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Kidney segmentation 
from DCE‑MRI converging level 
set methods, fuzzy clustering 
and Markov random field modeling
Moumen El‑Melegy1*, Rasha Kamel2, Mohamed Abou El‑Ghar3, Mohamed Shehata4, 
Fahmi Khalifa4,5 & Ayman El‑Baz4

Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic 
Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this 
paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating 
fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The 
fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-
order MRF guide the LS contour evolution towards the target kidney. Several experiments on real 
medical data of 45 subjects have shown that the proposed method can achieve high and consistent 
segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy 
of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff 
distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over 
several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers 
HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The 
accuracy improvements are experimentally found to be more profound on low-contrast images as well 
as DCE-MRI images with high noise levels.

Acute rejection is the most common cause of the failure of kidney transplantation and has to be early detected 
to rescue the transplanted kidney1. Towards that end, one of the often used methods is DCE-MRI. DCE-MRI 
is obtained by injecting the patient with a contrast agent and capturing fast and frequent images for the kidney. 
Therefore, each patient typically has a dataset that contains a sequence of about 80 varying-contrast kidney images 
that are captured during the contrast agent perfusion1 as shown in Fig. 1. From these images, accurate segmenta-
tion of the kidney becomes a necessary and first step for downstream processing operations to determine the 
kidney status. However, it remains a challenging problem1,2 due to the low spatial resolution and contrast varia-
tion of the quickly-acquired images and motion resulting from patient breathing and movement.

Related work.  Over the years, extensive work has been done to figure out DCE-MRI kidney segmentation 
problem. Among these methods, the level set (LS) methods have been the most popular3–9. For example, the 
LS method3 is applied for segmenting kidneys from DCE-MRI images and the contour evolution is controlled 
by shape and gray-level information. However, relying only on intensity and shape information may result in 
incorrect segmentation results on noisy and low-contrast images. The authors4,5 pointed to this shortcoming 
and improved it by adding a 2nd-order Markov-Gibbs random field (MGRF) spatial interaction model. Khalifa 
et al.6 enhanced their earlier work5 via increasing the order of the MGRF model to four. To overcome the similar-
ity between the pixel intensities in the kidney and surrounding background, Liu et al.7 proposed to remove the 
gray-level distribution from the speed function presented by Khalifa et al.6 and use a 5th-order MGRF spatial 
interaction model. To address the low contrast problem of kidney images, Al-Shamasneh et al.8 developed a con-
trast enhancement method by employing a local fractional entropy model. While some researchers did not make 
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use of the kidney shape information (e.g., Al-Shamasneh et al.9), many have found this information useful5–7,10. 
Incorporating this shape information typically requires a separate registration step5–7 to align an input DCE-
MRI image to the pre-constructed shape model in order to compensate for the patient’s motion caused during 
data acquisition. However, Hodneland et al.10 attempted to segment kidneys from DCE-MRI by executing the 
registration and segmentation processes simultaneously. In the LS methods, the contour evolution is guided by 
deriving a partial differential equation. This equation typically contains weighting parameters that need to be 
tuned. In contrast, Eltanboly et al.11 introduced a LS segmentation method that incorporates the shape and gray-
level intensity information without using weighting parameters.

More recently, kidney segmentation using convolutional neural networks (CNNs) has become an area of 
increased research. Extensive work has been done for kidney segmentation from CT images using deep neural 
networks. However, the number of studies attempted to perform kidney segmentation in MRI12–19 is rather lim-
ited. Lundervold et al.12 developed CNNs-based kidney segmentation from 3D DCE-MRI employing a transfer 
learning approach from a pre-trained network. While Haghighi et al.13 presented a method based on the deep 
U-Net14 architecture, Milecki et al.15 developed their own 3D CNN architecture. In16, the authors combined two 
different CNNs-based approaches for segmenting kidneys from MRI images. Brunetti et al.17 employed a mono-
objective genetic algorithm with CNNs to achieve accurate kidney segmentation from MRI data. Isensee et al.18 
performed a multi-organ segmentation task including left and right kidneys from CT-MRI scans in CHAOS 
challenge dataset19 employing nnU-Net model. Supplementary Table S1 online summarizes the key aspects of 
these research efforts.

