total spin is

conserved when the quadratic Zeeman energy q is negligible.

This fact is apparently incompatible with the KZ postulate,

since the magnetic domains must be correlated with each

other so that the total magnetization vanishes. We will show

that for q=0, small magnetic domains are aligned so as to

cancel out the local spin when averaged over the correlation

length, and that they are independent of each other over a

greater length scale. The spin conservation is thus compat-

ible with the KZ postulate of independent growth of magne-

tization.

The present paper is organized as follows. Section II ana-

lyzes the spontaneous magnetization of a spin-1 BEC and the

resulting spin correlation functions by using the Bogoliubov

approximation. Section III presents numerical simulations of

the dynamics of quenched BECs in 1D and 2D, and shows

that spin vortices are indeed created due to the KZ mecha-

nism in the present system. Section IV presents the conclu-

sions of this paper.
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II. BOGOLIUBOV ANALYSIS OF A QUENCHED

FERROMAGNETIC BOSE-EINSTEIN CONDENSATE

A. Hamiltonian for spin-1 atoms

We consider spin-1 bosonic atoms with mass M confined

in a potential Vtrap�r�. The noninteracting part of the Hamil-

tonian is given by

Ĥ0 =� dr �
m=−1

1

�̂m
† �r��−

�2

2M
�

2 + Vtrap�r���̂m�r� , �1�

where �̂m�r� annihilates an atom in a magnetic sublevel of

spin m=0, ±1 at position r.

The s-wave contact interaction between atoms is de-

scribed by

Ĥint =
1

2
� dr:�c0�̂2�r� + c1F̂2�r��: , �2�

where the symbol :: indicates that the operators inside it are

arranged in normal order and

�̂�r� = �
m=−1

1

�̂m
† �r��̂m�r� , �3�

F̂�r� = �
m,m�

�̂m
† �r�fmm�

�̂m�
�r� , �4�

with f= �fx , fy , fz� being the spin-1 matrices. The interaction

coefficients in Eq. �2� are given by

c0 =
4��2

M

a0 + 2a2

3
, �5a�

c1 =
4��2

M

a2 − a0

3
, �5b�

where aS is the s-wave scattering length for two colliding

atoms with total spin S.

When a magnetic field B is applied, the linear Zeeman

effect rotates the spin around the direction of B at the Larmor

frequency. Since Ĥ0 and Ĥint are invariant with respect to

rotation in spin space and we assume a uniform magnetic

field, the linear Zeeman term has only a trivial effect on the

spin dynamics, namely a uniform rotation of spins about B.

We therefore ignore the linear Zeeman effect by assuming

that we are in a frame rotating in the spin space at the Lar-

mor frequency. The quadratic Zeeman effect for an F

=1 87Rb atom is described by

Ĥq =
�B

2

4Ehf

� dr �
m,m�

�̂m
† �r���B · f�2�mm�

�̂m�
�r� , �6�

where �B is the Bohr magneton and Ehf�0 is the hyperfine

splitting energy between F=1 and 2. The total Hamiltonian

is given by the sum of Eqs. �1�, �2�, and �6�:

Ĥ = Ĥ0 + Ĥq + Ĥint. �7�

B. Time evolution in the Bogoliubov approximation

We consider now the spin dynamics of the system by

using the Bogoliubov approximation with respect to an ini-

tial state in which all atoms are in the m=0 state. For sim-

plicity, we assume Vtrap=0 in this section.

In the Bogoliubov approximation, the BEC part of the

field operator is replaced by a c-number function. In the

present case, we write the m=0 component of the field op-

erator as

�̂0�r� = e−ic0nt/��	n + ��̂0�r�� , �8�

where n is the atomic density. We expand �̂±1�r� as

�̂±1�r� = e−ic0nt/��
k

1

	V
eik·râ±1,k, �9�

where V is the volume of the system and â±1,k is the annihi-

lation operator of an atom in the m= ±1 state with wave

vector k. Keeping terms up to the second order of ��̂0�r� and

�̂±1�r� in the Hamiltonian, we obtain the Heisenberg equa-

tions of motion for â±1,k as

i�
dâ±1,k�t�

dt
= �	k + q + c1n�â±1,k�t� + c1nâ
1,−k

† �t� , �10�

where 	k=�2k2 / �2M� and q=�B
2 B2 / �4Ehf� with the assump-

tion that the magnetic field is applied in the z direction. The

solutions to Eq. �10� are obtained as

â±1,k�t� = 
cos
Ekt

�
− i

	k + q + c1n

Ek

sin
Ekt

�
�â±1,k�0�

− 
i
c1n

Ek

sin
Ekt

�
�â
1,−k

† �0� , �11�

where

Ek = 	�	k + q��	k + q + 2c1n� . �12�

When Ek is imaginary, the corresponding modes are dynami-

cally unstable and grow exponentially. Since c1�0 and q

�0 for F=1 87Rb atoms, exponential growth occurs for

q � 2�c1�n  qc. �13�

The critical value qc agrees with the phase boundary between

the polar phase and the broken-axisymmetry phase �17,18�.
When q�qc /2, the wave number of the most unstable mode

