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Kidney cytosine methylation changes improve renal
function decline estimation in patients with diabetic
kidney disease
Caroline Gluck 1,2, Chengxiang Qiu 1,10, Sang Youb Han3,10, Matthew Palmer4, Jihwan Park 1,

Yi-An Ko 1,5, Yuting Guan1, Xin Sheng1, Robert L. Hanson 6, Jing Huang7, Yong Chen7, Ae Seo Deok Park1,

Maria Concepcion Izquierdo1, Ioannis Mantzaris8, Amit Verma 8, James Pullman 9, Hongzhe Li7 &

Katalin Susztak 1,5

Epigenetic changes might provide the biological explanation for the long-lasting impact of

metabolic alterations of diabetic kidney disease development. Here we examined cytosine

methylation of human kidney tubules using Illumina Infinium 450 K arrays from 91 subjects

with and without diabetes and varying degrees of kidney disease using a cross-sectional

design. We identify cytosine methylation changes associated with kidney structural damage

and build a model for kidney function decline. We find that the methylation levels of 65

probes are associated with the degree of kidney fibrosis at genome wide significance. In total

471 probes improve the model for kidney function decline. Methylation probes associated

with kidney damage and functional decline enrich on kidney regulatory regions and associate

with gene expression changes, including epidermal growth factor (EGF). Altogether, our work

shows that kidney methylation differences can be detected in patients with diabetic kidney

disease and improve kidney function decline models indicating that they are potentially

functionally important.
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D
iabetes mellitus (DM) affects upwards of half a billion
people worldwide and can lead to kidney complications,
diabetic kidney disease (DKD), in ~40% of patients with

DM1,2. The presence of kidney disease can explain most excess
mortality associated with diabetes and DKD is the leading cause
of end stage kidney disease worldwide1.

Despite the high clinical need and intense efforts, our under-
standing of DKD remains limited. Several factors explain this
critical information gap. Animal models for diabetes do not
develop renal complications, which limits their utility in studying
the pathogenesis of DKD and in testing new drugs to treat DKD3.
In addition, large-scale genetic efforts identified less than a
handful of loci that reached genome wide significance for diabetic
kidney disease, despite the strong heritability of DKD4–9. Finally,
while there is increased risk of kidney disease development in
patients with poor glycemic control, recent large interventional
studies failed to show survival or renal benefit following nor-
malization of blood glucose levels in patients with established
diabetes10–12. These observations suggest that mechanisms out-
side of “traditional” genetic variants might be responsible for
disease development.

Several groups have recently proposed that metabolic or
developmental programming might play an important role in
DKD development13–18. In the DCCT trial, patients initially
assigned to the conventional glucose control group had an
increased rate of DKD even after 25 years of strict glucose control,
a phenomenon called metabolic memory19–23. Similarly, studies
show consistent association between intrauterine nutritional
deprivation and development of salt sensitive hypertension and
kidney disease24–30. Epigenetic alterations could provide an
explanation for these clinical observations. The epigenome is
under the environmental influence and epigenetic changes are
maintained during cell division. Therefore, metabolically driven
epigenetic changes in the kidney could potentially explain the
clinical observational data such as metabolic memory and
developmental programming.

Several studies have tried to address the presence and role of
epigenetic changes in DKD subjects. Changes in both histone and
methylation patterns have been described when blood samples
from patients with DM are compared to those with DKD22,31–35.
While these early reports are interesting, most of these studies
used small cohorts and most of the published changes failed to
pass the genome wide statistical significance threshold. Further-
more, as epigenetic changes are cell type specific, it is not clear
whether changes observed in blood samples correlate with kidney
specific epigenetic differences. Our group has previously analyzed
genome wide cytosine methylation changes in genomic DNA
samples obtained from microdissected kidney samples of patients
with mixed cohort of CKD36, hence the existence and role of
epigenetic changes in DKD remains a critically important yet
unanswered question.

While kidney function predictably declines with age, defining
the speed of decline and detection of patients who will require
renal replacement therapy is a critically important issue37,38.
Patients with fast functional decline must be prioritized for
intervention. Recent studies show that that baseline glomerular
filtration rate (GFR), albuminuria and blood biochemical
parameters can fairly accurately predict kidney function
decline39. Additional biomarkers in the blood or urine have
been identified recently that also predict renal function decline,
however none has been shown to outperform the baseline
clinical parameters. Epigenetic changes are the footprint of prior
environmental alterations, but they are stable and inherited
during cell division, therefore they could be ideal disease
biomarkers.

The goal of the current project is to define genome wide
cytosine methylation differences as measured by the Illumina
Infinium 450k array in microdissected human kidney tubule
epithelial cells of patients with diabetes and kidney disease. We
integrate methylation changes with cell-type specific regulatory
maps and gene expression changes to understand whether or not
the observed changes are functionally important. Furthermore,
we apply machine-learning algorithms to clinical and pathologi-
cal descriptors to create renal function decline models and find
that cytosine methylation levels can improve current models of
renal function decline.

Results
Methylation probes associate with degree of interstitial fibrosis.
To describe epigenetic changes in diabetic kidney disease we
analyzed microdissected human kidney tubule samples. As
cytosine methylation is cell type specific, it is essential to study
disease relevant cell types40. Our primary cohort included
patients with and without diabetes and hypertension and varying
degrees of diabetic kidney disease (DKD) as well as controls for
comparison. The study used a cross sectional design and primary
cohort sample size was 91. Demographics, clinical and histo-
pathological analysis is shown on Tables 1 and 2. Histopatholo-
gical analyses and quantitative scoring of tubulointerstitial fibrosis
were performed by a renal pathologist. Principal component
analysis for our primary cohort methylation data is available in
Supplementary Figure 1.

