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ABSTRACT

Context. The KiDS Strongly lensed QUAsar Detection project (KiDS-SQuaD) is aimed at finding as many previously undiscovered
gravitational lensed quasars as possible in the Kilo Degree Survey. This is the second paper of this series where we present a new,
automatic object-classification method based on the machine learning technique.
Aims. The main goal of this paper is to build a catalogue of bright extragalactic objects (galaxies and quasars) from the KiDS Data
Release 4, with minimum stellar contamination and preserving the completeness as much as possible. We show here that this cata-
logue represents the perfect starting point to search for reliable gravitationally lensed quasar candidates.
Methods. After testing some of the most used machine learning algorithms, decision-tree-based classifiers, we decided to use Cat-
Boost, which was specifically trained with the aim of creating a sample of extragalactic sources that is as clean of stars as possible. We
discuss the input data, define the training sample for the classifier, give quantitative estimates of its performances, and finally describe
the validation results with Gaia DR2, AllWISE, and GAMA catalogues.
Results. We built and made available to the scientific community the KiDS Bright EXtraGalactic Objects catalogue (KiDS-BEXGO),
specifically created to find gravitational lenses but applicable to a wide number of scientific purposes. The KiDS-BEXGO catalogue
is made of ≈6 million sources classified as quasars (≈200 000) and galaxies (≈5.7 M) up to r < 22m. To demonstrate the potential of
the catalogue in the search for strongly lensed quasars, we selected ≈950 “Multiplets”: close pairs of quasars or galaxies surrounded
by at least one quasar. We present cutouts and coordinates of the 12 most reliable gravitationally lensed quasar candidates. We showed
that employing a machine learning method decreases the stellar contaminants within the gravitationally lensed candidates, comparing
the current results to the previous ones, presented in the first paper from this series.
Conclusions. Our work presents the first comprehensive identification of bright extragalactic objects in KiDS DR4 data, which is, for
us, the first necessary step towards finding strong gravitational lenses in wide-sky photometric surveys, but has also many other more
general astrophysical applications.

Key words. gravitational lensing: strong – methods: data analysis – surveys – catalogs – quasars: general – galaxies: general

1. Introduction

Modern deep and wide-field sky photometric surveys offer an
unprecedented opportunity to collect large amounts of data for

⋆ The KiDS Bright EXtraGalactic Objects (KiDS-BEXGO) cat-
alogue is also available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/632/A56

statistical studies of the nearby and far-away universe. Over the
last decade, they have provided new insights into the structure
of our own Galaxy as well as of the extragalactic objects at all
scales, from giant galaxies to faint and compact stellar systems.
Deep surveys allow us to trace the mass assembly of galaxy clus-
ters and to map the intracluster light components (globular clus-
ters, dwarf galaxies, and diffuse light). They have also opened
the time domain leading to a new understanding of the transient
phenomena in the universe.
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One of the fields where large sky surveys can be of precious
help is strong gravitational lensing and in particular in finding
new lensed quasars. Strong gravitationally lensed quasars are
very rare objects: one quasar in ∼103.5 is expected to be strongly
lensed for i-band-limiting magnitude deeper than i ≈ 21m (see
e.g. Fig. 3 and Sect. 3.1 in Oguri & Marshall 2010). However, it
was clear upon their first discovery (Walsh et al. 1979) that these
systems are extremely useful tools for observational cosmology
and extragalactic astrophysics (see e.g. the review by Kochanek
2006).

When a quasar is strongly lensed by a galaxy, it results in mul-
tiple images of the same source, accompanied by arcs or rings that
map the lensed host of the quasar. The light curves of different
images are offset by measurable time delays that depend on the
cosmological distances to lens and source and on the gravitational
potential of the lens (Refsdal 1964). This in turn enables one-step
measurements of the expansion history of the Universe (primar-
ily H0, Suyu et al. 2014) and the dark matter halos of massive lens
galaxies (Keeton & Moustakas 2009; Zackrisson & Riehm 2010;
Gilman et al. 2018; Liao et al. 2018).

In addition to the deflection caused by the lens, the light
of the quasar can also be deflected by the gravitational field of
other low-mass bodies moving along the line-of-sight (10−6 <
m/M⊙ < 103, e.g. single stars, brown dwarfs, planets, glob-
ular clusters, etc.). This microlensing phenomenon provides a
quantitative handle on the stellar content of the lens galaxies
(Schechter & Wambsganss 2002; Bate et al. 2011; Oguri et al.
2014), and can simultaneously provide constraints on the inner
structure of the source quasar, namely accretion disk size, ther-
mal profile, and the geometry of the broad-line region (Anguita
et al. 2008; Sluse et al. 2011; Motta et al. 2012; Guerras et al.
2013; Braibant et al. 2014). Finally, compared with galaxy–
galaxy lenses, lensed quasars are detectable down to smaller
image-separations, thereby ensuring more complete coverage of
the lens mass range.

Unfortunately, progress in these fields has been limited by
the paucity of confirmed systems. This is why in the last decade
enormous effort has been devoted, in conjunction with the advent
of deep wide-field sky photometric surveys, to the search for
new lenses. These surveys offer an unprecedented opportunity to
search for strong gravitational lenses on a much larger portion of
the sky (Oguri et al. 2006; Treu et al. 2015; Lemon et al. 2017;
Rusu et al. 2019; Agnello et al. 2018a,b; Agnello & Spiniello
2019). However, it is necessary to develop and use sophisticated
automated methods (e.g. Decision Trees, Quinlan 1986, Naïve
Bayes, Duda & Hart 1973, Neural Networks, Rumelhart et al.
1986, Support Vector Machines, Vapnik 1995; Cortes & Vapnik
1995) to process the very large amount of data that the surveys
provide.

Obviously, the first step to find gravitationally lensed quasars
is to classify objects, selecting extragalactic objects among mil-
lions of sources, while minimizing stellar contamination as much
as possible. More generally speaking, the identification of extra-
galactic objects, quasars, and galaxies at all redshifts is an
all-important task that can help to answer to a wide range of
astrophysical and cosmological questions, such as the relation-
ship between active galactic nuclei (AGNs) and host galaxies or
the cosmic evolution of super massive black holes or the forma-
tion and evolution of galaxies (Driver et al. 2009) across cos-
mic time (Kauffmann & Haehnelt 2000; Haehnelt & Kauffmann
2000; Wyithe & Loeb 2003; Hopkins et al. 2006; Shankar et al.
2009; Shen et al. 2009).

Machine learning (ML) methods have proven to be very
effective in identifying and classifying extragalactic sources (e.g.

Eyer & Blake 2005; Elting et al. 2008; Kim et al. 2011; Gieseke
et al. 2011; Kovács & Szapudi 2015; Brescia et al. 2015; Peters
et al. 2015; Krakowski et al. 2016, 2018; Viquar et al. 2018;
Khramtsov & Akhmetov 2018; Nolte et al. 2019; Bai et al.
2019) with respect to any manual colour cut. A specific type of
classifiers, the ensembles of decision trees, were shown to
be advantageous in the identification of extragalactic sources,
and in particular quasars (Ball et al. 2006; Carrasco et al. 2015;
Hernitschek et al. 2016; Schindler et al. 2017, 2018; Sergeyev
et al. 2018; Jin et al. 2019; Nakoneczny et al. 2019). They allow
the user to explore, with a little human intervention and afford-
able computing time, large datasets, thus selecting candidates
with less stringent pre-selection criteria, maximizing the preci-
sion (recovery rate), and minimizing the stellar contamination.

More specifically, ML methods to search for strong gravi-
tational lenses have also been developed, although we note that
the large majority of them are built to find galaxy–galaxy lenses,
rather than lensed quasars, using a deep learning approach (e.g.
Cabanac et al. 2007; Paraficz et al. 2016; Lanusse et al. 2018;
Metcalf et al. 2018; Petrillo et al. 2017, 2019a,b; but see also
Agnello et al. 2015; Krone-Martins et al. 2018; Jacobs et al. 2019
for lensed quasars).

It is very important to note that at the catalogue-level lensed
quasars can be either point-like sources (and hence must be reli-
ably separated from stars), or single extended objects. Indeed,
when the deflector gives a non-negligible contribution to the
light of the whole system or the multiple images are blended
together, the lensing system produces an “extended”, single
match in a photometric catalogue, rather than many “point-like”
matches. Therefore, the first step towards finding strong gravi-
tationally lensed quasars is to select both galaxies and quasars,
possibly discarding all the galactic objects. This is indeed the
main focus of this paper, which is the second of the KiDS
Strongly lensed QUAsar Detection (KiDS-SQuad) project, and
presents an ML classifier specifically designed to remove stellar
contaminants from a catalogue of bright extragalactic sources in
the Kilo Degree Survey (KiDS, de Jong et al. 2013).

This paper is organized as follows. In Sect. 1 we introduce
the search for gravitationally lensed quasars in KiDS. In Sect. 2
we give a general overview of the catalogues and data we use.
In Sect. 3 we discuss the method to classify objects and isolate
extragalactic ones using optical and infrared deep photometry,
and we introduce and describe our own classification pipeline.
In Sect. 4 we present the main result of this pipeline: the cata-
logue of Bright EXtraGalactic Objects from KiDS DR4 – KiDS-
BEXGO, as well as different validation tests based on external
data to assess the performance of the classifier. Finally, in Sect. 5
we focus on “Multiplets”: close pairs of quasars, or galaxies sur-
rounded by at least one quasar (within 5′′), which represent the
best strong gravitationally lensed quasar candidates. We present
our conclusions and future perspectives in Sect. 6. In addition,
we present in the appendix a direct comparison of three different
machine learning methods that we tested, all based on decision
trees.