is

kmu = ±	2M

�2 
qc

2
− q� , �14�

and kmu=0 when qc /2�q�qc. Due to the linearization in

Eq. �10�, the Bogoliubov approximation breaks down when

the amplitudes of the unstable modes become large. The fol-

lowing analysis in this section is therefore applicable only

for the initial stage of magnetization.

C. Instantaneous quench

We consider a situation in which q is much larger than the

ferromagnetic energy �c1�n for t�0, and q is suddenly
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quenched to below qc at t=0. During the period of t�0, the

time evolution in Eq. �11� is â±1,k�t��e−iqt/�â±1,k�0�, and the

m= ±1 components remain in the vacuum state. For t�0, we

obtain the time evolution of the density of the m= ±1 com-

ponents as

��̂±1
† �r,t��̂±1�r,t�� =

1

V
�

k

� c1n

Ek

sin
Ekt

�
�2

�
1

V
�

k�kc

qc
2

16�Ek�
2
e2�Ek�t/�, �15�

where the expectation value is taken with respect to the

vacuum state of the m= ±1 components. In the second line of

Eq. �15�, we have retained the unstable modes alone with k

�kc	2M�qc−q� /� by assuming that �Ek�t /�≫1. This re-

sult indicates that the number of atoms in the m= ±1 com-

ponents grow exponentially after the quench.

Since the operator �̂0 in Eq. �4� is replaced by 	n in the

Bogoliubov approximation, the magnetization operator F̂+

= F̂−
† = F̂x+ iF̂y takes the form

F̂+�r� = 	2n��̂1
†�r� + �̂−1�r�� . �16�

Using Eq. �11�, the time evolution of the correlation function

is calculated to be

�F̂+�r,t�F̂−�r�,t�� =
2n

V
�

k

�cos
Ekt

�
+ i

	k + q

Ek

sin
Ekt

�
�2

eik·�r−r��

�17a�

�
n

2V
�

k�kc

qc

qc − q − 	k

e2�Ek�t/�+ik·�r−r��, �17b�

where in the second line we have retained only the unstable

modes.

The exponential factor in Eq. �17b� shows that the largest

contribution to the sum is k around the mode with maximum

�Ek�. The denominator in the summand of Eq. �17b� is much

smoother than the exponential factor if q is not close to qc,

and therefore we can approximate 	k with 	mu

=�2kmu
2 / �2M� in the denominator. We expand 2�Ek�t /�

around kmu in the exponent as

2�Ek�t
�

=
t

�

1 −

1

4
corr

2 �k2 −
1

256
�corr

4 �k4� + O��k6� , �18�

where �k=k−kmu; the expansion coefficients �, corr, and

�corr will be given below. It is clear that � sets the time scale

for exponential growth. Magnetization can be observed when

it has grown sufficiently, i.e., after time t�� has elapsed.

Replacing the summation with the Gaussian integral in Eq.