Diabetic kidney disease has multiple manifestations, such as
structure changes, mesangial expansion, glomerulosclerosis and
tubulointerstitial fibrosis, in addition to functional changes of
albuminuria and kidney function (eGFR) changes. The clinical
definition of DKD includes albuminuria and GFR decline,
however recent studies indicate a relatively poor correlation
between these two manifestations. Structural changes are
considered to be the gold standard to define DKD, therefore we
used renal histological changes (mesangial expansion, fibrosis) to
define DKD. The clinical (eGFR) and structural (fibrosis)
descriptors showed a good, but not perfect correlation (Supple-
mentary Table 1) and therefore they were analyzed indepen-
dently. Furthermore, disease presentations follow a continuous
pattern and this pattern was reflected in the analysis. Rather than
using DKD as an outcome, we set to identify methylation changes
associated with structural manifestation of DKD (i.e., tubuloin-
terstitial fibrosis) or kidney function level (eGFR) using a linear
regression model adjusted for key variables including age, sex,
race, diabetes, hypertension, batch effect, bisulfite conversion
efficiency, and degree of lymphocytic infiltrate on histology. To
identify methylation changes that are not a consequence of
genetic variation we have applied the Gap Hunter method and
filtered out a large number of probes that were in the vicinity of
regions with nucleotide variation. We found that the methylation
level of 203 CpG probes significantly correlated with the degree of
interstitial fibrosis using a linear regression with False Discovery
Rate (FDR) adjusted p-value (FDR < 0.05) to determine genome-
wide significance (Fig. 1a). Probes that showed significant
methylation differences were distributed evenly across the
genome (Fig. 1a). A similar number of probes showed lower
methylation levels associated with interstitial fibrosis as showed
higher methylation levels (Fig. 1b). The top probe that associated
with kidney function level (eGFR) had a p-value of 1.02e−6 using
linear regression (Supplementary Fig. 2).

Validation of fibrosis-associated methylation probes. We
sought to validate the methylation changes associated with
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fibrosis, as an important manifestation of DKD. There is a sig-
nificant overlap in fibrotic changes in diabetic and hypertensive
kidney disease therefore we used an independent cohort of
85 samples from patients with mixed diabetic and hypertensive
chronic kidney disease (CKD), as well as healthy controls.
Demographics, clinical and histopathological descriptors of the
validation dataset can be found under Supplementary Tables 2
and 3. Principal component analysis for our replication kidney
cohort methylation data is available in Supplementary Figure 3.
Again, we used a linear regression analysis while adjusting for age,

sex, race, diabetes, hypertension, batch effect, bisulfite conversion
efficiency, and degree of lymphocytic infiltrate on histology.
Again, probes potentially influenced by genotypic variation were
filtered out using the fairly conservative Gap Hunter method. Of
the 203 CpG probes identified in the primary dataset, we repli-
cated the association (p-value < 0.05) for 65 CpG probes using
linear regression with directional consistency of the methylation
change. In the combined cohort, methylation level of all 65 CpG
probes were associated with interstitial fibrosis using linear
regression and stringent significance criteria for multiple com-
parisons, FDR corrected p-value < 0.05, corresponding to nominal
p-value < 3.23E−05 (Fig. 2). In summary, methylation level at 65
CpG probes were associated with interstitial fibrosis (independent
of CKD etiology) and replicated in an independent cohort using
strict statistical correction for multiple comparisons (Supple-
mentary Data 1). Gene ontology and Ingenuity Pathway Analysis
(IPA) for replicated methylation probes associated with degree of
interstitial fibrosis is shown in Supplementary Table 4 and Sup-
plementary Figure 4, respectively, and included genes associated
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Fig. 1 Association between cytosine methylation changes and interstitial

fibrosis. a Manhattan plot of Interstitial Fibrosis associated methylation

changes. The x-axis represents the genomic location of the probe, while the

y-axis is the negative base 10 log of the p-value. (The association between

the methylation level of 321,473 probes and kidney fibrosis was studied

using a linear regression models adjusted for age, gender, race, diabetes,

hypertension, batch, bisulfite conversion, and degree of lymphocytic

infiltrate on histology. The threshold for genome-wide significance was set

at p-value FDR < 0.05 as indicated by the horizontal magenta line).

b Volcano plot depicting the association between Interstitial Fibrosis and

methylation changes. The x-axis represents the Pearson correlation

coefficient of each probe with Interstitial Fibrosis. The y-axis is the negative

base 10 log of the p-value each probe associated with Interstitial Fibrosis

Table 1 Demographic and clinical characteristics of

primary cohort

Primary cohort

Subjects (n) N= 91

Baseline eGFR (ml/min per 1.73m2) 68.2 (26.0)

Female 43 (47%)

Age 63.5 (11.5)

Race

Asian 3 (3%)

Caucasian 19 (21%)

African American 32 (35%)

Hispanic 8 (9%)

Multiracial 14 (15%)

Unknown 15 (16%)

Diabetes 41 (45%)

Hemoglobin A1C (for DM) 6.7 (1.3)

Hypertension 64 (71%)

MAP 93.3 (11.9)

Proteinuria: dipstick (0–5) 1 (1.5)

BMI (kg/m2) 30.5 (9.3)

Subjects with longitudinal eGFR data (n) N= 69

Time span (years) 2.4 (1.5)

Unadjusted GFR Slope (ml/min per 1.73m2 per

year)

−5.96 (5.80)

Adjusted GFR Slope (ml/min per 1.73 m2 per

year)

−4.20 (1.34)

Data are mean (SD) or n (%)

Table 2 Histological characteristics of primary cohort

Primary cohort

n 84

Hypoperfused glomeruli (0–3) 0.52 (0.57)

Glomerular wall thickening (0–3) 0.25 (0.66)

Mesangial matrix (0–3) 0.49 (0.86)

Mesangial cellularity (0–3) 0.35 (0.78)

KW nodule (0–1) 0.07 (0.26)

Pericapsular fibrosis (0–2) 0.68 (0.75)

Globally sclerotic glomeruli (%) 10.41 (15.66)

Segmentally sclerotic glomeruli (%) 0.48 (1.49)

Tubular atrophy (%) 12.52 (21.03)

Acute tubular injury (%) 1.27 (5.05)

Tubules reabsorption (0–3) 0.21 (0.46)

Interstitial fibrosis (%) 12.21 (18.59)

Plasmacytic infiltrate (0–3) 0.31 (0.56)

Lymphocytic infiltrate (0–3) 0.78 (0.75)

Eosinophilic infiltrate (0–3) 0.16 (0.43)

Vessel medial thickening (0–3) 0.07 (0.26)

Vessel intimal fibrosis (0–3) 1.23 (0.89)

Vessel arteriolar hyalinosis (0–3) 0.43 (0.78)

Data are mean (SD)
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with cell adhesion, localization, cell death and survival, and
connective tissue development and function.