The KiDS Strongly lensed QUAsar Detection project. The
KiDS survey (de Jong et al. 2013; Kuijken et al. 2019) is ideal
to identify and classify objects and to search for strong gravita-
tional lenses thanks to its high spatial resolution (0.2′′ pixel−1,
Capaccioli & Schipani 2011), excellent (for ground observation
standards) seeing quality (mean r-band FWHM ≈ 0.70), depth
(25m in r-band), and wide footprint (1350 deg2 have been cov-
ered and the data will be released with DR5). Taking advantage
of these characteristics of the survey, we recently started the
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Fig. 1. Histogram of the r magnitude distribution for the full KiDS DR4
catalogue (blue) and the SDSS×KiDS training sample (red).

KiDS-SQuaD project presented in Spiniello et al. (2018, here-
after Paper I).

With KiDS-SQuaD, we are carrying out a systematic cen-
sus of lensed quasars with the final goal being to build a sta-
tistically relevant sample of lenses, covering a wide range of
parameters (geometrical configurations, deflector masses and
morphologies, redshifts, and nature of the sources). This would
enable us to study the dark matter halos of lens galaxies up to
z ∼ 1 (Schechter & Wambsganss 2002; Bate et al. 2011; Suyu
et al. 2014) as well as the quasar-host galaxy co-evolution up to
z ∼ 2 (Rusu et al. 2014; Agnello et al. 2016; Ding et al. 2017), to
put constraints on the inner structure of the quasar accretion disk
(size and thermal profile; e.g. Anguita et al. 2008; Motta et al.
2012) and on the broad-line-region geometry (e.g. Sluse et al.
2011; Guerras et al. 2013; Braibant et al. 2014), and finally to
gather precise cosmography (e.g. Suyu et al. 2014, 2017).

The power of KiDS in the object-classification challenge has
already been demonstrated in Nakoneczny et al. (2019, hereafter
N19) who built and released a catalogue of quasars from KiDS
DR3 (440 deg2), classified with a random forest supervised ML
model, trained on Sloan Digital Sky Survey DR14 (SDSS DR14,
Abolfathi et al. 2018) spectroscopic data. The approach we
undertake in this paper is similar to the one presented in N19, as
we also use KiDS data as input and SDSS as a training sample,
although we fine-tune and customize our pipelines to be more
suitable for the search of lensed quasars. Moreover, the biggest
difference between these works is that now we have available
photometry in nine bands. In fact, the optical data in KIDS are
now (starting from DR4, Kuijken et al. 2019) complemented
by infrared data from the VISTA Kilo-degree INfrared Galaxy
(VIKING) survey, covering the same KiDS area in the Z, Y ,
J, H, and Ks near-infrared bands (Edge et al. 2013). Thus, the
KiDS×VIKING photometric dataset provides a unique deep,
wide coverage in nine bands (u, g, r, i,Z,Y, J,H,Ks), which has
proven to be extremely effective in separating quasars from stars
using photometric characteristics (e.g. Carrasco et al. 2015).
Indeed, one of the limitations of the first paper of this series was
the manual optical colour selection we used to select quasar-
like objects. In the approach taken in this first publication, the
number of final lensed quasar candidates highly depends on
the selection criteria that are somehow arbitrary and often cal-
ibrated on previous findings. Moreover, generally, this num-
ber is of the order of 10 ÷ 30 sources per deg2, making the
necessary second step of visual inspection very difficult and

long. To avoid manual arbitrary cuts and to deal with the larger
amount of data coming from the fourth and fifth KiDS Data
Release (Kuijken et al. 2019), and above all from new deep,
wide-field surveys such as Euclid (Laureijs et al. 2011) or LSST
(Ivezić & LSST Science Collaboration 2013), we developed
a method based on ML, which we present here. This auto-
matic method allows us to more efficiently pinpoint extragalac-
tic systems while eliminating as much stellar contamination as
possible.

Although, as already stated, many ML classifiers have been
developed and released, we decided to build our own pipeline in
order to be able to fully customize the characteristics and param-
eters of the algorithm. As we explain in detail in this paper, we
require high completeness and purity, in an attempt to build a
catalogue of extragalactic objects that is as clean from stars as
possible, and at the same time as complete as possible. There-
fore, developing our own tool and releasing the resulting cata-
logue is the best possible choice.

2. Data overview

2.1. The input catalogue from KiDS DR4

The KiDS survey (de Jong et al. 2013) is one of the Euro-
pean Southern Observatory (ESO) public surveys carried on
with the VLT Survey Telescope (VST, Capaccioli & Schipani
2011; Capaccioli et al. 2012). Starting from DR4 (Kuijken et al.
2019), KiDS optical photometric data, covering 1350 deg2 in
u, g, r, i bands, are complemented with infrared data from the
VISTA Kilo-Degree Infrared Galaxy Survey (VIKING, Edge
et al. 2013), covering the same region on sky in five near-infrared
bands (Z,Y, J,H,Ks). Typical magnitude limits for each of the
nine bands are 24.2, 25.1, 25.0, 23.6, 22.7, 22.0, 21.8, 21.1,
21.2 (AB magnitudes, 5σ in 2′′ aperture), with seeing generally
below 1.0′′ (Wright et al. 2019; Kuijken et al. 2019). Throughout
this paper we make use of extinction-corrected Gaussian Aper-
ture and PSF (GAaP, Kuijken 2008; Kuijken et al. 2015) magni-
tudes.

We started from the r-band catalogue, which is the one with
the best seeing (0.7′′, on average), and we selected 9 596 412
sources with r < 22m and good aperture-matched photometry
measured in each of the other eight bands (we removed all the
sources with MAGERR_GAAP> 1m in each of the band). Limiting
the classification to only bright objects is necessary to avoid any
extrapolation to uncovered regions in the space of features. We
therefore only consider the magnitude range covered by spectro-
scopically confirmed objects from the Sloan Digital Sky Survey
Data Release 14 (SDSS DR14, Abolfathi et al. 2018) that we use
as a training sample. The histogram of the r-band magnitude dis-
tribution for the whole KIDS DR4 and for the spectroscopically
confirmed objects that we use as a training sample is shown in
Fig. 1.

The same approach (using the same magnitude threshold)
has already been tested and was successfully used for KiDS-DR3
in N19. Finally, as we describe in more detail below, we also use
the magnitude-dependent parameter CLASS_STAR for the source
classification. This has already proven to be a very important
feature in N19.

2.2. The training sample from SDSS DR14

To provide accurate classification, one needs to use a large
sample of objects with known true classes. Such data can be
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obtained from spectroscopic surveys. For our purpose, follow-
ing the approach of N19, we used the SDSS DR141 catalogue.

The SDSS DR14 catalogue contains 4 311 571 spectro-
scopically confirmed objects, classified based on their spec-
tra in three main classes: galaxies (2 546 963 objects), quasars
(824 548 objects), and stars (940 060 objects). We preserve this
structure in our classification, setting up a three-label classifica-
tion system, which we describe in detail in Sect. 3.

We assume that a quasar (hereafter, QSO) is a point-like
source2 with QSO class and QSO or BROADLINE subclass; a nor-
mal galaxy (hereafter, GALAXY) is an extended source that has
a GALAXY class label without STARFORMING, BROADLINE, or
STARBURST BROADLINE subclasses. The star labelling in SDSS
does not have subclasses; therefore we simply assume that the
source is a star (hereafter, STAR) if it is classified as such in the
catalogue.

We cross-matched the SDSS DR14 full catalogue with the
catalogue of bright sources from KiDS DR4 described above
(r < 22m) using a 1.0 arcsec radius and obtaining in this way a
training sample of 183 048 sources; some of these sources how-
ever have dubious spectroscopic classification.

Careful cleaning is very important for our scientific purpose,
but an automatic masking procedure, eliminating all the dubi-
ous cases and often applied in classification pipelines to reach
the highest possible pureness, is not appropriate here. In fact,
this kind of masking might cause the loss of interesting objects
with complex morphology and photometric properties, which
can indeed be very good lens candidates3. We therefore paid par-
ticular attention to the cleaning procedure, carrying it out manu-
ally and interactively.

In particular, we used this first “unpolished” training sam-
ple to train the classifiers (which we describe in the following
section). We then visually inspected all the misclassified objects
(of the order of a few hundred)4. Interestingly, during inspection,
we discovered that SDSS DR14 indeed contains a few objects
with incorrect labels.

Among these, we identified a few white dwarf and compact
galaxies labelled as QSO, blended sources where one of the com-
ponents is a star or stars projected into a galaxy. Since classifiers
trained on such a dataset can inherit these mistakes, we removed
the sources for which the true class did not fit with its imaging
and/or spectral properties. The whole classification pipeline was
iterated a few times, testing the cleaning also with different clas-
sifiers (see following section). We note that the total number of
removed sources does not exceed a few percent of the training
sample, but that the classification results before and after this
iterative cleaning procedure are not identical, with the classifier
learned with the “clean” training sample producing better results
in terms of pureness.