Research gap.  Lacking a sufficiently large number of annotated training data, the existing deep network 
methods could not achieve high segmentation accuracy. On the other hand, the aforementioned LS methods 
can achieve high performance in segmenting the kidney from its surroundings. However, the majority of these 
methods require an accurate delineation for the initial contour which was performed manually by the user. 
Lack of good initialization may result in the method’s complete failure or a deficit in the resulting accuracy. 
To overcome this problem, we have presented a fast and automated FCMLS DCE-MRI kidney segmentation 
method20 based on the principle of fuzzy c-means (FCM) clustering algorithm and LS method integration. The 
LS contour evolution is constrained by kidney’s shape prior information and fuzzy memberships in the kidney 
class. Moreover, the LS method employs a smeared-out Heaviside function making the method accurate and 
robust against contour initialization. Although the FCMLS method has succeeded in segmenting kidneys from 
DCE-MRI images, its segmentation performance is rather lower on low-contrast images, such as the ones in the 
pre-contrast and late-contrast parts of the time sequence in Fig. 1. In addition, the fuzzy membership values 
of the pixels are computed before the LS contour starts evolving and this might be not very accurate in some 
cases. Moreover, adopting the 1st-order shape prior method in the representation of the shape information is 
not accurate in some cases where some kidney pixels are not observed at all in the images used to construct the 
shape model.

In this paper, to overcome the aforementioned limitations of our method20 and to further improve its perfor-
mance, we propose a new automated and robust DCE-MRI kidney segmentation method based on converging 
ideas from FCM clustering21, LS method22, and MRF modeling23. The FCM clustering algorithm and LS method 
have proved their efficiency in image segmentation. However, their segmentation performance drops with noisy 
and low-contrast images. This is due to their assumption that the pixels in object and background regions are 
totally separated from each other when computing the energy function. To get around this problem, statistical 
segmentation schemes, like MRF model, can be used. According to the MRF model, the energy function of every 
pixel in the image is identified by the pixel and its neighbors. Thus, using the MRF model in building the energy 
function enhances the segmentation accuracy and makes the segmentation robust against noise.

The main contributions of this paper can be summarized as follows. First, the FCM clustering algorithm is 
embedded into a LS method formulation. Thus, the membership values of the pixels are computed and updated 
during the LS contour evolution. Second, a 2nd-order MGRF model is incorporated into the energy function 
guiding the LS evolution. Third, the kidney’s shape prior model is more accurately computed using a Bayesian 
parameter estimation method24, which accounts for kidney pixels not observed during model building. The 
segmentation performance of the proposed method, named FML, is tested on 45 patients’ datasets and the 
accuracy is evaluated by DSC and HD95 metrics2. Experimental results verify the consistent high performance 
of the FML method on noisy, high and low-contrast images without any tuning for the weighting parameters. 

Pre-contrast Post-contrast Late-contrast

Figure 1.   A sequence of DCE-MRI time-point kidney images for one subject manifesting the contrast change 
caused during the contrast agent perfusion into the kidney.
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Another important advantage of the FML method is its ability to achieve high segmentation accuracy with 
randomly initialized LS contour. In order to further prove the efficiency of the FML method, we compare its 
segmentation accuracy with several state-of-the-art LS methods and two deep neural networks based on the 
U-Net model. The comparison results confirm the superior performance of the proposed FML method for kidney 
segmentation from DCE-MRI.

Materials and methods
This section presents the proposed FML method which embeds the FCM clustering algorithm and MRF mod-
eling into a LS method to achieve accurate segmentations from DCE-MRI images, taking into account prior 
information about kidney’s shape.

