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ABSTRACT

We present cosmological parameter constraints from a joint analysis of three cosmological

probes: the tomographic cosmic shear signal in ∼450 deg2 of data from the Kilo Degree Survey

(KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass

Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation

function of the same GAMA galaxies. We use fast power spectrum estimators that are based

on simple integrals over the real-space correlation functions, and show that they are practically

unbiased over relevant angular frequency ranges. We test our full pipeline on numerical

simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different

combinations of power spectra, we demonstrate that the three probes are internally consistent.

For all probes combined, we obtain S8 ≡ σ8

√
�m/0.3 = 0.800+0.029

−0.027, consistent with Planck

and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide

priors on the mean of the tomographic redshift distributions yields consistent results for S8

with an increase of 28 per cent in the error. The combination of probes results in a 26 per cent

reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain

from these additional probes comes through their constraining power on nuisance parameters,

such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions,

which are up to a factor of 2 better constrained compared to using cosmic shear alone,

demonstrating the value of large-scale structure probe combination.

Key words: methods: data analysis – methods: statistical – large-scale structure of Universe.
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1 IN T RO D U C T I O N

The total mass-energy content of the Universe is dominated by two

components, dark matter and dark energy, whose unknown nature
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constitutes one of the largest scientific mysteries of our time. Our

knowledge of these components will increase dramatically in the

coming decade, due to dedicated large-scale imaging and spectro-

scopic surveys such as Euclid1 (Laureijs et al. 2011), the Large

Synoptic Survey Telescope2 (LSST; LSST Science Collaboration

2009) and the Wide-Field Infrared Survey Telescope3 (Spergel et al.

2015), which will increase the mapped volume of the Universe

by more than an order of magnitude. The two main cosmological

probes from these surveys are the clustering of galaxies and weak

gravitational lensing. Combined, they provide a particularly power-

ful framework for constraining properties of dark energy (Albrecht

et al. 2006).

Weak gravitational lensing measures correlations in the distortion

of galaxy shapes caused by the gravitational field of the large-scale

structure in the foreground (Bartelmann & Schneider 2001) and is

sensitive to the geometry of the Universe and the growth rate. These

distortions can be extracted by correlating the positions of galaxies

in the foreground (which trace the large-scale structure) with the

shapes of the galaxies in the background, which is the galaxy-matter

cross-correlation (often referred to as galaxy–galaxy lensing), or by

correlating the observed shapes of galaxies, which is commonly

referred to as cosmic shear (for a review, see Kilbinger 2015).

Most cosmic shear studies to date used the shear correlation

functions (e.g. Heymans et al. 2013; Jee et al. 2013; Dark Energy

Survey Collaboration 2016; Hildebrandt et al. 2017) or the shear

power spectrum (e.g. Brown et al. 2003; Heymans et al. 2005;

Kitching et al. 2007; Lin et al. 2012; Kitching et al. 2014; Dark

Energy Survey Collaboration 2016; Köhlinger et al. 2016; Als-

ing, Heavens & Jaffe 2017; Köhlinger et al. 2017) to constrain

cosmological parameters. An intriguing finding of the fiducial cos-

mic shear analyses of the Canada–France–Hawaii Lensing Survey

(CFHTLenS; Heymans et al. 2013) and the Kilo Degree Survey

(KiDS; Hildebrandt et al. 2017), two of the most constraining sur-

veys to date, is that they prefer a cosmological model that is in

mild tension with the best-fitting cosmological model from Planck

Collaboration XIII (2016). The first cosmological results from the

Dark Energy Survey (DES) are consistent with Planck, but their

uncertainties are considerably larger. Also, the result from the Deep

Lens Survey (DLS; Jee et al. 2016) agrees with Planck. Further

investigation of this tension is warranted, because if it is real and

not due to systematics, the implications would be far-reaching (see

e.g. Battye & Moss 2014; MacCrann et al. 2015; Kitching et al.

2016; Joudaki et al. 2017b).

To tighten the constraints, we combine the cosmic shear mea-

surements from KiDS with two other large-scale structure probes

that are sensitive to cosmological parameters: the galaxy-matter

cross-correlation function and the two-point clustering autocorrela-

tion function of galaxies. These probes have been used to constrain

cosmological parameters (e.g. Cacciato et al. 2013; Mandelbaum

et al. 2013; More et al. 2015; Kwan et al. 2017; Nicola, Refregier

& Amara 2017). Instead of combining the different cosmological

probes at the likelihood level, which is what is usually done, we fol-

low a more optimal ‘self-calibration’ approach by modelling them

within a single framework, as this enables a coherent treatment of

systematic effects and a lifting of parameter degeneracies (Nicola,

Refregier & Amara 2016).

1 http://euclid-ec.org
2 https://www.lsst.org/
3 https://wfirst.gsfc.nasa.gov/

In this work, we adopt a formalism from Schneider et al. (2002)

to estimate power spectra by performing simple integrals over the

real-space correlation functions using appropriate weight functions.

Schneider et al. (2002) demonstrate that this method works using

analytical predictions of cosmic shear measurements. Brown et al.

(2003) applied this formalism to data to measure shear power spec-

tra, while Hoekstra et al. (2002) used it to constrain aperture masses.

We extend the formalism to the galaxy-matter power spectrum and

the angular power spectrum, and apply these power spectrum esti-

mators for the first time to data. Although this approach is formally

only unbiased if the correlation function measurements were avail-

able from zero lag to infinity, we show that it produces unbiased

band power estimates over a considerable range of angular mul-

tipoles. This method is much faster than established methods for

estimating power spectra. Furthermore, these cosmic shear power

spectra are insensitive to the survey masks. Modelling the power

spectra instead of the real-space correlation functions enables us to

cleanly separate scales and to separate the cosmic shear signal in E

modes and B modes, with the latter serving as a test for systematics,

although it should be noted that this advantage is not exclusive to

power spectra, as COSEBIs (Schneider, Eifler & Krause 2010), for

example, also split the signal in E and B modes. Finally, it puts

the different probes on the same angular-frequency scale, which

could help with identifying certain types of systematics that affect

particular angular frequency ranges.

We use the most recent shape measurement catalogues from the

KiDS survey, the KiDS-450 catalogues (Hildebrandt et al. 2017), to

measure the weak lensing signals, and the foreground galaxies from

the Galaxies And Mass Assembly (GAMA) survey (Driver et al.

2009, 2011; Liske et al. 2015) from the three equatorial patches

that are completely covered by KiDS, to determine the galaxy-

matter cross-correlation as well as the projected clustering signal.

A parallel KiDS analysis that is similar in nature, in which KiDS-

450 cosmic shear measurements are combined with galaxy–galaxy

lensing and redshift space distortions from BOSS (Dawson et al.

2013) and the 2dFLenS survey (Blake et al. 2016), will be released

imminently in Joudaki et al. (2018).

The outline of the paper is as follows. We introduce the three

power spectrum estimators in Section 2. The data and the measure-

ments are presented in Section 3, which is followed by the results in

Section 4. We conclude in Section 5. We validate our power spec-

trum estimators in Appendix A, and the entire fitting pipeline using

N-body simulations tailored to KiDS in Appendix B. In Appendix C,

we compare our cosmic shear power spectra to those estimated with

a quadratic estimator, and in Appendix D we present our iterative

scheme for determining the analytical covariance matrix. The full

posterior of all fit parameters is shown in Appendix E. Finally, in

Appendix F we check the impact of the flat-sky approximation on

our power spectrum estimators, and in Appendix G we discuss the

effect of cross-survey covariance when probes from surveys with

different footprints on the sky are combined.

2 POW ER SPECTRUM ESTI MATO RS

Computing power spectra directly from the data, for example using

a quadratic estimator (Hu & White 2001), is usually a compli-

cated and CPU-intensive task (e.g. Köhlinger et al. 2016). This is

particularly challenging for cosmic shear studies as the high signal-

to-noise regime of the cosmological measurements is on relatively

small scales, thus requiring high-resolution measurements. Alterna-

tively, pseudo-Cℓ methods can be used (Hikage et al. 2011; Asgari

et al. 2016), but they are sensitive to the details of the survey mask.
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Here, we adopt a much simpler and faster approach: we integrate

over the corresponding real-space correlation functions, which can

be readily measured with existing public code. We will demonstrate

that this method accurately recovers the power spectra over a rele-

vant range of ℓ. This ansatz is very similar to the ‘Spice/PolSpice’

methods (e.g. Chon et al. 2004; Becker et al. 2016), except that we

calculate correlation functions via direct galaxy pair counts instead

of passing through map-making and pseudo-Cℓ estimation steps

first.

2.1 Cosmic shear power spectrum

The weak lensing convergence power spectrum can be obtained

from the 3D matter power spectrum Pδ via

Pκ (ℓ) =
(

3H 2
0 �m

2c2

)2 ∫ χH

0

dχ
g2(χ )

a2(χ )
Pδ

(
ℓ + 1/2

fK (χ )
, χ

)
, (1)

with H0 the Hubble constant, �m the present-day matter density

parameter, c the speed of light, χ the comoving distance, a(χ ) the

scale-factor, fK(χ ) the comoving angular diameter distance, χH the

comoving horizon distance, and g(χ ) a geometric weight factor,

which depends on the source redshift distribution pz(z) dz = pχ (χ )

dχ :

g(χ ) =
∫ χH

χ

dχ ′ pχ (χ ′)
fK (χ ′ − χ )

fK (χ ′)
. (2)

Hence for a given theoretical matter power spectrum Pδ , we can

predict the observed convergence power spectrum once the source

redshift distribution is specified.

As in equation (1), we assume the Limber and flat-sky approxi-

mations throughout in our power spectrum estimator. We validate

the latter explicitly in Appendix F. A number of recent papers have

demonstrated for the case of cosmic shear that these approxima-

tions are very good on the scales that we consider (Kilbinger et al.

2017; Kitching et al. 2017; Lemos, Challinor & Efstathiou 2017).

For all signals we employ the hybrid approximation proposed by

Loverde & Afshordi (2008), which uses ℓ + 1/2 in the argument of

the matter power spectrum but no additional prefactors. Limber’s

approximation is more accurate the more extended along the line

of sight the kernel of the signal under consideration is (see e.g.

Giannantonio et al. 2012). We will therefore assess the validity of

our galaxy clustering estimator and model more carefully in Sec-

tion 2.3.

The convergence power spectrum can be converted into the shear

correlation functions:

ξ+(θ ) =
∫ ∞

0

dℓ ℓ

2π
J0(ℓθ )Pκ (ℓ) ,

ξ−(θ ) =
∫ ∞

0

dℓ ℓ

2π
J4(ℓθ )Pκ (ℓ), (3)

where Jn(x) are the nth order Bessel functions of the first kind.

The use of shear correlation functions is popular in observational

studies (Kilbinger 2015) because they can be readily measured from

the data using ξ̂± = ξ̂tt ± ξ̂××, with

ξ̂tt(θ ) =
∑

wiwj ǫt,iǫt,j∑
wiwj

; ξ̂××(θ ) =
∑

wiwjǫ×,iǫ×,j∑
wiwj

, (4)

with ǫt and ǫ× the tangential and cross-component of the ellipticities

of galaxies i and j, measured with respect to their separation vector,

and w the inverse variance weight of the shape measurements,

which comes from our shape measurement method lensfit (Miller

et al. 2013; Fenech Conti et al. 2017). The sum runs over all galaxy

pairs whose projected separation on the sky falls inside a radial bin

centred at θ and with a width �θ .

Although the shear correlation functions are easy to measure,

power spectrum estimators have a number of advantages (Köhlinger

et al. 2016). First, they enable a clean separation of different

ℓ modes, while ξ± averages over them; if systematics are present

that affect only certain ℓ modes, they are more easily identified in

the power spectra. Furthermore, the covariance matrix of the power

spectra is more diagonal than its real-space counterpart, also leading

to a cleaner separation of scales, that is easier to model. Finally, the

power spectrum estimators can be readily modified to extract the

B-mode part of the signal, which should be consistent with zero if

systematics are absent and hence serves as a systematic check.

We estimate ℓ2Pκ (ℓ) in a band with an upper and lower ℓ limit

of ℓiu and ℓil directly from the observed shear correlation functions

using the estimator from Schneider et al. (2002):

P E
band,i = 1

�i

∫ ℓiu

ℓil

dℓ ℓ Pκ (ℓ)

= 2π

�i

∫ ℓiu

ℓil

dℓ ℓ

×
∫ θmax

θmin

dθ θ [K+ξ+(θ )J0(ℓθ ) + (1 − K+)ξ−(θ )J4(ℓθ )]

(5)

= 2π

�i

∫ θmax

θmin

dθ

θ
{K+ξ+(θ ) [g+(ℓiuθ ) − g+(ℓilθ )]

+ (1 − K+)ξ−(θ ) [g−(ℓiuθ ) − g−(ℓilθ )]}, (6)

with θmin and θmax the minimum and maximum angular scale that

can be used, �i = ln (ℓiu/ℓil), and

g+(x) = xJ1(x); g−(x) =
(

x − 8

x

)
J1(x) − 8J2(x). (7)

To ensure a clean E-/B-mode separation, the scalar K+ should be

fixed to 0.5. This can be seen by expressing ξ+/ − as a function

of the E-/B-mode power spectra (see e.g. equation 9 in Joachimi,

Schneider & Eifler 2008) and inserting that into equation (5).

This estimator is only unbiased if θmin = 0 and θmax = ∞. How-

ever, even if we restrict the range of the integral to what can be

realistically measured in our data, we can retrieve unbiased esti-

mates of P E
band,i over a large ℓ range, as is shown in Appendix A,

because most of the information of a given ℓ mode comes from a

finite angular range of the shear correlation functions. The lowest

ℓ bins we adopt may have a small remaining bias, for which we

derive an integral bias correction (IBC), as detailed in Appendix A.

To compute the IBC, we need to adopt a cosmology, which makes

the correction cosmology dependent. However, since the correction

is smaller than the statistical errors, a small bias in the IBC due

to adopting the wrong cosmology does not impact our results, and

we will demonstrate that not applying the correction at all does not

affect our results.

The B-mode part of the signal is measured by

P B
band,i := π

�i

∫ θmax

θmin

dθ

θ
{ξ+(θ ) [g+(ℓiuθ ) − g+(ℓilθ )]

− ξ−(θ ) [g−(ℓiuθ ) − g−(ℓilθ )]}, (8)

which we measure simultaneously in the data to test for the presence

of systematics.

A similar power spectrum estimator has been proposed in Becker

& Rozo (2016) and applied to data in Becker et al. (2016), specifi-

cally designed to minimize E-mode/B-mode mixing. However, how
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this estimator performs when ξ± have been measured in limited an-

gular ranges, has not yet been explored. Although our estimator has

some E-mode/B-mode mixing, we demonstrate that it is negligible

for all but the lowest ℓ bin, and we derive a robust correction scheme

for it.

