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Killing cells by targeting mitosis

E Manchado1, M Guillamot1 and M Malumbres*,1

Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled

proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting

the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells,

targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic

against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such

as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the

energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal

levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that

targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis.

As the efficacy of cell–cycle targeting approaches has been limited so far, further understanding of the molecular pathways

modulating mitotic cell death will be required to move forward these new proposals to the clinic.
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Facts

� Extensive understanding of cell cycle regulation has led to

the proposal of new strategies for cancer therapy.

� Targeting regulators of centrosome duplication and sepa-

ration, spindle formation and mitotic checkpoint have

demonstrated efficacy in preclinical models but limited

activity in clinical trials.

� The balance between mitotic cell death pathways and

kinetics of cyclin B1 degradation determines the thera-

peutic effectiveness of antimitotic-based strategies.

� Targeting mitotic exit has been proposed as a better

therapeutic strategy than targeting spindle assembly and

spindle regulators.

� Sustained mitotic arrest leads to a poorly characterized cell

death, which may be modulated by cyclin-dependent

kinase 1 (Cdk1) activity.

Open Questions

� Why new mitotic inhibitors have demonstrated limited

activity in vivo in comparison with classical microtubule-

targeting drugs?

� Newly proposed strategies need to be validated in vivo

before reaching clinical settings.

� We need to understand in detail the molecular mechanisms

that govern mitotic cell death. Can modulation of these cell

death pathways synergize with current antimitotic drugs?

� We need to identify and characterize specific biomarkers

for a better definition of patients that may benefit from

therapeutic strategies targeting mitosis.

The cell cycle is deregulated in most cancer cells, andmultiple

strategies have been proposed in the last years to impair

tumor cell proliferation. Initial strategies were designed to

inhibit the machinery that drives the entry into the cell cycle

(G1 phase) and DNA synthesis (S phase). The discovery

of centrosomal and mitotic regulators that function during

S phase, G2 (a preparatory phase for mitosis (M)) or M phase

later provided additional targets, such asmitotic kinases or the

mitotic spindle machinery, required for chromosome segrega-

tion. The promise of these targets was reinforced by the

clinical success of microtubule poisons such as Vinca

alkaloids or taxanes. However, targeted therapies directed

against the cell cycle have shown limited clinical effect so

far. A crucial question in these studies is to what extent

targeting the cell cycle merely results in proliferative arrest or

induces tumor cell death, and which are the major resistance

mechanisms. Recent studies suggest that delaying mitosis or

preventing mitotic exit may be highly efficient in killing tumor

cells. We will review here current strategies to kill proliferating

cells, with specific focus on targeting mitosis or mitotic exit.

Cell Cycle Entry

Progression through the mammalian cell cycle is driven

by several enzymatic activities including protein kinases.
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Among them, Cdks are heterodimeric protein kinases

composed of a catalytical subunit, called Cdk, and a

regulatory subunit, known as cyclin. These complexes are

activated sequentially to drive cells through the cell cycle.

Whereas Cdk2, Cdk4 and Cdk6 trigger G1/S transition, Cdk1

promotes mitotic entry.1 On the one hand, the activity of Cdks

is frequently deregulated in tumor cells due to epigenetic or

genetic alterations of Cdk–cyclin complexes or to down-

regulation of several Cdk inhibitors.2 Most human tumors

display alterations in these regulators, and interphase Cdks

were soon identified as possible anticancer targets.2,3

However, the first generation of pan-Cdk inhibitors, such us

flavopiridol and UCN-01, did not show clinical advantages due

to its side effects.4 The analysis of gene-targeted mouse

models indicated that Cdk2, Cdk4 and Cdk6 are only essential

for the proliferation of some specialized cells, suggesting that

Cdk inhibitors are likely to produce certain toxicities by

affecting specific cells.3,5–7 Nonetheless, Cdk4 inhibition

may be effective to prevent Myc-induced skin tumors,8 Ras-

induced breast cancer9 or K-Ras-induced non-small-cell lung

carcinoma.10 These results suggest that Cdk inhibition may

be exploited in clinical settings taking into consideration the

cellular context of the tumor and the pathogenic spectrum of

their mutations.

