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Significance statement 

Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic 

cause for the patient's disorder. Potentially pathogenic variants can reside in genes not yet known to 

be involved in kidney disease, making it difficult to interpret the relevance of these variants. This 

reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an 

unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to 

predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases 

identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork 

can aid the interpretation of genetic variants and can therefore be of value in translational 

nephrogenetics and help improve the diagnostic yield in kidney disease patients.  
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Abstract 

Background Genetic testing in patients with suspected hereditary kidney disease may not reveal the 

genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet 

known to be involved in kidney disease. To help identify these genes, we have developed 

KidneyNetwork, that utilizes tissue-specific expression to predict kidney-specific gene functions. 

Methods KidneyNetwork is a co-expression network built upon a combination of 878 kidney RNA-

sequencing samples and a multi-tissue dataset of 31,499 samples. It uses expression patterns to 

predict which genes have a kidney-related function and which (disease) phenotypes might result 

from variants in these genes. We applied KidneyNetwork to prioritize rare variants in exome 

sequencing data from 13 kidney disease patients without a genetic diagnosis. 

Results KidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) 

phenotypes for disease-associated genes. Applying it to exome sequencing data of kidney disease 

patients allowed us to identify a promising candidate gene for kidney and liver cysts: ALG6. 

Conclusion We present KidneyNetwork, a kidney-specific co-expression network that accurately 

predicts which genes have kidney-specific functions and can result in kidney disease. We show the 

added value of KidneyNetwork by applying it to kidney disease patients without a molecular 

diagnosis and consequently, we propose ALG6 as candidate gene in one of these patients. 

KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by 

researchers to gain insight into individual genes in order to better understand kidney physiology and 

pathophysiology. 

Introduction 

Genetic testing in patients with suspected hereditary kidney disease can reveal causative pathogenic 

variants in kidney-related genes. However, in many cases, a genetic cause cannot yet be detected. 

Pathogenic variants in known kidney-related genes are detected in approximately 10-30% of 
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genetically tested patients with chronic kidney disease of any cause1–3. However, these percentages 

are likely underestimations of the number of patients with a monogenic cause as variants in genes 

not yet implicated in kidney disease will go unnoticed. Potentially harmful variants can reside in 

these genes, which makes it difficult to prioritize and interpret the relevance of these variants. 

Therefore, in the current era of genomic medicine, one of the main challenges after a negative 

diagnostic result in known genes is to detect and prioritize new candidate genes with potentially 

pathogenic variants that can explain the patient’s disease.4 

Several tools have been developed to predict candidate disease genes using RNA-sequencing data5. 

We recently developed GeneNetwork and the GeneNetwork-Assisted Diagnostic Optimization 

(GADO) method to prioritize new candidate disease genes based on RNA-sequencing data6. The idea 

behind this method is that certain rare disorders can be caused by variants in several genes. While 

these genes are different, they usually have similar biological functions. When studying gene 

expression data from a large number of samples, these disease genes usually show strong co-

expression. Thus, if there are other genes that are strongly co-expressed with known rare disease 

genes, it is possible that variants in these other genes can also cause the same disease.  

For this kind of tool to work optimally, the co-expression information should be as accurate as 

possible. For GADO, we built a gene co-expression network based on publicly available RNA-

sequencing datasets from many different tissues and used this network to predict which genes 

might be causing rare diseases. These predictions were trained using the human phenotype ontology 

(HPO) database7. In the HPO database, genes are assigned to phenotypes ‒ called HPO terms ‒ that 

are based on gene‒disease annotations and disease symptoms present in the OMIM8 and Orphanet9 

databases. By integrating the information from the HPO database with the gene co-expression 

network, we could calculate prediction scores for each gene per HPO term. Together, these scores 

constitute GeneNetwork. The GADO method was then developed to identify genes with putative 

causal variants in patients with a (suspected) monogenic disease. GADO prioritizes genes by 
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combining an input list of HPO terms that describe the patient’s phenotype with a list of genes with 

possible deleterious variants from that patient. The prioritization of the gene list is based on the 

combined gene prediction scores for the input HPO terms6. 

Because we observed that GeneNetwork’s prediction performance for kidney-related phenotypes 

was limited, we sought to improve prediction by developing a kidney-specific network that uses a 

combination of GeneNetwork and 878 kidney RNA-sequencing samples. We also further improved 

the underlying prediction algorithms of the GADO method. In this paper we present the resulting 

KidneyNetwork, a co-expression network that can be used to accurately predict gene‒phenotype 

associations of genes unknown for kidney-related HPO terms. As a proof of principle, we applied 

KidneyNetwork to exome sequencing data from a group of patients with previously unresolved 

kidney diseases. 

Methods 

To improve the prediction of kidney-related phenotypes, we collected kidney-derived RNA-

sequencing data, updated GeneNetwork with more recent reference databases and improved 

statistical analyses, followed by integration of tissue-specific information. 