2.2 Galaxy-matter power spectrum

The projected galaxy-matter power spectrum is related to the matter

power spectrum via

P gm(ℓ) = b

(
3H 2

0 �m

2c2

)

×
∫ χH

0

dχ
pF(χ )g(χ )

a(χ )fK (χ )
Pδ

(
ℓ + 1/2

fK (χ )
; χ

)
, (9)

with pF(χ ) the redshift distribution of the foreground sample. We

assume that the galaxy bias is linear and deterministic4 such that b

is the effective bias of the lens sample. We will motivate this choice

in Section 3.4.

In analogy with equations (4) and (5), we estimate the projected

galaxy-matter power spectrum as

P gm(ℓ) = 2π

∫ ∞

0

dθ θ γt(θ )J2(ℓθ ), (10)

with γ t(θ ) the tangential shear around foreground galaxies. The

band galaxy-matter power spectrum estimator then follows from

P
gm

band,i := 1

�i

∫ ℓiu

ℓil

dℓ ℓP gm(ℓ)

= 2π

�i

∫ θmax

θmin

dθ

θ
γt(θ ) [h(ℓiuθ ) − h(ℓilθ )] , (11)

with

h(x) = −xJ1(x) − 2J0(x). (12)

The final result is derived by inserting equation (10) into the first

line of equation (11), changing the order of the integrals, renaming

the variables and making use of the derivative identity of Bessel

functions. The analogy for the B-mode part of the signal is obtained

by replacing γ t with the cross-shear part, γ ×:

P
g×
band,i := 2π

�i

∫ θmax

θmin

dθ

θ
γ×(θ ) [h(ℓiuθ ) − h(ℓilθ )] . (13)

The tangential shear and cross-shear are measured with the follow-

ing estimators:

γ̂t(θ ) =
∑

i ǫt,iwi∑
wi

; γ̂×(θ ) =
∑

i ǫ×,iwi∑
wi

. (14)

In practise, we also measured the tangential shear and cross-shear

signals around random points and subtracted that from the measure-

ments around galaxies, as discussed in Section 3.2. As for the cos-

mic shear power spectra, we verify that our galaxy-matter power

spectrum estimator is unbiased using analytical correlation func-

tions and N-body simulations tailored to KiDS (see Appendices A

and B). We also derive and apply the IBC, which is negligible for

all but the lowest ℓ bin, and for the first ℓ bin it is smaller than the

measurements errors.

4 In other words, the cross-correlation coefficient r (e.g. Pen 1998; Dekel &

Lahav 1999) is fixed to unity.

2.3 Angular power spectrum

The angular power spectrum can be determined from the matter

power spectrum via

P gg(ℓ) = b2

∫ χH

0

dχ
p2

F(χ )

f 2
K (χ )

Pδ

(
ℓ + 1/2

fK (χ )
; χ

)
, (15)

where, as above, b corresponds to the effective bias of the sample

(as motivated in Section 3.4).

The 0th order Limber approximation for the angular correlation

function is accurate to less than a percent at scales ℓ > 5χ (z0)/σ χ ,

with χ (z0) the comoving distance of the mean redshift of the fore-

ground sample and σ χ the standard deviation of the galaxies’ co-

moving distances around the mean (see section IV-B of Loverde &

Afshordi 2008). For our low- and high-redshift foreground samples

(defined in Section 3), we obtain scales of ℓ � 15 and ℓ � 25, re-

spectively. Since the minimum ℓ scale entering the analysis is 150,

the Limber approximation is valid here.

Analogous to the cosmic shear and the projected galaxy-matter

power spectra, we derive an estimator for the angular power

spectrum:

P gg(ℓ) = 2π

∫ ∞

0

dθ θ w(θ )J0(ℓθ ), (16)

with w(θ ) the angular correlation function. We estimate the galaxy–

galaxy band powers using:

P
gg

band,i := 1

�i

∫ ℓiu

ℓil

dℓ ℓP gg(ℓ)

= 2π

�i

∫ θmax

θmin

dθ

θ
w(θ ) [f (ℓiuθ ) − f (ℓilθ )] , (17)

with

f (x) = xJ1(x). (18)

The angular correlation function is estimated from the data using

the standard LS estimator (Landy & Szalay 1993):

ŵ(θ ) = DD − 2DR + RR

RR
, (19)

with DD the number of galaxy pairs, DR the number of galaxy–

random point pairs, and RR the number of random point pairs. The

counts with random points are scaled with the ratio of the total

number of galaxies and the total number of random points.

As for the cosmic shear and galaxy-matter power spectra, we

verify that our angular power spectrum estimator is unbiased using

analytical correlation functions and N-body simulations tailored to

KiDS (see Appendices A and B). For completeness, we also apply

the IBC, but the impact on the power spectra is negligible. Note that

in the remainder of this paper, we omit the subscript ‘band, i’ from

the band power estimates for convenience, which we do not expect

to cause any confusion.

3 DATA A NA LY SIS

3.1 Data

The KiDS ( de Jong et al. 2013) is an optical imaging survey that

aims to span 1500 deg2 of the sky in four optical bands, u, g, r, and

i, complemented with observations in five infrared bands from the

VISTA Kilo-degree Infrared Galaxy (VIKING) survey (Edge et al.

2013). The exceptional imaging quality particularly suits the main

science objective of the survey, which is constraining cosmology

using weak gravitational lensing.
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Figure 1. Normalized redshift distribution of the four tomographic source

bins of KiDS (solid lines), used to measure the weak gravitational lensing

signal, and the normalized redshift distribution of the two spectroscopic

samples of GAMA galaxies (histograms), that serve as the foreground sam-

ple in the galaxy–galaxy lensing analysis and that are used to determine the

angular correlation function. For plotting purposes, the redshift distribution

of GAMA galaxies has been multiplied by a factor 0.5. The shaded regions

indicate the photometric redshift (zB) selection of the tomographic source

bins.

In this study, we use data from the most recent public data re-

lease, the KiDS-450 catalogues (Hildebrandt et al. 2017; de Jong

et al. 2017), which contains the shape measurement and photomet-

ric redshifts of 450 deg2 of data, split over five different patches

on the sky, which include the three equatorial patches that com-

pletely overlap with GAMA. Below, we give an overview of the

main characteristics of this data set.

The redshift distribution of the source galaxies was determined

using four different methods in KiDS-450. The most robust is the

weighted direct calibration method (hereafter referred to as DIR),

which is based on the work of Lima et al. (2008). In this method,

catalogues from deep spectroscopic surveys are weighted in such a

way as to remove incompleteness caused by their spectroscopic se-

lection functions (see Hildebrandt et al. 2017, for details). The true

redshift distribution for a sample of KiDS galaxies selected using

their Bayesian photometric redshifts from BPZ (Benı́tez 2000) can

then be determined by matching to these weighted spectroscopic

catalogues. The resulting redshift distribution is well calibrated in

the range 0.1 < zB ≤ 0.9, with zB the peak of the posterior photomet-

ric redshift distribution from BPZ. In this work, we use the same

four tomographic source redshift bins as adopted in Hildebrandt

et al. (2017) by selecting galaxies with 0.1 < zB ≤ 0.3, 0.3 < zB ≤
0.5, 0.5 < zB ≤ 0.7 and 0.7 < zB ≤ 0.9. The redshift distribution

of the four source samples from the DIR method is shown in Fig. 1

. The main properties of the source samples, such as their average

redshift, number density and ellipticity dispersion, can be found in

table 1 of Hildebrandt et al. (2017).

The galaxy shapes were measured from the r-band data using an

updated version of the lensfit method (Miller et al. 2013), carefully

calibrated to a large suite of image simulations tailored to KiDS

(Fenech Conti et al. 2017). The resulting multiplicative bias is of

the order of a percent with a statistical uncertainty of less than

0.3 per cent, and is determined in each tomographic bin separately.

The additive shape measurement bias is determined separately in

each patch on the sky and in each tomographic redshift bin as the

weighted average galaxy ellipticity per ellipticity component, and

has typical values of ∼10−3. We corrected the additive bias at the

catalogue level, while the multiplicative bias was accounted for

during the correlation function estimation.

To avoid confirmation bias, the fiducial cosmological analysis of

KiDS (Hildebrandt et al. 2017) was blinded: three different shape

catalogues were analysed, the original and two copies in which the

galaxy ellipticities were modified such that the resulting cosmolog-

ical constraints would differ. Only after the analysis was written up,

an external blinder revealed which catalogue was the correct one.

Since the lead authors of this paper were already unblinded else-

where, the current analysis could no longer be performed blindly.

However, since the shear catalogues were not changed after un-

blinding, we still partly benefit from the original blinding exercise.

We used the KiDS galaxies to measure the cosmic shear cor-

relation functions, and to measure the tangential shear around the

foreground galaxies from the GAMA survey (Driver et al. 2009,

2011; Liske et al. 2015). GAMA is a highly complete spectroscopic

survey up to a Petrosian r-band magnitude of 19.8. In total, it tar-

geted ∼240 000 galaxies. We use a subset of ∼180 000 galaxies that

reside in the three patches of 60 deg2 each near the celestial equator,

G09, G12, and G15, as those patches fully overlap with KiDS. The

tangential shear measurements in these three patches are combined

with equal weighting. Due to the flux limit of the survey, GAMA

galaxies have redshifts between 0 and 0.5. We select two GAMA

samples, a low-redshift sample with zspec < 0.2, and a high-redshift

sample with 0.2 < zspec < 0.5. Their redshift distributions are also

shown in Fig. 1.

We also use the same subset of GAMA galaxies to determine the

angular correlation function, and thus the corresponding angular

power spectrum. To determine the clustering, we make use of the

GAMA random catalogue version 0.3, which closely resembles the

random catalogue that was used in Farrow et al. (2015) to measure

the angular correlation function of GAMA galaxies. We sample the

random catalogue such that we have 10 times more random points

than real GAMA galaxies.

3.2 Measurements

We use the shape measurement catalogues of KiDS-450 to measure

the cosmic shear correlation functions, ξ+ and ξ−, and the tangen-

tial shear around GAMA galaxies. All projected real-space corre-

lation functions in this work are measured with TREECORR
5 (Jarvis,

Bernstein & Jain 2004). Since the ξ+ and ξ− measurements have

already been presented in Hildebrandt et al. (2017), we will not

show them here. The ℓ range in which we can obtain unbiased esti-

mates of the power spectra depends on the angular range where we

trust the correlation functions. For ξ+ and ξ−, we use an upper limit

of θ < 120 arcmin, as the measurements on larger scales become

increasingly sensitive to residual uncertainties on the additive bias

correction. The lower limit is 0.06 arcmin, but our power spectrum

estimator is insensitive to any signal below 1 arcmin. The PE band

powers are nearly unbiased in the range ℓ > 150 (see Appendix A).

We measure ξ+ and ξ− in 600 logarithmically spaced bins between

0.06 and 600 arcmin, to account for the rapid oscillations of the

window functions used to convert the shear correlation functions to

the power spectra, but we only use scales 0.06 < θ < 120 arcmin in

the integral.

5 https://github.com/rmjarvis/TreeCorr
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Figure 2. Cosmic shear power spectra for KiDS-450, derived with our power spectrum estimator that integrates the shear correlation functions in the range

0.06 < θ < 120 arcmin. The numbers in each panel indicate which shape (S) samples are correlated, with the numbers defined in the legend of Fig. 1. The

panels on the left show the E modes, and the ones on the right the B modes. Error bars have been computed analytically. The B modes have been multiplied

with ℓ instead of ℓ2 for improved visibility of the error bars. Solid lines correspond to the best-fitting model, for our combined fit to PE, Pgm, and Pgg. There is

one ℓ bin whose B mode deviates from zero by more than 3σ , the highest ℓ of the S2–S4 cross-correlation; the corresponding E mode is high as well. We have

verified that excluding this bin from the analysis does not change our results.

To test the sensitivity of our estimator to a residual additive shear

bias, we also measured the power spectra without applying the

additive bias correction. This only affected the lowest ℓ bins by

shifting them with a typical amount of 0.5σ ; the impact on other

bins was negligible. Since the error on the additive bias correction

is smaller than the correction itself, its impact on the power spectra

is even smaller and can therefore be safely ignored.

Since PE does not vary rapidly with ℓ, we only need a small

number of ℓ bins to capture most of the cosmological information.

We use five logarithmically spaced bins, whose logarithmic means

range from ℓ = 200 to ℓ = 1500; the ℓ ranges they cover can be

read off from Fig. A1. Truncating the integral to θ < 120 arcmin

leads to a small negative additive bias of the order of 10−6 in the

lowest ℓ bin (smaller than the statistical errors). We derive an IBC

for this in Appendix A and apply it to all power spectra, although not

applying this correction leads to negligible changes of our results.

The resulting E modes and B modes are shown in Fig. 2.

We obtain a clear detection for PE in each tomographic bin com-

bination. The signal increases with redshift, which is expected as

the impact of more structures is imprinted on the galaxy ellipticities

if their light traversed more large-scale structure and because of the

geometric scaling of the lensing signal (see equation 2).

Fig. 2 also shows PB, the B modes that serve as a systematic test.

Note that the IBC has also been applied to the B modes. There are

a number of ℓ bins which appear to be affected by B modes; the

most prominent feature is the highest ℓ bin for the cross-correlation

between the second and fourth tomographic bins. To quantify this,

we determined the reduced χ2 value of the null hypothesis for

all bins combined, which has a value of 1.96. This corresponds

to a p-value of 0.0001. This number is driven by this single ℓ

bin; excluding this bin alone lowers the reduced χ2 to 1.55 (and a

p-value of 0.0082), which is still a tentative sign of residual B modes.

Not applying the IBC slightly improves the overall reduced χ2 to

1.87 (1.45 after removing the suspicious ℓ bin). The origin of the

B modes in KiDS is under active investigation and will be presented

in Asgari et al. (in preparation). To test how it may affect our

cosmological results, we repeat the test of Hildebrandt et al. (2017),

subtract the B modes from the E modes, and run the cosmological

inference. This B-mode correction shifts our main cosmological

result by less than 0.5σ , thus demonstrating that if the source of the

B modes also generates E modes in equal amounts, our results are

not significantly biased if we do not account for that. More details

of this test are provided in Appendix C.

The large amplitude of PB of this suspicious ℓ bin suggests that

the corresponding PE measurement might not be trustworthy, and

indeed, it appears high. We have tested that removing this single

ℓ bin from the analysis does not affect the cosmological inference

except for the goodness of fit. Another apparent feature is that the

PE of the first ℓ bins of the cross-correlation between the second

tomographic bin and the second, third and fourth tomographic bins
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Figure 3. Tangential shear and cross-shear around GAMA galaxies measured with KiDS sources in tomographic bins, as indicated in the panels. The cross-

shear measurements have been multiplied with a factor (θ/100)0.5 to ensure that the error bars are visible over the plotted angular range. Open squares show

negative points of γ t with unaltered error bars. The lensing signal measured around random points has been subtracted, which is consistent with zero on the

scales of interest for all but the third tomographic source bin, where it is small but positive on scales >20 arcmin. Furthermore, the signal has been corrected for

the contamination of source galaxies that are physically associated with the lenses. The errors are derived from jackknifing over 2.5 × 3 deg non-overlapping

patches. They are only used to assess on which scales the signal is consistent with not being affected by systematics; when we fit models to our power spectra

we use analytical errors throughout.

are ∼2σ below the best-fitting model. However, the first ℓ bins of

the various tomographic bin combinations are fairly correlated (see

e.g. Fig. B3 in Appendix B2), so this feature is less significant than

it appears. Furthermore, in Section 4 we will show that excluding

the lowest ℓ bins from the fit does not impact our results.