Finally, we test the impact of changing the threshold we
choose on the photometric errors of each single band to get a bet-

1 SDSS DR14 is the second release of the Sloan Digital Sky Survey IV
phase (Blanton et al. 2017) and it includes data from all previous SDSS
data releases.
2 We note that this assumption was not made in N19 which included in
the QSO training sample the relatively near (z < 0.2) AGNs and visible
host galaxies.
3 As a matter of fact, inspecting the misclassified data from SDSS we
found three interesting lensed quasar candidates that we selected for
spectroscopic follow up. If confirmed, the system will be presented in a
forthcoming publication.
4 We used the Navigate SDSS visual tool (http://skyserver.
sdss.org/dr14/en/tools/chart/navi.aspx) to inspect misclas-
sified sources.

ter handle on the importance of our assumptions in building the
input catalogue and the best training sample for it. In particular,
we tested three different upper limits for the errors on the magni-
tudes of the training sample: 1m, 0.5m and 0.3m. Also, in this case,
we trained the classifiers three times with three different training
sets made of objects passing these three thresholds and then we
compared the performances. We found negligible differences in
purity and completeness (at the 0.1% level) in the classification of
the training sample. Finally, we also compared the predictions for
the whole input catalogue obtained using the three different train-
ing samples, finding again no significant differences in the distri-
bution of the sources among the classes. We therefore decided to
use the training sample with the largest number of objects and the
same error threshold as the input catalogue (1m).

In conclusion, after removing the sources (i) with bad spec-
troscopic redshift estimation (for which zWarning > 0), (ii)
missing one or more of the nine optical–infrared magnitudes,
(iii) with high photometric errors (>1m in each filter) and (iv)
that are accidental duplicates retrieved after our cross-matching
procedure, we ended up with 121 375 sources, of which 24 307
sources classified as STAR, 12 152 sources classified as QSO, and
84 917 sources labelled as GALAXY. This catalogue, hereafter
named SDSS×KiDS, is used in Sect. 3.3 as a training sample
for the classifiers.

3. Classification

Since stars, quasars, and galaxies have different photometric
characteristics, it is in principle possible to separate them on the
basis of their (optical and infrared) colours.

3.1. Feature selection

Our first task was to define a feature space for the objects using
the nine magnitudes (u, g, r, i,Z,Y, J,H,Ks) provided by KiDS
and VIKING. Even though there are only eight independent
colours, some colour combinations may be more distinctive, and
so we chose to examine all 36 pairwise magnitude combina-
tions. We also added the KiDS r-band CLASS_STAR parame-
ter to the feature set. This corresponds to the “stellarity” of a
source, which is a continuous measure of whether the object
is extended (CLASS_STAR= 0) or point-like (CLASS_STAR= 1)
and has proven to be a very powerful feature in the classifica-
tion (e.g. N19). As shown in Fig. 8 of de Jong et al. (2013),
the CLASS_STAR parameter depends on the signal-to-noise ratio
(S/N) and is an effective way to separate stars from galaxies only
for data with S/N > 50 in r-band. Therefore, an alternative way
to select the input data to classify, which would probably also
allow investigation of fainter magnitudes, might be to put a cut in
the S/N rather than on the r-band magnitude. Nakoneczny et al.
(2019) showed that, although magnitudes contribute less to clas-
sification than colours and stellarity index, the output based on
colours only was different from that using also magnitudes. In
this respect, we note that the five infrared bands from VIKING
strengthen the separation of stars from quasars and galaxies and
thus allow us to follow a physically motivated and model-driven
approach that consider only colours in the classification.

Colours and stellarity values of the sources correspond to
the coordinates in the thirty-seven-dimensional feature space, in
which the classification has been performed.

Our chosen three-class labelling (stars, quasars, galaxies)
yields the purest identification of quasars, compared to the two-
class scheme (stars and quasars together as point-like, and galax-
ies as extended sources) or the four-class scheme (stars, quasars,
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regular galaxies, and galaxies with strong emission lines). Also,
we stress that a two-class problem, which only separates stars
from extragalactic sources, is not adequate for our scientific pur-
poses. It is true that to find gravitationally lensed quasars, we
need a catalogue that contains both galaxies and quasars, but
we need a combined morphological and photometric selection in
order to identify different combinations of objects (quasar pairs,
quasar+star alignments, lenses) that are blended into extended
objects by the survey pipelines (see Sect. 5).

3.2. Choice of tree-based method

In the following sections, we describe the classification algo-
rithm and calibration strategy that we use to build our catalogue,
which was the end product of a large series of tests and experi-
ments we carried out, also using different classification schemes,
as detailed in the Appendix A. We tested three different classifiers,
all based on decision trees (Random Forests and two different
Gradient Boosting approaches). In the end, we chose the CatBoost
(Dorogush et al. 2018; Prokhorenkova et al. 2018) scheme, out of
the two Gradient Boosting (GB, Friedman 2000) ensemble algo-
rithms that we tested, because it provided the best performance
during the training process, which is described below.

In general, GB is an ensemble algorithm that constructs a
learner by fitting in an iterative way the gradients of the predic-
tion residuals from the previously constructed weak learners, typ-
ically decision trees (gradient boosting decision trees (GBDTs)).
In particular, CatBoost is a novel, fast, scalable, high-performance
open-source GBDT library5. Compared to other GBDT algo-
rithms, CatBoost has the advantage of using Ordered Boosting
(Prokhorenkova et al. 2018) to curb the overfitting problem, as
we highlight in Appendix A. To our knowledge, this is the first
application of the CatBoost algorithm to an astronomical task.

3.3. Fine-tuning and learning process

In order to quantify the performance of a classifier, one needs
to define a set of validation data and the type of learning with
respect to the training-to-validation division. We therefore split
the validation into two groups: out-of-fold (OOF) and hold-out.
The hold-out sample consists of a random subsample of the ini-
tial training data which will be used only for the final perfor-
mance quantification. The remaining part of the initial sample is
used to train the classifiers with a k-fold cross-validation proce-
dure. This is a common method to train classifiers and directly
compare classification algorithms. Briefly, one divides the train-
ing sample into k randomly partitioned disjoint equal parts. The
classification algorithm then trains on k−1 parts and the remain-
ing one is used as validating data. This process is repeated k
times, each time using one of the k disjoint subsamples as vali-
dating data and obtaining a prediction from it. The combination
of these k predictions forms the so-called OOF sample. Simi-
larly, to obtain the prediction on the new data, the k predictions
from each of the fold models are averaged together. A schematic
view of the learning process is visualized in Fig. 2.

Starting from the SDSS×KiDS sample of 121 376 sources,
we randomly selected 20% of it as hold-out sample and use the
remaining 80% as OOF training sample in the cross-validation
process6. We stress that among the classifiers that we tested,

5 https://catboost.ai/, developed by Yandex researchers and
engineers https://yandex.com/company/
6 The hold-out and OOF samples are kept fixed for all the various algo-
rithms that we tested (see Appendix).

Fig. 2. Schematic view of the learning via ten-fold cross validation pro-
cedure and validation with the OOF and the hold-out samples drawn
from the initial training sample.

CatBoost returned the best performance both on the hold-out and
OOF samples.

Before training can take place, the classifier has a list of
hyper-parameters that have to be tuned to reach the highest pos-
sible classification quality. This is true for each of the different
classifiers that we tested. For this purpose, we performed an opti-
mal hyperparameter search on 60% of the initial training sample
via three-fold cross-validation with a “BayesSearch” for Cat-
Boost7.

While tuning the wide range of hyperparameters for Cat-
Boost, we noticed that the most influential ones were the
max_depth and the early_stopping parameters. We selected
max_depth= 8 and early_stopping= 150 after BayesSearch,
with a maximum number of trees of 3500.

Moreover, we applied a weighting criterion to the loss func-
tion for the CatBoost model to further decrease the contaminants
by stars in the extragalactic objects catalogue (see Appendix A.1
for more details).

After this hyperparameter fine-tuning, we finally trained Cat-
Boost with the same training and validation data and with a
ten-fold cross-validation (see Fig. 2). The result of the perfor-
mance for the final CatBoost model (after the fine-tuning) is
presented as confusion matrices in Fig. 3 for both the OOF
sample (top) and the hold-out sample (bottom). Using the
weighting for stars and galaxies, we saw a significant improve-
ment in the purity of the quasar sample; in fact, by comparing the
confusion matrices before and after re-weighting the loss func-
tion (see appendix), one can see that the rate of stars misclas-
sified as quasars decreased from ≈0.60% to ≈0.30%. CatBoost
lost only <1.50% of the quasars, thus only marginally decreasing
the resulting completeness of this class.

3.4. Feature importance

Another notable result that we can get with CatBoost is the rel-
ative importance of each feature in the classification procedure.
Feature importance, calculated with a decision tree, shows the

7 Same for XGBoost, while we use a “GridSearch” method for RF.
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Fig. 3. Confusion matrices for the final version of CatBoost, after
weighting the loss function, performed on the OOF sample (top panel)
and the hold-out sample (bottom panel).

frequency with which a certain feature occurs in the tree. In such
a way, the higher frequency is directly related to the higher fea-
ture contribution to separate the sources, that is the importance
of a given feature. An excellent example of this kind of anal-
ysis, together with a full description of the feature importance
technique is presented in D’Isanto et al. (2018). Figure 4 shows
the ten most informative features for all of the CatBoost models,
trained one by one via ten-fold cross-validation. Among these,
the CLASS_STAR is certainly the most important one, followed
by H−Ks, u−g, g−r, and J−Ks. This is in perfect agreement with
a number of results in the literature, for example using u− g and
g−r colour diagram it is possible to separate low-redshift quasars
from stars (Abraham et al. 2012; Carrasco et al. 2015). These
features, together with the stellarity, are also the most impor-
tant ones in other ML-based classifiers (e.g. N19). Furthermore,
quasars at z≈2.5 and z≈ 5.6 may be recovered using the K-band
information in the colour space (Chiu et al. 2007). Finally, it is
well known and also intuitively easy to understand that morpho-
logical information (described here by the CLASS_STAR feature)
allows one to clearly select galaxies, dividing them from stars

Fig. 4. Importance of the ten most significant features, calculated with
CatBoost in each of the ten folds. The dispersion of importance for each
feature is represented by a horizontal tick at each bar.

and quasars at least in the relatively bright magnitude range that
we consider (r < 22m).