Materials.  DCE-MRI data is collected from 45 patients using a 1.5  T MRI scanner with a phased-array 
torso surface coil at Mansoura University Hospital, Egypt. All methods were performed in accordance with the 
relevant guidelines and regulations, and the patients’ informed consent was obtained. Our experiments were 
reviewed and approved by the institutional review board (IRB) at the University of Louisville. Each patient has 
a dataset of about 80 repeated temporal frames of size 256 × 256 pixels in DICOM format that were obtained via 
injecting the patient by a dose of 0.2 ml/kgBW of Gd-DT PA contrast agent with the rate of 3–4 ml/s. The dataset 
contains a sequence of varying-contrast kidney images that were acquired quickly and repeatedly at 3 s intervals 
during the contrast agent perfusion into the kidney. A sample sequence for one subject is shown in Fig. 1. Each 
image was manually segmented by expert radiologists at the hospital using the Adobe Photoshop software.

Problem statement and basic notations.  As already mentioned, each patient typically has a time 
sequence of varying contrast images of the kidney. The target is to segment kidney from each image separately. Let 
I =

{

Ix,y ,
(

x, y
)

∈ �
}

 be the intensity information of a DCE-MRI grayscale image that needs to be segmented; 
where Ix,y is the intensity of the pixel 

(

x, y
)

 in the image domain � . The target is to label each pixel 
(

x, y
)

 in the image 
as kidney ( K ) or background ( B ). The label information is represented in L =

{

Lx,y ,
(

x, y
)

∈ �, Lx,y ∈ {K ,B}
}

.

Level set segmentation method with fuzzy clustering and Markov random field modeling.  For 
segmenting the DCE-MRI input image, the LS contour ∂� divides the image domain � into kidney region �K 
and background region �B . The LS function φ is defined as a distance map of the signed minimum Euclidean 
distances from every pixel 

(

x, y
)

 to the contour. The distance is zero for the pixels on the contour ( φx,y = 0 ), posi-
tive in kidney region ( φx,y > 0 ), and negative in background region ( φx,y < 0 ), as illustrated in Supplementary 
Fig. S1 online. The LS contour is evolved to the target kidney through minimizing the energy functional of the 
following form:

where �i > 0 are normalizing parameters that control the impact of the energy terms. The first term in the energy 
functional in Eq. (1) represents internal energy that controls the smoothness of the LS contour. The last two terms 
are external energy computed from the input image to attract the contour towards the kidney position. More 
specifically, the first term is used to compute the length of the zero LS contour and defined as:

where δε
(

φx,y
)

 is the Dirac delta function which is the derivative of the smeared-out Heaviside function Hε

(

φx,y
)

 , 
where both are defined as

where ε is a parameter that determines the width of numerical smearing. Using the smeared-out Heaviside 
and Dirac delta functions helps obtain a global minimizer irrespective of where the initial LS contour in the 
image is22. The FCM-based energy functional in Eq. (1) depends on the shape prior information and kidney/
background memberships computed by the FCM clustering algorithm, and is defined as:

 where for a pixel 
(

x, y
)

 in the image,  SLx,y is the pixel’s prior probability to be kidney ( SKx,y ) or background ( SBx,y ) 
derived from the shape prior model and µLx,y is kidney ( µKx,y ) and background ( µBx,y ) fuzzy memberships of 
this pixel. Information about how the shape prior model and fuzzy memberships are computed is provided in 
the following sections. The MRF-based energy functional in Eq. (1) models the relationship between the pixels 
and their neighbors and is defined as:
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where MKx,y and MBx,y are kidney and background MRF-based energy functions that are based on the framework 
of Bayes theorem and explained in details below. According to the calculus of variations, the minimization of 
the energy functional in Eq. (1) with respect to φ is given by:

Finally, the contour is recursively evolved to the object boundary according to

where n is a time step and τ > 0 . Below we give more details about the proposed approach, while Supplementary 
Algorithms S1 and S2 outline, respectively, the steps of offline shape model construction and the full segmenta-
tion method.