We have also compared our power spectrum estimates with those

derived using the quadratic estimator from Köhlinger et al. (2017).

A detailed comparison is presented in Appendix C. Overall, we

find good agreement between the E modes, although for one to-

mographic bin combination we find a noticeable difference at high

ℓ. A possible explanation is the presence of some B modes in the

cosmic shear correlation functions (as reported in Hildebrandt et al.

2017). This is further supported by the fact that we detect B modes

at a higher significance than Köhlinger et al. (2017), where they are

found to be consistent with zero. It is still unclear if or how this

affects the cosmological inference, although the B-mode correction

test we did in Appendix C suggests that the impact is small.

Next, we determined the galaxy-matter power spectrum, for

which we needed to measure the tangential shear signal around

GAMA galaxies first. This lensing signal is shown in Fig. 3. We

also measured the signal with an independent code, and the results

agreed very well. For illustrative purposes, we used 20 logarith-

mically spaced bins between 0.1 and 300 arcmin. To compute the

power spectra, we need a much finer sampling, as the window func-

tions used to convert the correlation functions to power spectra

oscillate rapidly. Hence we measured the signal in 600 logarithmi-

cally spaced bins in the range 0.06 < θ < 600 arcmin, but only used

the measurements on scales θ < 120 arcmin to compute the power

spectrum.

Some of the galaxies from the source sample are physically as-

sociated with the lenses. They are not lensed and bias the tangen-

tial shear measurements. As demonstrated in Mandelbaum et al.

(2005), this bias can easily be corrected by multiplying the lensing

signal with a boost factor, which contains the overdensity of source

galaxies as a function of projected radial distance to the lens. The

boost factor generally increases towards smaller separations, but de-

creases very close to the lens, due to problems with the background

estimation caused by the lens light (see e.g. Dvornik et al. 2017).

The boost factor can be made smaller by applying redshift cuts to

the source sample; here, we do not apply such cuts because we want

to use the exact same sources as in the cosmic shear measurements.

In our case, the impact of the boost correction is negligible, as our

estimator is insensitive to scales θ < 2 arcmin (see Appendix A).

At 2 arcmin, the boost factor is 7 per cent at most for the F2–S2 bin,

and decreases quickly with radius. For all other bins, the correc-

tion is much smaller. We have checked that not applying the boost

correction does not significantly affect the power spectra.6

The impact of magnification on the boost factor is negligible in

this radial range and can safely be ignored. Furthermore, we mea-

sured the tangential shear around random points from the GAMA

6 The boost correction implicitly assumes that satellite galaxies are not in-

trinsically aligned with the foreground galaxies, although our model can

account for such alignments. Most dedicated studies of this type of align-

ments show that it is consistent with zero (see e.g. Sifón et al. 2015, and

references therein). If it is not, this could incur a small bias in the boost

correction. We will address this in a future work.
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Figure 4. Galaxy-matter power spectrum (top) and galaxy-cross-shear power spectrum (bottom) around GAMA galaxies in two lens redshift bins, measured

with KiDS sources using four tomographic source bins. The numbers in each panel indicate the foreground (F) sample–shape (S) sample combination, as

defined in Fig. 1. The errors are computed analytically and correspond to the 68 per cent confidence interval. Pg × has been multiplied with ℓ instead of ℓ2 for

improved visibility of the error bars. Solid lines correspond to the best-fitting model, for our combined fit to PE, Pgm, and Pgg. The Pg × in the bottom rows

serves as a systematic test, and it is consistent with zero.

random catalogue, and subtracted that from the real signal. Apart

from removing potential additive systematics in the shape measure-

ment catalogues, this procedure also suppresses sampling variance

errors (Singh et al. 2017).

To obtain the errors on our galaxy–galaxy lensing measurements,

we split the survey into 24 non-overlapping patches of 2.5 × 3 deg,

and used those for a ‘delete one jackknife’ error analysis. These

errors should give a fair representation of the true errors, and thus

be sufficient to assess at which scales we consider the measurements

robust. Note that we used jackknife errors instead of analytical errors

on these real-space measurements for convenience; we stress that in

the cosmological inference, we used an analytical covariance matrix

for all power spectra.

Fig. 3 also shows the cross-shear, the projection of source el-

lipticities at an angle of 45 deg with respect to the lens–source

separation vector. Galaxy–galaxy lensing does not produce a parity

violating cross-shear once the signal is azimuthally averaged, and

hence it serves as a standard test for the presence of systematics.

The cross-shear is consistent with zero on most scales, although

some deviations are visible, e.g. at scales of half a degree for the

F1–S4 bin. The cross-shear at small separations for the F2–S1 and

F2–S2 bins is not worrisome, as our estimator is not sensitive to the

galaxy–galaxy lensing signal on those scales. For consistency with

the cosmic shear power spectrum, we only use the galaxy–galaxy

lensing measurements in the range <120 arcmin. As demonstrated

in Appendix A, we can obtain unbiased estimates on Pgm from γ t

in the range ℓ ≥ 150.

We estimate Pgm using the same ℓ range as for PE/B. The mea-

surements are shown in Fig. 4. We apply the IBC, which on average

causes a 6 per cent change in the lowest ℓ bin, and much smaller

changes for the higher ℓ bins. We obtain significant detections for all

lens–source bin combinations. The error bars have been computed

analytically as discussed in Section 3.3. The amplitude of the power

spectrum increases for higher source redshift bins as expected, be-

cause of the geometric scaling of the lensing signal. We also show

Pg ×, the power spectrum computed using the cross-shear, which

serves as a systematic test. There are a few neighbouring ℓ bins that

are systematically offset, for example the low-ℓ bins of F1–S3 and

F1–S4. We already pointed out the presence of some cross-shear in

Fig. 3 on the scale of half a degree for those bins, which translates

into those Pg × bins. On average, however, the amplitude of Pg × is

not worrisome as the reduced χ2 of the null hypothesis has a value

of 1.13. The corresponding p-value is 0.27.

Finally, to determine Pgg, we first measure the angular correla-

tion function of the two foreground galaxy samples from GAMA.

We show the signal in Fig. 5. Errors come from jackknifing over

2.5 × 3 deg patches and only serve as an illustration; in the cos-

mological inference, we use analytical errors for Pgg. The angular

correlation function is robustly measured on all scales depicted.

Therefore, we use an upper limit of 240 arcmin in the integral to

determine Pgg. We adopt the same ℓ ranges as for PE and Pgm

and show the band powers of Pgg in Fig. 6. The angular power

spectrum of the F2 sample is lower than that of the F1 sample

because the redshift range of F2 is wider. Note that the angular
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Figure 5. Angular correlation function of the two foreground galaxy sam-

ples from GAMA. The inset in each panel shows the signal on large scales

with a linear vertical axis. The errors are derived from jackknifing over

2.5 × 3 deg non-overlapping patches and serve for illustration. When we fit

models to our power spectra we used analytical errors throughout.

Figure 6. Angular power spectrum of the two foreground galaxy samples

from GAMA. The depicted errors are determined analytically. Solid lines

correspond to the best-fitting model, for our combined fit to PE, Pgm, and

Pgg.

correlation function w(θ ) has an additive contribution due to the

fact that the mean galaxy density is estimated from the same data

set. This integral constraint only contributes to the ℓ = 0 mode

in Pgg and therefore does not have to be considered further in our

modelling.

3.3 Covariance matrix

We determine the covariance matrix of the combined set of power

spectra analytically, following a similar formalism as in Hildebrandt

et al. (2017). The covariance matrix includes the cross-covariance

between the different probes. One particular advantage of this ap-

proach is that it properly accounts for super-sample covariance

(SSC), which are the cosmic variance modes that are larger than the

survey window and couple to smaller modes within. This term is

typically underestimated when the covariance matrix is estimated

from the data itself, for example through jackknifing, or when it is

estimated from numerical simulations. Another advantage is that it

is free of simulation sampling noise, which could otherwise pose

a significant hindrance for joint probe analyses with large data

vectors.

The analytical covariance matrix consists of three terms: (i) a

Gaussian term that combines the Gaussian contribution to sample

variance, shape noise, and a mixed noise-sample variance term,

estimated following Joachimi et al. (2008), (ii) an in-survey non-

Gaussian term from the connected matter trispectrum, and (iii) a

SSC term. To compute the latter two terms, we closely follow the

formalism outlined in Takada & Hu (2013), which can be readily

expanded to galaxy–galaxy lensing and clustering measurements

(e.g. Krause & Eifler 2017).

By subtracting the signal around random points from the galaxy-

matter cross-correlation, we effectively normalize fluctuations in

the galaxy distribution with respect to the mean galaxy density in

the survey area instead of the global mean density. This substantially

reduces the response to super-survey modes (Takada & Hu 2013)

and diminishes error bars (Singh et al. 2017), and we do account

for this effect in our covariance model.

One further complication is that the KiDS survey area is larger

than GAMA. While the galaxy-matter power spectrum and the

angular power spectrum are measured in the 180 deg2 of the

three GAMA patches near the equator that are fully covered by

KiDS, the cosmic shear power spectrum is measured on the full

450 deg2 of KiDS-450. This partial sky overlap of the differ-

ent probes affects the cross-correlation and is accounted for (see

Appendix G).

In order to compute the covariance matrix, we need to adopt an

initial fiducial cosmology as well as values for the effective galaxy

bias. For the fiducial cosmology, we use the best-fitting parameters

from Planck Collaboration XIII (2016), and for the effective galaxy

biases we assume values of unity for both bins. If our data prefers

different values for these parameters, the size of our posteriors could

be affected (as illustrated in Eifler, Schneider & Hartlap 2009, for

the case of cosmic shear only). Therefore, after the initial cosmo-

logical inference, the analytical covariance matrix is updated with

the parameter values of the best-fitting model. This is turned into an

iterative approach, as detailed in Appendix D. It is made possible

by the use of an analytical covariance matrix, which is relatively

fast and easy to compute. Since the parameter constraints do not

change significantly at the second iteration, we adopt the resulting

analytical covariance matrix for all cosmological inferences in this

paper.

The analytical covariance matrix for ξ+ and ξ− has been vali-

dated against mocks in Hildebrandt et al. (2017). We repeat that

exercise for the three power spectra in Appendix B. The analyti-

cal covariance matrix agrees well with the one estimated from the

N-body simulations. Our choice of power spectrum estimator is not

guaranteed to reach the expected errors that we calculate analyti-

cally, but the comparison with the simulations did not reveal any

evidence for significant excess noise. We did not include intrinsic

alignments or baryonic feedback in the covariance modelling, but

since all our measurements are dominated by the cosmological sig-

nals, the impact of the astrophysical nuisances on sample variance
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is small.7 We have checked that a potential error on the additive bias

correction has a negligible contribution to the covariance matrix.

3.4 Model fitting

To constrain the cosmological parameters, we used COSMOMC
8

(Lewis & Bridle 2002), which is a fast Markov Chain Monte Carlo

code for cosmological parameter estimation. The version we use

is based on Joudaki et al. (2017a),9 which includes prescriptions

to deal with intrinsic alignment, the effect of baryons on the non-

linear power spectrum, and systematic errors in the redshift distribu-

tion. This framework has been further developed to simultaneously

model the tangential shear signal of a sample of foreground galaxies

and redshift space distortions (Joudaki et al. 2018). We extended

it by modelling the angular correlation function of the same fore-

ground sample. Furthermore, we modified the code in order to fit

the power spectra instead of the correlation functions. Since the

conversion from power spectra to correlation functions could be

skipped, the runtime decreased by a factor of 2. We computed the

power spectra at the logarithmic mean of the band instead of inte-

grating over the band width, as the difference between the two was

found to be at the percent level and therefore ignored. We checked

that the impact of this simplification on our cosmological parameter

constraints was less than 0.3σ for our fiducial data vector.

The effect of non-linear structure formation and baryonic feed-

back are modelled in COSMOMC using a module called HMCODE, which

is based on the results of Mead et al. (2015). Baryonic effects are

accounted for by modifying the parameters that describe the shape

of dark matter haloes. AGN and supernova feedback, for example,

blow material out of the haloes, making them less concentrated.

This is incorporated in HMCODE by choosing the following form for

the mass–concentration relation,

c(M, z) = B
1 + zf

1 + z
, (20)

with zf the formation redshift of a halo, which depends on halo

mass. The free parameter in the fit, B, modulates the amplitude

of this mass–concentration relation. It also sets the amplitude of a

‘halo bloating’ parameter η0 which changes the halo profile in a

mass-dependent way (see equation 26 of Mead et al. 2015), where

we follow the recommendation of Mead et al. (2015) by fixing

η0 = 1.03–0.11B. Setting B = 3.13 corresponds to a dark-matter-

only model. The resulting model is verified with power spectra

measured on large hydrodynamical simulations, and found to be

accurate to 5 per cent for k ≤ 10 h Mpc−1. This is a relative uncer-

tainty, not an absolute one (the absolute accuracy of any theoretical

matter power spectrum prediction is not well established), and in-

dicates the relative accuracy of their halo model fits with respect

to hydrodynamical simulations, which are uncertain themselves. In

addition, as fig. 2 of Mead et al. (2015) shows, this accuracy is

strongly k-dependent, and at small k (k < 0.05 h Mpc−1), the agree-

ment is much better than 5 per cent. Therefore, putting a meaningful

prior on the accuracy of the theory predictions is currently out of

reach. However, the main source of theoretical uncertainty is caused

by baryonic feedback, which mainly affects the small scales (high

7 By far the most strongly affected bin combination is F2–S1 whose redshift

distributions have substantial overlap. For AIA = 1, the galaxy position-

intrinsic shape correlation contributes at most 17 per cent to the total signal,

with little dependence on angular scale.
8 http://cosmologist.info/cosmomc/
9 https://github.com/sjoudaki/CosmoLSS

k). By marginalizing over B, we account for this main source of

uncertainty.

Intrinsic alignments affect both the cosmic shear power spectrum

and the galaxy-matter power spectrum. For the cosmic shear power

spectrum, there are two contributions, the intrinsic–intrinsic (II)

and the shear-intrinsic (GI) terms (see equations 5 and 6 of Joudaki

et al. 2017a). The galaxy-matter power spectrum has a galaxy-

intrinsic contribution (e.g. Joachimi & Bridle 2010). These three

terms can be computed once the intrinsic alignment power spectrum

is specified, which is assumed to follow the non-linear modification

of the linear alignment model (Catelan, Kamionkowski & Blandford

2001; Hirata & Seljak 2004; Bridle & King 2007; Hirata & Seljak

2010):

PδI(k, z) = −AIAC1ρcrit

�m

D(z)
Pδ(k, z), (21)

with Pδ(k, z) the full non-linear matter power spectrum, D(z) the

growth factor, normalized to unity at z = 0, ρcrit the critical density,

C1 = 5 × 10−14h−2M−1

⊙Mpc3 a normalization constant, and AIA the

overall amplitude, which is a free parameter in our model. Our in-

trinsic alignment model is minimally flexible with a single, global

amplitude parameter. Since the mean luminosities of the different

tomographic bins are similar, there is no need to account for a lu-

minosity dependence in the model; in addition, there currently does

not exist observational evidence for a significant redshift depen-

dence (see e.g. Joudaki et al. 2017b, 2018). Adding flexibility to

the intrinsic alignment model is therefore currently not warranted

by the data.