Data collection for building KidneyNetwork  

We built KidneyNetwork by combining an existing multi-tissue RNA-sequencing dataset with RNA-

sequencing data from kidney samples to enhance kidney-specific signals. The selected kidney 

samples were from several origins, including primary, tumor and fetal tissue. We chose to include 

the multi-tissue dataset for two reasons. First, we needed a sufficient number of samples to build a 

baseline network. Second, we wanted to preserve expression that is specific to several, or all, kidney 

cell types but not to other tissues. We did this because gene‒phenotype scores are based on 

differences in expression between samples; if all genes have high (or low) expression in all the 

samples included in the analysis, they will not add sufficient information to the prediction algorithm. 
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Existing multi-tissue RNA-seq dataset retrieval and processing 

The multi-tissue dataset of human RNA-sequencing samples used to develop GeneNetwork was re-

used and processed as described previously6. After pre-processing, this dataset contained 31,499 

samples and 56,435 genes.  

Kidney-specific RNA-sequencing data retrieval 

Meta-data of 3,108 publicly available kidney-derived RNA-sequenced samples was downloaded from 

the European Nucleotide Archive (ENA) on October 1, 2019. The keywords used to filter the data can 

be found in supplementary table 1. In addition, 86 samples from the Genotype-Tissue Expression 

(GTEx) Project were obtained using dbGaP accession number phs000424.v8.p2.  

Kidney-specific RNA-sequencing alignment 

We used Kallisto10 to align the kidney expression dataset. The Kallisto index was based on Ensembl11 

version 98 ncRNA and cDNA files (after removal of patch chromosomes) and made using default 

parameters, except for -k 31, and Kallisto version 0.43.1. Alignment was done using the Kallisto 

quant version 0.46.0 with default parameters and the addition of bootstrapping -b 30. For single-end 

data mapping, the additional parameters –l 200 and –s 20 were defined. The transcript counts were 

merged into gene counts. A TPM expression matrix was constructed based on the gene counts per 

sample.  

Kidney specific sample and gene selection 

We excluded samples with ≤ 70% mapping reads, samples sequenced on platforms other than the 

Illumina sequencing platform and peripheral blood samples. The expression matrix with the 

remaining samples was quantile-normalized and log2-transformed, followed by principal component 

analysis (PCA)12 over the samples. Based on the first two principal components (PCs), a cut-off for 

good quality samples was set at 0.030 (supplementary figure 1). We then excluded five of the 

samples that passed the PCA threshold but were sequenced using methods other than RNA-
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sequencing or ssRNA-sequencing, leaving 944 samples. Another 66 samples that correlated >0.9999 

were removed because they were considered to be duplicates. The remaining 878 samples were 

used for further analysis (supplementary figure 2).  

The reads were aligned to 59,562 genes. We excluded 1,259 genes due to duplicate and/or no 

expression and 20 genes with zero variance, leaving 58,283 genes in the analysis.  

Sample clustering and investigation using UMAP 

We investigated the remaining 878 RNA-sequencing samples using the UMAP clustering algorithm. 

UMAP values were generated using the umap() function in R version 3.5.1. We used PCs 1 and 2 as 

initial coordinates. Other parameters were defined as follows: n_threads = 24, n_epochs = 1000, 

n_neighbors = 100, min_dist = 0.1, init_sdev = 1e-4, learning_rate = 1, spread = 20, scale = "none" 

and nn_method = "fnn". For all other parameters, default values were used. We plotted the UMAP 

values using base R plot function. Samples are colored based on literature descriptions of the studies 

included (supplementary table 2).  

HPO alterations 

For both the construction of KidneyNetwork and benchmarking and validation, we used gene‒

phenotype associations from HPO database7 version 1268. Annotation of genes to HPO-defined 

phenotypes is based on the gene‒disease annotations in the OMIM8 morbid map (downloaded 

March 26, 2018) and the Orphanet9 “en_product6.xml” file version 1.3.1. Gene‒disease annotations 

in these databases can be based on several factors, including statistical associations and large-scale 

copy number variations. To increase the accuracy of the gene‒phenotype annotations used in 

KidneyNetwork, we filtered the gene‒disease annotations for “The molecular basis for the disorder 

is known; a mutation has been found in the gene” for OMIM and for “Modifying germline 

mutation(s)”, “Disease-causing germline mutation(s)”, “Disease-causing somatic mutation(s)”, 

“Disease-causing germline mutation(s) (loss of function)”, or “Disease-causing germline mutation(s) 
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(gain of function)” for Orphanet. We then rebuilt the gene‒phenotype annotations in the HPO 

format that is used for network generation.  