Fibrosis-associated probes on gene regulatory regions. Next, we
wanted to understand whether methylation changes observed in
kidney tubule cells could be functionally important. This follow-up
analysis was performed using the 65 probes for which methylation
changes were replicated in an independent cohort. Methylation
changes that are localized to regions where transcription factors
can bind are more likely to be functionally important as they can
alter transcriptional accessibility and downstream gene expression
levels. We took advantage of the fact that regulatory regions are
enriched for specific histone tail modifications to define tran-
scriptionally active regions in the adult human kidney. Healthy
human adult kidney ChIP-Seq data was obtained through the
Roadmap Epigenomic Project. Using the ChromHMM algorithm
we have integrated signals for H3K4me1, H3K4me3, H3K27ac,
H3K36me3, H3K9ac, and H3K9me3 data to identify promoter,
enhancer and other regulatory regions in the human kidney. We
mapped the location of the 65 CpG probes for which methylation
level was associated with interstitial fibrosis. As compared with all
probes of the HumanMethylation450k array used in the primary
analysis (n= 321,473), the 65 CpG probes associated with inter-
stitial fibrosis were enriched in kidney enhancer regions OR 3.49
(95% CI 1.53–7.04, p-value= 0.002) using a two-sided fisher exact

test (Fig. 3a) indicating that are likely to be functionally important.
Tissue specific enrichment for these 65 CpG probes is shown in
Supplementary Fig. 5. Compared to a random selection of probes
our set of 65 probes (that are associated with DKD and fibrosis)
showed a 4.5-fold enrichment to be localized to a kidney enhancer
region, suggesting their functional importance in the kidney.

Probes in regulatory regions associate with gene expression. In
order to further support the functional importance of the
methylation of the 65 CpG probes in kidney disease development,
we correlated methylation changes with gene expression levels
analyzed in the same kidney tubule samples. Not all samples had
available Affymetrix gene expression data and the demographics
and clinical description of this sub-cohort is available in Sup-
plementary Table 5. We correlated CpG probe methylation level
change with nearby (500 kb) gene expression changes. We used
random permutation method41 to determine significance between
methylation and gene expression and used a cutoff p-value= 8e
−5. Using this p-value, we had > 80% power to detect an effect
size of beta > 0.5075. The analysis identified 1791 significant
methylation-expression correlation pairs (Supplementary Data 2).
Since we were interested in methylation changes that are func-
tional in kidney cells, we narrowed our list by looking only at
CpG probes located in active kidney regulatory (promoter,
enhancer, transcribed) regions. Probes that were significantly
associated with interstitial fibrosis and confirmed independent
replication (n= 65) were mapped to identify the narrowest set of
probes with the highest probability to play a functional role. Five
probes were identified that passed these criteria and their asso-
ciation with fibrosis, gene expression and genomic location is
shown in Table 3. For top probe, cg20597486, we completed
experiments to validate the methylation changes as measured by
the Illumina Infinium 450 K arrays (Supplementary Figure 6).
Correlations between all top probes associated with degree of
interstitial fibrosis and nearby (Cis) gene expression changes is
shown in Supplementary Figure 7. Figure 3 further describes one
of the top probes: cg20597486. Cg20597486 methylation level was
significantly associated with interstitial fibrosis. This probe was
located in a kidney promoter region, as shown in Fig. 3b locus
zoom42 indicating that it is likely to be functionally important.
While the probe correlated with gene expression changes of
multiple nearby genes, it is closest to IFI16 transcription start site
(TSS), therefore, this gene is most likely to be influenced by
methylation changes at this location. For probes that are further
away from the gene TSS, functional link would require further
experimental confirmation. Probe methylation level correlated
with IFI16 (Gamma-interferon-inducible protein) transcript level
in microdissected human kidney tubule samples. These results
highlight that decrease of the methylation at cg20597486 is likely
to be important for kidney disease, as it is associated with an
increase in IFI16 expression.

Building a model for kidney function decline. In order to fur-
ther elucidate methylation changes with increased likelihood of
being causal for kidney fibrosis development, we examined probes
whose methylation were associated with the rate of future kidney
function decline. Multiple factors have already been identified
that can predict kidney function decline. Our goal was to
understand whether or not cytosine methylation changes inde-
pendently associate with functional decline (i.e., they are less
likely to be a proxy for a known clinical variable). In order to do
this, we first defined the association between clinical variables and
CKD progression. This analysis was performed in the primary
cohort subset with longitudinal eGFR measurements (n= 69)
(Clinical information is available Supplementary Table 5). CKD

203 CpG probes

Primary cohort

(N = 91) 

321,473 CpG probes

Interstitial fibrosis

FDR < 0.05

Replication cohort

(n = 85)

P-value < 0.05

& consistent directionality

of methylation change

65 CpG probes

65 replicated

CpG probes

Downstream

characterization

Combined cohort

(n = 176)

355,141 CpG probes

349,761 CpG probes

FDR < 0.05

Fig. 2 Replication of the association between cytosine methylation and

intersistial fibrosis Of the 203 probes significantly associated with

interstitial fibrosis (FDR < 0.05) in the primary dataset, 174 probes were

assessed in the replication data set. 29 probes were excluded due to poor

data quality. In total 65 of 174 probes were associated with interstitial

fibrosis in the replication data set (p-value < 0.05). All probes had

directional consistency of methylation change. The primary data set and

replication data set were then combined to reassess for probes significantly

associated with interstitial fibrosis (FDR < 0.05). All associations were

determined by linear regression models adjusted for age, gender, race,

diabetes, hypertension, batch, bisulfite conversion, and degree of

lymphocytic infiltrate on histology. Overall, 65 methylation probes

associated with interstitial fibrosis were replicated
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progression was defined by eGFR slope, which was adjusted to
account for random variation as well as non-normality (Supple-
mentary Figure 8). Low baseline eGFR and higher interstitial
fibrosis was associated with faster eGFR decline (more negative
adjusted eGFR slope) as has been described previously (Supple-
mentary Table 6, Supplementary Figure 9)39,43. We started with
all available clinical and histological variables that correlated with
adjusted eGFR slope on univariate analysis (p-value < 0.05) using