FCM membership function.  For an input DCE-MRI image, the FCM clustering algorithm21 classifies the 
pixels of the image into two clusters based on Euclidean distance of the pixel from the center of the least distant 
cluster by minimizing the following objective function25:

where vL is the center of the cluster L , µLx,y ∈ [0, 1] is the membership degree of the pixel 
(

x, y
)

 in the cluster L . 
In our predecessor method, the FCMLS method20, the FCM clustering algorithm is initially used for partitioning 
the pixels in the input image into kidney and background clusters, and then, the LS contour starts to evolve using 
the obtained clusters to control the LS contour evolution. That is, the FCM clustering algorithm is only used once 
at the beginning of the segmentation process. In contrast in this new method, the FCM clustering algorithm is 
embedded in the LS method. More specifically, the proposed method starts with initial kidney and background 
centroid values that are used to generate initial kidney and background clusters. From the centroid values, the 
kidney/background fuzzy memberships for every pixel 

(

x, y
)

 in the image are computed using:

where vL is the centroid of the kidney cluster (when L = K  ) or the background (when L = B ). Note that 
µKx,y + µBx,y = 1 . Then, the centroid values of the kidney/background clusters are updated as:

where RL(φ) = RK (φ) = Hε(φ) for L = K , and RL(φ) = RB(φ) = (1−Hε(φ)) for L = B . The membership 
value of a pixel to a cluster indicates the degree of pixel belongingness to this cluster and depends on how far is 
the pixel from the cluster’s centroid. Thus, the pixels are assigned high membership values to a certain cluster 
as their intensities are close to the cluster’s centroid value and low otherwise. The centroid values and fuzzy 
memberships of the two clusters are sequentially updated in this way at every step of the LS contour evolution. 
Supplementary Figure S2 online shows the results of the FCM algorithm on segmenting a DCE-MRI image into 
two separate clusters. Clearly, FCM clustering alone is not sufficient to obtain an accurate segmentation.

Kidney shape prior model.  As the human kidney has rather a well-defined shape, employing the shape 
information in the segmentation procedure will be beneficial, especially on low contrast images. To its advan-
tage, the LS method is flexible enough to incorporate such information. The shape prior model is formed with 
the help of a set of DCE-MRI images gathered from different subjects. Then, kidneys are manually segmented 
from these images by expert radiologists. After that, the obtained binary images are registered assuming an affine 
transformation via mutual information maximization26, see Fig. 2. The shape model is eventually formed from 
those registered binary images.

In the previous FCMLS method, we adopt a 1st-order shape method in shape model construction, in which, 
the pixel’s probability to be kidney (or background) is taken as the proportion between the count that this pixel 
is designated as kidney (or background) and the total count of images. But, this method is not very accurate 
especially when a pixel 

(

x, y
)

 is designated as kidney in all images. In this case, the pixel’s probability to be kidney 
SKx,y will be exactly 1 and SBx,y will be zero which is not very reasonable. Similarly, when this pixel is denoted as 
background in all images, SBx,y will be exactly 1 and SKx,y will be zero, thus hard wiring this pixel to background 
during evolution. In order to overcome that drawback, we use the Bayesian parameter estimation method pre-
sented by Friedman and Singer24 to construct the shape model.
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Let N  be the total number of selected images and ℓ = 2 be the total number of possible region labels (Kidney 
and Background). For each pixel 

(

x, y
)

 in the image, if the pixel is labelled as kidney in a group of images and 
background in others, its kidney/background probability is computed as follows27:

where Ox,y is the number of observed labels (equals 2 here because both labels are observed), NLx,y is the count of 
the observed label L (how often this pixel is denoted as kidney or background in all images), β is a pseudo count 
added to the count of each observed label, and  is a scaling factor. However, if a pixel is classified as kidney in 
all images, the number of observed labels Ox,y will be 1 , and the probability of observed label (kidney) is com-
puted from Eq. (11). Accordingly, in this case, background is considered an unobserved label and background 
probability of this pixel is computed from24:

Similarly, when a pixel is classified as background in all images, the number of observed labels Ox,y will be 1, 
and probability of observed label (background) is computed from Eq. (11) where the probability of unobserved 
label (kidney) is computed from Eq. (12). An example for the shape prior model constructed using the Bayesian 
parameter estimation method is shown in Fig. 2.