Network generation 

After sample and gene quality control (QC), the expression matrix of the remaining samples and 

genes was log2-transformed and gene counts were normalized using DESeq following the median of 

ratios method. Covariate analysis was done using Picard tools13. The covariate table was obtained 

using the command CollectRnaSeqMetrics with the following metrics: PCT_CODING_BASES, 

PCT_MRNA_BASES, PCT_INTRONIC_BASES, MEDIAN_3PRIME_BIAS, PCT_USABLE_BASES, 

INTERGENIC_BASES, INTRONIC_BASES, PCT_INTERGENIC_BASES and PCT_UTR_BASES. The option 

‘strand_specificity’ was set to ‘first read transcription strand’ and the option ‘validation_stringency’ 

to ‘lenient’. The covariates were removed from the gene counts, and gene expression was correlated 

using Pearson correlation. The PC decomposition was performed over this correlation matrix.  

Decomposition 

After filtering and QC of the entire dataset, the next step was to perform a decomposition to 

calculate the eigenvectors of the dataset. For this step, we used the PCA decomposition 

implemented by the Sklearn package14 version 0.22.2.post1 of the Python15 programming language 

version 3.6.3. The analysis was performed using the “full” svd_solver option. For both GeneNetwork 

and the gene regulatory network based on kidney-derived data, we defined the optimal number of 

components. Using explained variance cut-offs ranging between 0.3 and 0.8, the prediction accuracy 

(described in the next step) was calculated for pathways annotated in the HPO, Reactome16, KEGG17 

and GO databases18 (Reactome, KEGG and GO databases downloaded on July 18, 2020). We chose to 

use the explained variance cut-offs that correspond to the highest average prediction accuracy, 

which were 0.5 for GeneNetwork and 0.7 for the network based only on kidney-derived data 

(supplementary figures 3-4). Using these cut-offs, the first 165 eigenvectors for GeneNetwork and 
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the first 170 eigenvectors for the kidney-derived data were identified and merged into a larger 

matrix containing all 335 eigenvectors. During this step, the 52,347 overlapping genes were kept.  

Gene‒phenotype score calculation 

The gene‒phenotype score calculation was done in several steps (supplementary figure 5). We first 

used the combined eigenvectors and the gene‒phenotype annotations file as input. Phenotypes 

with fewer than 10 annotated genes in the HPO database were excluded. For each phenotype, a 

logistic model was fitted between the genes annotated for that phenotype against all genes 

annotated to at least one other phenotype in the annotation file. If genes of the current phenotype 

were also included in other phenotypes, we excluded these genes from the second gene set to fit 

the model. The model was fitted using the LogisticRegression class of the sklearn package with the 

‘lbfgs’ solver, L2 regularization, a C-value of 1.0, a tolerance of 1e-6 and a max iteration of 6000. The 

model resulted in an intercept (β0) and β values corresponding to every component (β1 until β336). 

We used these β values and the eigenvector scores to calculate a gene log-odds score for every gene 

in the eigenvector table with the following formula: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜−𝑜𝑜𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 =  𝑙𝑙𝑙𝑙𝑔𝑔2(𝑔𝑔(𝛽𝛽0 + 𝛽𝛽1∙ 𝑠𝑠𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙𝑠𝑠𝑥𝑥−1+ ⋯ + 𝛽𝛽𝑛𝑛∙ 𝑠𝑠𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙𝑠𝑠𝑥𝑥−𝑛𝑛)) 

Where β0 is the intercept, β1,…,βn are the β values of the logistic model and the eigenvectorx-1,.., 

eigenvectorx-n are the eigenvectors values of gene x. 

To avoid overfitting of the gene log-odds-scores of already annotated genes, we fitted a new model 

for each annotated gene in which the gene‒phenotype annotation was set to false for that gene. 

This means that the newly trained model does not incorporate the gene as a known gene for that 

phenotype. We used the corrected intercept and β values to calculate the gene log-odds-score for 

the annotated genes. 

The log-odds were translated to gene z-scores by calculating a null distribution for each phenotype. 

We did this by random imputation of the gene labels of the eigenvector matrix and calculating the 
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gene log-odds-score using the same formula and β values from the already-fitted models. These null-

distributed gene scores were used to calculate the average and standard deviation of the gene log-

odds-score. We subsequently calculated the gene z-scores with the formula: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑧𝑧−𝑜𝑜𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 =  
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜−𝑜𝑜𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠  −  𝜇𝜇𝜎𝜎  

Where µ is the average and σ is the standard deviation of the gene log-odds-scores of the null 

distribution.  

We calculated the null-distributed gene log-odds-scores of the genes annotated to a phenotype by 

using the intercept and β values obtained from the models calculated during the overfitting step.  

To determine prediction accuracy, we calculated the area under the ROC-curve (AUC). The ROC-

curve was calculated per phenotype using the predicted gene z-scores and known gene‒phenotype 

annotations. The significance of the predictions was calculated using the two-sided Mann-Whitney 

rank test from the stats package of Scipy version 1.4.1. After Bonferroni-correction, a prediction was 

considered significant at p < 0.05.  