Mechanistically, inhibition of cell cycle entry (e.g., by

inhibiting interphase Cdks) is likely to induce cell cycle arrest

or quiescence but not apoptosis. The use of small-molecule

inhibitors for interphase Cdks may result in certain levels of

apoptosis, although the lack of specificity of these compounds

prevents any detailed molecular conclusion.2 Interfering with

the G1/S machinery generally prevents DNA replication, thus

rendering diploid, interphasic cells that cannot proliferate but

are viable. For instance, inhibition of Cdk4 prevents the

development of lung tumors induced by K-Ras oncogene

by triggering senescence, a permanent arrest in G0/G1.10

Current data suggest that senescent cells may be cleared

by an innate immune response, but the extent to which this

may contribute to prevention of age-related pathologies and

cancer is currently not clear.

Targeting Mitotic Entry

In contrast to interphase Cdks, Cdk1 is essential for the

mammalian cell cycle, and inhibition of Cdk1 prevents entry

into mitosis and arrest cells in G211 (Figure 1). Cdk1 binds to

A- or B-type cyclins and phosphorylates more than 70

substrates to promote centrosome separation, chromosome

condensation, nuclear envelope breakdown and mitotic

entry.1 Strong inhibition of Cdk1 is therefore likely to be toxic

for normal cells, preventing useful therapeutic concentra-

tions.3 However, recent studies suggest the possible use of

Cdk1 inhibitors in specific cellular settings. Cdk1 is implicated

in DNA repair by homologous recombination, and it is

essential for efficient formation of BRCA1 foci. Inhibition of

poly(ADP-ribose) polymerase (PARP) results in increased

dependency on homologous recombination for DNA repair,

and is synthetically lethal with mutations in genes involved in

this type of DNA repair such as BRCA.12 Partial inhibition of

Cdk1 may therefore sensitize BRCA-proficient cancer cells to

inhibit PARP, suggesting specific applications of Cdk-target-

ing compounds in cancer cells.13 Similar synthetic lethal

interactions are likely to exist in other molecular pathways

including combinational inhibition with GSK3b 14 or inhibition

of Cdk1 in Myc-overexpressing tumors.15
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Figure 1 Targeting mitosis for cancer therapy. Cdk1 is a master protein kinase required for several processes during mitotic entry and its inhibition results in G2 arrest. This
may require the cooperation of Mastl to inhibit phosphatases, although the relevance of this protein in cancer remains mostly unexplored. Centrosome duplication and
separation, and the formation of a bipolar spindle are also required for normal chromosome segregation. Kinases such as Aurora A and Plk1 and kinesins such as Eg5 are
critical regulators of these processes and their inhibition results in arrest during prometaphase (PM). This arrest is mediated by the SAC, whose activity depends on several
effectors such as Mad2, BubR1, Mps1 or Aurora B, a kinase essential during the error correction mechanism that monitors the proper attachment of microtubules to
kinetochores. Abrogation of this checkpoint provokes abnormal chromosome segregation and chromosome instability. APC/C along with its cofactor Cdc20 is required for
anaphase (A) onset by targeting critical mitotic regulators for ubiquitin-dependent degradation. Inhibition of this E3-ubiquitin ligase leads to metaphase (M) blockade due to the
stabilization of cyclin B1 and mitotic cell death. C, cytokinesis; P, prophase; T, telophase
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In addition to Cdk1, few other targets exist whose inhibition

may arrest cells in G2. Mastl, also known as Greatwall in flies

and Xenopus, is a protein kinase required for inhibiting PP2A

phosphatases that dephosphorylate Cdk substrates.16,17

Knockdown of Mastl results in G2 arrest and a variety of

mitotic defects, and synergizes with Cdk1 inhibitors, suggest-

ing that both kinases cooperate duringmitotic entry.18,19Mastl

may be an interesting target for cancer therapy, although the

biology of this kinase remains to be studied and no specific

inhibitors are available to date.