MRF‑based external energy.  In order to overcome the influence of noise on the FCMLS method20 and 
to obtain more accurate segmentations, we add the MRF23 energy function in the energy functional. The MRF 
energy function constructs a square neighborhood system Nw

(

x, y
)

 of size (2w + 1)× (2w + 1) for each pixel 
(

x, y
)

 and finds the best segmentation label by using its neighborhood information. According to Bayes theorem, 
the best label segmentation can be obtained through the maximization of a posteriori (MAP) probability P(L|I) 
defined as:

where P(I) is constant for a segmented image and removing it will not affect the proportional relationship. P(I|L) 
and P(L) are conditional and prior segmentation probabilities that are computed for each pixel in the image 
using the MRF theory by taking into account its eight-neighborhoods in a 2nd-order neighborhood system, 
respectively. The intensities of the pixels in kidney and background regions are supposed to follow a Gaussian 

,
=

,
+

+ ,

, with =
+ ℓ − , (11)

,
=

1 −

ℓ − , (12)

(13)P(L|I) =
P(I|L)P(L)

P(I)

(a) (b) (c) (d)

Figure 2.   Kidney shape model construction from DCE-MRI images: (a) Sample images, (b) Images after 
affine transformation, (c) Segmented kidneys after alignment, (d) The shape prior model constructed using the 
Bayesian parameter estimation method before (top) and after (bottom) the affine registration.
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distribution. Thus, the conditional segmentation probability p(I|L) of each pixel 
(

x, y
)

 in DCE-MRI image is 
computed as:

where s indexes all set of pixels S is in the neighborhood, mL and σL are the average and standard deviation of 
the pixel intensities in kidney or background region and computed as:

where RL(φ) = RK (φ) = Hε(φ) for L = K , and RL(φ) = RB(φ) = (1−Hε(φ)) for L = B . Similarly, the label 
field information P(L) for each pixel is supposed to be correlated with its neighborhood. Thus, based on Ham-
mersley-Clifford theorem28, the prior segmentation probability can be defined as:

where T  is a normalizing constant. VC(Ls) is the clique energy function of all possible cliques C and defined as29,30:

where n(s) ∈ N
w(s) , γ is a constant known as the Gibbsian parameter, and 

∣

∣Is − In(s)
∣

∣ denotes the absolute dif-
ference between the intensities of center pixel and one of its eight neighbors. From the above formula of P

(

Lx,y
)

 
in Eq. (16), it can be observed that the pixel is considered as kidney or background as most of its neighbors. 
Thus, the value of P

(

Lx,y
)

 is increased when the number of the neighborhood pixels labeled as the center pixel 
is increased. Moreover, the clique energy function VC(Ls) is dependent on the gray-level information of pixels, 
which makes the FML method achieve a high-precision segmentation results. According to the theory of opti-
mization, the kidney and background MRF energy functions are taken as:

Experimental results
The proposed FML method is applied for segmenting kidneys from 45 subjects’ datasets and its efficiency is 
assessed using the DSC and HD95 metrics2. These metrics determine the similarity between the segmented 
kidneys and ground-truth segmentations. In the proposed method, the shape prior model is built from 30 
ground-truth kidneys of different subjects; one image from each subject, using the Bayesian parameter estima-
tion method. Several parameters are required to be set in the proposed method: the weighting parameters in 
Eq. (6) are experimentally chosen as �1 = 6, �2 = 6, and �3 = 6. The width of numerical smearing ε in Eq. (3), 
pseudo count β in Eq. (11), and neighborhood size w in Eq. (16) are taken 1.5, 1, and 5, respectively. The Gibbsian 
parameter γ in Eq. (17) is set to 0.5. All the parameters are then fixed in all the reported series of experiments 
without any further tuning. We also perform several experiments to analyze the effect of the parameters on the 
method performance (see supplementary information online). The centroids of kidney and background clusters 
are initially defined as the average of pixel intensities inside and outside the initialized LS contour, respectively. All 
experiments are carried out in MATLAB R2015a on a pc with 1.80 GHz Intel Core i7 CPU and 16 GB of RAM.