To model Pgm and Pgg, we assume that the galaxy bias is con-

stant and scale independent. Since we include non-linear scales in

our fit, this bias should be interpreted as an effective bias. It is

fitted separately for the low-redshift and high-redshift foreground

sample. The scale dependence of the bias has been constrained

in observations by combining galaxy–galaxy lensing and galaxy

clustering measurements for various flux-limited samples and was

found to be small (e.g. Hoekstra et al. 2002; Simon et al. 2007;

Cacciato et al. 2012; Jullo et al. 2012). In a recent study on data

from the Dark Energy Survey, Crocce et al. (2016) constrained the

scale dependence of the bias using the clustering signal of flux-

limited samples, selected with i < 22.5, modelling the signal with

a non-linear power spectrum from Takahashi et al. (2012) with a

fixed, linear bias as fit parameter. They report that their linear bias

model reproduces their measurements down to a minimum angle of

3 arcmin for their low-redshift samples (although the caveat should

be added that our foreground sample is selected with a different

apparent magnitude cut). While the aforementioned studies report

little scale dependence of the bias in real space, our assumption of a

scale-independent bias is made in Fourier space. The largest ℓ bin is

centred at 1500, which uses information from ξ+/ − down to scales

of less than an arcminute (see Appendix A). Hence a strong scale

dependence of the bias on scales less than 3 arcmin could violate

our assumption. However, if the bias is strongly scale dependent

on scales of ℓ < 1500, this will show up in our measurements as a

systematic offset between data and model for the highest ℓ bin of

Pgg (and, to a lesser extent, Pgm). Also, on small scales, the cross-

correlation coefficient r might differ from one, which would lead to

discrepancies between Pgm and Pgg. However, as Figs 4 and 6 show,

there is no clear evidence for such a systematic difference, which

serves as further evidence that our approach is robust. Also, when

we exclude the highest ℓ bin of Pgm and Pgg from our analysis, our

results do not change significantly (see Section 4.1).
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We validated the Pgg model predictions using an independent

code that was internally available to us. The signal agreed to within

3 per cent in the range 150 < ℓ < 2000, with a mean difference

of 2 per cent. The small remaining difference is caused by different

redshift interpolation schemes of the galaxy number density; in our

code, we used a spline interpolation, while a linear interpolation

was used in the independent code. When we adopted a spline inter-

polation in the independent code, the model signal agreed to within

1.5 per cent, with a mean difference of ∼1 per cent. Since it is not a

priori clear which interpolation scheme is better, we decided to keep

using the spline interpolation scheme. The model prediction of PE

has been compared to independent code in Hildebrandt et al. (2017)

and was found to agree well. We have not explicitly compared the

predictions of Pgm with an independent code, but since that model

is built of components used in the computation of Pgg and PE, we

expect a similar level of accuracy.

We marginalize over the systematic uncertainty of the redshift

distribution of our source bins following the same methodology

adopted in Hildebrandt et al. (2017) and Köhlinger et al. (2017), that

is by drawing a random realization of the redshift distribution in each

step of the MCMC. This approach fully propagates the statistical

uncertainties included in the redshift probability distributions, but

does not account for sample variance in the spectroscopic calibration

data. We investigated the robustness of this method by also fitting

models in which we allowed for a constant shift in the redshift

distributions. This procedure basically marginalizes over the first

moment of the redshift distribution, which is, to first order, what the

weak lensing signal is sensitive to Amara & Réfrégier (2007). We

discuss the result of this test in Section 4.3. We do not account for

the uncertainty of the multiplicative shear calibration correction, as

Hildebrandt et al. (2017) showed that it has a negligible impact on

correlation function measurements.

To obtain a crude estimate of how much cosmic variance in the

source redshift distribution affects our cosmological results, we per-

formed the following test. We used the DIR method separately on

the different spectroscopic fields. The variation between the result-

ing redshift distributions suggests that cosmic variance and Poisson

noise contribute roughly equally to the total uncertainty. To estimate

the potential impact on our cosmological constraints, we fixed the

redshift distribution to the mean from the DIR method, but allowed

for a shift in the mean redshift of each tomographic bin, using a

Gaussian prior with a width that equals the error on the mean red-

shift (from table 1 of Hildebrandt et al. 2017). Using this set-up,

we recovered practically identical errors on the cosmological pa-

rameters compared to our fiducial approach. Next, we increased the

width of the Gaussian prior by a generous factor of 1.5, to roughly

include the impact of cosmic variance. This increased the error on

our cosmology results by 5 per cent. Note that this is a conservative

upper limit, as the cosmic variance between the separate spectro-

scopic fields is larger than the cosmic variance of all the fields

combined. Hence we conclude that cosmic variance of the source

redshift distribution affects our cosmological constraints by a few

per cent at most. We do not adopt this as our fiducial approach,

however, since our current method of estimating the impact is not

sufficiently accurate.

We adopt top-hat priors on the cosmological parameters, as well

as the physical ‘nuisance’ parameters discussed earlier in this sec-

tion. The prior ranges are listed in Table 1. Furthermore, we fix

kpivot, the pivot scale where the scalar spectrum has an amplitude of

As, to 0.05 Mpc−1. Even though the sum of the neutrino masses is

known to be non-zero, we adopt the same prior as Hildebrandt et al.

(2017) and fix it to zero. We have tested that adopting 0.06 eV in-

Table 1. Priors on the fit parameters. Rows 1–6 contain the priors on cos-

mological parameters, rows 7–10 the priors on astrophysical ‘nuisance’

parameters. All priors are flat within their ranges.

Parameter Description Prior range

100θMC 100 × angular size of sound horizon [0.5,10]

�ch2 Cold dark matter density [0.01,0.99]

�bh2 Baryon density [0.019,0.026]

ln (1010As) Scalar spectrum amplitude [1.7,5.0]

ns Scalar spectral index [0.7,1.3]

h Dimensionless Hubble parameter [0.64,0.82]

AIA Intrinsic alignment amplitude [ − 6, 6]

B Baryonic feedback amplitude [2,4]

bz1 Galaxy bias of low-z lens sample [0.1,5]

bz2 Galaxy bias of high-z lens sample [0.1,5]

stead leads to a negligible change in our results. Note that the priors

and fiducial values we adopted are the same as in Hildebrandt et al.

(2017), which makes a comparison of the results easier. As a test,

we also fitted our joint data vector adopting the broader priors on H0

and �b from Joudaki et al. (2017b) and found negligible changes to

our results, showing that we are not sensitive to the adopted prior

ranges of these parameters.

A number of the assumptions we made could affect the measured

or theoretical power spectra, and thus our cosmological constraints,

at the per cent level. We have decided to ignore the assumptions

whose impact is of the order of 1 per cent or less. This includes

the Limber approximation, the flat-sky approximation, and the un-

certainty on the multiplicative bias correction. Other effects whose

impact is either uncertain or expected to be larger are addressed in

the text.

We ran COSMOMC with 12 independent chains. To assess whether

the chains have converged, we used a Gelman–Rubin test (Gelman

& Rubin 1992) with the criterion that the ratio between the variance

of any of the fit parameters in a single chain and the variance of that

parameter in all chains combined is smaller than 1.03. Furthermore,

we have checked that the chains are stable against further explo-

ration. When analysing the chains, we removed the first 30 per cent

of the chains as the burn-in phase. Before fitting the measured power

spectra from the data, we ran COSMOMC on our mock results, and ver-

ified that we retrieved the input cosmology. Details of this test can

be found in Appendix B3.

4 R ESULTS

We fitted all power spectra simultaneously and show the best-fitting

model as solid lines in Figs 2, 4, and 6. Overall, the model describes

the trends in the data well. The reduced χ2 of the best-fitting model

has a value of 1.29 (115.9/[100 data points − 10 fit parameters])

and the p-value is 0.034. Hence our model provides a fair fit. If we

exclude the highest ℓ bin of the S2–S4 correlation of PE, whose

corresponding B mode is high, the best-fitting reduced χ2 becomes

1.19 without affecting any of the results (a shift of 0.1σ in S8). We

do include this particular ℓ bin in all our results below to avoid a

posteriori selection.

4.1 Cosmological inference

The main result of this work is the constraint on �m–σ 8, which is

shown in Fig. 7. It is this combination of cosmological parameters

to which weak lensing is most sensitive. We recover the familiar

‘banana-shape’ degeneracy between these two parameters, which
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Figure 7. Constraints on �m and σ 8 from this work, from the fiducial KiDS-

450 analysis (Hildebrandt et al. 2017), and from Planck Collaboration XIII

(2016). Our combined-probe constraints lie between those from the fiducial

KiDS-450 analysis and those from Planck, and are consistent with both.

is expected as gravitational lensing roughly scales as σ 2
8 �m (Jain &

Seljak 1997). Also shown are the main fiducial results of KiDS-450

(Hildebrandt et al. 2017) and the constraints from Planck Collabo-

ration XIII (2016). Our confidence regions are somewhat displaced

with respect to those of Hildebrandt et al. (2017) and our error

on S8 is 28 per cent smaller. Interestingly, our results lie somewhat

closer to those of Planck Collaboration XIII (2016), showing better

consistency with Planck than KiDS-450 cosmic shear alone. As

discussed below, our cosmic shear-only results are fully consistent

with the results from Hildebrandt et al. (2017), although not identi-

cal, because our power spectra weight the angular scales differently

than the correlation functions. Hence this shift towards Planck must

either be caused by Pgm or Pgg or a combination of the two.

We computed the marginalized constraint on S8 ≡ σ8

√
�m/0.3

and show the results in Fig. 8. The joint constraints for our fiducial

setup is S8 = 0.800+0.029
−0.027. The fiducial result from KiDS-450 is

S8 = 0.745 ± 0.039 (Hildebrandt et al. 2017), whilst those of Planck

Collaboration XIII (2016) is S8 = 0.851 ± 0.024.

Compared to the results from Hildebrandt et al. (2017), our pos-

teriors have considerably shrunk along the degeneracy direction.

Since we applied the same priors, this improvement is purely due

to the gain in information from the additional probes. Hence the

real improvement becomes clear when we compare the constraints

on �m and σ 8, for which we find �m = 0.326+0.048
−0.057 and σ8 =

0.776+0.064
−0.081, while Hildebrandt et al. (2017) report �m = 0.250+0.053

−0.103

and σ8 = 0.849+0.120
−0.204. Hence our constraint on σ 8 has improved by

roughly a factor of 2 compared to Hildebrandt et al. (2017).10

To understand where the difference between our results and

Hildebrandt et al. (2017) comes from, and to learn how much Pgm

and Pgg help with constraining cosmological parameters, we also

10 The improvement compared to the PE only results that are discussed

below is ∼44 per cent.

Figure 8. Comparison of our constraints on S8 with a number of recent

results from the literature. We show the results for different combinations

of power spectra on top with black squares, as well as the results from our

conservative runs where we excluded the lowest ℓ bin of all power spectra

(cons-1) and the highest ℓ bin of Pgm and Pgg (cons-2) in the fit. In general,

our results agree well with those from the literature, including those from

Planck.

ran our cosmological inference on all pairs of power spectra, as well

as on PE alone. The resulting constraints are shown in Fig. 8. Fig. 9

shows the relative difference of the size of the error bars, while

Fig. 10 shows the marginalized posterior of �m–σ 8 and �m–S8.

Interestingly, the constraints from PE and Pgm + Pgg are some-

what offset, with the latter preferring larger values. The constraint

on S8 from PE alone is 0.761 ± 0.038, hence close to the results

from Hildebrandt et al. (2017), while for Pgm + Pgg we obtain

S8 = 0.835 ± 0.037. PE is only weakly correlated with Pgg and

Pgm (see e.g. Fig. B3), and if we ignore this correlation (it is fully

accounted for in all our fits), the constraints on S8 from PE and

Pgm + Pgg differ by 1.4σ . Since the reduced χ2 is not much worse

for the joint fit, our data does not point at a strong tension between

the probes, and they can be safely combined.

Combining PE with Pgm or Pgg results in a relatively minor de-

crease of the errors of S8 of 11 per cent. Also, the mean value of S8

does not change much. The reason is that the amplitude of Pgm and

Pgg, which contains most of the cosmological information, is de-

generate with the effective galaxy bias, and as a result, PE drives the

cosmological constraints. When both Pgm and Pgg are included in the

fit, this degeneracy is broken. Fitting all probes jointly leads there-

fore to a larger decrease of 26 per cent compared to fitting only PE

(see Fig. 9), although this could partly be driven by the displacement

of the posteriors in the �m–σ 8 plane between PE and Pgm + Pgg.

Finally, it is interesting to note that PE and Pgm + Pgg have sim-

ilar statistical power, even though the latter is measured on less

than half the survey area (see also Seljak et al. 2005; Mandelbaum

et al. 2013). Using the full 3D information content of Pgg instead of

the projected quantities that we used here, will improve the cosmo-

logical constraining power of this probe even further.

We also performed two conservative runs to test the robustness of

our results. In the first run, we excluded the lowest ℓ bins of all power
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Figure 9. Ratio of the error bar on S8 for various combinations of our

data vector and for results from the literature, relative to our fiducial results

(PE + Pgm + Pgg). The solid vertical line indicates a ratio of unity, while

the dashed lines are displaced by relative shifts of 0.2. Our error bar is

28 per cent smaller than the one from Hildebrandt et al. (2017), while the

error bar from Planck Collaboration XIII (2016) is 18 per cent smaller than

ours. The two points shown for Jee et al. (2016) are for the quoted lower

and upper limit on S8.

spectra, as it has the largest IBC and our results might be biased if

the correction is cosmology dependent. In the second conservative

run, we only removed the highest ℓ bins of Pgg and Pgm, as these

bins are potentially most biased if the effective galaxy bias (which

we assumed to be constant) has some scale dependence, which

would affect the small scales (largest ℓ bin) most. The constraints

on S8 are also shown in Fig. 8, and the relative increase in errors

is shown in Fig. 9. We find fully consistent results. The errors

on S8 increase by 4 per cent and 11 per cent for the first and second

conservative run, compared to the fiducial results. As a final test, we

fitted Pgm + Pgg only excluding the highest ℓ bins. The difference

between the constraint on S8 from this run and the fit of PE has

decreased to 1.0σ , because of the increase of the error bars and

because the results from Pgm + Pgg are shifted to a slightly lower

value.