Comparing the prediction performances of KidneyNetwork and GeneNetwork  

We compared the prediction performance of four distinct networks: (1) the original GeneNetwork, 

(2) the updated GeneNetwork, (3) the kidney-specific gene regulatory network based solely on 

kidney-derived samples and (4) the final KidneyNetwork combining the latter two. The quality of the 

HPO predictions made by these networks was assessed based on the AUC for each kidney-related 

phenotype, with kidney-related phenotypes defined as kidney-specific HPO terms (supplementary 

table 3). Improved quality of a network was defined as improved prediction accuracy for kidney-

related terms that were significantly predicted in each comparison of two networks and by an 

increased number of significantly predicted kidney-related terms. The significance of improvement 

in prediction accuracy of one network versus another was assessed using the DeLong test19 

integrated in the pROC R package20. 
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Applying KidneyNetwork to 13 kidney disease patients 

One of the applications of KidneyNetwork is to prioritize candidate genes in patients with unsolved 

kidney disease. To evaluate this clinical application, we used KidneyNetwork to prioritize candidate 

genes for 13 patients with various kidney diseases using the GADO method6. GADO combines the 

gene prediction z-scores rendered through KidneyNetwork for a given set of HPO terms. When a 

given HPO term cannot be predicted significantly, GADO uses the parent term. Genes with a 

combined z-score ≥ 5 for the unique set of HPO terms associated with each patient were considered 

potential candidate genes for that patient. 

The 13 patients included in the study are all suspected to have a monogenic kidney disease based on 

either family history, clinical presentation and/or early onset of their disease. However, no genetic 

cause had been found with diagnostic exome sequencing using trio-analyses or a diagnostic exome-

based gene panel. Sequencing in these patients was performed at the University Medical Center 

Utrecht, as described previously21. All patients gave written informed consent for the use of their 

genetic data for research purposes. Based on their phenotype, HPO terms were assigned to these 

cases by two physicians from the genetics department. For each patient, the complete exome 

sequencing data were reanalyzed using CAPICE22 to identify potentially pathogenic variants. Genes 

containing variants with a minor allele frequency (MAF) < 0.005 and a recall ≥ 99%, corresponding 

with a mild CAPICE cut-off of ≥ 0.0027, were considered interesting candidates.  

Overlapping the genes identified by the KidneyNetwork integration in GADO with those identified by 

CAPICE resulted in a list of genes for each patient. These genes and variants in these genes were 

manually reviewed by a nephrogenetics expert panel (AMvE, LRC, NVAMK) and differences in 

opinion were resolved through consensus discussion. Variants were assessed based on gnomAD 

allele frequency, the ClinVar database, the HGMD database, Grantham score and prediction tools 

(CADD, SIFT, MutationTaster, PolyPhen-2, Splice Prediction Module in Alamut Visual v.2.15). Genes 

containing potentially harmful variants were assessed based on available literature about that gene 
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or related genes and on known gene‒phenotype associations that could make this gene a more or 

less likely candidate. When autosomal recessive inheritance was expected based on the gene or the 

family history, and only one variant was found, the genetic data was reassessed for a second variant 

and SNP-array results were inspected for copy number variations. When sequencing data from 

parents was available, we assessed whether a variant was de novo or inherited. For the one resulting 

candidate gene, additional patients carrying variants in the same gene were identified via 

collaborators and the 100,000 Genomes Project. The GeneMatcher tool23 was used, and yielded no 

additional patients through February 17, 2021. 

100,000 Genomes Project 

Inclusion and genotyping of participants in the 100,000 Genomes Project, managed by Genomics 

England Limited (GEL), was previously described24. The multi-sample VCF dataset release v10, 

containing genome-wide sequencing data, was used to search for participants with a matching 

phenotype carrying rare variants in the candidate gene. We extracted high and moderate impact 

variants with a MAF < 0.001 and a scaled CADD-score (v1.5) of > 20 (or no CADD score if not 

applicable). For all participants who yielded a variant, we checked known kidney disease genes for 

(likely) pathogenic variants that might be causing their phenotype by checking whether a reportable 

variant was found in the diagnostic pipeline of the 100,000 Genomes Project and by checking for 

rare high/moderate impact variants in known renal genes defined by the complete diagnostic kidney 

gene panel of the University Medical Centre Utrecht NEF00v18.1 (supplementary table 4). 

Results 

Data retrieval and sample clustering 

3,108 publicly available kidney-derived RNA-sequencing samples and 86 kidney-derived GTEx RNA-

sequencing samples were retrieved from the ENA database and the dbGaP database, respectively. 