Comparison to other level set‑based methods.  We perform a comparison between the segmenta-
tion performance of the FML method and our previous FCMLS method20. For a fair comparison, we utilize the 
same images used in FCMLS method to build the shape model. We intentionally initialize the contour beyond 
the target kidney and close to the borders of the image in the two methods. We assess the accuracy of the two 
methods in segmenting kidneys from all images and particularly from low-contrast images. The total number of 
low-contrast images is 225 images; the first 5 time-point images from each subject dataset. Table 1 shows a quan-
titative comparison between the two methods in terms of mean ± standard deviation of DSC and HD95 metrics.

As reported in Table 1, the FML method achieves better segmentation results than the FCMLS method by 
providing higher mean DSC values and lower standard deviations. Moreover, the lower mean and standard 
deviation of HD95 values of the proposed method confirm its notable better segmentation performance than 
FCMLS. The standard deviation of HD95 of the FML method is significantly lower than FCMLS method which 
confirms that the FML method is more consistent and stable than the previous method. We can observe the 
significant difference between the segmentation performances of the two methods with low-contrast images. 
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This indeed confirms that the superiority of the new FML method. Figure 3 visually shows the performance of 
the FML and FCMLS methods on 5 varying-contrast images of different subjects.

It can be observed from Fig. 3 that the segmentation accuracy has been notably enhanced using the FML 
method compared to FCMLS method. The original images are shown in the first row with an initial LS contour. 
The second and third rows show segmentation results of the FCMLS and FML methods, associated with the DSC 
values with respect to the ground-truth. The results also show that the FML method can output notably accurate 
segmentation results on low-contrast images compared against FCMLS method. From the time performance 
perspective, our comparative experiments demonstrate the faster convergence rate of the new FML method as it 
completes the evolution process after about 30 iterations, whereas the previous FCMLS method takes more than 
40 iterations to converge. Furthermore, we compare the obtained results with the results obtained from other 
well-known segmentation methods, namely, the 2nd-order MGRF level-set (2nd-MGRF)5, shape-based (SB)31, 
vector level-set (VLS)32, and parametric kernel graph cut (PKGC)33, see Table 2.

The reported accuracies confirm the superior performance of the FML method over other methods, including 
the method5 which incorporates a 2nd-order MGRF model, shape prior model, and image intensity information 
into the LS method. This can be attributed to our better by-construction prior shape model and our well-inte-
grated method combining all these information sources. Moreover, unlike5, we adopt the intensity information 
of pixels in computing the clique energy function. It is also important to stress that the FML method converges 
to accurate segmentation irrespective of the LS contour initialization, whereas the other methods require a good 
LS contour initialization to converge.

Table 1.   Comparison between the segmentation accuracy of the FML and FCMLS methods.  Significant values 
are in [bold].

Method

All images Low-contrast images

DSC HD95 DSC HD95

FCMLS20 0.941 ± 0.042 1.78 ± 6.21 0.880 ± 0.137 8.18 ± 22.8

FML (ours) 0.956 ± 0.019 1.15 ± 1.46 0.936 ± 0.024 1.94 ± 1.58

(a)

= 1 = 4 = 23 = 60 = 72

(b)

DSC =  0.910 DSC =  0.893 DSC =  0.904 DSC =  0.913 DSC =  0.899

(c)

Figure 3.   Segmentation results of FML vs. FCMLS. (a) DCE-MRI kidney images with initial LS contour. 
Segmentation results outlined in red with DSC values for the kidneys segmented by FCMLS in (b) and FML in 
(c). The ground-truth segmentations are superimposed on the images in green. Please refer to Supplementary 
Fig. S3 online for better visualization of segmentation results.
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Moreover, to verify the robustness of the FML method to contour initialization, we use it to segment kidney 
on a group of images with different LS initializations (see Fig. 4): outside the kidney, inside the kidney, and totally 
far away from the kidney. It can be seen from the results in Fig. 4 that the FML method can consistently achieve 
the same high accuracy regardless of the position of the initial LS contour is in the image.