Fig. 8 shows that our results agree fairly well with a number of

recent results from the literature. There is a mild discrepancy with

the results from Köhlinger et al. (2017), which is noteworthy as

they also used the KiDS-450 data set to estimate power spectra,

but with a quadratic estimator. The difference is likely caused by a

conspiracy of several effects. First of all, Köhlinger et al. (2017) em-

ployed a different redshift binning and fitted the signal up to lower

values of ℓ, that is in the range 76 < ℓ < 1310; they report in their

work that the signal on large scales prefers somewhat smaller val-

ues of S8. In Appendix C, we directly compare the power spectrum

estimators for the same redshift and ℓ bins. For the highest tomo-

graphic bins, the quadratic estimator band powers are lower than

our PE estimates at high ℓ. This is accommodated by the model fit

of Köhlinger et al. (2017) with a large, negative intrinsic alignment

amplitude of AIA = −1.72. Since AIA and S8 are correlated (e.g. see

Fig. 12), this pushes the S8 from Köhlinger et al. (2017) down rela-

tive to our results. Note that a thorough internal consistency check

of KiDS-450 data, including a comparison of the information con-

tent from large and small scales, is currently underway (Köhlinger

et al. in preparation). A more in-depth discussion of the difference

is presented in Appendix C.

The constraints from the other works from the literature that we

compare to are consistent with ours (i.e. differences are less than

2σ ), as is shown in Fig. 8. This includes the results from Joudaki

et al. (2017a), who re-analysed the shear correlation functions from

CFHTLenS (Heymans et al. 2013) using the extended version of

COSMOMC that we used here as well. Jee et al. (2016) presented results

Figure 10. Constraints on �m–σ 8 and �m–S8 from this work for different combinations of power spectra. Also shown are the fiducial results for KiDS-450

(H+17; Hildebrandt et al. 2017) and Planck (P+16; Planck Collaboration XIII 2016).
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Figure 11. Reduced χ2 values of the best-fitting models, corresponding p-values of the fit, and constraints on the amplitude of the intrinsic alignment model

AIA and effective biases of the two foreground samples, bz1 and bz2, for the different combinations of power spectra. The lower points show the results of the

conservative run, where we excluded the lowest ℓ bin from PE (c1) and the highest ℓ bin from Pgm and Pgg (c2) in the fit. The red, vertical dashed line in the

second panel indicates a p-value of 0.05, the 2σ discrepancy line.

based on a tomographic cosmic shear analysis of the DLS, a deep

20 deg2 survey with a median source redshift of 1.2. Furthermore,

we show the first constraints from the DES (Dark Energy Survey

Collaboration 2016), who used 139 deg2 of Science Verification data

for a tomographic cosmic shear analysis, and finally, we show the

results for WMAP9 (Hinshaw et al. 2013). We caution that the above

works have been analysed with different models and assumptions,

which complicates a detailed comparison of the results.

4.2 Constraints on astrophysical nuisance parameters

Our analysis constrains a number of physical ‘nuisance’ parame-

ters, which are interesting in themselves. Their 1D marginalized

posterior means and 68 per cent confidence intervals are shown in

Fig. 11, together with the reduced χ2 of the best-fitting model, for

all combinations of power spectra as well as for the conservative

runs. Overall, we find a fair agreement between the constraints be-

tween probes. Interestingly, the fit of PE alone has the worst reduced

χ2 of 1.46. However, that fit is relatively more affected by the high-

est ℓ bin of the S2–S4 cross-correlation, compared to the joint fit;

excluding that bin from the fit leads to a reduced χ2 of 1.28, more

in line with the χ2 values of the other fits.

The amplitude of the intrinsic alignment model is well con-

strained in the combined fit, with AIA = 1.27 ± 0.39. Most of

the constraining power on AIA comes from Pgm, as the redshift

distributions of the foreground samples and the shape samples

partly overlap; fitting only PE, AIA = 0.92+0.76
−0.60 and is therefore

only inconclusively detected. In an analysis of cosmic shear data

from CFHTLenS combined with WMAP7 results, Heymans et al.

(2013) reported AIA = −1.18+0.96
−1.17. Joudaki et al. (2017a) analysed

CFHTLenS data and found AIA = −3.6 ± 1.6, while the correla-

tion function analysis of KiDS (Hildebrandt et al. 2017) reported

AIA = 1.10 ± 0.64. Hence, similar to Hildebrandt et al. (2017),

our results prefer a positive intrinsic alignment amplitude, but we

detect it with a larger significance. The preference for negative val-

ues in CFHTLenS but positive values in KiDS suggests that AIA

is not simply a measure of the amount of intrinsic alignments of

galaxies, but that in fact it accounts for systematic effects that might

differ between surveys. Further evidence for this scenario is that the

amplitude we obtain is larger than what is expected based on re-

sults from previous dedicated intrinsic alignment studies; although

intrinsic alignments have been detected for luminous red galax-

ies (e.g. Joachimi et al. 2011; Singh, Mandelbaum & More 2015),

the constraints for less luminous red galaxies and blue galaxies

are consistent with zero (Mandelbaum et al. 2006; Hirata et al.

2007; Mandelbaum et al. 2011). We provide evidence that AIA ef-

fectively accounts for uncertainty in the redshift distributions in

Section 4.3.

The effective biases of the foreground samples are constrained to

bz1 = 1.12 ± 0.15 and bz2 = 1.25 ± 0.16 in the combined fit. The

most remarkable difference is the lower value for bz1 = 0.78+0.14
−0.18

for PE + Pgm, compared to bz1 = 1.21 ± 0.14 for PE + Pgg,

which is a 2.1σ difference. The constraint on the bias, however, is

dominated by the angular correlation functions, which is expected

as it scales quadratically with the effective bias while the galaxy-

matter power spectrum only linearly. A direct comparison of our bias

constraints with results from other work is complicated, since most

studies focus on volume-limited rather than flux-limited samples,

and because the fitting methodology is different. However, values a

bit larger than unity are typical for samples selected in luminosity or

stellar mass bins close to the mean of our sample (e.g. Zehavi et al.

2011; Zu & Mandelbaum 2015; Crocce et al. 2016). Furthermore,

we note that our cosmological results are not sensitive to the actual

values of the biases, as the bias is degenerate with the �m–σ 8

degeneracy, as illustrated in Fig. B5 in Section B3.

The last physical nuisance parameter we fit is the baryonic feed-

back parameter B. Even when we include Pgm and Pgg in the fit,

it is rather poorly constrained at B = 2.97+0.56
−0.69. Fitting PE only,

we obtain B = 3.26+0.74
−0.22, while Hildebrandt et al. (2017) reported

B = 2.88+0.30
−0.88. All results are consistent with B = 3.13, a pure

dark-matter-only model, but the errors are still large and do not rule

out that baryonic feedback has some impact on the matter power

spectrum (which is supported by observational results on the scal-

ing relation between baryonic properties of haloes and their dark

matter content, see e.g. Viola et al. 2015).

The full marginalized 2D posteriors of all fit parameter pairs is

shown in Appendix E, and the mean and 68 per cent credible regions

of the marginalized 1D posteriors are listed in Table E1.
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Figure 12. Posteriors on the shifts of the redshift distributions of our four tomographic source redshift bins a1z to a4z. Grey dashed lines correspond to our

fiducial results where the shifts are fixed to zero.

4.3 Redshift distribution uncertainty

To investigate uncertainty in the redshift distribution, we per-

formed an analysis where we allowed a constant shift in the

redshift distributions of our source samples, independently for

each tomographic source bin. These shifts a[x]z are defined as

nshift(z) = norig(z + a[x]z), with norig and nshift the original and shifted

source redshift distribution of tomographic bin [x]. We adopted

priors in the range [−0.1, 0.1], as larger shifts are extremely un-

likely, given the differences between the various photometric red-

shift methods tested in Hildebrandt et al. (2017). The purpose of

this test is two-fold: it enables us to roughly estimate the impact

of unknown systematic uncertainties in the redshift distributions on

our results, and it also tests whether our data point to systematic

biases in the redshift distributions. The actual redshift bias may be

more complicated than a simple shift of the distribution, and future

work could explore more complicated redshift bias models, such as

changes to the tails of the distribution.

We fit this extended model to our fiducial data set of

PE + Pgm + Pgg and to PE only, to test whether they are inter-

nally consistent and to assess how much additional constraining

power Pgm + Pgg brings. The 2D marginalized posteriors of these

four shift parameters, together with those on S8 and the intrinsic

alignment amplitude, are shown in Fig. 12. The constraints on the
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Table 2. Mean and 68 per cent credible intervals of the shifts

of the four tomographic redshift bins, S8 and AIA.

Bin shift parameter PE + Pgm + Pgg PE

a1z −0.033+0.030
−0.050 0.008+0.077

−0.041

a2z −0.022+0.030
−0.027 0.018+0.050

−0.036

a3z −0.057+0.012
−0.042 −0.051+0.013

−0.049

a4z 0.032+0.068
−0.019 0.039+0.061

−0.017

S8 0.808+0.036
−0.035 0.765 ± 0.045

AIA 0.89+0.48
−0.58 1.01+1.18

−0.90

shifts are listed in Table 2. Both data sets clearly prefer a negative

offset for the third tomographic bin of ∼−0.05. The joint analysis

disfavours a zero shift in this bin at ∼2σ .

It has been suggested that the redshift distribution obtained

by the DIR method (our fiducial one) and the CC method (a

cross-correlation method based on the work of Schmidt et al.

2013; Ménard et al. 2013) are discrepant for this tomographic bin

(Efstathiou & Efstathiou, private communication), and fig. 2 of

Hildebrandt et al. (2017) indeed indicates that the redshift distribu-

tion of the CC method is shifted by roughly this amount towards

lower values, relative to the DIR method. A similar shift between

the mean of the redshift distributions of DIR and CC is reported

in table 1 of Morrison et al. (2017), although this shift is not sig-

nificant there given that the error on the mean for the CC method

is large. Further evidence is presented in appendix A of Joudaki

et al. (2017b), who fit for an unknown constant offset of the KiDS-

450 shear correlation functions per tomographic bin, and report a

weak preference for a negative shift of the third tomographic bin,

and finally in Johnson et al. (2017), who cross-correlated galaxies

from the 2dFLenS survey with KiDS galaxies using the same pho-

tometric redshift bins. For the other tomographic bins, the shifts

are consistent with zero. Furthermore, it is interesting to note that

including Pgm + Pgg leads to tighter constraints on the shift for the

first and second tomographic redshift bin, due to the overlap with

the foreground sample.

Allowing for a shift does not significantly change our constraints

on S8, as Fig. 12 shows. For the combined data set, we obtain

S8 = 0.808+0.036
−0.035, entirely consistent with our fiducial 0.800+0.029

−0.027.

The uncertainty in S8 is 29 per cent larger when we include the

redshift shifts in the fit.

We also show the constraints on AIA in Fig. 12. As already alluded

to in Section 4.2, AIA may effectively serve as a genuine nuisance

parameter, rather than a parameter which corresponds to the actual

intrinsic alignment amplitude of galaxies. Allowing for the shifts

already leads to weaker constraints centred at lower values, that is

AIA = 0.89+0.48
−0.58 (for the combined fit), but even more interesting is

the degeneracy with the shift of the first and second tomographic

redshift bin. If the shifts of these two bins are negative, the intrinsic

alignment amplitude becomes smaller, which shows that in our

fiducial runs, where the shifts are fixed to zero, AIA is at least partly

serving as a nuisance parameter that absorbs potential biases in the

redshift distributions.

5 C O N C L U S I O N S

We constrained parameters of a flat �CDM model by combin-

ing three cosmological probes: the cosmic shear measurements

from KiDS-450, the galaxy-matter cross-correlation from KiDS-

450 around two foreground samples of GAMA galaxies, and the

angular correlation function of the same foreground galaxies. The

analysis employed angular band power estimates determined from

integrals over the corresponding two-point correlation functions.

This simple formalism provides practically unbiased band pow-

ers over a considerable range in ℓ. In our case, the range was

150 < ℓ < 2000 (see Appendix A).

We fitted cosmological models to our data using the updated

version of the COSMOMC pipeline from Joudaki et al. (2017a), ex-

tended to simultaneously model galaxy–galaxy lensing measure-

ments (Joudaki et al. 2018). The baseline model consists of a flat

�CDM model and physically motivated prescriptions for the in-

trinsic alignment of galaxies and baryonic feedback. We assumed a

scale-independent effective galaxy bias for our foreground samples.

Fitting this model to the three sets of power spectra simultaneously

enabled us to coherently account for the physical nuisance parame-

ters, lifting degeneracies between the fit parameters. We tested our

full pipeline on numerical simulations that are tailored to KiDS and

recovered the input cosmology.

In the model fitting, we used an analytical covariance matrix,

accounting for all cross-correlations between power spectra and

also for the partial spatial overlap between KiDS-450 and three

equatorial GAMA patches. We validated the analytical covariance

matrix with numerical simulations and obtained a reasonable level

of agreement. Our approach of using an analytical covariance matrix

has the advantage that we can accurately account for the effect of

SSC, whose impact is subdominant compared to the other terms

but not irrelevant. Furthermore, it enabled us to derive an iterative

scheme where we updated the analytical covariance matrix with the

best-fitting parameters of the previous run (see Appendix D). This

led to a ∼1σ shift of the effective galaxy bias posteriors after one

iteration, but the posterior of S8 was not significantly affected (i.e.

a shift of less than 0.5σ in the mean).

We obtained tight constraints on the two cosmological param-

eters to which weak gravitational lensing is most sensitive, �m

and σ 8. Our results can be summarized with the S8 parameter, for

which we obtained S8 ≡ σ8

√
�m/0.3 = 0.800+0.029

−0.027. We demon-

strated that our three probes are internally consistent, and that in-

cluding Pgm and Pgg in the fit leads to a 26 per cent improvement in

constraining power on S8. We compared our results to a number of

recent studies from the literature and found good overall agreement.

The fiducial KiDS-450 cosmic shear correlation function analysis

(Hildebrandt et al. 2017) revealed a value for S8 that is lower than

the Planck cosmology, with the tension being 2.3σ . Interestingly,

the results from our combined probe analysis point to a somewhat

higher S8 value, in-between the KiDS-450 and Planck results (and

consistent with both). Our constraints from cosmic shear alone are

fully consistent with the results from Hildebrandt et al. (2017) and

maintain the same level of discrepancy with Planck.

The physical nuisance parameters that we marginalize over are

interesting in themselves from an astrophysical perspective. How-

ever, they have to be interpreted with care. For example, when

taken at face value, our constraints on the intrinsic alignment am-

plitude, AIA = 1.27 ± 0.39, suggests that galaxies are on average

intrinsically aligned with the large-scale density field. However, by

allowing for an additional shift in the source redshift distributions

in the fit, we demonstrated that AIA could partly work as a nuisance

parameter that accounts for such residual biases in the redshift dis-

tributions. This test also demonstrated that our data prefers a small,

negative shift of the redshift distribution of the third bin with �z =
−0.057+0.012

−0.042, but this does not impact our cosmological results. The

nuisance parameters are better constrained when Pgm and Pgg are

included in the fit, which highlights the power of combining these
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cosmological probes. Marginalizing over wide priors on the mean

of the tomographic redshift distributions yields consistent results

for S8 with an increase of 28 per cent in the error.