Targeting the Spindle Assembly

Microtubule poisons. Mitotic drugs currently used in the

clinic are microtubule poisons that perturb microtubule

dynamics, impairing the formation of a proper bipolar

spindle. Microtubule drugs are usually classified in two

main groups: microtubule-destabilizing agents that inhibit

microtubule polymerization and microtubule-stabilizing agents

that enhance microtubule polymerization.20 Vinca alkaloids,

such as vinblastine, vincristine, vinorelbine, vindesine and

vinflunine, belong to destabilizing compounds and have

shown clinical efficacy against a broad range of hemato-

logical malignancies. On the other hand, taxanes, such as

docetaxel or paclitaxel, are microtubule-stabilizing drugs

that are now widely used to treat breast and ovarian

tumors, non-small-cell lung cancer and Kaposi’s sarcoma.21

Both classes of drugs inhibit microtubule dynamics, impairing

a functional spindle. This situation is monitored by a mitotic

checkpoint, known as the spindle assembly checkpoint (SAC),

that delays mitosis, providing cells with additional time to

resolve errors in microtubule–kinetochore attachment.22,23

The SAC inhibits the anaphase-promoting complex/

cyclosome (APC/C), an E3-ubiquitin ligase that triggers

mitotic exit mostly by targeting cyclin B for degradation,

thus inhibiting Cdk1 activity. The SAC-dependent delay in

mitosis increases the susceptibility of cells to undergo cell

death. Alternatively, cells can escape from the mitotic arrest

by slowly degrading cyclin B, a process known as mitotic

slippage (see below; Figure 2).

Regardless of their effectiveness in cancer treatment,

microtubule-targeted drugs exhibit important side effects.

Patients treated with these drugs develop severe myelosup-

pression derived from proliferation impairment of cycling bone

marrow cells. Neurotoxicity is also frequent due to the effects

of these drugs on microtubules, which are basic components

of neurons. In addition, patients treated with microtubule

poisons often acquire resistance to these drugs.20 Thus,

although inhibiting microtubule function has demonstrated a

significant antitumor activity, the side effects of these drugs

limit their use and have prompted to identify alternative

antimitotic drugs.

New spindle targets. One of the key regulators of the

spindle are kinesin motor proteins, which have crucial

functions in spindle assembly, chromosome congression

and segregation.24 Eg5 is a plus end-directed motor protein
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Figure 2 Models for targeting mitosis as an anticancer strategy. Treatment with mitotic entry inhibitors or spindle poisons leads to G2 or prometaphase arrest that
eventually may end up in apoptosis during interphase or mitosis. However, cells may escape entering into a new cell cycle. Depending of the status of genes such as p53, pRb
or p38, these cells may arrest before entering S phase, die or continue proliferating. Targeting mitotic checkpoint regulators, such as BubR1, Mps1 or Mad2, leads to severe
levels of aneuploidy. Cells containing numerical chromosome aberrations can similarly either arrest in the subsequent G1 phase, progress through the cell cycle or undergo cell
death. Inhibiting mitotic exit (e.g., by targeting APC/C–Cdc20) provokes a permanent metaphase arrest by preventing cyclin B1 degradation, thus irreversibly leading to mitotic
cell death
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required for centrosome separation and thereby for building

a bipolar spindle.25,26 The growing interest of this kinesin as

an antitumor target emerged from the pioneer identification

of monastrol, the first small-molecule inhibitor of Eg5.27

Inhibition of Eg5 activity generates monopolar spindles that

lead to mitotic arrest in a SAC-dependent manner.26,27 This

mitotic arrest culminates in cell death in a broad range of

tumor cell lines, both in cell culture and xenografts,28,29 and

taxane-resistant cancer cells remain sensitive to Eg5

inhibition.30 As a consequence of these promising results, a

number of Eg5 inhibitors have been studied, and some of

them have recently entered into clinical trials31 (Table 1).

Although side effects are moderate, the clinical efficacy of

Eg5 inhibitors has been limited, with only few studies

demonstrating a partial response.32

In addition to Eg5, kinesin CENP-E has recently emerged

as a potential antitumoral target. This kinesin is also a plus

end-directed motor protein that appears to have a pivotal

role specifically in mitosis. CENP-E stabilizes the interac-

tions between microtubules and kinetochores of the

mitotic spindle33 and regulates the mitotic checkpoint by

modulating the function of BubR1.34 CENP-E is an essential

mammalian gene, and its complete inhibition leads to

defective mitosis with unaligned chromosomes and apopto-

sis.35,36 Partial inactivation of CENP-E has exhibited anti-

tumor activity in xenografted human tumors, as well as in

chemically-induced tumors in mice.36,37 Farnesyl transferase

inhibitors that hamper CENP-E activity and specific small-

molecule inhibitors of CENP-E are currently in phase I of

clinical trials32,38 (Table 1).