Comparison to U‑Net‑based deep neural networks.  We furthermore compare the segmenta-
tion accuracy of the proposed method with those obtained by a deep neural network based on the U-Net 
architecture14 and by one of its descendant variants, BCDU-Net34, both of which have been successfully used in 
several segmentation applications. See supplementary information online and Supplementary Fig. S4 for more 
details on the networks architectures. The data of 18 subjects are used for training the networks from scratch, 
12 subjects are used for the validation, and the data of the remaining 15 subjects are used for testing. To avoid 
model overfitting, training and validation data are augmented by flipping the images vertically and horizontally, 
adding Gaussian noise with zero mean and different variances (0.01, 0.02, 0.05) to the already-normalized image 
intensities, image rotation with different angles ( ± 45°, ± 90°, 180°), and performing image translation in x and y 
direction. The total numbers of images used for training and validation process after applying data augmentation 
thus become 16,404 and 10,980, respectively. To further increase training data, following19, we use the dataset 
of kidney tumor segmentation (KiTS19) challenge35 that includes high quality CT scans for 210 subjects with 
their ground-truth semantic segmentations. We partition each CT image into two 256 × 256 sub-images that 
separately include the left and right kidneys, which further increases the sizes of the training and validation data 
to 40,050 and 10,980, respectively.

In the training procedure of the two networks, several trials are carried out to tune the model hyper-parame-
ters to ensure the best possible performance on the validation dataset (see the ablation study in the supplementary 
information online). The models are trained for 200 epochs using Adam optimizer as it is considered the most 
widely used one among all optimizers19. The learning rate is initially set to 0.0001 and is then decayed by a fac-
tor of 0.1 whenever the validation loss is not decreased for 10 consecutive epochs. To further avoid overfitting, 
dropout regularization with 50% ratio is employed during network training. Model training is implemented in 
a Python environment using Keras APIs with Tensorflow backend and carried out on a workstation with dual 
2.20 GHz Intel Xeon Silver 4114 CPUs with 128 GB of RAM and two Nvidia GPUs. After training, the two 
trained networks are used to segment the kidney from the test images. Table 3 gives a comparison between the 
results obtained by the proposed FML method versus the U-Net and BCDU-Net results on all images and on 
the low-contrast images.

It is clear from Table 3 that the BCDU-Net model performs notably better than the original U-Net model. 
However, the FML method performs best on segmenting kidneys from high and low-contrast images. In par-
ticular, the mean and standard deviation of HD95 metric reveal that our method is more than 15 × accurate and 
about 20 × more consistent than the original U-Net model. Moreover, it is about 7 × accurate and 10 × consistent 
than the BCDU-Net model. To further demonstrate the efficiency of the FML method over the deep models, we 
apply the three methods to automatically segment the kidney from a set of noisy images. The noisy images are 

Table 2.   Comparison between the segmentation accuracy of the FML method and previous methods. 
Significant values are in [bold].

Method DSC HD95

PKGC33 0.820 ± 0.180 –

VLS32 0.902 ± 0.083 3.62 ± 7.29

SB31 0.912 ± 0.043 2.64 ± 1.63

2nd-MGRF5 0.943 ± 0.028 –

FCMLS20 0.941 ± 0.042 1.78 ± 6.21

FML(ours) 0.956 ± 0.019 1.15 ± 1.46

Figure 4.   Segmentation results of the FML method on DCE-MRI image with three different LS contour 
initializations. (a–c) show DCE-MRI image with initial contours outlined in red. Last three columns show 
segmentation results of (a–c) in red while ground-truth segmentations are outlined in green, with DSC reported 
beneath each result.
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artificially generated by adding Gaussian noise with zero mean and variance values equal 0.01 and 0.05 (note the 
images are already normalized to range [0, 1]). Figure 5 visually compares between the three methods.