�17b�, we find that corr represents the correlation length. For

q�qc /2, kmu is given by Eq. �14�, and

� =
�

qc

, �19�

corr =	8�2

M

qc − 2q

qc
2 . �20�

For qc /2�q�qc, kmu=0 and

� =
�

2	q�qc − q�
, �21�

corr =	�2

M

2q − qc

q�qc − q�
. �22�

At q=qc /2, Eqs. �20� and �22� vanish, and the �k4 term in

Eq. �18� becomes important, with

�corr = 4
 �4

2M2qc
2�1/4

. �23�

We first consider a 1D system with a periodic boundary con-

dition, i.e., a 1D-ring geometry. We assume that the radius of

the ring R is much larger than the domain size, and that the

curvature of the ring does not affect the dynamics. For q

�qc /2, the magnetic correlation function is calculated to be

�F̂+��,t�F̂−���,t��

=
2n

corr

	 �

�t
cos�kmuR�� − ����et/�−�R2�� − ���2/�tcorr

2 �,

�24�

where � and corr are given by Eqs. �19� and �20�, and � and

�� are azimuthal angles. For qc /2�q�qc, we obtain

�F̂+��,t�F̂−���,t�� =
n

2corr

	 �

�t

qc

qc − q
et/�−�R2�� − ���2/�tcorr

2 �,

�25�

where � and corr are given by Eqs. �21� and �22�. At q

=qc /2, the correlation function reads

�F̂+��,t�F̂−���,t�� =
n

2��corr

qc

qc − q

 �

t
�1/4

et/���
1

4
�0F2
1

2
,
3

4
,
�R4�� − ���4

t�corr
4 �

− 8	�

t

R2�� − ���2

�corr
2 �
3

4
�0F2
5

4
,
3

2
,
�R4�� − ���4

t�corr
4 �� , �26�
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where � is the gamma function and

0F2�a,b,z� = �
j=0

�
��a���b�

��a + j���b + j�
zn

j!
�27�

is the generalized hypergeometric function.

We next consider the 2D geometry. For qc /2�q�qc, for

which kmu=0, the integral resulting from Eq. �17b� can be

performed analytically, giving

�F̂+�r,t�F̂−�r�,t�� =
n�

2�corr
2 t

qc

qc − q
et/�−��r − r��2/�tcorr

2 �,

�28�

where � and corr are given by Eqs. �21� and �22�. For other

q, we can perform only the angular integral, giving

�F̂+�r,t�F̂−�r�,t�� =
n

4�

qc

qc − q − 	mu

��
0

�

kJ0�k�r − r���e2�Ek�t/�dk , �29�

where J0 is the Bessel function. If the exponential factor is

much sharper than the Bessel function around kmu, the cor-

relation function �29� can be approximated to be �J0�kmu�r
−r��� �14,15�.

As already shown, correlation function �17b� has a finite

correlation length, and magnetizations at positions widely

separated from each other grow in independent directions on

the x-y plane. Thus the growth of the magnetic domains can

be expected to generate topological defects through the KZ

mechanism.

D. Slow quench

In the preceding sections, we have assumed that the mag-

netic field is suddenly quenched to the desired value at t=0

and that q is held constant for t�0. We assume here that for

t�0 the magnetic field is quenched as

q�t� = qc
1 −
t

�Q

� . �30�

In the rest of this section, we consider only the case of t

��Q.

The spin correlation can be estimated to be

�F̂+�r,t�F̂−�r�,t��

�� dk exp��
0

t 2�Ek�t���t�
�

dt� + ik · �r − r��� .

�31�

Since we are interested in the vicinity of the critical point

where the correlation starts to grow, we can expand �Ek�t��
around kmu=0 and keep the terms up to the order of k2. For

the 1D ring, we obtain

�F̂+��,t�F̂−���,t�� � e f�t�−R2�� − ���2/Q
2

. �32�

For the 2D geometry, we obtain

�F̂+�r,t�F̂−�r�,t�� � e f�t�−�r − r��2/Q
2

, �33�

where

f�t� =
�Qqc

2�
�tan−1	 t

�Q − t
−	 t

�Q


1 −
t

�Q

�
1 −
2t

�Q

�� ,

�34�

Q = �4�

M
	t��Q − t��1/2

. �35�

For t≪�Q, f�t� can be expanded as

f�t� =
�Qqc

2�
�8

3

t3/2

�Q
3/2

+ O
 t5/2

�Q
5/2�� , �36�

and the time scale for magnetization is determined by setting

f�t��1, giving

tQ � 
 �

qc

�2/3

�Q
1/3. �37�

For the approximation in Eq. �36� to be valid, this tQ must be

much smaller than �Q, and therefore �Q must be much larger

than � /qc. Substituting tQ in Eq. �37� into Eq. �35� yields

Q � 
 �4

M3qc

�1/6

�Q
1/3. �38�

The same power law is obtained in Ref. �14�.
It is interesting to note that the results of �37� and �38� can

also be obtained by Zurek’s simple argument �2�. Since q�t�
depends on time, � and corr given by Eqs. �21� and �22� are

time-dependent, and hence they may be regarded as the

growth time and correlation length at each instant of time.

The local magnetization is developed after time tQ has

elapsed such that

��tQ� � tQ. �39�

Using

��t� =
��Q

2qc
	t��Q − t�

�
�	�Q

2qc
	t

, �40�

we can obtain tQ in Eq. �37�. Substituting this tQ into

corr
2 �t� =

�2

Mqc

�Q − 2t

t��Q − t�
�

�2�Q

Mqct
, �41�

we obtain Eq. �38�.