The upper panel of Fig. 5 shows the number of quasars, stars,
and galaxies from the full initial training sample as a function
of their r-band magnitude (in the AB reference system). The
bottom panel of the same figure shows instead the percentage
of objects that have been misclassified by our algorithm (con-
taminators). The maximum rate of star-contaminators per bin
of r-band magnitude in the quasars catalogue is ≤0.6% and is
expected at the faint end of the sample (r ≈ 22m). Instead, the
stars misclassified as galaxies span over the full optical r magni-
tude range and do not exceed 0.1%.

Finally, we checked the contamination rate against the S/N
in the u-band, which is the noisiest one for KiDS, finding that
the relative contamination of stars decreases at each magnitude
bin by ∼2% when we only consider objects with S/N > 100.

For the input data, whose distribution in the feature space
should be similar to that of the training set, we expect a con-
tamination of 0.3% from stars and 0.1% from galaxies in the
sample of quasars, and 0.1% from stars and 0.6% from quasars
in the sample of galaxies. We therefore conclude that the algo-
rithm is in principle able to correctly classify up to 97.5% of
all the bright quasars, and up to 99.8% of the galaxies from the
KiDS DR4 input catalogue. These estimations are ideal and do
not necessarily reflect the real situation, because they are only
based on the training sample, which is a much smaller and sim-
pler sample than the full catalogue. A more realistic estimate of
the quality of our extragalactic catalogue in terms of purity and
completeness can be obtained using external data to validate the
resulting sample of classified sources, as we do in Sect. 4.

We stress that, for our final scientific purpose of finding grav-
itationally lensed quasars, the most crucial point is to be able to
clean any sample of stellar contaminants. It is indeed of funda-
mental importance to separate stars from quasars to as greater
degree as possible, both being point-like sources.

Since the KiDS DR4 input catalogue consists mostly of
galaxies, there will be a non-negligible number of galaxies con-
taminating the quasars sample. However, as we explain in more
detail in Sect. 5, strong lenses can be classified as GALAXY, if the
deflector gives a non-negligible contribution to the light and/or
the multiple images of quasars are not deblended, or they can be
identified as multiple quasars. In the first case, the whole system
will result in one extended object whose colours are a mixture of
typical galaxy and quasar colours. This is the main reason why
we build and inspect a catalogue containing all the extragalactic
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Fig. 5. Upper panel: histogram of the r magnitudes for the three classes
of training sources (top panel). Bottom panel: rate at which stars are
misclassified as quasars (red curve) or as galaxies (black curve) as a
function of their r magnitude. The plot is produced for the full initial
training sample.

sources (QSO+ GALAXY) looking then for “Multiplets”: objects
with nearby (within 5′′) companions. In particular, we select
sources classified as GALAXY with at least one nearby QSO com-
panion, to find lenses belonging to former group, and sources
classified as QSO with at least one QSO companion, to find lenses
belonging to the latter group.

4. The Bright EXtraGalactic Objects catalogue in

KiDS DR4 (KiDS-BEXGO)

For each object in the KiDS DR4 input catalogue, the classifier
returns three numbers representing the probability of belonging
to each of the three classes of objects: pSTAR, pGALAXY, pQSO. In
general, we assume that a source belongs to a given class when
the probability of being in that class is the highest. With this
simple assumption, starting from the input 9.6 million sources in
the KiDS DR4 catalogue, we retrieved: 186 037 (2%) quasars,
3 716 137 (39%) stars, and 5 694 238 (59%) galaxies. Using
a more severe threshold instead, namely considering that an
object belongs to a class when the corresponding probability
is >0.8, we obtain: 5 665 586 (59%) “sure” galaxies, 3 660 368
(38%) “sure” stars, and 145 653 (1.5%) “sure” quasars, plus
122 306 objects (1.3%) with “unsure” classification. We note that
for the classification of objects in the final catalogue we stick
to the original assumption that a source belongs to the class with
the largest probability, without applying any further threshold,
since “unsure” extragalactic sources (with pGALAXY ≈ pQSO) could
very well be good lens candidates where the deflector and the
quasar images are blended and all give a contribution to the light

Table 1. Number of objects for each class using different probability
threshold to define class belonging.

Cut-off pQSO pGALAXY pSTAR

>0.99 62 425 5 538 193 3 001 287
>0.95 112 222 5 605 735 3 533 787
>0.90 128 393 5 629 623 3 611 762
>0.80 145 653 5 655 586 3 660 368
>0.67 161 818 5 673 902 3 688 514
>0.50 181 336 5 690 885 3 711 692

of the system. However, since the levels of completeness and
purity depend on the chosen probability, and different scientific
cases might require different levels, we provide in Table 1 the
number of objects classified in each subsample for five differ-
ent thresholds. Furthermore, Fig. 6 shows the confusion matrices
obtained for the OOF training sample for the four highest prob-
ability levels (0.8, 0.9, 0.95, 0.99) and the completeness rate as
a function of the probability threshold for the three classes.

Finally, Fig. 7 provides a visualization of the class distribu-
tion of the objects in the output catalogue. Each corner of the
triangular density plot represents the maximum probability of
belonging to a given class. Objects within the region delimited
by dotted lines are “sure” according to the threshold given above
(p > 0.8).

In Sect. 5, we only focus on the objects with pQSO > pSTAR or
pGALAXY > pSTAR that form the KiDS-BEXGO catalogue used for
the gravitational lens searches. Here, instead, we discuss three of
the many possible validation procedures, for one or more classes
of objects, performed using external data (from the Gaia astro-
metric survey, from the AllWISE infrared catalogue, and from
the GAMA survey). Using an external dataset to validate cata-
logues obtained with ML techniques is a rather standard proce-
dure, as already shown in for example Khramtsov et al. (2018),
where the PMA (Akhmetov et al. 2017) catalogue of proper
motions was used to validate the purity of a sample of galaxies.

Given the results presented in the tests below, together with
predictions on the hold-out sample, we are confident that our
ML classifier is able to minimize the stellar contamination in the
BEXGO catalogue, which is the first, most crucial step when
searching for gravitationally lensed quasars within very large
catalogues.

4.1. Astrometric validation with Gaia

The latest data release of Gaia, DR2 (Gaia Collaboration 2018a),
measured five astrometric parameters (positions α, δ, proper
motions µα, µδ, and parallaxes ω̄) for 1.3 billion sources, cov-
ering the whole celestial sphere up to G < 21m8. The system-
atical errors in Gaia DR2, estimated with ≈500 000 quasars, do
not exceed 0.03 mas (Gaia Collaboration 2018b). Thus, the Gaia
DR2 provides an excellent means to test the purity of our cata-
logue, especially for quasars.

One of the main observational properties of quasars that can
be used to validate the sample of candidates classified as such
is the fact that they have proper motions of only a few micro-
arcseconds since they very distant sources (Bachchan et al.
2016).

8 This limit corresponds to r ≈ 21m for quasars at z ≤ 3, (Proft &
Wambsganss 2015).
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Fig. 6. Upper panel: confusion matrices for the final version of Cat-
Boost performed on the OOF sample using different thresholds of prob-
ability in the object classification (see text for more details). Bottom
panel: completeness rate of the OOF sample as a function of the adopted
probability threshold for each class.

We cross-matched the KiDS DR4 sample of 9.5 million
classified sources with the Gaia DR2 catalogue using a 0′′.5
radius, and retrieved a sample of sources with defined astromet-
ric parameters, of which 52 636 were classified as QSO, 2 369 414
were classified as STAR, and 25 346 – as GALAXY. We then
checked the proper motions and parallaxes of all the objects clas-
sified as quasars and with a match in Gaia to test the assumption
that quasars are indeed zero-proper-motion and zero-parallax
sources within the systematic errors. The results of this test are
shown in Fig. 8. The behaviour of the proper-motion components
is consistent with the estimated contamination of stars within the
quasar subsample of the KiDS DR4 catalogue (Fig. 5). In fact, at
the faintest magnitudes (G > 20.5m), the proper-motion compo-
nents deviate strongly due to larger contamination from stars. At
very bright magnitudes (G > 17.5m), the standard deviation of
the mean of the proper motions and parallaxes is also large, but
this is due to a relatively small amount of sources in this mag-
nitude bin rather than to star contamination. It is also important

Fig. 7. Density plot of the final distribution of sources among the classes
in the output catalogue. The triangle corners show the maximum proba-
bility of belonging to a given family (right QSO, left GALAXY, up STAR),
and colours indicate number of objects. Dashed lines correspond to the
p = 0.8 threshold.

to note that the parallax (right plot of Fig. 8) is biased for the
sample of extragalactic sources towards the value of −0.029 mas
reported in Lindegren et al. (2018).

Given the mean, median, and standard deviation of the
proper motion components and of the parallax of the astrometric
parameters reported in Table 2, we can conclude that the sample
of KiDS DR4 quasars mainly consists of motionless sources. A
more detailed astrometric analysis, providing a more quantitative
estimation of the rate of contaminating stars, cannot be produced
without accurate modelling and the involvement of other exter-
nal datasets, which goes beyond the purposes of this paper.