a two-sided Pearson correlation test (Supplementary Table 7). We
then selected variables using a machine learning regression ana-
lysis method, least absolute shrinkage and selection operator
(LASSO), in order to improve model accuracy and reduce model
overfitting44. In our dataset, the following parameters showed
significant (independent) association with the rate kidney func-
tion decline: baseline eGFR, diabetes status, and age. These
parameters overlap with the published variables known to predict
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Fig. 3 Functional annotation of methylation probes associated with interstitial fibrosis. a Probes significantly associated with fibrosis were annotated by

their regulatory region location. Odds ratios and significance was calculated based on all array probes used in the regression analysis (n= 321,473). Probe

locations where methylation level is associated with fibrosis were enriched on kidney enhancer regions OR= 3.49 (95%CI 1.53–7.04, p-value= 0.002)

using a two-sided fisher exact test. Blue dashed line indicates OR= 1. b Locus zoom for one top replicated methylation probe (cg20597486) associated

with interstitial fibrosis located in kidney promoter region. Chromosome and track images are from UCSC genome browser build hg19 (http://genome.

ucsc.edu). c Methylation probe (cg20597486) associated with interstitial fibrosis in the primary data set using Pearson correlation test. Unadjusted

correlation= -0.72 (p-value= 8.16 e−15). d Methylation probe (cg20597486) associated with IFI16 gene expression using Pearson correlation test.

Unadjusted correlation= -0.63 (p-value= 7.31 e−10)

Table 3 Top replicated probes associated with interstitial fibrosis and gene expression changes

Methylation probe Primary cohort
(n= 91) Betaa

(probe-
fibrosis)

Primary
cohort
(n= 91)
P-valuea

(probe-
fibrosis)

Replication
cohort
(n= 85)
P-valuea

(probe-
fibrosis)

Position Kidney regulatory
region determined by histone
annotation

Cis-gene(s) with
expression
changes

Distance (bp) from
methylation probe to TSS of
cis-gene(s)

Betac

(probe-
cis-gene)

P-valuec

(probe-cis-
gene)

cg20597486 −0.0295 4.89e−06 2.93e-08 Chr1:
158979841

Promoter AIM2
FCER1A
MNDA
IFI16b

137045
279663
178734
10083

−0.5587
−0.6282
−0.6630
−0.6333

1.23E−07
7.25E−10
4.58E−11
6.00E−10

cg10512292 −0.0162 1.52e−05 4.33e-05 Chr12:
4378267

Promoter CCND2 4671 −0.5151 2.47E−06

cg21439672 −0.0159 2.51e−05 0.00144 Chr12:
7260546

Transcribed C1S
C1Rb

164195
15343

−0.5974
−0.5127

4.28E−09
4.22E−06

cg05839365 −0.0104 1.83e−05 0.00234 Chr12:
133166658

Inactive PXMP2 97534 0.5254 5.35E−07

cg26429629 −0.0273 1.92e−05 0.00052 Chr5:
169758391

Inactive LCP2 33160 −0.5093 1.95E−06

a Association determined by linear regression models adjusted for age, gender, race, diabetes, hypertension, batch, bisulfite conversion, and degree of lymphocytic infiltrate on histology
b Nearest gene to methylation probe
c Association determined by linear regression. Significance determined by random permutation method (cutoff p-value= 8e−5)
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kidney disease, such as eGFR, age and albuminuria39 validating
our dataset (Supplementary Table 8).

While hypertension has been shown to predict CKD progres-
sion in some cohorts45–47, we examined if the addition of
hypertension to our CKD model would alter our outcome. In our
data, only the diagnosis of HTN significantly correlated with
adjusted eGFR slope on univariate analysis using a two-sided
Pearson correlation test (beta=−0.29 p-value= 0.017); systolic
blood pressure and mean arterial pressure (MAP) were not (beta
=−0.07 p-value= 0.22; and beta= 0.13 p-value 0.32, respec-
tively) (Supplementary Table 7). Our data is consistent with
results of large collaborative cohorts that created kidney function
decline prediction models, such as Tangri et al.4. These predictive
models did not include hypertension or blood pressure diagnosis
for functional decline prediction yet were able to reach a C-
statistics score of around 0.939,48.

Gene expression does not improve CKD progression model.
Once we confirmed the clinical parameters that predicted func-
tional decline we added genome wide gene expression changes to
the linear regression model. All linear regression models were run
as a weighted regression whereby subjects with increased varia-
bility to their rate of decline were weighted less. Gene expression
levels failed to significantly improve our precision to predict
kidney function decline at genome wide significance (FDR < 0.05)
using a weighted linear regression analysis. Our analysis indicates
that failure to improve prediction was not due to a reduced power
as the gene expression dataset was smaller (n= 58) than the
methylation dataset.

Cytosine methylation improves CKD progression model. Next,
we tested whether epigenetic changes can improve kidney func-
tion decline prediction. We individually added CpG probe
methylation level to the base CKD progression model. The
methylation level of 471 probes was significantly associated with
renal function decline (adjusted eGFR slope) at genome wide
significance (FDR < 0.05) and improved model fit as measured by
model AIC (AIC < 206) (Supplementary Data 3) using a weighted
linear regression analysis. Gene ontology annotation for methy-
lation probes that improved our CKD progression model is
shown in Supplementary Table 9 and Ingenuity Pathway Analysis
in Supplementary Figure 10. We found only minimal overlap
between methylation probes that improved kidney function
decline and those that correlated with fibrosis (only 2 probes of
65) (Supplementary Table 8). If we force hypertension into our
model, we find that 67 of the 471 methylation probes still sig-
nificantly improve the model (FDR < 0.05) (Supplementary
Data 4) using a weighted linear regression analysis. Our results
show that kidney tubule methylation changes do improve renal
function decline models beyond the already established
parameters.