In addition to kinesins, mitotic kinases such as Aurora A and

Plk1 are also major regulators of spindle formation.16,39,40

These two mitotic kinases are overexpressed in cancer cells,

often correlating with worse prognosis, and their inhibition

results in mitotic defects, making them attractive mitotic

targets.41,42 As previously reported for Eg5, disruption of Plk1

or Aurora A activity results in SAC-dependent mitotic arrest as

a consequence of monopolar spindle formation, and this

arrest correlates with increased apoptosis in multiple cancer

cell lines. Several ATP-competitive compounds specific

against these kinases have already entered into clinical trials

showing partial responses in specific tumors42–44 (Table 1).

Further efforts are now dedicated to identify more specific

compounds directed against the polo-box domain instead

of the kinase domain of Plk1.44 Similarly to microtubule

poisons, inhibition of these targets may result in apoptotic cell

death or the generation of tetraploid cells through mitotic

slippage. These tetraploid cells may be unable to replicate

DNA in the following cell cycle if the corresponding check-

points are functional or could eventually proliferate as

polyploid cultures (Figure 2).

Targeting the Mitotic Checkpoint

To prevent chromosome missegregation, the SAC delays the

metaphase–anaphase transition until all chromosomes are

properly attached to microtubules.23 Abrogating the SAC

therefore results in defective or abnormal chromosome

segregation, generating polyploid or aneuploid cells (Box 1).

It has been suggested that a partially compromised mitotic

checkpoint may lead to chromosomal instability (CIN), there-

fore promoting tumorigenesis. Mice heterozygous for SAC

components, such as Mad2 or BubR1, are prone to develop

spontaneous tumors after long latencies.45,46 In addition,mice

with a weakened checkpoint due to partial loss of Bub3 or

BubR1 also exhibit high rates of tumorigenesis after carcino-

genic treatment.47,48 Although these findings suggest a direct

link between chromosome instability and tumorigenesis,

mutations in mitotic checkpoint genes are not frequent in

human tumors.49 This is not surprising taking into account the

lethal phenotype observed after the complete abrogation of

these genes in engineered mouse models.50

As most tumor cells are aneuploid or display certain levels

of CIN (Box 1), it has been proposed that abrogating the

SAC may induce further instability and may be therefore used

as a therapeutic strategy. Genetic elimination of Mad2 or

BubR1 results in widespread chromosome missegregation

that trigger programmed cell death.45,46,48,51 In contrast to

other cell cycle checkpoints, the SAC is essential for cell

survival, and targeting this mitotic checkpoint could constitute

Table 1 Representative mitotic targets and inhibitors in clinical or preclinical studies (see references32,42,56,61,98,99 for extensive reviews on specific targets)

Target Activity Inhibitors
Clinical
phase Tumor types

Clinical stage
Aurora A Bipolar spindle formation MLN-8237, MLN-8054 I–II Melanoma, hematopoietic malignancies,

ovarian, breast and prostate carcinoma
Aurora B Chromosome alignment

and mitotic checkpoint
GSK1070916A, AZD1152 I Advanced solid tumors and acute

myeloid leukemia
Cdk1 Mitotic entry and progression P276-00, EM-1421 I–II Hematopoietic malignancies, breast

cancer, melanoma
CENP-E Spindle dynamics and

mitotic checkpoint
GSK923295A I Acute lymphoblastic leukemia

Eg5 Spindle dynamics Ispinesib, AZD4877, ARRY-520 I–II Hematopoietic malignancies, bladder
cancer and advanced solid tumors

Plk1 Bipolar spindle formation GSK461364, TKM-080301,
NMS-1286937, BI6727, ON01910