Clearly the performance of the FML method on noisy images is more stable and accurate than those of the 
U-Net and BCDU-Net models. The improvement is more profound on images with higher noise levels. It is 
important to mention that the FML method is easier to explain its behavior and interpret its results compared 
to the deep models. For example, obtaining rather a noisy kidney contour from the segmentation result would 
suggest increasing the weighting factor �1 or �3 or both in our method as a corrective action.

Conclusions
This paper proposes a new method for the automatic and accurate kidney segmentation from DCE-MRI data. It 
makes the following contributions: (1) It integrates the LS method, FCM clustering, and MRF modeling for this 
problem for the first time in the literature. (2) The FCM clustering algorithm is embedded into the LS method, and 
the fuzzy memberships of pixels are iteratively updated during the LS contour evolution. This helps to isolate the 
kidney from the background especially on low-contrast images. (3) The Bayesian parameter estimation method 
is used to compute the shape prior model of the kidney while accounting for kidney pixels possibly not observed 
during model building, thus rendering more accurate shape models. The shape model plays an important role in 
guiding the LS contour evolution. (4) A 2nd-order MGRF model is embedded into the LS formulation to account 
for the correlation between neighboring pixels.

The FML method has been extensively tested in several experiments on real medical data from 45 subjects. 
Our experimental results revealed that the FML method can achieve high segmentation accuracy even on noisy 

Table 3.   Comparison between the segmentation accuracy of the FML method versus U-Net and BCDU-Net 
models. Significant values are in [bold].

Method

All images Low-contrast images

DSC HD95 DSC HD95

U-Net14 0.940 ± 0.041 10.30 ± 23.8 0.884 ± 0.071 19.9 ± 28.8

BCDU-Net34 0.942 ± 0.038 4.62 ± 12.35 0.90 ± 0.057 7.89 ± 12.27

FML (ours) 0.961 ± 0.017 0.68 ± 1.19 0.935 ± 0.037 2.23 ± 3.6

DSC =  0.9856 DSC =  0.9830 DSC =  0.974 DSC =  0.9664 DSC =  0.9706 DSC =  0.9589

DSC =  0.9849 DSC =  0.9815 DSC =  0.9657 DSC =  0.9628 DSC =  0.9691 DSC =  0.9562

Figure 5.   Comparison between the FML method vs U-Net and BCDU-Net models on noisy DCE-MRI images. 
Segmentation results are shown in red for the FML method in (i), U-Net model in (ii), and BCDU-Net model 
in (iii). The ground-truth segmentations are shown in green, with DSC reported beneath each result. First row 
shows original images, second row shows images with noise variance 0.01, and third row shows images with 
noise variance 0.05.
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or low-contrast images. In all our experiments, the LS contour could converge successfully to the target kidney 
in the images regardless of where it was initialized and without any tuning of its parameters. The performance 
of the FML method is found to be better than several state-of-the-art LS methods by more than 0.015 in terms 
of DSC and 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural 
networks based on the U-Net model. The improvements are experimentally found to be more profound on low-
contrast images as well as DCE-MRI images with high noise levels.

Our current research is directed towards further improving the FML method. One way to do this is to enhance 
our shape prior model and how it is integrated within our framework. This is because the kidney shape prior 
information has a key role on guiding the LS contour, and consequently has an important effect on segmenta-
tion accuracy especially on low-contrast images. Given that a kidney’s shape would change somewhat from one 
patient to another, we plan to incorporate a subject-specific shape model together along with a population-based 
shape model into our LS formulation. Some early work on this new direction has been drafted36. We are also 
working on improving the time performance of the proposed method through converting the MATLAB code 
to C++ code optimized for GPU computing.

Data availability
The datasets used in the current study are available from the authors upon reasonable request and with permis-
sion of STDF.
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