Top progression-associated probes in gene regulatory regions.
To narrow the probes that not only improved kidney disease
prediction, but are likely to be functionally important we exam-
ined the functional annotation of the probe location and their
association with gene expression. We found that probes that
improved kidney disease progression model were more likely to
be on kidney specific enhancer regions OR= 2.51 (95% CI
1.82–3.40, p-value= 1.04e−7) using a two-sided fisher exact test
(Fig. 4a). 131 CpG probes that improve CKD progression
models were located in active kidney regulatory regions (pro-
moter, enhancer, transcribed regions). Five CpG probes that
significantly improved the CKD progression base model also
correlated with nearby gene expression changes (Table 4 and

Supplementary Data 5); one CpG probe was located in an active
kidney regulatory region (Table 5). This probe, cg24818418, is
shown as an example (Fig. 4b, c). The degree of cg24818418
methylation significantly improved the CKD progression model
fit. This probe was located in a kidney promoter region and
associated with epidermal growth factor (EGF) transcript level.
Another top probe, cg21048700, that improved the CKD pro-
gression model was associated with changes in COL3A1 (type III
collagen) (Table 5). While this probe was not located in an
active regulatory region, when whole kidney samples were
analyzed, this probe mapped to an enhancer region in fibro-
blasts. Correlations between all top probe methylation levels
associated with nearby (Cis) gene expression changes is shown
in Supplementary Fig. 11. Finally, methylation probes that sig-
nificantly improve the model of kidney function decline (n=
471 CpG probes) were localized on tissue specific enhancer
regions (Fig. 4d).

Validation of top progression-associated methylation probes.
Methylation changes that predict kidney function decline and
improve upon existing prediction models are of critical impor-
tance therefore we set to validate these results in an independent
cohort. Unfortunately, we did not have additional methylation
data obtained from human kidney tubule samples with long-
itudinal eGFR data. On the other hand, we had access to an
independent genome wide methylation dataset of peripheral
blood mononuclear cells from a well phenotyped cohort of
American Indians with detailed longitudinal follow-up that
included measurement of eGFR in examinations subsequent to
the sample in which methylation was measured. This cohort was
also analyzed by Illumina 450k arrays and we ensured that data
processing was performed using a similar pipeline (see Methods).
Principal component analysis for this cohort is available in
Supplementary Fig. 12. Cytosine methylation changes associated
with adjusted eGFR slope were determined by a weighted linear
regression analysis and controlled for variables such as age, sex,
duration of diabetes, mean blood pressure, hemoglobin A1c,
batch effect, bisulfite conversion efficiency as well as distribution
of cell types. The methylation levels of 25 CpG probes that
improved our CKD progression model fit in the kidney also were
significantly correlated with kidney function decline in this
independent cohort that analyzed blood samples (p-value < 0.05
with consistent direction of methylation change) using a weighted
linear regression analysis (Fig. 5).

Finally, we compared our results with those recently published
by Chen et al. that reported changes in the methylome of blood
samples of 63 patients with type1 diabetes form the DCCT/EDIC
cohort22. We identified some consistencies in the results as shown
in Supplementary Data 6, even though we analyzed different cell
types (blood vs. kidney), different types of diabetes (DCCT type1
vs. ours type2), and different analytical methods (use of Gap
Hunter) and different outcomes (progressive retinopathy/nephro-
pathy vs degree of interstitial fibrosis and eGFR decline). In
summary, methylation changes associated with kidney fibrosis
can be replicated in other kidney cohort samples and to lesser
degree in blood samples.

Overall, DNA cytosine methylation levels of the renal tubules
can improve kidney function decline estimations and we have
identified specific methylation changes that are associated with
kidney function decline.

Discussion
To our knowledge this is the first study to describe cytosine
methylation differences in kidney tubule samples of patients with
DKD. Earlier reported studies used blood samples or analyzed
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non-diabetic kidney disease22,31–35,49. Most prior studies used
modest sample sizes and most of these results failed to pass
genome wide significance levels. Changes observed in renal tubule
cells are robust compared to results published for blood samples

for similar sample size22,31–34,49. DKD has multiple manifesta-
tions and we examined functional and structural changes sepa-
rately. It is interesting to note that the association was weaker
with functional changes (eGFR) measured at a single time-point,
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model of kidney function decline (FDR < 0.05) (n= 471 CpG probes) were annotated by their regulatory region location. a Odds ratios and significance was

calculated based on all array probes used in the regression analysis (n= 321,473). Probe locations where methylation level improved the baseline kidney

function decline model are enriched on kidney enhancer regions OR= 2.51 (95% CI 1.82–3.40, p-value= 1.04 e−7) using a two-sided fisher exact test.

Blue dashed line indicates OR= 1. b Locus zoom for one CpG probe (cg24818418) that improved the baseline kidney function decline model located in

kidney promoter region. Chromosome and track images are from UCSC genome browser build hg19 (http://genome.ucsc.edu). c Methylation probe

(cg24818418) associated with EGF gene expression level using Pearson correlation test. Unadjusted correlation= -0.50 (p-value= 4.54 e−06).

d Methylation probes that significantly improve model of kidney function decline (FDR < 0.05) (n= 471 CpG probes) were annotated to tissue specific

enhancer region. Fold change compared observed number of significant probes located in each tissue specific enhancer region to the distribution of random
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Table 4 Top probes that improve progression model and are associated with gene expression changes

Methylation probe AICa Betaa probe-
model

P-valuea

(FDR) probe-
model

Position Kidney regulatory
region determined

by histone
annotation

Cis-gene(s) with
expression
changes

Distance (bp) from
methylation probe
to TSS of cis-gene

(s)

Betab probe-
cis-gene

P-valueb

probe-cis-
gene

cg09914444 190.325 −0.6040 4.84E−05
(0.0459)

Chr1: 46972183 Other inactive CYP4A11 434973 0.5574 3.26E−07

cg19506253 189.601 −0.8107 3.56E−05
(0.0435)

Chr2:158301839 Other inactive CYTIP 43634 −0.5077 4.67E−06

cg21048700 191.121 −1.2075 6.79E−05
(0.0494)

Chr2: 189762162 Other inactive COL3A1 76884 −0.5267 1.34E−07

cg24818418 177.15 1.2355 1.92E−07
(0.0305)

Chr4: 110834590 Promoter EGF 550 −0.5156 1.30E−06

cg27374758 184.453 1.0406 4.07E−06
(0.0305)

Chr3: 121675259 Other inactive HCLS1 295485 0.5201 7.06E−07

a Model is a weighted linear regression model of adjusted eGFR slope (weight= inverse variance of adjusted eGFR slope). Base model includes variables: baseline eGFR, Diabetes, and Age (base model

AIC= 206). When methylation level of probe is added to base model, the following variables are also added: methylation batch, and bisulfite conversion efficiency.
b Association determined by linear regression. Significance determined by random permutation method (cutoff p-value= 8e−5)
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however, the association with structural and longitudinal changes
were robust and reproducible. While functional and structural
changes strongly correlate, our recent analysis has identified
significant differences between functional and structural chan-
ges50. We found that similar to methylation differences, gene
expression changes correlate more strongly with structural
changes than with kidney function50. Given that eGFR is strongly
determined by systemic blood pressure and volume status it does
seem to make sense that gene expression and methylation
changes have stronger correlation with kidney fibrosis. Renal
tubule cells and fibrosis play key roles in DKD development and
therefore it is plausible that the association observed in the cell
type of interest is more proximal to disease development and
stronger.