I–II Advanced or metastatic solid tumors
and hematopoietic malignancies

Preclinical stage
APC/C (Cdc20) Mitotic E3-ubiquitin ligase TAME None
Mps1 Mitotic checkpoint NMS-P715, reversine, Mps1 IN-1 None
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a novel strategy to kill tumor cells by inducing lethal

instability.22,52,53 Inhibition of mitotic checkpoint activity by

depletion of Mad2 or BubR1 provokes severe chromosome

segregation errors that are incompatible with human cell

viability.54,55 In addition, reducing protein levels of BubR1 or

Mps1, another protein kinase involved in the SAC, sensitizes

tumor cells to taxol.53 Checkpoint abrogation by depletion of

Mad2 or chemical inhibition of Mps1 have been evaluated as

antitumor strategies in xenografted human tumors.56,57

Aurora B may also be considered as a SAC target, as its

downregulation overcomes the arrest in the presence of

microtubule-stabilizing agents such as taxol.39,58 Aurora B is

required for embryo viability, and its genetic or chemical

inhibition results in the generation of tetraploid cells with

reduced viability, suggesting its relevance as a therapeutic

target.59,60

Interestingly, compared with non-transformed cells, cancer

cell lines are more sensitive to undergo cell death in response

to checkpoint abrogation.52,61 Whether this is a consequence

of the abnormal number of chromosomes commonly found

in tumor cells (Box 1) is not well established. It has been

proposed that, as a consequence of the extra chromosomes,

tumor cells may require more time to properly align chromo-

somes at metaphase.62 This time requirement would make

tumor cells more prone to chromosome missegregation and

thereby more sensitive to die because of checkpoint abroga-

tion. Other possible, although less explored, explanations for

the increased susceptibility to the induction of CIN include

differences in gene dosage or synthetic lethal interactions with

deregulated pathways. Given the difficulties of reaching a

complete inhibition of the mitotic checkpoint in vivo, a

combination with sublethal doses of microtubule poisons

has been suggested to achieve effective antitumor activities in

clinical settings.53

Targeting Mitotic Exit

Mitotic slippage is thought to be one of the main mechanisms

of resistance against antimitotic drugs63–65 (Figure 2). During

a normal cell cycle, mitotic exit is driven by APC/C–Cdc20-

dependent cyclin B1 degradation. Inhibiting mitotic progres-

sion triggers the SAC and inhibits APC/C–Cdc20. However,

this inhibition is transient and slow, and progressive degrada-

tion of cyclin B1 may happen despite the unsatisfaction of the

mitotic checkpoint.64,65 Cells that escape from mitotic cell

death can either die at the following cell cycle stage, arrest in a

tetraploid state or undergo several rounds of division,63

depending of the status of genes such as p53 or p38 (Lanni

et al.66; Rieder et al.67; Figure 2). Inhibition of apoptosis

increases mitotic slippage,64,68 suggesting that both pro-

cesses are somehow linked (see below). Remarkably, several

independent studies have observed no correlation between

cell death and mitotic duration, suggesting that cell fate after

treatment with antimitotic drugs is not exclusively dictated by

mitotic length.65 Gascoigne and Taylor proposed an elegant

model based on two competing networks, one that involves

mitotic cell death pathways and other that regulates cyclin B1

degradation. These two networks have specific thresholds

that compete during mitotic arrest. If cyclin B1 levels fall under

a certain threshold before caspase activation has reached its

Box 1 Tumor-associated aneuploidy

Aneuploidy, or the abnormal number of chromosomes that differ
from multiples of the normal ploidy, is a hallmark of cancer cells.
About 90% of solid tumors and 85% of hematopoietic neoplasias
are aneuploid.49 A possible cause of aneuploidy is chromosomal
instability (CIN), an increased susceptibility to gain or loss of
chromosomes, resulting in unstable karyotypes. However, many
aneuploid tumors are known to stably maintain their karyotypes,
and both concepts, although frequently mixed in the literature,
have different implications in cancer. On one hand, the gene
dosage variation resulting from CIN may provide proliferative
advantages by increasing the mutation rate in oncogenes, tumor
suppressors or tumor susceptibility genes. Recent data suggest
that inactivation ofmajor tumor suppressor pathways, such as pRb
or p53, leads to a mitotic stress due to the overexpression of the
SAC regulator Mad2, suggesting that CIN may be an early,