As in Hildebrandt et al. (2017), we detect B modes in the cosmic

shear signal at a low level. Under the strong assumption that the

underlying residual systematic generates the same amount of E and

B modes, we obtain a 0.5σ shift in S8 away from the Planck values.

As the cause of the systematic is currently unknown, we caution

that its eventual correction could lead to similar changes in the S8

posterior.

Another KiDS study of a similar nature has run in parallel to

this work and will be presented imminently in Joudaki et al. (2018)

In that work, cosmic shear measurements from KiDS-450 are com-

bined with galaxy–galaxy lensing and redshift space distortion mea-

surements for a foreground sample of galaxies from BOSS (Dawson

et al. 2013) and 2dFLenS (Blake et al. 2016). Even though the anal-

yses differ in many aspects (e.g. different lens samples, different

clustering statistics, different scales used in the fit, different meth-

ods to estimate the covariance matrices and different priors in the

fit), the combination of probes used in that work lead to a similar

∼20 per cent decrease of the error bar of S8, but maintain in tension

with Planck.

Our work shows that large-scale structure self-calibration meth-

ods work on real data. This not only leads to significant improve-

ments in the constraints of cosmological parameters, but also prop-

erly accounts for nuisance effects such as galaxy bias, intrinsic

alignments, and biases in the source redshift distributions. Future

extensions of this work will include other cosmological probes such

as redshift space distortions, but also explore extensions of the as-

trophysical and cosmological models considered.
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A P P E N D I X A : AC C U R AC Y O F T H E POW E R

SPECTRUM ESTI MATO RS

By definition, our power spectrum estimators from equations (5),

(11), and (17) are unbiased when we integrate the corresponding

real-space correlation functions from zero to infinity. However, even

if the correlation functions are measured over a finite range, we

can extract practically unbiased band powers over a considerable

range in ℓ. Outside this range, the measured power spectra can

be corrected for this integral bias. We show that this correction is

robust, but recommend only applying it when the bias correction is

smaller than the statistical errors, as is the case here.

For this test, we compute the 3D matter power spectrum with the

non-linear corrections from Takahashi et al. (2012) and the trans-

fer function fit by Eisenstein & Hu (1998), adopting cosmological

parameters that correspond to the best-fitting values of Planck Col-

laboration XIII (2016). We convert this into the convergence power

spectrum using the redshift distribution of our fourth tomographic

bin, which has the highest signal-to-noise and is therefore the most

conservative test case. This is then converted into the shear cor-

relation functions ξ+/ − using equation (3), adopting the same θ

binning as on the data. These are treated as the observed correlation

functions, and inserted in equation (5) and (8) to estimate PE and

PB, respectively, using the same ℓ ranges that we adopted in the

data.

In the first column on Fig. A1, we show how the recovered band

powers vary when we increase the lower limit of the integrals of

equation (5). Each row corresponds to a given ℓ range, as indicated in

each panel. The solid black line is the recovered band power, while

the dashed red line corresponds to the theoretical power spectrum at

the logarithmic mean of the ℓ bin. The band powers become biased

when the lower limit of the integral becomes larger than 1 arcmin.

The higher ℓ bins are more strongly affected, as expected, as they

retrieve more information from small angular scales. The cyan area
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Figure A1. Recovered band powers from analytically computed real-space correlation functions, obtained by varying the lower limit of the conversion integral

whilst keeping the upper limit fixed to 600 arcmin (the first, third, fifth, and seventh column), or by varying the upper limit whilst keeping the lower limit fixed

to 0.06 arcmin (the second, fourth, sixth, and eighth column). The black line indicates the recovered power spectrum, the red line the input power spectrum at

the logarithmic mean of the ℓ bin. The five rows correspond to five different ℓ ranges, indicated in the panels. The first two columns are for PE, column 3–4 for

PB, column 5–6 for Pgm, and column 7–8 for Pgg. We use the lens and source redshift distributions from the data, and select those bins that have the highest

signal to noise. For PE/B, that is the S4–S4 bin, for Pgm it is F2–S4, and for Pgg it is F2–F2. Other bins show similar trends. The cyan regions indicate the

analytical error for those bins in our data. The thin dotted vertical lines show the maximum scales available in the data (2 deg for PE and Pgm, 4 deg for Pgg),

showing that the lowest ℓ bin may suffer from a small bias, which we correct for.

indicates the analytical error on PE for the fourth tomographic bin

of KiDS-450. Since we can measure the shear correlation functions

to much smaller scales than 1 arcmin, we conclude that our band

powers are not biased from shifting the minimum scale from zero

to 0.06 arcmin.

In the second column, we repeat the exercise, but now changing

the upper limit of the integral. The highest ℓ bins are completely

unaffected. The band powers in the lower ℓ bin become biased if the

upper limit becomes less than 200 arcmin. We measure the shear

correlation functions in the data up to 120 arcmin. For that scale,

there is a small bias for the lowest ℓ bin, but it is smaller than our

statistical error. We apply an IBC by adding the difference between

the observed and input power spectrum, to the one measured on

the data. A similar correction scheme was implemented for a power

spectrum estimator in Tröster et al. (2017) in the context of a cross-

correlation study of gamma-ray maps with weak lensing data.

The third and fourth columns show the corresponding B modes.

The trends are similar as for PE: we recover B modes in the range

where the E modes are biased. However, if there are significant

B modes in the data, it does not automatically mean that they

are caused by leakage in our band power estimators. If leakage

is present, it is most likely to affect the first and the last ℓ bin.

The fifth and sixth column show the results for the galaxy-

matter power spectrum. The analytical power spectra are deter-

mined with equation (10), where we used the redshift distribution

of the F2 foreground sample from GAMA, adopted an effective

bias of unity, and used the redshift distribution of the fourth to-

mographic shape sample from KiDS-450 to estimate the lensing

efficiencies. We recover a similar result. Given the ℓ ranges, our

band powers are unbiased as long as we use a minimum lower

limit of 2 arcmin or less, which is trivially met. Furthermore, for

a maximum scale of 120 arcmin (the maximum scale available

in the data), there is a small bias in the lowest ℓ bin, which we

correct for.

The final two columns repeat this test for the angular power

spectrum. The angular power spectrum is more sensitive to the lower

limit of the integral, and the highest ℓ bin becomes significantly

biased if the minimum scale is less than 0.2 arcmin; we measure

the angular correlation function up to 0.06 arcmin in the data, hence

the highest ℓ bin is not affected by the integral bias. The lowest

ℓ bin is recovered without bias as long as the maximum scale is

200 arcmin or more. Since we trust the angular correlation function

up to 4 deg, also this bin should not be biased. The larger sensitivity

to the lower limit of the integral comes from the mixing between

θ and ℓ scales through J0. PE, for example, uses information from

both ξ+ and ξ−, which yields a different mixing between θ and ℓ

scales through the combination of J0 (for ξ+) and J4 (for ξ−). If we

adopt K+ = 1 to compute PE (i.e. only using information from ξ+),

the bias increases much faster when the lower limit of the integral

increases, similar to what is observed for Pgg.

Note that in Fig. A1, we chose the combinations of foreground

sample and shape sample bins that resulted in the highest signal-

to-noise, which are the most affected by the integral bias. We have

checked that the relative impact of the integral bias is smaller for

the other power spectra, relative to their statistical powers.

We computed the IBC for all power spectra and applied it to the

data. We note that applying this correction has a negligible effect

on our results; the constraints on S8 shift by less than 0.2σ if we

do not apply the correction. The error on the IBC correction will

therefore cause a shift of S8 that is much smaller than 0.2σ .
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To test the dependence of the IBC on cosmology, we repeated

the test for a Planck cosmology where we either increased or de-

creased the value of σ 8 by 10 per cent. As a result, the curves shown

in Fig. A1 shifted vertically, meaning that the error on the IBC

linearly depends on the error of the amplitude of the theoretical

power spectrum used to compute the correction. It is unlikely that

the amplitude of the theoretical power spectrum is off by more than

10 per cent, which puts an upper limit on the bias of the IBC of

∼10 per cent as well. As long as the IBC is smaller than the mea-

surement errors, such an error is subdominant and will not impact

the results. Second-order effects, such as small differences in the

shape of the power spectrum, are expected to lead to even smaller

biases. We note that the issue of a cosmology dependence of the

IBC can be circumvented by computing a new correction for every

cosmological model evaluated in the MCMC and applying that to

the data before determining the likelihood.

A P P E N D I X B : VA L I DAT I O N O N M O C K S

Next, we determine the accuracy of our power spectrum estima-

tors on numerical simulations, which enables us to test whether we

measure the correlation functions correctly, and whether the red-

shift distributions are properly accounted for. The main purpose of

these numerical simulations, however, is to compute the covariance

matrix from different realizations in order to validate the analytical

covariance matrix, and secondly, to test our cosmological inference

pipeline by fitting the mock power spectra (using the analytical co-

variance matrix, hence mimicking the observational procedure), to

verify whether we recover the input cosmology.

The mock catalogues are based on the Scinet Light Cone Simu-

lations ( Harnois-Déraps & van Waerbeke 2015), a series of about

1000 N-body simulations tailored for weak lensing surveys. Each

realization follows the evolution of 15363 dark matter particles in

a cube that measures 505 Mpc h−1 on a side, which are projected

on 18 redshift mass planes in the range 0 < z < 3. Light cones are

then extracted from these planes on 77452 pixel grids and turned into

convergence and shear maps by ray-tracing. The cosmology is fixed

to WMAP9 + SN + BAO, 11 that is �m = 0.2905, �� = 0.7095,

�b = 0.0473, h = 0.6898, σ 8 = 0.826 and ns = 0.969.

These mocks have been tailored specifically for the KiDS-450

analyses and were first presented in Hildebrandt et al. (2017), al-

though the version we use here has a larger opening angle (100 deg2

instead of 60 deg2). Source galaxies are placed at random positions

in the mocks and are assigned both a true redshift (enforcing the

tomographic n(z) estimated with the DIR method, see Hildebrandt

et al. 2017) and a photometric redshift, zB, based on the joint proba-

bility distribution of these two quantities. This enables the selection

of tomographic redshift bins whose true redshift distributions ex-

actly match those of KiDS. The gravitational shears are interpolated

from the simulated shear maps at the galaxy positions, while the

intrinsic ellipticities are from a Gaussian with a width equalling the

intrinsic ellipticity dispersion measured for KiDS galaxies.

To simulate a foreground galaxy sample, which we need to mea-

sure the galaxy-matter power spectrum and the angular power spec-

trum, we use the simulation boxes that are at a mean redshift of

z = 0.221 and span a redshift range of 0.1747 to 0.2680. Lens po-

sitions are drawn from the projected mass maps with a probability

that is proportional to the density, ensuring that the bias of the lens

11 https://lambda.gsfc.nasa.gov

Figure B1. Ratio of power spectra measured on the numerical simulations

and the theoretical power spectra. The top row shows the autocorrelation

and cross-correlation of the cosmic shear power spectra for the two shape

samples, the middle row shows the galaxy-matter power spectrum for one

foreground sample and two shape samples, and the bottom row shows the

angular power spectrum of the foreground sample. Open black circles (blue

triangles) correspond to theoretical power spectra computed using the non-

linear corrections of Smith et al. (2003) (Takahashi et al. 2012). Error bars

show the error on the mean of the different mock realizations.

sample is constant at b = 1 and does not depend on scale. Hav-

ing a lens sample with a known bias is advantageous as we can

check whether we recover it. The disadvantage is that it does not

enable us to test whether the effective galaxy bias is scale inde-

pendent in the simulations. Although our mock foreground sample

does not reproduce the galaxy sample from GAMA, it allows us to

test our pipelines by replacing the GAMA clustering and redshift

distribution by that of these mock foreground galaxies.

For simplicity, we only use one lens sample and two source sam-

ples, selected with 0.1 < zB ≤ 0.5 and 0.5 < zB ≤ 0.9, respectively.

The various real-space correlation functions are measured with the

same pipelines as those applied to the data, and converted into power

spectra using the same angular scales.

B1 Validating the power spectrum estimator

We measured the cosmic shear correlation functions of our two

source samples (two autocorrelations and one cross-correlation), the

two tangential shear signals around the foreground sample, and the

clustering signal of the foreground sample, and converted those into

their respective power spectra, using the same angular ranges that

we adopted in the data. We compare that to theoretical predictions,

computed for the same cosmological parameters that were used in

the mocks and using the non-linear corrections of either Smith et al.

(2003) or Takahashi et al. (2012). These theoretical power spectra

bracket the power spectrum measured directly from the simulations

(see Harnois-Déraps & van Waerbeke 2015).

The ratio of the power spectra measured on the mocks and

the theoretical power spectra is shown in Fig. B1. The theoreti-

cal power spectra computed using Smith et al. (2003) are up to

10 per cent smaller than the power spectra measured on the mocks,

while the theoretical predictions using Takahashi et al. (2012) agree
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Figure B2. Comparison of the analytical and numerical simulation covariance matrix, for the case without shape noise. The left-hand side shows the ratio

of the square root of the diagonals, separately for the six different power spectra. Numbers on the horizontal axis correspond to the different ℓ ranges, as

indicated in the figure. Red open squares correspond to the full analytical covariance matrix, black circles to the analytical predictions excluding SSC. These

two extremes bracket the mock covariance, which has some SSC, but not the full effect. The right-hand side shows the correlation matrix, with the analytical

covariance including SSC in the top left and the numerical simulation covariance matrix in the lower right. The off-diagonal terms agree reasonably well.

very well, and only overestimate the signal by ∼5 per cent of the

cosmic shear S2–S2 power spectrum. If the mock power spectra

lie right in the middle of the Smith et al. (2003) and Takahashi

et al. (2012) predictions (as was found in Harnois-Déraps & van

Waerbeke 2015), we conclude that our power spectra are accurate

to better than ∼5 per cent. This is the relative precision with respect

to the simulations, not the absolute precision of our estimator. As

demonstrated in Appendix A, the absolute error of our estimator is

much smaller than the statistical errors and can therefore be safely

ignored in our error budget.

Note that the tangential shear signal around the foreground sam-

ple steeply drops on scales <2 arcmin, which is a sign that their

positions do not exactly coincide with the centre of their dark mat-

ter haloes. This may be due to the finite resolution of the simulations.

However, as Fig. A1 shows, this does not affect Pgm, as the band

power in the highest ℓ bin only becomes biased if the lower limit of

the integral is larger than 3 arcmin.

B2 Validating the covariance matrix

We computed the covariance matrix of the numerical power spectra

using 136 different realizations of the mocks. We do this sepa-

rately using galaxy shapes with and without intrinsic shape noise.

We consider the case without shape noise as it enables us to as-

sess whether the non-Gaussian in-survey term and the SSC term,

which are subdominant in the presence of shape noise, are correctly

modelled.