Our studies indicate not only the robustness of the association
but also that methylation changes are likely to be functionally
important as they are located on kidney specific regulatory
regions and correlate with gene expression changes. Methylation
changes are postulated to affect gene expression through inter-
ference of transcription factor binding at gene regulatory regions.
This relationship is most evident at proximal regulatory regions
such as promoters, however, methylation changes at distant
regulatory regions (for example enhancers) may similarly affect
transcription of nearby genes41. In these instances, functional
linkage would require experimental confirmation. Regardless,
several identified methylation-gene expression pairs appear to be
highly interesting. For example, in our samples, decreased
methylation at cg20597486 is associated with increased percent
interstitial fibrosis on kidney histology and increased expression
of IFI16, Gamma-interferon-inducible protein. IFI16 is an
important transcriptional regulator and may modulate NF-κB
activation51, which has been shown to play a role in kidney injury
in mouse models52. Gene ontology analysis shows enrichment of
multiple pathways proposed to play important roles in disease
development, including development, signaling adhesion and
immune system processes. Epigenetic differences in transcrip-
tional regulators could have significant impact on disease devel-
opment or prenatal or adult programming. However, further
testing will be needed to establish causality, for example in a
mouse model.

Another key finding of the current work is the identifica-
tion of methylation changes that can improve kidney function
decline models. It is important to note that while the
expression of more than a thousand genes correlated with
kidney fibrosis at baseline in our study, gene expression levels
failed to improve kidney function decline models. Cytosine
methylation changes on the other hand were able to improve
upon already existing models for kidney function decline,

even though the clinical models show high and reproducible
C-statistics.

We would also like to point out an interesting convergence of
epigenetic and gene expression changes. Prior functional studies
have identified a correlation between kidney EGF transcript and
fibrosis and urinary EGF levels and kidney function decline53,54.
In our study we replicated the correlation of EGF and kidney
fibrosis; however, only the methylation status of EGF, not the
gene expression level, showed significant correlation (p-value=
1.92e−07) with future kidney function decline even after
adjustment for baseline GFR, age, and diabetes status. As cytosine
methylation levels are relatively stable it makes them potentially
ideal disease biomarkers. Gene expression changes follow a
minute to minute regulation by environmental factors therefore
they might show increased variability and less reproducibility as
predictors of progression. The increased stability of DNA over
RNA makes methylation levels a more attractive biomarker. Such
a finding could have important clinical significance for the
development of biomarkers and therapeutics for DKD and our
understanding of the pathogenesis of DKD.

While we used microdissected human kidney tubule samples
and controlled for as many known and hypothesized sources of
variation (i.e., lymphocytic infiltrate) as we could, it is possible
that additional unaccounted variation, such as changing cell
proportions associated with kidney fibrosis, influenced our
results. Despite all our efforts we cannot exclude the contribution
of cell heterogeneity to the observed methylation changes. Future
studies should aim to control for this by utilizing singe-cell
technology that currently exists for RNA sequencing but is not as
mature for whole genome epigenome analysis. Additionally, while
we aimed to narrow our results by focusing on probes located in
active kidney gene regulatory regions, it is possible that these
regions are different in the diseased state or in rare cell types such
as fibroblasts. For example, we would like to highlight that a top
probe cg21048700, that improved the CKD progression model
and was associated with changes in COL3A1 (type III collagen)
expression, was not located on regulatory region when whole
kidney tubule samples analyzed, however, may still be integral to
disease development as this probe is localized on a regulatory
region in fibroblasts.

Another potential pitfall of our study is that our longitudinal
eGFR samples are from subjects who underwent full/partial
nephrectomies that could potentially affect their rate of kidney
function decline. However, since all subjects underwent full/
partial nephrectomy and we were analyzing relative rate of
decline, this likely did not affect our results. In addition, most
patients underwent nephrectomy for the indication of renal cell
carcinoma, which typically is cured through resection without the

Table 5 Progression model with top probes associated with gene expression changes

Variablea Base modelb Base modelb+ kidney promoter
probe cg24818418 – Gene
EGF (D)

Base modelb+ kidney inactive
probe cg21048700 -- Gene
COL3A1 (E)

% Explained by
variablec in base model

% Explained by
variablec in model D

% Explained by
variablec in model E

Baseline GFR 0.03*** 0.04*** 0.03*** 20.67 30.78 22.03
Diabetes −0.72* −1.09*** −1.17 *** 5.75 8.87 10.75
Age −0.03 −0.01 −0.01 6.16 0.16 1.11
CpG probe NA 1.24*** −1.21*** NA 17.99 13.02
Methylation batch NA NA NA 10.71 11.26
Bisulfite conversion NA 20.28* 17.70 NA 2.90 2.46
R2 0.51 0.75 0.70
Adjusted R2 0.49 0.70 0.63
Akaike information criterion 206.1 177.1 191.1
P-value 3.13e−10 5.58e−13 1.126e−10

a For each variable, coefficient estimates are shown with the following significance codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘·’
b Model is a weighted linear regression model of adjusted eGFR slope (weight= inverse variance of adjusted eGFR slope). Base model includes variables: baseline eGFR, Diabetes, and Age. Models D and

E include base variables with the addition of methylation level at probe location, methylation batch, and bisulfite conversion efficiency
c Proportion of variance explained by the variable based on conditional sum of squares calculated in Type II ANOVA analysis
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need for chemotherapy that can affect kidney function. To sup-
port the fact that nephrectomy was not a major determinant of
function decline we also show that the rate of progression in our
kidney cohort was similar to the one observed for the blood
methylation samples and was associated with baseline eGFR and
level of interstitial fibrosis on histology, further confirming that
GFR decline was mostly determined by the presence of CKD than
by the nephrectomy. In addition, changes observed in the kidney
cohort were confirmed in the Pima cohort that is an extremely
well phenotyped diabetic cohort, without cancer or nephrectomy.