common event in tumor cells.91,92On the other hand, the induction
of strong and acute CIN (e.g., by SAC abrogation) may be
detrimental for cell viability, and this is now considered as a
possible therapeutic strategy (see figure and main text). The
relevance of stable aneuploidies for cancer development of
therapy is more complex. Studies in yeast and primary mouse
fibroblasts have shown that just one extra chromosomemay result
in important energetic and metabolic aberrations. These
alterations are likely to result from the additional load of proteins
encoded by the extra chromosomes, leading to important
problems in proliferation and enhanced cell lethality.93,94 Other
studies, however, suggest that aneuploidy facilitates phenotypic
variation in yeast, providing proliferative advantages upon
suboptimal conditions.95 A recent study has shown that small
molecules synergize with proteotoxic and energy stress efficiently
and specifically antagonize the proliferation of aneuploid cells.96

All together, these studies suggest that CIN or aneuploidy may be
detrimental for cell proliferation and lead to a proliferative stress,
resulting in cell cycle arrest or apoptosis (see figure). In those
cases where CIN or aneuploidy results in proliferative advantages,
tumor cells may be specifically sensitive to SAC abrogation (which
may induce lethal levels of instability) or specific compounds
targeting the energetic and proteotoxic stress pathways.97
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cell death threshold, then cells will exit from mitosis. On the

other hand, if cyclin B1 levels fall slowly, then cell death

threshold will be achieved first and cells will die in mitosis.69

According with this model, it is predictable that completely

blocking mitotic exit might be a powerful strategy to induce

mitotic cell death. We have recently demonstrated that

impairing cyclin B1 degradation in vivo by genetic elimination

of Cdc20 is much more efficient in killing tumor cells than

targeting the spindle assembly with classical poisons or new

drugs inhibiting Eg5 or Plk1.70 These observations are in

agreement with the pioneer results using RNA interference

(RNAi) against Cdc20 or expressing a non-degradablemutant

of cyclin B1 in several tumor cell lines.71 Whereas classical

antimitotic drugs (vincristine or taxol) and new available

mitotic inhibitors against Plk1 or kinesin Eg5 (BI2536 or

monastrol, respectively) only induce a partial response in

aggressive tumors, Cdc20 ablation results in complete

metaphase arrest, leading to massive apoptotic cell death

and complete tumor elimination in vivo.70 Importantly, mitotic

exit inhibition also affects pRb-null, p53-null or SAC-deficient

cells,70,71 suggesting widespread uses. In vitro, Cdc20-null

tumor cells cannot escape from the metaphase arrest and die

of mitotic cell death in 6-30 h.70 Altogether, these results

suggest that drugs that target Cdc20 or other components

involved in cyclin B1 degradation, such as core components of

the APC/C or the proteasome, could be quite effective in killing

tumor cells. Indeed, a genome-wide RNAi screen has recently

identified synthetic lethal interaction between K-RAS onco-

genic signaling and the inhibition of core subunits of the APC/C,

such as APC1 and APC472. These results have been

reinforced with the discovery of tosyl-L-arginine methyl ester

(TAME), an APC/C small-molecule inhibitor that efficiently

arrests tumor cells in mitosis triggering cell death.73

Although targeting mitotic exit may be highly efficient, how

can this strategy discriminate between tumor and normal

proliferating cells? As previously suggested, APC/C–Cdc20

inhibitors could be useful in combination with other mitotic

poisons by slowing cyclin B1 degradation and thus providing

enough time to reach the apoptotic threshold of tumor cells.67

Other strategies to consider are those orientated to protect

normal proliferating cells by impairing their entry into mitosis.

Some studies proposed to useCdk2/4 inhibitors to arrest pRb-

proficient cells in G0/G1 and protect them from mitotic exit

inhibitors. In contrast, pRb-null tumor cells would overcome

this arrest, thereby making them sensitive to arrest and die in

mitosis.74 Other studies using xenotransplanted tumors have

demonstrated that prolonged fasting dramatically reduces

the toxic side effects of chemotherapy, while maintaining its

efficacy against tumor cells.75 All these strategies could help

to improve the therapeutic window of antimitotic therapies,

making them tumor selective.