After sample selection, 878 kidney-derived samples were used to develop KidneyNetwork 
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(supplementary figure 2). To investigate the remaining samples, we clustered and plotted them 

using the UMAP algorithm (figure 1). Generally, the data clusters into three main clusters: primary 

non-tumor kidney data, kidney developmental samples and proximal tubule, glomerulus and renal 

cell carcinoma (RCC) samples. On the left side of the figure, clustering of pluripotent stem cell (PSC)-

derived podocytes and PSC-derived organoids with primary fetal samples and nephron progenitor 

cells can be seen. On the right side, RCC samples cluster close to proximal tubule samples, and the 

RCC cluster closest to healthy primary tissue samples consists of non-clear cell RCC (nccRCC) 

samples. At the middle and bottom, healthy primary kidney samples cluster based on their tissue of 

origin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: UMAP visualization of the kidney-derived expression data. 878 samples group into 

three main clusters: healthy primary tissue (middle and bottom), developmental samples (left) and 

renal cell carcinoma (RCC) samples (right). 
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KidneyNetwork improves gene‒phenotype predictions 

We first updated GeneNetwork with the updated HPO database (supplementary figure 6) and 

optimized the gene network building pipeline (supplementary figure 7). These changes yielded an 

improvement in the general GeneNetwork compared to the previous version (supplementary figure 

8). We then used the improved pipeline to build the kidney-specific gene regulatory network. As 

expected given the small sample size, this version of the kidney-specific network performed less well 

than GeneNetwork (supplementary figure 9). Subsequently combining GeneNetwork and the kidney 

specific gene co-expression network into KidneyNetwork yielded our best results for kidney-related 

HPO terms (figure 2A; supplementary table 5).  

We calculated the number of pathways with a significant improvement in prediction accuracy for 

KidneyNetwork compared to GeneNetwork using the DeLong test19. For this analysis, phenotypes 

were grouped into kidney-related phenotypes and non-kidney-related phenotypes. Within the 

kidney-related phenotypes, no phenotypes were significantly better predicted in GeneNetwork 

compared to KidneyNetwork. In contrast, 27% of kidney-related pathways were significantly better 

predicted by KidneyNetwork compared to GeneNetwork (figure 2A).  

Two examples of improved kidney-related HPO terms are hypomagnesemia and tubulointerstitial 

abnormality (figure 2B). Visualization of these phenotypes in density plots shows higher 

prioritization z-scores for known disease-related genes compared to non-annotated genes. For 

unknown genes, the higher the prediction z-score, the more likely it is to be a candidate disease 

gene. Visualizing the gene interaction networks of known disease genes based on the prediction 

scores again shows the increase in the number and strength of interactions obtained using 

KidneyNetwork compared to GeneNetwork. 
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Figure 2: KidneyNetwork performs better for kidney-related HPO terms than the updated 

GeneNetwork. A) 27% of kidney-related phenotypes are predicted significantly better using 

KidneyNetwork, as compared to GeneNetwork. B) Density plots of the gene prediction scores  

within two of the most improved phenotypes, hypomagnesemia and tubulointerstitial abnormality,  

show higher prediction values for the genes annotated for the phenotype and also predict potential  

unknown candidate genes. The networks predicted using KidneyNetwork shows more and stronger 

correlations between the annotated genes than the networks predicted using GeneNetwork.  

 

To compare the performances of GeneNetwork and KidneyNetwork, we performed a paired t-test 

over the 27% significantly improved kidney-related HPO terms and found an overall significant 

improvement in performance of KidneyNetwork (mean AUC: 0.83) compared to GeneNetwork 

(mean AUC: 0.78) (t-test p-value: 1.2 × 10-8). This indicates that, overall, kidney-related terms can be 

predicted with a higher accuracy using KidneyNetwork compared to GeneNetwork. 

We also saw an increase in the number of significant predicted kidney-related HPO terms for 

KidneyNetwork (n=71) compared to GeneNetwork (n=63). This led us to hypothesize that 

KidneyNetwork predicts kidney-related terms with higher accuracy overall and is therefore capable 

of predicting more kidney-related phenotypes with higher significance. To test this, we conducted a 

paired t-test considering all kidney-related HPO terms. Overall, there was a significant difference 

between the HPO AUC scores in GeneNetwork (mean AUC: 0.74) and KidneyNetwork (mean AUC: 
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0.76) (t-test p-value: 4.5 × 10-8). This result suggests that KidneyNetwork predicts more kidney-

specific HPO terms with a higher prediction accuracy than GeneNetwork. 