To assess the purity of the galaxy sample, we use the very
simple argument that, by construction, Gaia should contain no
galaxies at all (Robin et al. 2012). Thus none of the objects
with high pGALAXY should have a match in Gaia DR2. This is,
of course, only a rough approximation since there might be a
number of galaxies that Gaia still measures, such as for example
objects with bright cores. From the cross-match with Gaia, we
find ≈25 000 objects classified as GALAXY. We note that among
these only 1784 objects have CLASS_STAR> 0.5, and thus can
be point-like sources in KiDS, misclassified by our algorithm, or
very compact galaxies below the KiDS resolution.

In Fig. 9 we show the distribution of the CLASS_STAR param-
eter for each class of objects in the full KiDS DR4 catalogue.
Assuming that galaxies are all extended objects, we would
expect to find in KiDS no objects classified as GALAXY with
CLASS_STAR> 0.5. However, there are objects that are point-like
according to their CLASS_STAR value but that have been classi-
fied as GALAXY by our algorithm on the basis of their colours.
The number of point-like galaxies from Fig. 9 is larger than a
couple of thousand, as predicted by the cross-match with Gaia.
This slight disagreement might be explained by the better resolu-
tion of Gaia (Krone-Martins et al. 2018): these sources might be
seen as point-like in KiDS, but are extended and thus not identi-
fied in Gaia. Despite this, the majority of GALAXY sources with
a Gaia match are indeed extended objects in KiDS, or sources
near to a bright star. This was directly verified on a random sam-
ple of ≈5000 objects via the SDSS DR14 Navigate Tool9, and

9 http://skyserver.sdss.org/dr14/en/tools/chart/navi.

aspx
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Fig. 8. Median right ascension (green curve, left) and declination (black curve, left) of the proper motion components, and parallax (red curve,
right) for the KiDS DR4 QSO sample as a function of the Gaia G magnitude. The coloured areas represent the standard deviation of the mean σ/N,
where σ is the standard deviation and N is the number of quasars in each bin. The black horizontal line in the right plot represents the parallax
zero-point (equals to −0.029 mas, Lindegren et al. 2018).

Table 2. Basic statistics of the astrometric parameters of all the objects
in the KiDS output catalogue classified as quasars and with a match in
Gaia DR2.

Parameter Mean Median Standard deviation

ω̄, [mas] −0.010 −0.014 1.125
µα, [mas yr−1] −0.028 −0.018 2.104
µδ, [mas yr−1] −0.104 −0.005 2.005

then also by checking the KiDS r-band images, finding bright
features (e.g. cores, regions in arms, etc.) for most of the sources
that could be resolved only for galaxies with significant angular
size.

4.2. Validation of galaxies with GAMA

To validate the pureness and completeness of the subsample
of galaxies within the BEXGO catalogue, we cross-matched it
with spectroscopically confirmed galaxies from the Galaxy And
Mass Assembly Survey Data Release 3 (GAMA DR3, Baldry
et al. 2018). In particular, following the suggestions given on
the GAMA website, we retrieved all the objects10 with redshifts
z > 0.05 and with a high “normalised” redshift quality (nQ > 1).
We matched these ≈208k sources with our final catalogue of
classified objects from KiDS, finding 105 334 systems in com-
mon. Among these, 105 018 were indeed classified as GALAXY
from CatBoost and 104 970 have a pGALAXY ≥ 0.8. Thus, only
0.3% of the common objects have been misclassified (123 as
STARS and 181 QSO). Although we are aware that this test is not
definitive and that it is not straightforward to directly translate
the relative number of contaminants into a percentage of pure-
ness of the final galaxy catalogue, it shows that, at least for this

10 Also the ones observed by other surveys, i.e. we queried the table
“SpecAll”.

Fig. 9. Distribution of the CLASS_STAR parameter for the sources clas-
sified as GALAXY (black), QSO (red), or STARS (blue).

small but representative sample of galaxies, our CatBoost classi-
fiers perform well.

4.3. Validation of quasars with mid-infrared data from WISE

Mid-infrared (MIR) colours are a very effective way to separate
quasars from stars and passive galaxies, since while the latter two
show approximately zero MIR colours, quasars emit strongly in
these bands (Elvis et al. 1994; Stern et al. 2005; Assef et al.
2013). As largely demonstrated by a number of published works,
including Paper I, it is possible to separate quasars from stars and
galaxies using a combination of infrared colour and magnitudes
cuts (e.g. the two-colour criteria of Lacy et al. 2004; Stern et al.
2005; Donley et al. 2012 with Spitzer11 data; the two-colour cri-
teria in Jarrett et al. 2011; Mateos et al. 2012; or the one-colour

11 Werner et al. (2004).
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Fig. 10. Left panel: distribution of the W1 − W2 colour for the classified KiDS DR4, colour coded according to their classification family (red
for QSO, black for GALAXY, blue for STAR). Right panel: distribution of the W1 −W2 colour for the train samples. A fair agreement can be found
between corresponding classes, although the distribution for the full catalogues is generally broader than that of the training samples. In both
panels, the peak of the QSO distribution is shifted towards larger W1 −W2 with respect to the GALAXY and STARS, as expected.

criteria of Stern et al. 2012; Assef et al. 2013). We note that in
general it is harder to validate the purity of galaxies in the same
way since stars overlap with (non-active) galaxies in this dimen-
sion (see e.g. Fig. 12 in Wright et al. 2010).

Here, we decided to use the single infrared colour cut
[3.6] µm− [4.5] µm> 0.8 proposed by Stern et al. (2012) using
data from the Wide-field Infrared Survey Explorer, WISE
(Wright et al. 2010), the NASA space mission that aims at
mapping the whole sky in four MIR bands: W1, W2, W3, W4
(3.6, 4.5, 12 and 22 µm respectively). This criterion can sepa-
rate quasars from stars and galaxies with a purity of ≈95%, but
allows one to select systems only up to z ≈ 3.5 (Guo et al.
2018). Moreover, we caution the reader that a sample selected
with this criterion can be contaminated by brown dwarfs which
have similar colours. The more elaborate two-colour criterion of
Mateos et al. (2012) allows one to reduce this contamination, but
it requires reliable measurements in the W3 band, which would
significantly decreases the total number of matched sources in
our case.

Finally, we wish to clarify that in this paper the WISE data
are only used as validation for the quasar catalogue but not for
the lens search. As a matter of fact, the bottle-neck of the search
for gravitationally lenses performed in Paper I was indeed the
overly severe WISE colour pre-selection. In case the lens and
the source are blended in WISE and the deflector gives a large
contribution to the light, the colours of this effective source may
no longer be quasar-like and may move indeed toward lower
W1 − W2 values. These objects were not retained in our pre-
vious study. Here we rely on a more solid and trustworthy way
to classify objects, our ML-based classifier, and thus we do not
need to apply any cut, nor do we need to require a match with
WISE to build our candidates list.

We cross-matched the SDSS training sample as well as the
catalogue of all the classified objects with the AllWISE (Cutri
et al. 2013) data release using a 2′′.0 radius. The resulting sample
consists of 114 773 quasars, 3 289 858 galaxies, and 2 020 768
stars for the classified objects and of 8 879 quasars, 78 816 galax-
ies, and 13 249 stars for the SDSS×KiDS training sample.

Figure 10 shows the histograms of the distribution of the
W1−W2 colour for the KIDS DR4 objects classified in the three
classes (left panels), and for the corresponding training sample
(right panel), colour coded by their classification family: red for

QSO, black for GALAXY, and blue for STARS. In general, the distri-
bution of the full catalogue shows a similar distribution to that of
the training sample, with the peak of the QSO subsample shifted
toward larger W1−W2 values (W1−W2 > 0.8), as expected. We
note however that the distributions of the full catalogue are much
broader than the distributions of the corresponding training sam-
ple, especially towards larger W1 −W2 values, both in negative
and in positive. This is particularly true for the GALAXY and STAR
classes. This might indicate a lower purity for these families and
consequently a larger contamination level in the QSO family, or
a lack in the training sample of particular classes of objects (e.g.
active galaxies). As we show in the previous section, the purity
of the objects classified as GALAXY seems to be relatively high.
Therefore, we speculate that one of the reasons for the slight dis-
agreement between the distribution of galaxies from the training
sample and from the output BEXGO catalogue in the W1 −W2
space might simply arise from the fact that the SDSS galaxies
are generally more luminous than the KiDS ones.

More and deeper investigations will be performed into purity
and completeness in the forthcoming papers of the KiDS-SQuaD
series. Nevertheless, we are confident that our automatic classi-
fier allows us to obtain a catalogue of quasars and galaxies with
very little stellar contamination. In fact, as we show in Sect. 5,
the contamination is much less than that obtained in Paper I,
where we rely on simple and manual optical and infrared colour
cuts. We stress again that our final goal has been to create an
automatic and effective method to build a catalogue of extra-
galactic objects with the smallest possible contamination from
stars. This is the first necessary step in searching for strong grav-
itationally lensed quasars. We believe that these three validation
steps with external data demonstrate that we have succeeded in
our goal and therefore can now use the newly created catalogue
to search for lens candidates.