An interesting question that rises from these studies is

whether tumors cells treated with APC/C inhibitors may adapt

to this situation and what would be the molecular require-

ments for this resistance. In our previous work, we have

shown that kinases Cdk1 and Mastl are required for Cdc20-

dependent metaphase arrest and apoptosis. Cdk1 and Mastl

inhibition strongly synergizes to promote exit frommitosis and

tumor cell survival in vitro.70 Thus, whereas APC/C inhibition

may enhance the therapeutic benefits of specific mitotic

drugs, inhibition of Cdk1 or Mastl should be avoided. In

summary, targeting mitotic exit offers effective possibilities for

killing tumor cells, and further investigation will be required to

identify druggable targets and to validate this therapeutic

strategy in specific tumors in vivo.

Molecular Pathways of Mitotic Cell Death

Cells treated with antimitotic drugs exhibit a prometaphase

delay, due to SAC activity, that is often followed by mitotic cell

death. Although the link between mitotic arrest and apoptosis

is well established, the molecular determinants of this

apoptotic response are mostly unknown. For a long time,

the activity of the mitotic checkpoint has been suspected to be

required to kill tumor cells treated with spindle poisons.29

Consistent with these observations, the mitotic checkpoint

protein BubR1 has shown proapoptotic activity in polyploid

cells that escaped from prolonged mitotic arrest.76 However,

studies using Cdc20-deficient cells, in which the mitotic

checkpoint is satisfied, have proved that the mere SAC

activity is not required for inducingmitotic cell death (Figure 2).

Consequently, a proapoptotic signal independent of the SAC

accumulates to trigger apoptosis during mitotic arrest.70,71

Recent data suggest that caspases are not required for the

activity of the mitotic checkpoint or for mitotic slippage,77

suggesting that mitotic and death pathways are two indepen-

dent processes. How these two processes talk to each other

and how cell death is triggered and modulated during

prolonged mitosis is a central question that needs to be

answered.

Mitotic cell death generally occurs via intrinsic or mitochon-

drial apoptosis, which is regulated by the Bcl-2 family of

proteins.78 Prosurvival members, including Bcl-XL, Bcl-2 and

Mcl-1, antagonize apoptosis by blocking the activity of

proapoptotic regulators. On the other hand, proapoptotic

members, Bax and Bak, function as mediators of mitochon-

drial membrane permeability, allowing the activation of

caspases, the proteases that catalyze cellular death. Inter-

estingly, cyclin B1–Cdk1 may have a central role in the

regulation of these apoptotic proteins (Figure 3). Cdk1 has

been shown to phosphorylate both Bcl-XL and Bcl-2, leading

to the inactivation of their antiapoptotic activities.79 During a

normal mitosis, transient activation of Cdk1 fails to reach the

phosphorylation threshold that overrides the antiapoptotic

activity of these regulators. However, if Cdk1 is active for too

long, the threshold is reached, causing inactivation of the

antiapoptotic function and eventual apoptosis.79 Recent

studies have also elucidated a new role of Cdk1 in controlling

the turnover of Mcl-1. Phosphorylation of Mcl-1 makes it

sensitive to its polyubiquitination by the Skp–Cullin–F-box

protein complex (SCF; Figure 3). Once Mcl-1 is phosphory-

lated by JNK, p38 and CKII kinases, it is recruited to the SCF

by the tumor suppressor protein Fbw7 and degraded by the

proteasome. During normal mitosis, phosphorylation of Mcl-1

is counteracted by phosphatases such as PP2A. However,

upon extended mitosis, Cdk1 promotes T92 phosphorylation

and PP2A dissociation of Mcl-1, allowing its Fbw7-dependent

degradation.80 Mcl-1 has also been reported to be degraded

by APC/C–Cdc20 when it is phosphorylated by Cdk1 inmitotic

arrested cells.81 Thus, by promoting degradation of Mcl-1 in
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mitotic arrested cells, Cdk1 allows the activation of Bax and

Bak proteins to promote mitotic cell death. Furthermore, the

lengthened activation of Cdk1 may increase the activity of

p53, which causes the transcription of proapoptotic proteins

such as Bax and Puma, thereby initiating mitochondrial

apoptosis.82 In contrast, Cdk1 may also phosphorylate

caspase-9 and caspase-8, hampering their ability to trigger

the intrinsic or extrinsic apoptotic pathways, respectively.83,84

Altogether, these data suggest that cyclin B1–Cdk1 com-

plexes have a key role in balancing survival and cell death

pathways that dictate the fate of cells during mitotic arrest.