KidneyNetwork predicts ALG6 as a candidate gene for kidney cysts and liver cysts  

To examine the clinical utility of KidneyNetwork, we applied GADO6 to data from 13 patients with a 

suspected hereditary kidney disease but no genetic diagnosis, using KidneyNetwork as the input 

matrix. For each patient, we identified which genes prioritized by GADO with KidneyNetwork overlap 

with genes containing potentially pathogenic variants predicted by CAPICE22. The resulting gene lists 

contained 1‒4 candidate genes for 9 of the 13 patients (supplementary table 6). In one patient 

(SAMPLE6), manual curation of this list identified ALG6 (ALG6 alpha-1,3-glucosyltransferase) as a 

potential candidate gene to explain the patient’s renal and hepatic cysts (figure 3). The combined z-

score for ALG6 for the imputed HPO terms was significant in KidneyNetwork after multiple testing 

correction (z = 5.43). This gene would have been missed when we had used the updated 

GeneNetwork: there ALG6 did not reach the significance threshold of z-score ≥ 5.  
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Figure 3: KidneyNetwork incorporated in the GADO method in a patient with renal and hepatic 

cysts. 89 candidate genes out of all genes were prioritized by KidneyNetwork using GADO, based 

on the HPO terms “Renal cysts” (HP:0000107) and “Hepatic cysts” (HP:0001407). Exome-

sequencing data interpretation method CAPICE yielded 322 genes containing potentially 

pathogenic variants in the patient’s exome sequencing data. When overlapping these gene lists 

three genes were identified that met the selection criteria, one being ALG6.  

 

ALG6 as candidate gene for patients with renal and hepatic cysts 

The ALG6 variant c.680+2T>G carried by SAMPLE6 is heterozygous. This is a known pathogenic splice 

site variant that results in congenital disorder of glycosylation (CDG) type Ic when pathogenic 

variants are present on both alleles25,26. ALG6 strongly resembles ALG8 which has been implicated in 
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kidney and liver cyst phenotypes27, and according to KidneyNetwork, ALG6 and ALG8 are highly co-

regulated (z-score = 8.59). We believed this variant could be causative for this patient’s phenotype 

and searched for additional patients with ALG6 variants who displayed similar phenotypes. 

Through the 100,000 Genomes Project dataset and collaborators, we identified three additional 

patients with kidney and/or liver cysts carrying a heterozygous potentially deleterious variant in 

ALG6 that could be causative for their phenotype. Table 1 lists the phenotypes and detected 

variants. Including SAMPLE6, we identified three patients with known splice site variants that were 

reported to be disease-causing in severely affected CDG patients upon compound-heterozygosity. In 

contrast, our patients presented with a mild phenotype of multiple kidney cysts and/or liver cysts 

(figure 4), but no eGFR decline was reported despite advanced age. All patients are currently 

between 48-70 years old. The only patient with a novel missense variant displayed a more severe 

phenotype with progression to kidney failure. No (likely) pathogenic variant was found in any known 

renal disease genes in these patients. Additional patients with rare ALG6 variants deemed non-

causative for various reasons are listed in supplementary table 7.  

Table 1: Clinical information on patients with heterozygous ALG6 variants, including variant details 

and in silico predictions  

  
patient 

(gender) 

phenotype family 

history 

variant 

nomen 

(cDNA)3 

variant 

nomen  

(protein) 

zygosity allele 

frequency 

gnomAD 

v2.1.1 

CADD 

score 

(PHRED) 

v1.5 

reference for 

variant 

SAMPLE6 

(female) 

multiple renal cysts 

and multiple 

hepatic cysts 

(incidental finding), 

normal eGFR 

child and 

sibling with 

renal cysts1 

c.680+2T>G splice site 

variant 

heterozygous 8.02e-6 29.3 Morava et al, 

Sun et al25,26 

GEL1 

(male) 

multiple renal cysts, 

gout, CKD stage 5 at 

age 53 

no affected 

family 

members2  

c.68T>A p.Leu23His heterozygous 0 26.1* novel 

GEL2 

(male) 

multiple renal cysts no affected 

family 

members2 

c.257+2dup splice site 

variant 

heterozygous 1.59e-5 25.2 Newell et al28  

LE1 

(female)  

mild polycystic liver 

disease without 

renal manifestation, 

normal eGFR 

sibling with 

liver cysts1 

 

c.257+5G>A splice site 

variant# 

heterozygous 4.72e-4 22.0 Imbach et al, 

Westphal et al, 

Drijvers et al29–

31 

         

1Segregation pending; 2No DNA available for segregation; 3NM_013339.3; *additional prediction 

scores (SIFT, PolyPhen-2, MutationTaster, Grantham Distance) are listed in supplementary table 8, 
#splice site analysis presented in supplementary figure 10, | CKD=chronic kidney disease, NA=not 

applicable 
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Figure 4: Imaging from two patients A) abdominal MRI illustrating polycystic liver disease in LE1. 

Hepatic cysts are highlighted by red arrows, with the largest cyst located in liver segment IV (red 

asterisk), necessitating surgical intervention for progressive cholestasis. Of note, both kidneys 

presented with normal morphology in absence of any cystic lesions. B) abdominal CT illustrating 

polycystic kidneys and liver in SAMPLE6. Cysts are highlighted by red arrow, with the largest 

hepatic cyst measuring 7.7 cm (red asterisk). 