III. NUMERICAL SIMULATIONS AND THE

KIBBLE-ZUREK MECHANISM

A. Gross-Pitaevskii equation with random initial seeds

The multicomponent Gross-Pitaevskii �GP� equation is

obtained by replacing the field operator �̂m with the macro-

scopic wave function �m in the Heisenberg equation of

motion:
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i�
��±1

�t
= 
−

�2

2M
�

2 + Vtrap + q + c0���±1

+ c1
 1

	2
F
�0 ± Fz�±1� , �42a�

i�
��0

�t
= 
−

�2

2M
�

2 + Vtrap + c0���0 +
c1

	2
�F+�1 + F−�−1� ,

�42b�

where � and F are defined by using �m instead of �̂m in Eqs.

�3� and �4�. The wave function is normalized as

� dr �
m=−1

1

��m�2 = N , �43�

with N being the total number of atoms in the condensate.

Suppose that all atoms are initially in the m=0 state. It

then follows from Eq. �42a� that �±1 will remain zero in the

subsequent time evolution. This is because quantum fluctua-

tions in the transverse magnetization that trigger the growth

of magnetization are ignored in the mean-field approxima-

tion. We therefore introduce appropriate initial noise in �±1

so that the dynamics of spontaneous magnetization can be

studied using mean-field theory.

We write the initial state as

�±1�r� = �
k

1

	V
eik·ra±1,k�0� , �44�

where a±1,k are c-numbers. We assume that the c-number

amplitudes a±1,k�0� are stochastic variables whose average

values vanish, i.e.,

�a±1,k�0��avg = 0, �45�

where �¯�avg denotes the statistical average over an appro-

priate probability distribution. The linear approximation to

the GP equation with respect to a±1,k gives the same time

evolution as Eq. �11�, in which the operators are replaced by

the c-numbers. The spin correlation function is then obtained

by

�F+�r,t�F−�r�,t��avg

=
2n

V
�

k

�cos
Ekt

�
+ i

	k + q

Ek

sin
Ekt

�
�2

��e−ik·�r−r����a1,k�0��2�avg

+ eik·�r−r����a−1,−k�0��2�avg� . �46�

Comparing Eq. �46� with Eq. �17a�, we find that they coin-

cide if the mean squared averages of a±1,k�0� satisfy

��a1,k�0��2�avg + ��a−1,k�0��2�avg = 1 �47�

for all k. Since m= +1 and −1 should be symmetric for the

present initial state, we have

��a±1,k�0��2�avg =
1

2
. �48�

In the following, we perform numerical simulations of

spontaneous magnetization by using the GP equation with

initial conditions �45� and �48� and show that the ensuing

dynamics exhibit defect formation similar to the KZ mecha-

nism. More specifically, we use Eq. �44� with

a±1,k�0� = �rnd + i�rnd, �49�

where �rnd and �rnd are random variables following the nor-

mal distribution p�x�=	2/� exp�−2x2�. Equation �49� then

satisfies Eqs. �45� and �48�.

B. 1D-ring geometry

Let us first investigate the 1D-ring system. This geometry

can be experimentally achieved, e.g., by an optical trap using

a Laguerre-Gaussian beam �19�. We can reduce the GP equa-

tion �42a� and �42b� to 1D by assuming that the wave func-

tion �m depends only on the azimuthal angle �. The average

density of atoms is assumed to be n=2.8�1014 cm−3. When

the radius R of the ring is 50 �m and the radius of the small

circle is 2 �m, the total number of atoms is N�106.

Figure 1 presents single runs of time evolution for the

initial state given by Eqs. �44� and �49�. Figure 1�a� shows

the time evolution of the normalized autocorrelation function

defined by

F̄�t� =� Rd�
�F+��,t��2

�2��,t�
. �50�

For both q=0 and q=qc /2, the transverse magnetization

grows exponentially with a time constant ��=� /qc�8 ms.