Lastly, because subjects were not enrolled in a prospective
study, we cannot account for follow-up data that may have been
obtained during acute illness and therefore may reflect acute
kidney injury on top of chronic decline. We accounted for these
factors by excluding patients without at least three months
follow-up and outliers, as well as using an adjusted eGFR slope
(using best linear unbiased predictor (BLUP) modeling) in a
regression model weighted by the inverse variance of the eGFR
slope. Therefore, subjects with a larger degree of variability to
their follow-up data were weighted less in our analysis. While
some research studies utilize measured GFR, estimated GFR has
been shown in clinical studies to be well correlated with outcomes
including mortality and end stage renal disease55. Finally, there
may be other clinical sources of variation (such as medication
exposure) not included in our data that could influence our
results. Future prospective studies should address these areas.

Despite these limitations we would like to emphasize the
robustness of our results as we have validated our findings in an
independent kidney cohort, as well as to a lesser degree across
tissue samples. Multi tissue transcription factors could explain the
replication of differentially methylated loci in multiple cell types.
On the other hand, our difficulties in replicating results in sur-
rogate cell types after removal of underlying genetic variability

indicate that sequence variations could also drive cell type inde-
pendent methylation changes which is in keeping with observa-
tions from other diseases56–59. Future studies shall aim to dissect
the direct contribution of environmental factors and sequence
variations in cytosine methylation in the kidney. Despite these
limitations, here we identified pathways and replicated previously
observed pathways associated with kidney disease pathogenesis
and progression. Given the correlation with the gene expression
pattern and the association with future functional decline it is
likely that some of these methylation changes are also function-
ally important for DKD development.

Overall we show genome wide significant and replicated
cytosine methylation differences in DKD and use machine
learning methods to identify loci that can improve current models
for kidney function decline. These loci should be studied in future
prospective cohort studies as candidate biomarkers or pathways
for intervention.

Methods
Participants. The primary cohort included 91 human kidney samples obtained
from surgical full/partial nephrectomies. Kidney samples were ~0.5 cm in diameter
and were surrounded by at least 2 cm of normal tissue margins. The study used
cross-sectional design. The samples were collected from Albert Einstein College of
Medicine Montefiore Medical Center between the years of 2007–2011. Samples
were de-identified and the corresponding clinical information available at the time
of nephrectomy was collected by an honest broker. Hypertension and diabetes
diagnosis were based on chart review diagnosis codes. Blood pressure values were
obtained at the time of tissue procurement. In this cohort, 41 subjects carried a
diagnosis of DM and 65 carried a diagnosis of HTN and there were 22 patients
with diabetic CKD. Estimated GFR was determined using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) estimating equation. In this pri-
mary cohort, all subjects with GFR < 60 had diabetes and evidence of DKD on
histologic analysis (n= 22). Subjects with GFR > 60 included those with and
without diabetes and with and without hypertension. Clinical data were obtained at
the time of the sample collection and for a subset of samples estimated glomerular
filtration rate (eGFR) measures were available from clinical records before and after
the nephrectomy (n= 69). Only subjects with longitudinal eGFR measurements for
at least three months post nephrectomy were included for the analysis. The mean
timespan of follow-up was 2.4 years (SD= 1.5 years).

Institutional Review Boards at the Albert Einstein College of Medicine
Montefiore Medical Center (IRB 2002–202) and the University of Pennsylvania
(IRB 815796) reviewed this study. This project utilized de-identified kidney
biospecimens. Therefore, this project does not meet the definition of human subject
research and IRB review was not required. It was completed in compliance with all
relevant ethical regulations.

The replication cohort included 85 microdissected human kidney tubule
samples obtained from surgical full/partial nephrectomies. The cause of CKD in
this cohort was mixed diabetic and hypertensive kidney disease. There were 10
patients with diabetic CKD and 38 patients with non-diabetic CKD (where CKD
corresponds with eGFR < 60ml/min per 1.73 m2). 11 patients had diabetes and 25
had hypertension in the absence of CKD. The replication data set included
23 samples from our primary data set in order to assess degree of batch effect.

The second replication cohort was comprised of 115 peripheral blood samples
obtained from American Indians with DKD enrolled in a longitudinal study
described by Qiu et al.6 Blood samples for DNA isolation and cytosine methylation
analysis were collected at the baseline examination in patients with diabetes and
chronic kidney disease (albumin to creatinine ratio ≥ 300 mg/g or eGFR < 60ml/
min per 1.73 m2). The mean timespan of follow-up was 5.6 years (SD= 3.5 years).
45 cases reached the endpoint of end stage renal disease.

Procedures. A portion of the harvested kidney was formalin fixed and paraffin
embedded and stored for Period Acid Schiff and Hematoxylin and Eosin staining.
The histopathology was evaluated by a blinded pathologist and described using a
descriptor method scoring 19 independent parameters, including the degree of
tubulointerstitial fibrosis. Histopathological lesions were used to determine the
cause of CKD in our study. Seven samples in the primary and eight samples in the
replication cohort had missing fibrosis score.

The rest of the kidney was freshly immersed into RNALater and stored at -80C.
Samples were manually microdissected into glomerular and tubular compartments
under a stereomicroscope using established methods. DNA and RNA was then
isolated from tubule tissue using the Qiagen RNAeasy and DNAeasy or AllPrep
DNA/RNA mini kits following manufacturer’s instructions. Transcript level
changes were determined using the Affymetrix U133 RNA microarray. DNA was
bisulfate converted using the EZ DNA methylation kit (Zymo research) and
assayed using the Illumina Infinium HumanMethylation450K BeadChip according
to the manufacturer’s instructions. The bisulfite conversion efficiency was

471 CpG probes

Primary cohort

(N = 69 kidney tubule)

321,473 CpG probes

Adjusted GFR

slope model
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(n = 115 blood)
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Fig. 5 Replication of methylation probes associated with kidney function

decline 471 methylation probes significantly improved the baseline kidney

function decline weighted linear regression model beyond baseline

variables (Age, baseline GFR, and Diabetes) (AIC < 206 and FDR < 0.05).