5. Searching for gravitationally lensed quasars

Strong gravitationally lensed quasars are valuable but very rare
objects that can provide direct and purely gravitational probes
of cosmology and extragalactic astrophysics. Generally speak-
ing, we can separate lensed quasars into three families: (i) sys-
tems where the quasar images dominate (mainly low-separation
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couples/quadruplets with a faint deflector in between), (ii)
objects where the deflector is a bright, usually red, massive
galaxy that dominates the light budget of the system, and finally
(iii) systems where both lens and source give a non-negligible
contribution to the light. In the last two cases, CatBoost will
most probably return multiple matches, of which at least one
will be classified as extended (GALAXY), while in the former
one it will classify them as multiple QSO. However, we note
that in cases where the separation between the quasar compo-
nents is too small, the objects might not be resolved in the KiDS
catalogue, and thus might result in a single match from our
algorithm. Indeed, most of the known low-separation gravita-
tionally lensed quasars discovered in the SDSS are identified
as “single” galaxies (only in a few cases as a single quasar),
since the poor resolution does not allow the multiple compo-
nents to be deblended. Of course, the better image resolution
of KiDS helps in this case, but some lenses with very low sep-
aration are blended also in KiDS. This is why it is of crucial
importance to have a catalogue of extragalactic objects that is
as clean from stellar contamination as possible and as complete
and efficient as possible in selecting and classifying galaxies and
quasars.

5.1. Recovery of known lens systems

To demonstrate our statement that lensed quasars are not always
classified as (multiples, nearby) QSO by ML-based algorithms
that work in a magnitude-colour space, and at the same time to
highlight the importance of having an extragalactic catalogue,
we carried out a test on the recovery of known lenses, as already
done in Paper I.

We started from the same list of ≈260 confirmed lensed
quasars that we used in Paper I and updated it with new sys-
tems recently discovered in wide-sky surveys (Agnello et al.
2018a,b; Ostrovski et al. 2018; Anguita et al. 2018; Lemon et al.
2018; Spiniello et al. 2019). The cross-match between the full
KIDS DR4 catalogue of objects with r < 22m and the list of
known lensed quasars (288 systems) gave us 17 known lenses.
All of them have been retrieved in the KiDS-BEXGO cata-
logue, 10 classified as QSO and 7 as GALAXY (one of them with
a pQSO ≈ 0.45). In 8 cases the lenses returned multiple matches
(see Sect. 5.2). These 17 known lenses are reported in Table 3,
together with the probability of belonging to each class. We do
not explicitly report their right ascensions and declinations in
separate columns because their IDs already contain the J2000
coordinates in the usual “hhmmss.ss± ddmmss.ss” format.

Based on this simple and qualitative test, it appears clear that
selecting only quasars would allow one to find only lens sys-
tems where the contribution to the light from the quasars is much
larger than the contribution of the deflector. Selecting only QSO
we would retrieve roughly 65% of the known lensed quasar pop-
ulation – 11 out of 17 systems.

Finally, although this goes beyond the scope of this paper, we
note that another important advantage of having an extragalac-
tic source catalogue (rather than one containing only quasars) is
that it offers the possibility to search for galaxy–galaxy gravi-
tational lenses. This type of gravitationally lensed object allows
the detailed investigation of mass distribution in massive galax-
ies up to z ∼ 1, especially when combined with dynamics
(Koopmans et al. 2006, 2009; Spiniello et al. 2011, 2015).
Morphological and photometric criteria can be used to find this
kind of lens: one should look for red extended objects (GALAXY
with red colours) with the presence of blue extended objects
(GALAXY with blue colours) within small circular apertures. We

Table 3. Known lenses in the KIDS DR4 footprint.

ID pSTAR pQSO pGALAXY

J004941.90−275225.87 2.0E−5 1.0E−5 0.9999
J033238.22−275653.32 2.0E−5 1.0E−5 0.9999
J115252.26+004733.11 2.0E−5 1.0E−5 0.9999
J220132.76−320144.73 0.0004 4.0E−5 0.9999
J234416.95−305625.98 0.0004 0.0012 0.9983
J105644.89−005933.34 7.0E−4 0.9978 0.0015
J112320.73+013747.53 0.0086 0.9829 0.0085
J142758.89−012130.31 0.0035 0.9831 0.0134
J025257.87−324908.65 0.0011 0.9950 0.0039
J145847.59−020205.87 0.0004 0.0011 0.9985
J145847.66−020204.86 2.0E−5 3.0E−5 0.9999
J032606.87−312254.21 0.0019 0.9944 0.0037
J032606.78−312253.52 0.0023 0.9793 0.0184
J143228.96−010613.51 0.0006 0.9980 0.0014
J143229.25−010615.98 0.0008 0.9966 0.0025
J104237.27+002301.42 0.0477 0.8637 0.0886
J104237.24+002302.76 0.0652 0.7721 0.1627
J092455.82+021923.69 0.0078 0.8909 0.1012
J092455.82+021925.30 0.0059 0.4543 0.5397
J122608.10−000602.31 0.0046 0.9610 0.0343
J122608.03−000602.25 0.0199 0.5048 0.4752
J122608.13−000559.09 0.0009 0.0016 0.9997
J133534.80+011805.61 0.0128 0.9806 0.0066
J133534.87+011804.45 0.0056 0.9797 0.0066
J133534.97+011809.32 0.0013 0.0050 0.9937
J152720.14+014139.66 0.0058 0.9617 0.0325
J152720.27+014140.96 0.0005 0.0006 0.9999

Notes. All of them are recovered in our extragalactic catalogue, 8 out
of 17 have multiple matches. For the single ones (upper “block”), 5 out
of 17 are classified as GALAXY and 4 out of 17 as QSO. For the mul-
tiple matches, half of the time all the components belong to the same
family (middle “block”) and the other half of the time they belong
to different families (bottom “block”). We report for each component
of each system the J2000 coordinates in the ID column (in the usual
“hhmmss.ss± ddmmss.ss” format), and the probability of belonging to
each of the three classification families, highlighting the highest proba-
bility in bold.

will work in this direction in a forthcoming paper, possibly using
automatic ML-based routines (e.g. Petrillo et al. 2017, 2019a,b)
and already available catalogues of luminous red galaxies in the
Kilo Degree Survey (e.g. Vakili et al. 2019).

5.2. Looking for Multiplets

Starting from the KiDS-BEXGO catalogue of 5 880 276 objects,
we retrieve only systems belonging to the following distinct
groups:

(1) “QSO-Multiplets”: sources classified as QSO and with at
least one nearby QSO companion (within a 5′′ circular aper-
ture radius) with similar colours, and (2) “GALAXY-Multiplets”:
sources classified as GALAXY and surrounded by at least one
object classified as QSO within a 5′′ circular aperture radius12.

This simple procedure allowed us to obtain 347 unique
objects for the first group and 611 unique objects for the second.
These 958 objects were then visually inspected independently

12 The choice of a 5′′ circular aperture radius is motivated by the aver-
age separation of all the known lenses.
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Table 4. Most reliable gravitationally lensed quasar candidates found with the “Multiplets” method described in the text.

ID RA Dec Multiplets Num. of Separation Notes
(hh:mm:ss.ss) (±dd:mm:ss.ss) type matches (arcsec)

KIDSJ0000−3502 00:00:57.10 −35:02:54.15 QSO 2 1.0 Low-separation double
KIDSJ0139−3103 01:39:59.08 −31:03:35.06 QSO 2 1.6 Low-separation double
KIDSJ0201−3208 02:01:15.44 −32:08:34.57 QSO 2 1.6 Low-separation double
KIDSJ1334−0120 13:34:11.18 −01:20:52.22 QSO 2 1.1 Low-separation double
KIDSJ0008−3237 00:08:16.01 −32:37:15.80 GAL 3 2.7 Gravitational arc
KIDSJ0106−2917 01:06:49.80 −29:17:12.20 GAL 2 3.4 Double with large shear
KIDSJ0206−2855 02:06:30.86 −28:55:42.22 GAL 2 1.2 Low-separation double
KiDSJ0208−3203 02:08:53.16 −32:02:03.51 GAL 3 2.0 Cross Quad candidate
KIDSJ0215−2909 02:15:14.4 −29:09:25.6 GAL 3 3.2 Fold Quad candidate
KIDSJ1204+0034 12:04:56.58 +00:34:06.02 GAL 3 4.6 Large-separation double
KiDSJ1346+0017 13:46:12.38 +00:17:20.18 GAL 4 2.8 Double with large shear
KIDSJ1359+0129 13:59:43.98 +01:28:13.90 GAL 2 0.9 Low-separation double

Notes. Cutouts of the candidates are shown in Fig. 11. We highlight in the table the number of matches found for each system in the BEXGO
catalogue. In groups where the number of detections is smaller than the total number of objects visible from the cutout, most probably these objects
are fainter than the magnitude threshold we set for the input catalogue. We double checked that these missing matches were not objects classified
as stars. The last column before the notes indicates the separation between the multiple QSO images.

by four researchers in our team that also graded them from “0”
to “4”, with “4” being a “sure” lens. Among these, some where
already known lenses, some are probably binary quasars, and
some are simply contaminants appearing as close-by compan-
ions because of sky projection. Nevertheless, we found many
very promising lens candidates, objects that at least two peo-
ple graded with a score higher than or equal to “2”. We present
the 12 candidates with mean grade ≥2.5 in Table 4 (divided into
the two types of Multiplets). We publicly release their coordi-
nates to facilitate spectroscopic follow-up, which is the last nec-
essary step for unambiguous confirmation.

The gri-combined KiDS cutouts of these 12 candidates are
shown in Fig. 11. The first two rows show candidates belonging
to the GALAXY-Multiplets family while the bottom row shows
QSO-Multiplets candidates. In the former group, the deflector
gives a much larger contribution to the light, as can be clearly
seen from the images. KiDSJ0008−3237 seems to be a very
reliable galaxy–galaxy candidate, while KiDSJ0215−2909,
definitively among the most promising objects, might be a fold-
quadruplet similar to the one recently found in the VST-ATLAS
Survey, WISE 025942.9−163543 (Schechter et al. 2018) and
very useful for cosmography studies (time-delay measurement
of H0; see e.g. “The H0 Lenses in COSMOGRAIL’s Well-
spring”13 results).