Snapshots of the transverse magnetization at t=70 ms are

shown in Figs. 1�b� and 1�c� for q=0 and q=qc /2, respec-

0

0.2

0.4

0.6

0.8

0 100 200 300

F–

t [ms]

q=0

q=qc/2

0

0.2

0.4

0.6

0.8

0 π 2π
0

4π

8π

θ

|F+| /ρ arg F+

q=qc/ 2
0

0.2

0.4

0.6

0 π 2π
0

10π

20π

θ

|F+| /ρ arg F+

q=0

(a)

(b) (c)

FIG. 1. �Color online� �a� Time evolution of the autocorrelation

function given by Eq. �50� for an instantaneous quench to q=0 and

q=qc /2 with 1D ring geometry. �b� Magnitude of the normalized

magnetization �F+� /� �solid curve, left axis� and direction of the

magnetization arg F+ �dashed curve, right axis� at t=70 ms for q

=0 and �c� for q=qc /2. The radius of the ring is R=50 �m, the

atomic density is n=2.8�1014 cm−3, and the number of atoms is

N=106.
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tively. We define the spin winding number w to be an integer

representing the number of rotations of the spin vector in the

x-y plane along the circumference of the ring:

w =
1

2�
�

0

2�

Rd�
1

2i�F+�2

F−

�F+

��
− F+

�F−

��
� . �51�

The spin winding numbers are w=7 in Fig. 1�b� and w=−1

in Fig. 1�c�.
Figure 2 shows the ensemble average of the normalized

correlation function,

�Fcorr�����avg =�� d�F+���F−�� + ���

� d�������� + ��� �
avg

, �52�

and the variance of the winding number at t=70 ms. The

ensemble average of the winding number, �w�avg, vanishes

due to the random nature of the initial noise, and the standard

deviation, �w2�avg
1/2 , should be regarded as a typical winding

number. The variance is expected to obey the �2 distribution

with 1000 degrees of freedom, which is equal to the number

of runs of simulations to take each data point, and hence we

show the 95% confidence interval to estimate the statistical

errors in Fig. 2. For an ensemble average of 100 runs, the

length of the error bars in a logarithmic plot would become

about three times larger than that for 1000 runs.

We can see that �Fcorr�����avg �solid curves in Fig. 2�a��
agrees well with the correlation functions in Eqs. �24� and

�26� that are obtained by the Bogoliubov analysis �dashed

curves in Fig. 2�a��. For q=qc /2, the correlation function has

a characteristic width of ��corr in Eq. �23�, indicating that

the ring is filled with magnetic domains with an average size

of ��corr. According to the KZ theory, the magnetic do-

mains with random directions give rise to the spin winding,

which is estimated to be w��R /�corr�1/2. This R dependence

of w is clearly seen in Fig. 2�b�. The winding numbers in Fig.

2�b� must be determined after magnetization has become

well-developed �t�50 ms� and before the Bogoliubov ap-

proximation breaks down �t�100 ms� to obtain the power

law.

The situation is different for q=0, in which the correlation

function oscillates within a Gaussian envelope, as shown in

Fig. 2�a�. The oscillatory behavior of the correlation function

gives a clue as to how the KZ mechanism manifests itself in

a spin-conserving system. The finite correlation length for

q=0 indicates that the spin is conserved not only globally but

also locally; that is, the spin integrated over the correlation

length corr,

�
��r��corr

F�r + �r�d�r , �53�

is zero for any r. Thus the neighboring domains tend to have

opposite magnetizations to locally cancel out the spin, so that

domains far from each other can grow independently; the

spin conservation and the KZ postulate of independent

growth of separated domains are thus compatible.

The spin winding for q�qc /2 is attributed to both the KZ

mechanism and dynamical instability. The oscillation in the

correlation function originates from the fact that the most

unstable modes have nonzero wave numbers ±kmu. Each cor-

related region of size �corr= �8�2 / �Mqc��1/2 contains spin

waves of eikmuR� and e−ikmuR�. If there is an imbalance be-

tween amplitudes of these modes, the winding number

monotonically increases or decreases in each region of

�corr. This is why �w2�avg is larger for q=0 than for q

=qc /2 in Fig. 2�b�. It follows from this consideration that for

kmucorr≫1 the winding number is proportional to

kmucorr	 R

corr

= kmu
	Rcorr � 
1 −

2q

qc

�3/4

, �54�

where Eqs. �14� and �20� are used. Figure 3 shows the vari-

ance of the winding number versus 1−2q /qc. For small q,

�w2�avg is proportional to �1−2q /qc�3/2, in agreement with

Eq. �54�. When q is close to qc /2, the spin winding within

the correlated region, kmucorr, becomes small, and then the

winding number reduces to the value shown in Fig. 2�b�, i.e.,

�w2�avg�4.
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FIG. 2. �Color online� �a� Numerically obtained correlation