 

Discussion 

Although advances in exome sequencing can aid in the genetic diagnosis of kidney disease patients, 

a significant proportion of patients with a suspected genetic cause remain without a genetic 

diagnosis. When diagnostic exome or genome sequencing is performed, interpretation is often 
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limited to known kidney disease genes. Even with exome-wide analysis, many patients remain 

without a genetic diagnosis because the function of a large proportion of genes remains unclear. 

Therefore, identifying which genes are involved in kidney disease is essential for improving the 

diagnostic yield in kidney disease patients. To improve this situation, we developed KidneyNetwork, 

a kidney-specific co-expression network that can be used to prioritize previously unknown kidney 

disease genes. 

KidneyNetwork combines co-expression with information on known gene‒phenotype annotation to 

predict which previously unknown genes may also play a role in phenotype etiology. KidneyNetwork 

was built using two human RNA-sequencing datasets: a kidney sample dataset and the previously 

published multi-tissue dataset used to build GeneNetwork. Combining these datasets into 

KidneyNetwork improved phenotype predictions related to kidney disease when compared to 

networks based on the datasets separately. As proof of principle, we used KidneyNetwork to 

prioritize variants from exome sequencing in a small group of suspected hereditary kidney disease 

patients with diverse phenotypes, and this identified ALG6 as a candidate gene for kidney and liver 

cysts.  

We conclude that ALG6 is a credible candidate gene for kidney and liver cysts because of its 

resemblance to known disease genes in the same pathway. ALG6 and ALG8 are both members of the 

α3-glucosyltransferase family32. In addition to ALG827, ALG9 heterozygous variants have recently also 

been implicated in the etiology of kidney and liver cyst phenotypes33. These three genes are closely 

related in a biosynthetic pathway for lipid-linked oligosaccharides34. Interestingly, recessive loss-of-

function variants in both ALG8 and ALG9 result in CDG, with kidney and/or liver cysts described. 

Cysts have not (yet) been described for ALG6-CDG. The classic ALG6-CDG phenotype is characterized 

by developmental delay, failure to thrive and multiple neurological symptoms such as hypotonia, 

ataxia, proximal muscle weakness and epilepsy26. The phenotype present in SAMPLE6, GEL2 and LE1 

is similar to the relatively mild phenotype described in patients carrying a heterozygous ALG8 or 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2021. ; https://doi.org/10.1101/2021.03.10.21253054doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.10.21253054
http://creativecommons.org/licenses/by-nc-nd/4.0/


ALG9 pathogenic variant. ALG6 has previously been suggested to be involved in one individual with 

autosomal dominant polycystic kidney disease (ADPKD)35. However, that patient, who carried two 

missense variants with inconclusive predictions that have not been functionally assessed, had a very 

severe phenotype that did not match the expected phenotype for ALG6. In GEL1, the only patient in 

our analysis carrying a missense variant, we also see a relatively severe phenotype with kidney 

failure needing replacement therapy at age 53. This predicted deleterious missense variant is not 

found in gnomAD, and the patient’s severe phenotype might be explained by variability in 

phenotype or a specific effect of this variant (e.g. gain-of-function). Variability in phenotype severity 

has been observed in patients carrying heterozygous ALG9 variants, but only one patient has been 

described with kidney failure and no conclusions could be drawn in this case due to lack of records 

and imaging before kidney failure commenced36. Another explanation for GEL1’s phenotype is that 

we might have missed another deleterious variant despite exome-wide analysis. Functional 

experiments are thus needed to unravel the exact cellular function of ALG6 in kidney cyst 

pathogenesis and to prove the pathogenic effect of all these variants. 

Strengths and limitations 

We realize that ALG6 based on the present literature alone would be a candidate gene for the cyst 

phenotype in SAMPLE6. However, this only proves the strength of our method; out of 322 genes 

with potentially deleterious variants this true candidate gene was prioritized to the top 3, making 

going into exome-wide sequencing data ‒ for more patients, with various phenotypes ‒ time-

efficient and worthwhile. 

Building gene co-expression networks requires a large number of RNA-sequencing samples6 in order 

to achieve accurate function predictions, numbers that are not often available for specific tissues. To 

overcome this issue, one earlier approach used hierarchical similarities between tissue types37. 

However, this solution requires a priori gene selection due to its computational burden. In contrast, 

our method can be used to make unbiased genome-wide predictions. Moreover, the hierarchical 
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approach would have to be repeated for each new tissue of interest, whereas the multi-tissue 

dataset can be re-used to build a different tissue-specific network using our method. Another earlier 

approach used differential expression between different tissue types38. In this approach, the top 

10% most differentially expressed genes were correlated with kidney-related GWAS loci. Using 

differential expression allows predictions to be made regardless of previous knowledge on gene‒

phenotype interactions. However, this also requires applying a differential expression cut-off, which 

was set to the top 10% most differentially expressed genes, for inclusion. In contrast, our approach 

makes use of underlying biological structures in RNA-sequencing data to obtain a prediction score 

for every gene. While combining differential expression with GWAS summary statistics allows for 

unbiased gene predictions, the reliability of experimentally validated HPO annotations is higher than 

that of GWAS results, and integrating the HPO database thus results in more reliable predictions. 