How the proapoptotic and prosurvival activities of Cdk1 are

controlled is not clear at present.

The therapeutic relevance of targeting the apoptotic

machinery has already been shown by using BH3 mimetics.

These compounds function as inhibitors of prosurvival

members of the Bcl-2 family and have demonstrated efficacy

against either tumor cell lines or xenografted human tumors.85

In addition, BH3 mimetics increase the efficacy of microtubule

poisons, suggesting a role for Bcl-2 proteins in mitotic cell

death.86 Although apoptosis seems to be the main mechan-

ism by which cells die after an extendedmitotic arrest, the fact

that caspase inhibitors, such as Z-VAD.fmk, or Bcl-2 over-

expression fail to completely prevent cell death induced by

treatment with spindle poisons has led to conclude that other

mechanisms may have a role in mitotic cell death.71,87 From a

molecular point of view, mitotic cell death may differ from

classical apoptosis in the activation of a particular mitochon-

drial permeabilization pathway. During mitotic arrest, cas-

pase-2 stimulates mitochondrial membrane permeabilization,

facilitating the release of several caspase activators that

finally lead to caspase-3 activation, one of the main death

effectors in apoptosis.82 Bid cleavage has been proposed to

be themain activity by which caspase-2 inducesmitochondrial

permeability.88However, Cdk1 also phosphorylates caspase-

2, preventing its ability to trigger apoptosis,89 and how

caspase-2 is activated during mitotic arrest therefore remains

unknown.

Conclusions

After several decades of research, our understanding of the

regulation of mitosis is quite advanced, and it has allowed the

identification and characterization of novel mitotic targets and

strategies for clinical use. A significant number of small-

molecule inhibitors against Cdks, Plk1, Aurora kinases, Mps1,

Eg5 or the APC/C are now available for preclinical or clinical

studies (Table 1). The initial clinical trials with some of these

compounds have confirmed efficacy in vivo, but in most cases

worse than classical microtubule-targeting drugs. The basis

for these differences are not clear, although we believe that

our scarce knowledge of the in vivo requirements for some of

these targets, the need for improvement in specificity and

potency of the current compounds, and the lack of biomarkers

to select patients may explain the limited effect observed so

far. Given the fact that the majority of human tumors divide
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Figure 3 Mitotic cell death is governed by Cdk1 activity. During prolonged mitotic arrest (e.g., by using microtubule poisons, AurA or Plk1 inhibitors or inhibiting the APC/
C), Cdk1 activity regulates the stability of antiapoptotic effectors. Cdk1-dependent phosphorylation of Mcl-1 allows its phosphorylation by other kinases, such as JNK, p38 and
CKII. Highly phosphorylated forms of Mcl-1 are recognized and ubiquitinated by the E3-ubiquitin ligase SCF, leading to its degradation by the proteasome 26S. On the other
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very slowly, compared with cultured cell lines and tumors in

animal models, it has been speculated that the success of

microtubule poisons might be given by its ability to target

non-mitotic functions of microtubules.90 Irrespectively of the

molecular details behind the success of these classical

microtubule poisons, it is now clear that additional strategies,

such as targeting the mitotic checkpoint or blocking mitotic

exit, are emerging possibilities that deserve further explora-

tion. Targeting CIN or aneuploidy is also being considered

(Box 1), although further molecular and in vivo research are

required to establish clear pathways and properly validate

targets. The goal in most of these strategies is killing cancer

cells. However, it is actually surprising how insufficient is our

knowledge on the molecular pathways that modulate mitotic

cell death and the differences between this type of death and

other forms of apoptosis. Mitosis and apoptosis researchers

need to combine efforts for moving forward in this direction in

the future.
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