function defined by Eq. �52� at t=70 ms after q is instantaneously

quenched to q=0 and q=qc /2 �solid curves�. The dashed curves are

theoretical fits using Eqs. �24� and �26�. The parameters are the

same as those in Fig. 1. �b� Dependence of the variance of the spin

winding number on the radius of the ring R at t=70 ms. The num-

ber of atoms is related to R as N=106�R��m� /50. The dashed

lines are proportional to R. The inset shows the time dependence of

�w2�avg for R=50 �m, where only �w2�avg�30 is shown since the

random initial phases make the winding numbers huge. The data in

�a� and �b� are averages over 1000 runs of simulations for different

initial states produced by random numbers. The error bars in �b�
represent the 95% confidence interval of the �2 distribution.
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We next discuss the results of simulations for the quench

process given in Eq. �30�. Since the winding number for a

slow quench is small compared with that for an instanta-

neous quench, we take a large ring of R=400 �m. Follow-

ing the scaling law in Eq. �37�, we take the winding number

at

t = c
 �

qc

�2/3

�Q
1/3 �55�

with c=4 for various quench times �Q. Figure 4 shows the

variance of the winding number as a function of the quench

time. We can clearly see that �w2�avg has a power law of �Q
−1/3

within the range of statistical error, which is in agreement

with Q
−1��Q

−1/3, with Q given by Eq. �38�. Thus the present

system follows the quench-time scaling law of Zurek �2�.
The winding number converges to an almost constant

value, as shown in the inset of Fig. 4. This is because the

phase profile formed at t� tQ is roughly maintained owing to

the small value of the excess kinetic energy for a slow

quench. Therefore even if we take the winding number at a

fixed time, for example, t=400 ms in the case of Fig. 4, the

winding number follows the same power law as that in Fig. 4

�data not shown�. This is in contrast with the case of an

instantaneous quench, in which the typical winding number

changes with time �see the inset of Fig. 2�b��, since the fer-

romagnetic energy is converted to kinetic energy and the

system exhibits complicated dynamics after the growth of

magnetization.

C. 2D-disk geometry

When the confinement in the z direction is sufficiently

tight, the system behaves effectively two-dimensionally. For

simplicity, we ignore the density dependence in the z direc-

tion and assume that the 2D GP equation has the same form

as Eqs. �42a� and �42b�. We assume that the wave function

vanishes at the wall located at �x2+y2�1/2=Rw=100 �m, and

that the potential is flat inside the wall. The density n=2.8

�1014 cm−3 is then almost constant, except within the heal-

ing length �3/ �8�n�a0+2a2���1/2�0.16 �m near the wall.

When the thickness in the z direction is �1 �m, the number

of atoms is N�107. Such a system can be achieved by using

an optical sheet and a hollow laser beam.

The initial state of �0 is a stationary solution of the GP

equation, and the initial state of �±1 is given by Eq. �44� with

random variables �49�. Figure 5�a� shows the time evolution

of the autocorrelation function for transverse magnetization,

F̄�t� =� dr
�F+�r,t��2

�2�r,t�
, �56�

which grows exponentially with the same time constant as

that in Fig. 1, and saturates for t�100 ms.

Snapshots of �F+�r�� and arg F+�r� at t=100 ms are

shown in Figs. 5�b� and 5�c�. We can see that �F+�r�� at t

�100 ms contains many holes, around which the spin direc-

tion rotates by 2�. Since this topological spin structure con-

sists of singly-quantized vortices in the m= ±1 states with its

core filled by atoms in the m=0 state, it is called a polar-core

vortex �the BEC in the m=0 state is called polar�. We can

estimate the spin healing length s by equating the kinetic

energy �2 / �2Ms
2� with the energy of magnetization �q−qc�,

giving

s =
�

	2M�q − qc�
. �57�

This length scale is s�1.7 �m for q=0 and s�2.4 �m

for q=qc /2, which are in good agreement with the sizes of

the vortex cores in Figs. 5�b� and 5�c�.
In 2D, the correlation function is defined by

1
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〈w
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v
g

1−2q/qc

slope = 3/2

FIG. 3. �Color online� Dependence of the variance of the spin

winding number w on quadratic Zeeman energy q. The winding

number is calculated as t=70 ms after an instantaneous quench.

The parameters are the same as those in Fig. 1 except for q. The

dashed line is proportional to �1−2q /qc�3/2. The plots show the

averages over 1000 runs of simulations for different initial states

produced by random numbers. The error bars represent the 95%

confidence interval of the �2 distribution.
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FIG. 4. �Color� Dependence of the variance of the spin winding

number on quench time �Q, where q is quenched according to Eq.