We computed the analytical covariance matrix using the specifics

of the mocks, that is with the same cosmological parameters, the

same mock foreground and source redshift distributions, the same

mock intrinsic shear dispersion, and the same mock survey coverage

(a total survey area of 100 deg2, with complete overlap between the

three probes).

A comparison of the covariance matrix for the mocks without

shape noise is shown in Fig. B2. The left-hand panel shows the

ratio of the square root of the diagonals, while the right-hand panel

compares the off-diagonal terms. In the left-hand panel, we compare

to analytical covariance matrices with and without a SSC contribu-

tion. The mocks have some SSC from the regions in the original

simulation boxes that were outside the light cones, but not the full

effect, hence we expect the two analytical predictions to bracket

the result from the numerical simulations, which they do for the

cosmic shear power spectra. For Pgm and Pgg, the analytical error is

∼10 per cent smaller than the error estimated from the mocks.

In the right-hand panel, we compare the off-diagonal terms of

the mock covariance to the analytical one including SSC. We find

a good overall agreement, suggesting that the cross-correlation of

the different power spectra is correctly modelled with our analytical

covariance matrix. The mean difference of the off-diagonal elements

of the analytical and mock correlation matrix is only ∼0.06.

In Fig. B3, we repeat the test for the case with shape noise.

The left-hand panel shows that the analytical covariance with and

without SSC is quite similar, because the covariance matrix is dom-

inated by shape noise. We find a good overall agreement between

the diagonals, with typical differences of the order of 10 per cent

for the three power spectra. Given the small residual differences

in the power spectra measurements, this level of agreement is ex-

pected. Also the off-diagonal terms match well. The covariance

between the different power spectra is much smaller, and there is

little correlation left between PE and Pgm or Pgg.

B3 Validating the cosmological inference

The final purpose of the mocks is to test our cosmological inference

pipeline. We fit different combinations of mock power spectra, using

the analytical covariance matrix that includes SSC. The mocks have

an area of 100 deg2, which is smaller than the survey area of the

data. To ensure that the cosmological inference is unbiased given

our current statistical precision on the data, we simply rescale the

analytical covariance matrix such that it corresponds to an area

of 500 deg2. Consequently, the SSC contribution to the analytical

covariance matrix is not completely correctly modelled, but since
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Figure B3. Similar to Fig. B2, but with the inclusion of shape noise.

Figure B4. Constraints on �m–σ 8 for different combinations of mock

power spectra, measured on the numerical simulations, assuming a total

effective survey area of 500 deg2. The cross-hair indicates the input cosmol-

ogy, which is comfortably recovered by our fitting pipeline.

its impact is relatively small it is not expected to affect our results

much.

We use the extended version of COSMOMC using the same settings

as on the data and with the same convergence criterion. The resulting

constraints on �m–σ 8 are shown in Fig. B4. The input cosmology

is indicated with the grey cross-hair and falls comfortably within

the 1σ contours for all combinations of power spectra that we fit.

Hence our cosmological inference pipeline correctly retrieves the

input parameters of the mocks, and any remaining systematic bias

is smaller than our statistical precision. The constraints from the

various power spectrum combinations show little scatter, since we

fit the mean signal of the different realizations of the mocks.

Figure B5. Constraints on �m–σ 8 obtained by fitting all mock power spec-

tra simultaneously, colour-coded by the value of the bias. It illustrates the

degeneracy between the bias and the �m–σ 8 degeneracy. The cross-hair

indicates the input cosmology, at which point the bias has a value of unity.

In all fits, the bias of the foreground sample is consistent with

unity, the input value (except when we only fit PE, which leaves b

unconstrained), although for PE + Pgg + Pgm it is shifted by 0.3σ

towards lower values. This explains why the cross-hair in Fig. B4

is not exactly centred in the middle of the contours for this power

spectra combination. If we fix the bias to unity, the contours shrink

dramatically and centre on the cross-hair. The degeneracy between

the bias and the degeneracy direction of the posterior in the �m–σ 8

plane is further illustrated in Fig. B5, where we colour-coded the

posterior of the PE + Pgg + Pgm fit using the average values of the

bias.

Ideally, one would like to know whether our estimators are un-

biased for a much larger survey (e.g. 10 times larger than KiDS).
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However, we already noted in Section B1 that we do not exactly

recover the input power spectra, but that there are differences left of

up to ∼5 per cent. It is unclear whether these differences are caused

by limitations of our mocks, of our analytical predictions or of our

power spectra estimators, although we note that the tests on the an-

alytical power spectrum–correlation function pairs in Appendix A,

as well as tests we have performed on Gaussian random fields (not

reported here), suggest that the accuracy of our power spectrum

estimator is much better than 5 per cent. For future surveys with im-

proved statistical power, these tests need to be revisited to a higher

level of precision.

A P P E N D I X C : C O M PA R I S O N TO QUA D R AT I C

ESTIMATO R

We compare our band powers to the quadratic estimator from

Köhlinger et al. (2017). To do that, we adopt the redshift binning

from that work, that is three tomographic source redshift bins se-

lected with SK1 = 0.1 < zB ≤ 0.3, SK2 = 0.3 < zB ≤ 0.6 and

SK3 = 0.6 < zB ≤ 0.9. We measure the shear correlation functions

with our standard angular binning, apply the shear calibration bias

corrections, and estimate our power spectra for the same ℓ binning

as Köhlinger et al. (2017). Note that we use the full KiDS-450 area

to measure the shear correlation functions, while Köhlinger et al.

(2017) exclude 36 deg2 from disconnected patches. We have tested

that excluding those fields does not affect our measurements. Fur-

thermore, we do not apply an IBC to our band powers, which means

that our first ℓ bin is biased low. These limitations should not affect

the comparison much. The results are shown in Fig. C1. We plot the

full statistical error bars in both cases. The differences between the

power estimates should be substantially smaller than these errors as

the input data is practically identical, although residual fluctuations

will occur because the measurements are weighted differently in

the quadratic and band power estimates.

We find a fair agreement for PE for the first and second tomo-

graphic bin. For the third tomographic bin, our band powers at high

ℓ are higher than the quadratic estimator. This is most apparent in

the SK3–SK3 bin. The B modes also appear to show fair agree-

ment, except for the highest ℓ bin in the SK3-SK3 combination

and in the SK2-SK3 combination, where again the band powers

are higher than the power determined from the quadratic estimator.

We note that both estimators were tested on very similar (B-mode

free) Gaussian random field simulations and found to faithfully re-

produce the input power, which implies that the differences seen

are due to some systematic trend in the data that was not included

in the mocks. A corresponding trend can be seen in fig. D11 of

Hildebrandt et al. (2017). In their autocorrelation of the third tomo-

graphic bin (which has substantial overlap with SK3), ξB displays a

positive signal below ∼4 arcmin. While our band power estimator

is sensitive to these scales in the correlation function, the quadratic

estimator is expected to be immune to systematics at a few arcmin-

utes or less. Note that we find similar reduced χ2 values of the

null-hypothesis as for our fiducial four redshift bin analysis, while

Figure C1. Comparison of PE (left-hand panels) and PB (right-hand panels) for the various tomographic bin combinations, measured with our estimator

(black, solid squares) and the quadratic estimator from Köhlinger et al. (2017) (red, open squares). The black dashed lines indicate the best-fitting model from

PE alone from this work, the dotted blue line indicates the best-fitting model to PE using the cosmological inference code from Köhlinger et al. (2017), and the

solid red lines indicate the best-fitting model from Köhlinger et al. (2017). The measurements in the grey area were excluded from the cosmological inferences

with the Köhlinger et al. (2017) model. The only noticeable difference between the estimators is observed for the highest tomographic bin of PE, where our

estimator returns higher band powers at large ℓ than the quadratic estimator.
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Köhlinger et al. (2017) report that their B modes are consistent

with zero.

To test for the potential impact of B modes on the cosmological

inference, Hildebrandt et al. (2017) applied a correction under the

assumption that the underlying systematics contribute equally to the

E- and B modes, which led to a downward shift in S8 by ∼1 σ , in

the direction of the Köhlinger et al. (2017) results. We repeated this

test by creating a new data vector where we subtracted the B modes

from the E modes. We updated the covariance matrix by adding

the analytical B-mode covariance matrix to the E-mode one. The

cosmological inference resulted in S8 = 0.787 ± 0.034, which is

within 0.5σ of our fiducial result. As in Hildebrandt et al. (2017), the

shift is towards the results from Köhlinger et al. (2017), but does not

close the gap. As the source of the low-level B-mode contamination

is currently unknown (see the discussion in Hildebrandt et al. 2017),

we do not know how it affects the E modes, hence we do not attempt

to remove it in our fiducial analysis but defer this to forthcoming

work. It is interesting to note that the B-mode signature appears

to vary with the choice of redshift binning (cf. Figs C1 and 2).

The link between cosmic shear B modes and binning in terms of a

photometric redshift point estimate will be explored in more detail

in Asgari et al. (in preparation).

Fig. C1 also shows the best-fitting model from Köhlinger et al.

(2017), our best-fitting model from fitting PE only on the default

KiDS-450 four-bin data (but shown for the current three tomo-

graphic redshift bins), as well as the best-fitting model obtained

by applying the cosmological inference method of Köhlinger et al.

(2017) to our band powers. The differences between the latter two

are small, which suggests that differences in modelling choices are

not driving the shift of S8; these include the approaches to the non-

linear matter power spectrum, baryon feedback and massive neutri-

nos, which might contribute at a lower level. The lower quadratic

estimator band powers at high ℓ for the SK3–SK3 bin is accommo-

dated by the model with a negative intrinsic alignment amplitude,

AIA = −1.72 (weighted median), albeit with large error bars. The fit

of the Köhlinger et al. (2017) to our band powers results in an intrin-

sic alignment amplitude of AIA = 1.53. Since AIA is correlated with

S8 (see Fig. 12), this lowers the constraints on S8 from Köhlinger

et al. (2017) relative to our results. Such a large, negative intrinsic

alignment amplitude is not expected from physical models of the

effect. Given the findings of Section 4.3, the low value of AIA could

point to inconsistencies in the relative strengths of the tomographic

power spectra caused by biases in the redshift distributions.

A P P E N D I X D : IT E R AT E D A NA LY T I C A L

C OVA R I A N C E M AT R I X

In our first run on the data, we used an analytical covariance matrix

computed using the best-fitting parameters of Planck Collaboration

XIII (2016), and effective galaxy biases of unity for the two fore-

ground samples. If the parameter values we adopted for the covari-

ance model were far from the high-probability region in the resulting

posterior, our inferred cosmological model would be inconsistent

with the error model used in the likelihood. For example, if we un-

derestimated the effective galaxy biases, the error bars on Pgm and

Pgg would be too small and these power spectra would get too much

weight in the cosmological inference. Therefore, we updated the

analytical covariance matrix using the best-fitting parameters from

our initial fit to the data, and repeated the cosmological inference.

We repeated this procedure a second time to make sure that this

iterative approach is stable and converging. Ideally, one would like

to update the analytical covariance matrix in each step in the chain

Figure D1. Constraints on the reduced χ2 value of the best-fitting model

and the fit parameters S8, bz1 and bz2, where we iteratively update the

analytical covariance matrix using the best-fitting parameter values from the

previous run, and starting with a fiducial Planck Collaboration XIII (2016)

cosmology and effective galaxy biases of unity (black stars) or starting with

a fiducial WMAP9 cosmology and effective galaxy biases of 1.5 (red stars).

The subsequent constraints are shown by black diamonds and red circles for

the Planck and WMAP9 runs, respectively. The constraints on the galaxy

biases shift significantly after the first iteration, but do not change after the

second iteration.

during the cosmological inference, but the computational demands

make this approach currently infeasible. Note that in these runs,

we did not marginalize over the uncertainty of the source redshift

distributions, as we found that to be less stable due to the increased

noise.

In Fig. D1, we show the reduced χ2 of the best-fitting model,

the constraints on S8 and on the nuisance parameters bz1 and bz2

in each step of the iteration. The reduced χ2 of the initial fit is

1.34 and remains constant. The constraints on S8 does not change

much either and is therefore not sensitive to small changes in the

parameters of the analytical covariance matrix. The effective bi-

ases, however, change significantly. The constraints from the ini-

tial fit are bz1 = 1.25 ± 0.13 and bz2 = 1.43 ± 0.15, while the

constraints after the second iteration are bz1 = 1.11 ± 0.15 and

bz2 = 1.25 ± 0.17. Hence the posteriors shift not only by about

1σ , but also the 68 per cent confidence intervals increase. The cos-

mological parameters that are degenerate with the galaxy biases, in

particular �m and σ 8, shifted by similar amounts. All cosmological

inferences on data in this paper use the analytical covariance matrix

based on the best-fitting parameters of the second iteration, as the

parameters do not change significantly after another iteration.

To test the stability of this iterative procedure, we also com-

puted the analytical covariance matrix using a WMAP9 cosmology

(Hinshaw et al. 2013) and effective galaxy biases of 1.5 and used

that as the starting point. The resulting parameter constraints are

also shown in Fig. D1. The results converge after the first iteration

and are thus not very sensitive to the exact starting point of the

iterative procedure.
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A P P E N D I X E : FU L L PO S T E R I O R

We show the full posterior of all fit parameters in our fiducial run

in Fig. E1, which highlights the degeneracies between parameters.

The mean and 68 per cent confidence interval of the fit parame-

ters for the different combinations of power spectra are listed in

Table E1.

Figure E1. Posterior of combinations of all fit parameters, obtained by marginalizing over all other parameters. The contours indicate the 1σ and 2σ regimes.
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Table E1. Mean and 68 per cent confidence interval of the fit parameters (row 1–10) and derived parameters (row 11–13), χ2 of the best-fitting model (row

14) and the number of degrees of freedom (row 15). Also shown are the results from our conservative runs where we excluded the lowest ℓ bin of all power

spectra (cons-1) and the highest ℓ bin of Pgm and Pgg (cons-2) in the fit.