We note that of the 17 known lenses, only 8 have been
selected as Multiplets (2 as QSO-Multiplets and 6 as GALAXY-
Multiplets). The other 9 systems have not been deblended in
the KiDS catalogue, and thus only have one single match in our
classification scheme. These numbers are perfectly in line with
the results obtained in Paper I where we found that the “Multi-
plets” method alone allowed the recovery of ∼40% of the known
lenses. In a forthcoming paper of this series fully dedicated to
the lens search, we will perform a more careful candidate selec-
tion, also based on improved colour and magnitude criteria, to
select objects with similar colours and applying the Blue and
Red Offsets of Quasars and Extragalactic Sources (BaROQuES)
scripts to the full BEXGO catalogue, which were already suc-
cessful tested in Paper I.

13 www.h0licow.org

We finally note that we re-discovered a very promising
quadruplet: KIDS0239−3211 that was presented in an AAS
research note (Sergeyev et al. 2018) and was found by the first
application of our ML-based classifier14. The same system was
first detected by Hartley et al. (2017) using image-based Sup-
port Vector Machine classifier and then by Petrillo et al. (2019b)
using convolutional neural networks; but since they did not
release the coordinates in their paper, we re-discover it in a com-
pletely independent way.

5.3. Comparison with Paper I

We cross-match the list of all the lens candidates found in
Paper I with the BEXGO catalogue. We find that among the
210 objects we found in Spiniello et al. (2018), 148 are recov-
ered in the extragalactic objects catalogue (≈45% classified
as QSO and ≈55% as GALAXY) and 66 are also selected as
Multiplets. Of the 62 remaining objects, 33 have r> 22m and
therefore were discarded at the input catalogue creation stage,
and 29 were classified as STAR by CatBoost; these 29 stars
indeed also have a match in Gaia, and all of them have non-
negligible proper motions and parallaxes. Finally, among the
DR3 candidates that were not found in the DR4 KiDS-BEXGO,
four were spectroscopically followed-up and turned out to be
stars15. These numbers nicely demonstrate that the employ-
ment of the ML-based classifier further helps in decreasing the
risk of stellar contamination within gravitationally lensed quasar
candidates.

Of the seven known lenses that we recovered in Paper I, six
are again recovered. We only lose the nearly identical quasar
(NIQ) couple QJ0240−343 (Tinney 1995; Tinney et al. 1997)
behind the Fornax dwarf spheroidal galaxy, because it has r mag-
nitude of r = 22.17m and therefore did not satisfy our initial
conditions.

14 We used in that case a Random Forests classifier, trained with spec-
troscopically confirmed objects from SDSS DR14.
15 We have already started a spectroscopic follow-up campaign using
different facilities (e.g. the NTT at La Silla, the SALT at Suthernland
Observatory, the LBT at Mt. Graham). The detailed results will be pre-
sented in forthcoming dedicated papers.
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Fig. 11. 12 best candidates, both of GALAXY-Multiplets type (first two rows) and of QSO-Multiplets type (bottom row). The cutouts show gri
combined KiDS images of 10′′ × 10′′ in size. The coordinates of the candidates are given in Table 4.

6. Results and conclusions

In this second paper of the KiDS-SQuaD project we present a
new ML-based classifier to identify extragalactic objects in a
search for lensed quasars within the KiDS DR4 data. The tech-
nique adopted in this paper has become relatively standard in the
extragalactic community to classify objects in multi-band pho-
tometric surveys (Gieseke et al. 2011; Kovács & Szapudi 2015;
Brescia et al. 2015; Carrasco et al. 2015; Peters et al. 2015;
Krakowski et al. 2016, 2018; Viquar et al. 2018; Khramtsov &
Akhmetov 2018; Barrientos et al. 2018; Nolte et al. 2019; Bai
et al. 2019; Nakoneczny et al. 2019), which provide a very large
amount of data.

A similar approach has also been already tested on the Kilo
Degree Survey by Nakoneczny et al. (2019), who presented a
ML-based pipeline to classify objects into three classes (stars,
galaxies and quasars) and successfully applied it to the KiDS
DR3 (de Jong et al. 2017). Our work, although extending from
their findings, has been developed within a different framework,
i.e. the search for lensed quasars, and it differs from N19 in many
aspects, from the assumption that quasars are point-like sources
to the cleaning procedure, optimization, and fine-tuning aimed at
minimizing stellar contamination in the catalogue of extragalac-
tic objects. Finally, here we also add infrared data, using deep

photometry in nine bands (instead of four), which further helps
to isolate stars.

Here we provide a general summary of the archived results
of this paper, highlighting the main main steps that we undertook
and the results that we achieved.

We used the large potential of ML methods on broad optical–
infrared photometric data from the KiDS DR4 survey. We
identified the CatBoost ad the best possible classifiers for our
purposes, comparing and quantifying the performance of some
of the most used classifiers based on decision trees on the same
training sample. The result of this direct comparison is presented
in Appendix A. Moreover, we performed ad-hoc customiza-
tion and fine-tuning of the parameters of CatBoost, to reach the
required levels of purity and completeness and to avoid overfit-
ting problems.

We used a set of 121 376 spectroscopic confirmed objects
from the SDSS DR14, after applying a careful cleaning pro-
cedure and also visually inspecting the ambiguous cases when
necessary. We splitted the training dataset into hold-out and out-
of-fold parts, to asses the performance (in terms of complete-
ness and purity) of the CatBoost algorithm. We then defined
(and solved) a three-class problem (STAR, GALAXY, QSO), work-
ing with a simple basic assumption made for the classifica-
tion: quasars and stars are point-like sources, while galaxies
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are extended. We therefore used the CLASS_STAR parameter –
a “stellarity” index from the KiDS catalogue – which turned out
to be the most important feature in our classification algorithm
(as in N19), together with optical and infrared colours.

We applied CatBoost on all the data from KiDS DR4 with
magnitude brighter than r = 22m and reliable photometry mea-
sured in each of the nine bands. For each input source, the classi-
fier calculated the probability of belonging to the three different
classes of objects: pSTAR, pGALAXY, pQSO. We assumed that a source
belongs to a given class when the probability of being in that
class is the highest but we also studied the variation in complete-
ness and purity as a function of the probability threshold used to
assign an object to a given class.

We collected all the objects that were not classified as stars,
building the KiDS-BEXGO catalogue, which we then validated
using external data (Gaia DR2, AllWISE and GAMA).

We firstly showed the potential of the KiDS-BEXGO cat-
alogue in the gravitationally lensed quasar search, with a sim-
ple test on the recovery of known, confirmed lenses. We proved,
in this way, that our method of selecting extragalactic sources
(not only quasars) is a necessary condition to discover as
many new systems as possible. Secondly, we used the KiDS-
BEXGO catalogue to search for new, undiscovered gravitation-
ally lensed quasars, looking for objects with nearby companions
and obtained a list of 958 “Multiplets” (347 QSO and 611
GALAXY) that we visually inspected. We found 12 very reli-
able lens candidates, for which we release coordinates and show
KiDS gri-combined images.

Finally, we showed the improvement in terms of stellar con-
tamination of the final list of candidates that we obtain with
respect to what was obtained in Paper I.

In this paper we focussed on the ML classifier and on build-
ing the catalogue of bright extragalactic objects, which can be
useful for a broad series of scientific goals, but at the same time
we highlighted the need for different methods to search for lens
candidates within the catalogue (e.g. the BaROQuES) and direct
image analysis (DIA). These methods will be investigated and
applied to BEXGO in Paper III, already in preparation (Sergeyev
et al., in prep.), where we will present a systematic and auto-
mated way to select reliable candidates from the KiDS-BEXGO
catalogue, as well as the first results from the ongoing spec-
troscopic follow-up campaigns. In particular, we will apply the
BaROQuES scripts to our catalogue and will also exploit the full
potential of the DIA (see Paper I for more details) to get pre-
cise astrometry and fit the photometry of our most reliable candi-
dates. Finally, in the future, we aim to improve the classification
model, working in a larger, more complex feature space, and to
develop a more detailed classification scheme, for example split-
ting the classification of galaxies into late and early types, given
that massive early types are more likely acting as deflectors due
to the fact that on average they are more massive.
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Appendix A: Testing different classifiers

The main result of the main body of the paper is a catalogue
of bright objects from KiDS DR4 that we classified into three
families, STAR, QSO, and GALAXY, using a ML-based classifier
that uses the GB algorithm.

In order to choose the best possible algorithm for our pur-
poses, we tested two different approaches (and three diffrent
methods) based on ensembles of decision trees, namely the
GB (Friedman 2000) and RF (Breiman 2001) algorithms. Here
in this appendix, we provide a more detailed description of
the classifiers, their main characteristics, and their strength and
weakness points in order to provide a better understanding of the
differences and similarities between them and to finally justify
our final choice.

The general classification problem can be simply explained
considering a training dataset (D) with n samples and m features
for each sample with defined label yi: D = {xi, yi} where i ∈
{0, . . . , n − 1}, xi ∈ Rm, yi ∈ N. The goal is then to create an
approximation function F:x→ y.