�30�. The time at which each plot is taken depends on �Q as t

=4�Q
1/3�� /qc�2/3, as shown by the arrows in the inset. The radius of

the ring is R=400 �m, the atomic density is n=2.8�1014 cm−3,

and the number of atoms is N=8�106. The dashed line is propor-

tional to �Q
−1/3. The inset shows the time evolution of �w2�avg, where

only �w2�avg�20 is shown since the random initial phases make the

winding numbers huge. The data are averages over 1000 runs of

simulations for the different initial states produced by random num-

bers. The error bars represent the 95% confidence interval of the �2

distribution.
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�Fcorr��r��avg =�� drF+�r�F−�r + �r�

� dr��r���r + �r� �
avg

, �58�

which is shown in Figs. 6�a� and 6�b�. We find that, as in the

1D case, the most unstable wavelength is reflected in the

shape of the spin correlation function �58�, and the charac-

teristics of these correlation functions in the radial direction

are similar to those in 1D shown in Fig. 2. For q=0, the

mean distance between the spin vortices in Fig. 5�b� is not

determined by the correlation length �which is equal to the

width of the envelope of the concentric pattern in Fig. 6�a��
but by �kmu

−1 , i.e., the width of the concentric rings in Fig.

6�a�. On the other hand, for q=qc /2, the density of the spin

vortices is determined by the correlation length, i.e., the size

of the blue circle �30 �m in Fig. 6�b�. The staggered con-

centric correlation for q=0 suggests that the spin is locally

conserved within the region of the correlation length, and

domains at a distance larger than the correlation length grow

independently, while conserving the total spin.

The spin winding number for 2D is defined as

w�R� =
1

2�
�

C�R�

1

2i�F+�2
�F− � F+ − F+ � F−�dr , �59�

where C�R� is a circle of radius R�Rw located at the center

of the system. Figure 6�c� shows the R dependence of the

ensemble average of w2�R�, where the radius of the system is

fixed at Rw=100 �m and the data are taken at t=100 ms. It

should be noted that �w2�R��avg is proportional to R for large

R, as expected from the KZ theory �2�, while it is propor-

tional to R2 for small R. This R2 dependence is due to the fact

that the probability P for a spin vortex to be in the circle is

proportional to �R2. The variance of the winding number is

therefore 0�1− P�+12P /2+ �−1�2P /2�R2 if the probability

of two or more vortices entering the circle is negligible. This

condition is met when the density of the spin vortices mul-

tiplied by �R2 is much smaller than unity, and hence the
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FIG. 5. �Color� �a� Time evo-

lution of the autocorrelation func-

tion given by Eq. �56� for an in-

stantaneous quench of q with 2D

disk geometry. The radius of the

disk is Rw=100 �m, the atomic

density is n=2.8�1014 cm−3, and

the number of atoms is N=107.

�b� Profiles of the magnetization

�F+� �upper� and its direction

arg F+ �lower� for q=0 and �c� for

q=qc /2. The size of each panel is

200�200 �m2.
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radius R at which the crossover from �w2�R��avg�R to �R2

occurs is larger for q=qc /2 than for q=0. As in the 1D case,

nonzero kmu enhances the winding of the magnetization, with

the winding number being larger for q=0 than for q=qc /2.

Figures 5�b� and 5�c� clearly show that the density of the

spin vortices is uniform when the size of the system is large

enough. The number of spin vortices within a radius R is

therefore proportional to R2. If the topological charge of each

spin vortex, +1 or −1, was chosen at random, the net winding

number along a circle of radius R, i.e., the difference be-

tween the number of +1 and −1 vortices, would be propor-

tional to R. However, from Fig. 6�c�, the winding number is

proportional to R1/2 for large R, consistent with the KZ

theory. Thus the topological charges of nearby spin vortices

are not random, but tend to anticorrelate with each other so

as to reduce the net winding number.

Figure 7 shows the result of a slow quench for the 2D

case, where q�t� is given by Eq. �30�. From Eq. �37�, we

specify the time at which the winding number is taken as Eq.

�55� with c=4, as indicated by the arrows in the inset of Fig.

7. We can see that the winding number follows the scaling

law, �w2�avg��Q
−1/3, as predicted by Eq. �38�, indicating that

Zurek’s discussion is also applicable to the 2D case.