PE + Pgm + Pgg PE PE + Pgm PE + Pgg Pgm + Pgg PE + Pgm + Pgg PE + Pgm + Pgg Pgm + Pgg

Parameter cons-1 cons-2 cons-2

100θMC 1.082+0.045
−0.034 1.064+0.056

−0.038 1.063+0.050
−0.039 1.093+0.040

−0.032 1.087+0.046
−0.035 1.064+0.049

−0.039 1.094+0.040
−0.032 1.095+0.043

−0.033

�ch2 0.153+0.032
−0.038 0.134+0.044

−0.046 0.132+0.033
−0.042 0.169+0.034

−0.038 0.159+0.034
−0.041 0.133+0.031

−0.041 0.169+0.032
−0.038 0.173+0.037

−0.042

�bh2 (× 10−2) 2.25 ± 0.35 2.24+0.36
−0.34 2.24+0.36

−0.34 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35 2.25 ± 0.35

ln (1010As) 2.63+0.37
−0.44 2.75+0.29

−1.05 2.80+0.52
−0.77 2.30+0.20

−0.54 2.67+0.37
−0.45 2.92+0.45

−0.58 2.33+0.22
−0.58 2.43+0.31

−0.58

ns 0.97+0.14
−0.19 1.11+0.19

−0.05 1.08+0.22
−0.06 0.97+0.14

−0.18 0.93+0.07
−0.23 1.03+0.21

−0.13 0.99+0.15
−0.18 0.91+0.06

−0.21

h 0.73+0.06
−0.05 0.74+0.06

−0.05 0.74+0.06
−0.05 0.73 ± 0.06 0.73+0.06

−0.05 0.74+0.06
−0.05 0.73 ± 0.06 0.73 ± 0.06

AIA 1.27 ± 0.39 0.92+0.76
−0.60 1.46 ± 0.41 0.88+0.69

−0.52 1.38 ± 0.47 1.27 ± 0.46 1.20 ± 0.41 1.42 ± 0.55

B 2.97+0.56
−0.69 3.26+0.74

−0.22 3.28+0.72
−0.22 3.08+0.80

−0.41 2.86+0.27
−0.86 3.03+0.70

−0.55 2.99 ± 0.62 2.82+0.25
−0.82

bz1 1.12 ± 0.15 – 0.78+0.14
−0.18 1.21 ± 0.14 1.13 ± 0.15 1.00 ± 0.17 1.23+0.16

−0.17 1.24 ± 0.18

bz2 1.25 ± 0.16 – 1.45+0.27
−0.32 1.45±0.18 1.23 ± 0.17 1.11 ± 0.19 1.37 ± 0.17 1.36 ± 0.19

�m 0.33+0.05
−0.06 0.29+0.08

−0.09 0.29+0.06
−0.07 0.36 ± 0.06 0.34+0.05

−0.06 0.29+0.05
−0.06 0.36 ± 0.06 0.37+0.06

−0.07

σ 8 0.78+0.06
−0.08 0.80+0.10

−0.17 0.81+0.10
−0.13 0.70+0.05

−0.08 0.80+0.07
−0.09 0.84+0.08

−0.11 0.72+0.06
−0.08 0.74+0.07

−0.09

S8 0.800+0.029
−0.027 0.761 ± 0.038 0.769+0.036

−0.033 0.759+0.036
−0.032 0.835 ± 0.037 0.808+0.030

−0.028 0.778 ± 0.033 0.805+0.044
−0.043

χ2 115.9 61.5 97.0 67.3 45.4 84.5 101.6 32.5

d.o.f. 90 42 80 50 40 70 80 30

APPENDIX F: VALIDITY O F FLAT-SKY

APPROX IMATION

We check if the flat-sky approximation that underlies our power

spectrum estimators has any impact on the accuracy of our mea-

surements. Before taking band-power averages, the estimators can

be expressed as

P̂ E
κ (ℓ) = π

∫ ∞

0

dθ
{
K+(ℓ, θ ) ξ̂+(θ ) +K−(ℓ, θ ) ξ̂−(θ )

}
, (F1)

P̂ gm(ℓ) = 2π

∫ ∞

0

dθ Kgm(ℓ, θ ) γ̂t(θ ), (F2)

P̂ gg(ℓ) = 2π

∫ ∞

0

dθ Kgg(ℓ, θ ) ŵ(θ ). (F3)

The full-sky expressions for the kernels K± were derived in Chon

et al. (2004), while their result for the TE spectrum can be adopted

for our galaxy–galaxy lensing estimator. Together with the well-

known full-sky relation between scalar power spectrum and corre-

lation function (Peebles 1973), one obtains

K+(ℓ, θ ) = dℓ
22(θ ) sin θ, (F4)

K−(ℓ, θ ) = dℓ
2−2(θ ) sin θ, (F5)

Kgm(ℓ, θ ) = dℓ
20(θ ) sin θ, (F6)

Kgg(ℓ, θ ) = dℓ
00(θ ) sin θ, (F7)

where dℓ
mm′ is the Wigner small-d matrix, and dℓ

00(θ ) = Pℓ(cos θ ) is a

Legendre polynomial. The flat-sky (large ℓ, small θ ) approximations

for these kernels, denoted by Kflat, can be read off equations (1),

(10), and (15); see Kitching et al. (2017), Kilbinger et al. (2017),

and Lemos et al. (2017) for more detailed discussions.

We additionally propose an extended flat-sky approximation with

the following kernels,

K
ext
+ (ℓ, θ ) = J0 [(ℓ + 1/2)θ ] θ, (F8)

K
ext
− (ℓ, θ ) = J4 [(ℓ + 1/2)θ ] θ, (F9)

K
ext
gm(ℓ, θ ) = J2 [(ℓ + 1/2)θ ] θ, (F10)

K
ext
gg (ℓ, θ ) = J0 [(ℓ + 1/2)θ ] θ, (F11)

obtained from the standard flat-sky expression by replacing ℓ →
ℓ+ 1/2. In Fig. F1, we show the difference between the standard and

extended flat-sky approximated kernels and the full-sky expressions

at ℓ = 100, which is slightly beyond the largest scales that we

consider. The extended approximation can readily be implemented

in our current estimators, with the integral corresponding to the

band power average now performed numerically.

We compare the power spectrum estimates under the assump-

tions of the standard and extended flat-sky approximations in the

case of galaxy clustering, which extends to the largest angular scales

and should thus be most affected. As expected, we find the largest

discrepancy for the lowest ℓ bin, which amounts to a relative dif-

ference of 3.3 × 10−5 in F1 and less than 10−6 in F2. Since the

extended flat-sky approximation is typically two orders of magni-

tude more accurate over the scales used in this analysis (see Fig. F1,

bottom panel), this implies that the discrepancy that we have mea-

sured is also the one between standard flat-sky approximation and

full expression to within 1 per cent. It is reasonable to expect this

discrepancy to be very small because we choose to altogether ig-

nore large scales which are inaccessible from our data, rather than

merely misrepresenting their geometry. We have demonstrated in

Appendix A that the IBC, resulting from cutting in particular the

large scales from the integrals in our estimators, is much larger but

still well controlled in our measurements.
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Figure F1. Comparison between kernels in the conversion from correlation

functions to power spectra. Shown is the difference between the standard

flat-sky (Kflat, solid lines), as well as the extended flat-sky (Kext, dashed

lines), approximation and the exact full-sky kernel as a function of angular

separation for fixed ℓ = 100. The top panel shows the cosmic shear kernels

relating to ξ±; the bottom panel those for Pgm and Pgg.

APPENDIX G : C RO SS-SURV EY COVARIANCE

In this analysis we combine probes from two surveys with substan-

tially different areas, where the smaller survey is fully contained

in the larger’s area coverage. While the covariances of individ-

ual probes can be modelled analytically with the respective survey

footprint over which they are measured, there may be significant

cross-variances between probes due to the shared sky that need to

be included in the joint likelihood analysis.

We model the cross-variances under the same assumptions ap-

plied to previous analytic approaches (e.g. Takada & Hu 2013),

neglecting the explicit effect of the survey mask on modes well

within the footprint, and only taking it into account for the coupling

between in-survey and super-survey modes (the SSC). Under these

assumptions, the spin-2 nature of gravitational shear does not im-

pact on the covariance, so it is sufficient to work with the scalar

weak lensing convergence and the galaxy number density. More-

over, shot/shape noise does not contribute to the cross-variances

we consider. Therefore, we consider the simple, idealized power

spectrum estimator (see Joachimi et al. 2008, for the analogous full

calculation for gravitational shear estimates) for survey A

P̂A(ℓ) ≡ 1

�A �R(ℓ)

∫

�R(ℓ)

d2ℓ1|x̃ob
A (ℓ1)|2, (G1)

with

x̃ob
A (ℓ) =

∫
d2ℓ′ x̃(ℓ′) �A(ℓ − ℓ

′), (G2)

where �A is the (effective) survey area, �R(ℓ) is the area of an

annulus centred on ℓ, and �A is the Fourier transform of the survey

aperture, divided by 4π
2 (see equation 12 of Joachimi et al. 2008).

For ease of notation, we consider a single random field x, but the

following calculations hold equally for any combination of the weak

lensing convergence and galaxy number density fields. The Fourier-

transformed field is denoted by a tilde.

This power spectrum estimator is unbiased under certain assump-

tions about the survey footprint, which can be seen by taking the

expectation value,

〈P̂A(ℓ)〉 = 1

�A �R(ℓ)

∫

�R(ℓ)

d2ℓ1

∫
d2ℓ′

∫
d2ℓ′′ 〈

x̃(ℓ′) x̃(ℓ′′)
〉

× �A(ℓ1 − ℓ
′) �A(−ℓ1 − �ℓ′′)

= (2π)2

�A �R(ℓ)

∫

�R(ℓ)

d2ℓ1

∫
d2ℓ′ Px(ℓ′) �2

A(ℓ1 − ℓ
′),

(G3)

where in the second equality the definition of the power spectrum

of the random field x was used,

〈
x̃(ℓ) x̃(ℓ′)

〉
= (2π)2 δD(ℓ + ℓ

′) Px(ℓ), (G4)

with δD the Dirac delta distribution. The larger the survey area,

the closer �A will be to a Dirac delta distribution. It is therefore

appropriate to approximate �2
A(ℓ) ≈ δD(ℓ) �A/(2π)2, as long as

we consider modes well within the survey footprint. Inserting this

expression, we find that equation (G1) is an unbiased estimate of

the annular average of the power spectrum of x,

〈P̂A(ℓ)〉 = 1

�R(ℓ)

∫

�R(ℓ)

d2ℓ1 Px(ℓ1). (G5)

We use this estimator to calculate the cross-variance between

surveys A and B,

〈
�PA(ℓ) �PB(ℓ′)

〉
= 1

�A �B �R(ℓ) �R(ℓ′)

∫

�R(ℓ)

d2ℓ1

∫

�R(ℓ′)
d2ℓ2

×
{ 〈

x̃ob
A (ℓ1)x̃ob

B (ℓ2)
〉 〈

x̃ob
A (−ℓ1)x̃ob

B (−ℓ2)
〉

+
〈
x̃ob

A (ℓ1)x̃ob
B (−ℓ2)

〉 〈
x̃ob

A (−ℓ1)x̃ob
B (ℓ2)

〉

+
〈
x̃ob

A (ℓ1)x̃ob
B (−ℓ1)x̃ob

A (ℓ2)x̃ob
B (−ℓ2)

〉
c

}
, (G6)

where the subscript c denotes the connected correlator that encap-

sulates the non-Gaussian cosmic variance contributions. Here, �P

denotes the fluctuation of the power spectrum estimator around its

expectation. We continue with the first term of equation (G6), as-

suming without loss of generality that survey A is the larger of the

two,

〈
x̃ob

A (ℓ1)x̃ob
B (ℓ2)

〉 〈
x̃ob

A (−ℓ1)x̃ob
B (−ℓ2)

〉

=
∫

d2ℓa

∫
d2ℓb

∫
d2ℓc

∫
d2ℓd 〈x̃(ℓa)x̃(ℓb)〉 〈x̃(ℓc)x̃(ℓd )〉

× �A(ℓ1 − ℓa) �B(−ℓ2 − ℓb) �A(−ℓ1 − ℓc) �B(ℓ2 − ℓd )

= (2π)4

∫
d2ℓa

∫
d2ℓc Px(ℓa) Px(ℓc) �A(ℓ1 − ℓa)

× �A(−ℓ1 − ℓc) �B(−ℓ2 + ℓa) �B(ℓ2 + ℓc)

≈ (2π)4 P 2
x (ℓ1) �2

B(ℓ1 − �ℓ2)

≈ (2π)4 �B P 2
x (ℓ1) δD(ℓ1 − �ℓ2). (G7)

To arrive at the third equality, we approximated the �A of the

larger survey A by the Dirac distribution. This assumption is fair as

long as �A ≫ �B; however, if the two surveys approached similar

coverage, the standard expression for a single survey could be used

to good accuracy anyway. The final equality results from the same

approximation that was made in the derivation of equation (G5).

The remaining terms in equation (G6) are processed in full anal-

ogy to yield the following expression for the in-survey contributions
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to the cross-variance,

〈
�PA(ℓ) �PB(ℓ′)

〉
in− survey

≈ 8π
2

�max �R(ℓ)
δℓℓ′P 2

x (ℓ)

+ 1

�max �R(ℓ) �R(ℓ′)

∫

�R(ℓ)

d2ℓ1

×
∫

�R(ℓ′)
d2ℓ2 Tx(ℓ1, ℓ2, −ℓ1, −ℓ2),

(G8)

where δℓℓ′ is the Kronecker delta acting on the angular frequency

bins at which the covariance is evaluated, and where Tx is the

trispectrum of the field x. We have defined �max ≡ max(�A, �B).

This result reduces to the standard expression for �A → �B and

is straightforward to generalize to the multifield and tomographic

case (see e.g. Joachimi & Bridle 2010; Krause & Eifler 2017).

It remains to be shown how the SSC term is modified for the

cross-variance across different surveys. We follow Takada & Hu

(2013) closely and refer to their paper for detailed calculations.

They showed that in the single-survey case the SSC of angular

power spectra (again for a single field) is given by

〈
�PA(ℓ) �PA(ℓ′)

〉
SSC

=
∫ χhor

0

dχ
K4(χ )

fK(χ )6

∂Pδ [ℓ/fK(χ )]

∂δb

× ∂Pδ

[
ℓ′/fK(χ )

]

∂δb

σ 2
A(χ ), (G9)

where χ is comoving distance, fK(χ ) comoving angular diame-

ter distance, and K(χ ) the line-of-sight kernel of the signal un-

der consideration. The expression above is based on the Limber

approximation, which we expect to hold similarly well as for the

signals we model, due to the broad line-of-sight distributions en-

tering our signals. The derivatives of the matter power spectrum Pδ

with respect to a fluctuation in the background density δb provide

the response of the measurement to super-survey modes, while

σ 2
A(χ ) = 1

�2
A

∫
d2ℓ1

(2π)2
P lin

δ

(
ℓ1

fK(χ )

)
|�A(ℓ1)|2 (G10)

is the variance of this background density field within the mask of

survey A. The linear matter power spectrum is employed in this

expression. Repeating the derivation of Takada & Hu (2013), but

now with the last term of equation (G6) as the starting point, which

accounts for different survey footprints, we obtain

σ 2
AB(χ ) = 1

�A �B

∫
d2ℓ1

(2π)2
P lin

δ

(
ℓ1

fK(χ )

)
�A(ℓ1) �B(−ℓ1).

(G11)

Note that σ 2
AB remains real because the imaginary parts of the

Fourier transforms of the survey masks are antisymmetric and will

thus vanish after the area integration over ℓ1. Our implementation

of the SSC contribution uses equation (G9) with σ 2
AB determined

from the explicit GAMA and KiDS survey footprints provided in

the form of HEALPIX maps. A more detailed study of the impact of

survey geometry on covariance contributions will be presented in a

forthcoming publication; see also Lacasa, Lima & Aguena (2016)

for a detailed discussion of effects pertaining to the SSC term.
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