The two GB algorithms mentioned above follow two differ-
ent approaches of ensemble learning, that could be propagated
not only on the decision trees. We describe them in details in the
following sections. We focus instead on the RF method in the
following section.

A.1. Gradient Boosting decision trees

XGBoost (Chen & Guestrin 2016 and CatBoost Dorogush et al.
2018; Prokhorenkova et al. 2018) are two GB (Friedman 2000)
algorithms that implement two different schemes for calculating
gradients.

Let us consider the ensemble of K trees, where the predicted
score for an input x is given by the sum of the values predicted
by the individual K trees: ŷK(x) =

∑K
j=1 f j(x), where f j is the

output of the jth decision tree.
Building the (K + 1)th decision tree minimizes an objec-

tive function L =
∑n

i=1 ℓ
(

yi, ŷi
K(xi) + fK+1(xi)

)

+ Λ( fK+1), where
ℓ
(

yi, ŷi
K(xi) + fK+1(xi)

)

depends on the first (and, possibly, sec-
ond) deviation of the loss function ℓ

(

yi, ŷi
K(xi)
)

, and Λ( fK+1)
is a regularization function that penalizes the complexity of the
(K+1)th tree to prevent overfitting. To build a (K+1)th decision
tree, the algorithm starts with a single decision node and itera-
tively tries to add a best split for each node, until a stop criterion
on tree growth is satisfied.

XGBoost estimates the gradient value for all of the objects
in a leaf and calculates the average gradient to determine the
best split for each node. In this way, the gradient is estimated via
the same data points, on which the current decision tree was built
on. In general, such splitting procedure leads to the gradient bias,
due to the repeated usage of the same objects through all itera-
tions, and, as result, to an overfitting problem (Prokhorenkova
et al. 2018).

CatBoost, the chosen algorithm for this paper, in its turn
implements the splitting technique called Ordered Boosting
(Prokhorenkova et al. 2018), which overcomes this problem.
With Ordered Boosting, the gradients are calculated not for all
of the objects but for the shuffled training dataset (so-called ran-
dom permutations), wherein the gradients are calculated for the
objects before a given j+1 object. In such a way, the gradient for
the j + 1 object is calculated based on a prediction of the model,
learnt by previous samples in a shuffled dataset.

One of the limitations of the GBDT algorithms is the exis-
tence of a wide range of parameters that have to be tuned

to get the highest classification quality; CatBoost also confers
an advantage in this respect, because it performs well without
hyperparameter tuning.

For our task, the most influential hyperparameters that have
to be tuned in GBDT algorithms are:
1. learning_rate – the rate of gradient descent;
2. min_split_loss – the minimum loss reduction required to

split a node of the tree;
3. max_depth – the maximum depth of the decision trees;
4. min_child_weight – the minimum number of samples in

the node of the decision tree required to make a split;
5. max_delta_step – the maximum step controlling conver-

gence during gradient descent;
6. colsample_bytree – the subsample ratio of the features

during building each decision tree;
7. subsample – the subsample ratio of the training objects

In particular, we noticed that the parameters that mostly
affected the learning quality for our training dataset were
learning_rate (greater values correspond to a sharper gradi-
ent descent, that is good for learning acceleration, but can lead
to missing the loss minimum), and max_depth (greater values
correspond to a large complexity of the trees, and can lead to
overfitting).

Moreover, GB algorithms usually allow the use of a stop
criterion, responsible for the termination of the learning when
an overfitting occurs (the so-called, early_stopping parame-
ter). It is expressed via the number of constructed trees, after
which the quality of the metric no longer increases. Usually
this parameter ranges between 10 and 1000 trees, depending on
learning_rate. If the early stopping criterion is met, the GB
algorithm accepts the number of trees, satisfied to the best score.
Paying particular attention to the early_stopping parameter
is the best way to avoid as much overfitting as possible. To
quantify, how the quality of the classification changes over the
iterations, for XGBoost and CatBoost, it is necessary to define
a quality metric. Defining this metric allows one to express
the changing of the classification quality against the complex-
ity of the GBDT algorithm and can be easily used to control
the overfitting. Widely used quality metrics are accuracy, preci-
sion, recall, and F1-score; however, these metrics are sensitive
to the imbalance in number of training sources among differ-
ent classes. Therefore, we decided to use Matthews correlation
coefficient (MCC, Matthews 1975) which is instead insensitive
to this imbalance.

Finally, a good way to decrease the number of stars and
galaxies classified by the algorithm as quasars is to apply a
weight to the loss function of these two classes. In fact, this
trick, applied to CatBoost, helped us in the paper to improve the
final purity of the quasar selection with a minimal decrease in
the completeness of the training set. In particular, we weighted
the loss function for the STAR and GALAXY samples in the fol-
lowing way:

L =
1

∑n
i=1 wi

n
∑

i=1

wi[ℓ
(

yi, ŷi
K(xi) + fK+1(xi)

)

+ Λ( fK+1)], (A.1)

where wi = 1 if source is a QSO and wi = 4 if source is STAR or
GALAXY.

A.2. Random Forest

Another method of ensemble learning with decision trees is
based on the use of an RF (Breiman 2001) algorithm. This was
the choice adopted in KiDS DR3 by N19. The basic idea of RF is
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Fig. A.1. Confusion matrices for the RF (left), XGBoost (central) and CatBoost (right) predictions on OOF sample (top panels) and hold-out
sample (bottom panels).

that a set of decision trees can fit a robust classifier by averaging
their decisions.

From the performance side, the RF constructs a large number
of decision trees and then uses the majority vote among them.
The main pipeline of the single decision tree includes the fol-
lowing steps: (1) generation of different samples from the train-
ing set with the same size, but using random subsets of all the
objects. The repetition of some objects among different subsam-
ples is required to make the sample complete (so-called, random
subsample with replacement); (2) let the decision tree learn on
the “random subsample with replacement”, generated at step (1),
but using randomly selected ≈

√
m features.

The RF therefore consists of many learning processes, each
performed on a single decision tree using different random sub-
samples with replacement and randomly selected features. The
single prediction of a class for given objects is thus a simple aver-
age on the predictions of all constructed decision trees (bootstrap
bagging method). The big advantage of RF is that it uses both
the bootstrap bagging method (averaging prediction of the esti-
mators learnt with random subsamples with replacement) and
the learning of each estimator with a random subset of features.
These procedures prevent overfitting and in most of the cases
help to improve the classification performance and to increase
the generalization ability of the RF.

The principal hyperparameters that are required for the RF
fitting on the training dataset are:
1. n_estimators – the number of decision trees;
2. max_features – the maximum number of features to be

used in the node;
3. max_depth – the maximum depth of the decision trees;

4. min_samples_split – the minimum number of samples in
the node of the decision tree required to make a split;

5. min_samples_leaf – the minimum number of samples
required to be in the leaf node (the end node in which the
splitting finishes) of each tree;

6. class_weight – weights associated with each class (is
required in the case of imbalance training sample).

The number of estimators and the maximum depth (and/or min-
imum number of samples in the node) are mandatory hyperpa-
rameters. Moreover, fine-tuning of the parameters 3, 4, and 5
is crucial to avoid overfitting. For instance, setting the values of
these parameters to their common values of {∞, 2, 1} respectively
will lead to overfitting most of the time. In fact, if the depth of
the decision tree is too high, and the minimum number of sam-
ple required to be in the leaf node is too small, and each single
object in the training will have its own class characterized by
its features. This will then make it impossible to classify new,
unknown objects, although the accuracy of classification of the
training set will be equal to about 100% (Mansour 1997). There-
fore, to reduce overfitting, one has to limit the maximum depth of
the decision trees (usually set to 3−20, depending on the amount
and topology of the features), and/or the minimum number of
samples in the nodes.

A.3. Performance of the classification algorithms

To directly compare the performance of the three algorithms that
we tested, we used confusion matrices. These show the relative
number of predicted objects in each of the three classes with
respect to the number of true classes. The confusion matrices for

A56, page 17 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936006&pdf_id=12


A&A 632, A56 (2019)

RF, XGBoost, and CatBoost are shown in Fig. A.1. As we can
see, RF provides the highest completeness for quasars (≈98.8%),
but with a contamination of ≈0.8% from stars and ≈0.1% from
galaxies; XGBoost shows the greatest purity of quasar selection,
but with a very low completeness (only ≈75.8% quasars were
classified as quasars).

For the GALAXY class, CatBoost and RF provide very similar
completeness (higher than XGBoost), with a very low contam-
ination from stars (<0.1%) but CatBoost gives a much greater
contamination from QSO (≈0.25%).

As one can see, RF and CatBoost show very similar results.
To better understand which was the best choice for our scien-
tific purposes, we decided to compare the difference between the
MCC value received for the training sample and the one received
for the OOF sample, for each of the algorithms. Usually, a large
difference between these two scores (training and validation)

indicates an overfitting in the model, that is the classifier loses
its ability to classify sources, that are not presented in the train-
ing sample, and consequently is only able to classify correctly
training data. For the RF, we received the following MCC values
for training and OOF samples respectively: 0.9925 and 0.9892
(with a difference of 0.0033). For CatBoost the MCC equals
0.9901 for training data and 0.9894 for the OOF sample. There-
fore, in this case, the difference (0.0007) is almost five times
smaller.

In conclusion, CatBoost is more able to generalize good
results on an unseen dataset. It also maintains the purity and
completeness of the quasar selection at a very high level and
maximizes the completeness of the sample of galaxies. At the
same time, CatBoost also removes the greatest amount of stellar
contamination. For all of these reasons, CatBoost was chosen as
the optimal classifier for our purposes.
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