In order to obtain the scaling law in Fig. 7, we must

specify the time at which the winding number is taken, since

the spin winding number gradually decays with time as

shown in the inset of Fig. 7, in contrast to the 1D case �inset

of Fig. 4�. Using Eq. �55� to specify the time, we can obtain

the correct power law for c�3 and up to at least c�6.

However, if we take the winding number at a fixed time or at

a time proportional to �Q, the power law cannot be obtained.

IV. CONCLUSIONS

In this paper, we have studied the dynamics of a spin-1

BEC with a ferromagnetic interaction, after a quench of the

applied magnetic field, in an effort to investigate spontane-

ous defect formation in a spinor BEC. We have analyzed the

magnetization triggered by quantum fluctuations by using the

Bogoliubov approximation and performed numerical simula-

tions of the GP equation with initial conditions that simulate

quantum fluctuations.

We have shown that the correlation functions for the mag-

netization have finite correlation lengths �Figs. 2, 6�a�, and

6�b��, and therefore magnetic domains far from each other

grow in random directions. We find that topological defects,

i.e., spin vortices, emerge through the KZ mechanism. We

have confirmed that the winding number along a closed path

is proportional to the square root of the length of the path

�Figs. 2�b� and 6�c��, indicating that topological defects are

formed from domains with random directions of magnetiza-

tions.

Even when the total magnetization is conserved for q=0,

the winding number is proportional to R1/2, in agreement

with the KZ theory �Fig. 2�b��. This is due to the fact that

domains within the correlation length tend to be aligned in

such a manner as to cancel out the local magnetization. Thus

the neighboring domains have local correlation, while the
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FIG. 6. �Color� �a� Spin correlation function defined by Eq. �58�
at t=100 ms after q has been instantaneously quenched to q=0 and

�b� to q=qc /2. �c� Variance of the winding number along the cir-

cumference of a circle of radius R, where the data are taken at t

=100 ms. The blue and green lines are, respectively, proportional

to R and R2. In �a�–�c� the parameters are the same as those in Fig.

5, and the data represent averages over 1000 runs of simulations for

the different initial states produced by random numbers. The error

bars in �c� represent the 95% confidence interval of the �2

distribution.
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FIG. 7. �Color� �a� Variance of the spin winding number versus

quench time �Q for a 2D disk geometry, where q is quenched ac-

cording to Eq. �30�. The inset shows the time evolution of �w2�avg,

where only �w2�avg�10 is shown since the random initial phases

make the winding numbers huge. The time at which each plot is

taken depends on �Q as t=4�Q
1/3�� /qc�2/3, as shown by the arrows in

the inset. The dashed line is proportional to �Q
−1/3. The radius of the

disk is Rw=400 �m and the closed path for taking the winding

number is R=320 �m. The atomic density is n=2.8�1014 cm−3

and the number of atoms is N=1.6�108. The data are averages

over 1000 runs of simulations for the different initial states pro-

duced by random numbers. The error bars represent the 95% con-

fidence interval of the �2 distribution.
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domains far from each other are independent, which makes
the KZ postulate of independent growth of widely separated
domains compatible with the total spin conservation. The
local spin correlation increases the winding number as in Eq.
�54�, which results in the q dependence of the winding num-
ber as shown in Fig. 3.

When the magnetic field is quenched in a finite time �Q as
in Eq. �30�, the winding number is found to be proportional
to �Q

−1/6 �Figs. 4 and 7�. This �Q dependence of the winding
number can be understood from Zurek’s simple argument
�2�: the domains are frozen when the spin relaxation time

becomes of the same order as the time elapsed after the

quench.

In the Berkeley experiment �12�, the system had an elon-

gated quasi-2D geometry, and is not suitable for testing the

KZ mechanism. The KZ mechanism should apply to a sys-

tem in which the dimension along the short axis �the x direc-

tion in Ref. �12�� is much larger. In this case, the harmonic

potential may affect the scaling law, which merits further

study. Moreover, from the analysis in Ref. �13�, the experi-

ment of Ref. �12� indicates that there are some initial atoms

in the m= ±1 components with long-range correlation, which

play the role of seeds for widely correlated domains and may

hinder the observation of the KZ mechanism. If the residual

atoms in the m= ±1 components are completely eliminated,

magnetization is triggered by quantum fluctuations as shown

in the present paper. Another way to remove the effect of the

residual atoms may be by applying random phases to the

m= ±1 states to erase the initial correlation.

Note added. Recently, Damski and Zurek �20� performed

1D simulations of the quench dynamics of a spin-1 BEC.
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