Of these 471 probes, 432 probes were assessed in the replication cohort in

peripheral blood. 39 probes were excluded due to poor data quality. 52

methylation probes were associated with Adjusted GFR slope when

adjusted for Age, Sex, reaching end stage renal disease (ESRD), duration of

diabetes, mean blood pressure, hemoglobin A1C, as well as cell type

heterogeneity using linear regression (p-value < 0.05). Of these 52 probes,

25 probes maintained directional consistency across the two data sets
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calculated using the bisulfite conversion control probes, based on Illumina
guidelines. Ten CpG sites designated by Illumina as control sites (6 CpGs targeted
by type I probes and 4 CpGs targeted by type II probes), where we expected each
CpG to be 100% methylated, were used to control for non-complete bisulfite
conversion. The bisulfite conversion efficiency used in the primary analysis was the
median methylation estimate from the ten control sites. The bisulfite conversion
term was calculated by taking the median value of the probes that Illumina
provides to estimate bisulfite conversion efficiency61. Each cohort (primary and
replication cohorts) was run as a single batch at different facilities. Therefore, they
were initially analyzed separately and then combined to avoid capturing facility-
batch artifact58. Of note, all analysis were additionally controlled for batch effect as
defined by Illumina slide position (Sentrix ID).

DNA methylation values were extracted using the minfi package62. Our
methylation analysis pipeline included several quality control measures. We used
the Gap Hunter package63 to remove CpG probes that are in the proximity of
regions with genetic variations (gap probes). We also removed probes located on
the sex chromosome and known to cross-hybridize to other locations. We also
excluded probes with poor detection p value (p > 0.01) and control probes. Finally,
we were left with 321,473 CpG probes in the primary cohort. The same
preprocessing was performed for the kidney replication cohort and resulted in
355,141 CpG probes in the kidney replication cohort. The blood replication cohort
was processed in the same pipeline with the exception of application of the Gap
Hunter program−instead, probes located within 1 bp of common single nucleotide
polymorphism (SNP) loci (with minor allele frequency > 0.01 according to
dbSNP137) were removed. Finally, there were 401,438 CpG probes in the blood
replication cohort. Principal component analysis was performed on each cohort
and outlier samples were removed (one sample from the primary cohort, two
samples from the kidney replication cohort and two samples from the blood
replication cohort). In order to account for probe bias inherent to the 450 K array,
we then normalized methylation data utilizing beta-mixture quantile normalization
method through the r package, RnBeads, resulting in normalized β values for each
CpG probe64. β values represent the methylation level and range from 0 to 1 for
unmethylated to methylated loci, respectively. Due to the fundamental
heteroscedacity to beta values, these values were log transformed to M values (M=
log2ðβ=ð1� βÞÞ) for use in all linear regression models65.

Human kidney histone ChIP-Seq data including H3K4me1, H3K4me3,
H3K27ac, H3K36me3, H3K9ac, and H3K9me3 (GSM621634, GSM621648,
GSM621651, GSM670025, GSM772811, GSM1112806) was used for functional
genomics annotation. We used chromHMM, software that integrates epigenome
marks based on a multivariate Hidden Markov Modeling. The resulting model can
be used to systematically annotate the genome such as promoter, enhancer,
transcribed, and inactive (quiescent, heterochromatin, bivalent, and repressed)
states66.

Subject specific unadjusted eGFR slopes were determined by linear regression
across all available eGFR measures. Only subjects with a minimum of 3 eGFR
estimations and longitudinal eGFR measurements for at least three months post-
nephrectomy were included for the analysis. Three months was chosen as a
minimum as a way to minimize the acute changes peri-nephrectomy. Subjects with
unadjusted eGFR slope <−40 or >40ml/min per 1.73 m2 per year were excluded. In
order to account for random variation as well as non-normal distribution of the
data, subject specific eGFR slope was adjusted using a form of mixed effect model,
best linear unbiased predictor (BLUP)67, using the R package lme4. Subject specific
adjusted eGFR slope and variance were used in weighted regression analysis to
examine the association with methylation levels and other predictors of progression.
The regression was weighted by the inverse variance of the slope, such that subjects
with increase variability to their eGFR slope were weighted less in the analysis.

Statistical analysis. Linear regression models were used to determine the asso-
ciation between cytosine methylation level (at each CpG probe), kidney function
(eGFR) and structural damage (measured by interstitial fibrosis). The model was
adjusted for age, sex, race, diabetes, hypertension, batch effect, bisulfite conversion
efficiency, and degree of lymphocytic infiltrate on histology. False Discovery Rate
(FDR) was used to account for multiple comparisons and determine epigenome
wide statistical significance68. Based on power estimation published by Tsai et al.69,
we estimated that with approximately 1:3 case to control ratio, that we had >80%
power to detect methylation difference 20–25 and 100% power to detect mean
methylation difference 30% in our primary cohort.

To understand the association between clinical and histological variables and
kidney function decline first the association between each variable and adjusted
eGFR slope was examined. Variables that showed a significant (p < 0.05)
association with adjusted eGFR slope were later included for the machine learning
regression analysis method: least absolute shrinkage and selection operator
(LASSO)44. To implement LASSO we utilized the R program glmnet using the
gaussian response family. LASSO selected variables were used to create a CKD
progression base model. Adequacy of model fit was determined by Akaike
Information Criterion (AIC). CpG probe methylation was individually added to the
base model using weighted linear regression (weight= inverse variance of adjusted
eGFR slope) and additionally controlled for batch effect and bisulfite conversion
efficiency. False discovery rate (FDR) procedure was used to account for multiple
comparisons70. Methylation Probes that improved model fit (AIC lower than base

model) and reached epigenome wide statistical significance (FDR < 0.05) by
weighted linear regression analysis were further analyzed.

Weighted linear regression was also used to analyze the association between
cytosine methylation and adjusted eGFR slope (weight= inverse variance of
adjusted eGFR slope) in our blood replication cohort. Covariates in this regression
model included age, sex, duration of diabetes, mean blood pressure, hemoglobin
A1c, batch effect, bisulfite conversion efficiency as well as distribution of cell
types60.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The methylation data is available at GEO: GSE50874. The gene expression data is

available at ArrayExpress: E-MTAB-5929, E-MTAB-2502. The rest of the data are

available from the corresponding author upon reasonable request.
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