Moreover, we make simultaneous predictions for all HPO terms, whereas the GWAS-based approach 

needs to be repeated for each GWAS of interest. 

Combining kidney-specific RNA-sequencing samples with the multi-tissue dataset allowed us to 

overcome both the issue of sample size and the challenges in observing tissue-specific differential 

expression when using only tissue-specific expression datasets. In addition, during the development 

of KidneyNetwork we did not have to limit the number of genes that the network is built upon. 

Furthermore, KidneyNetwork users can get predictions for all possible genes in an unbiased 

approach, and gene prioritizations for a combination of HPO terms can be obtained.  

A downside of using RNA-sequencing data from bulk samples is that we have limited power to make 

inferences for lowly expressed genes, which is particularly important for genes that are specific to 

rare cell-types. However, as more cell-type specific and single-cell RNA-sequencing data becomes 

available in the future, creating co-expression networks based on different kidney cell types might 

solve this for genes that are expressed more abundantly within specific cell types. Another limitation 

of using only RNA-sequencing data is that other biological processes potentially involved in disease 
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development, for example post-translational modifications and protein-protein interactions, are 

currently not considered by our prediction model. 

Improved gene function predictions 

We show that our improved method for assigning gene functions and HPO terms to genes 

outperforms our previously published model. Our leave-one-out cross validation approach ensures 

that predictions are not overfitted, that the reported AUC values are not inflated and that our 

method is robust. 

Furthermore, before predicting gene‒phenotypes associations, we excluded gene‒disease 

associations from the HPO database that had little experimental evidence, because prediction 

accuracy is dependent on the accuracy of annotated gene‒phenotype associations. Prediction 

accuracy is based on the true positive gene predictions and true negative gene predictions, which 

means that the more accurately the known genes are mapped to phenotypes, the better the 

predictions will be. We noticed that not all genes mapped to HPO terms were mapped based on 

experimental validation, with some of the associations based on other factors such as statistical 

associations. As these associations could introduce noise into the network predictions, they were 

not considered true positives in our analysis. Another observation was made for phenotypes 

belonging to diseases with large duplications or deletions: Genes positioned in the deleted or 

duplicated areas are currently annotated to these diseases in the HPO database and thus linked to 

the disease associated‒phenotypes. As these genes not necessarily cause such phenotypes, our 

network predictions would have been affected by these genes. We therefore only included gene‒

phenotype associations based on known associations in the analysis. Gene-phenotype association 

accuracy will improve once more genes are annotated and validated for each phenotype. Therefore, 

we expect an improvement in network prediction accuracy as gene‒phenotype association 

knowledge increases and is added to the HPO database, and we expect this will help to establish 

more genetic diagnoses for kidney disease patients in the future.  
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Applications of KidneyNetwork 

We have developed https://kidney.genenetwork.nl/ through which we provide the gene-HPO term 

prediction. Using the same prediction algorithm that we used to assign genes to HPO-terms, we also 

predicted which genes are likely to be involved in GO, KEGG and Reactome pathways.   

Here we also provide an online version of GADO that can be used to prioritize relevant genes for 

patients with a suspected rare kidney disease. It is possible to specify the phenotype of a patient 

using HPO terms and provide a list of genes harboring potential disease-causing variants. These 

genes will then be ranked using KidneyNetwork, thereby allowing the identification of which genes 

are more likely to be involved in the patient’s disease. Since it is not necessary to upload personal 

genetic information, this method respects patient privacy.  

Future directions 

Application of KidneyNetwork to unsolved cases from diagnostics, large research cohorts and, for 

instance, GWAS datasets will result in more insight into kidney physiology and pathophysiology. To 

further improve the accuracy of kidney phenotype prediction, we plan to incorporate single-cell 

RNA-sequencing data, which we expect will yield more detailed and accurate gene‒phenotype 

predictions.  

Conclusion 

We present KidneyNetwork, a co-expression network that can help increase the genetic diagnostic 

yield in kidney disease patients. The method we developed to combine multi-tissue data with tissue-

specific data can easily be extended to other tissues, allowing improved predictions for other tissue-

specific diseases. Using KidneyNetwork, we identified ALG6 as candidate gene for the phenotypes 

renal and/or hepatic cysts and therefore add ALG6 as a credible candidate for the ADPKD/PCLD 

spectrum. KidneyNetwork provides a useful tool to help with the interpretation of genetic variants. 
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It can therefore be of great value in translational nephrogenetics and ultimately improve the 

diagnostic yield in kidney disease patients. 
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