Killing forms on quaternion-Kähler manifolds

Andrei Moroianu • Uwe Semmelmann

Received: 9 April 2008 / Accepted: 15 April 2008 / Published online: 18 July 2008
© Springer Science+Business Media B.V. 2008

Erratum to: Ann Glob Anal Geom DOI 10.1007/s10455-005-1150-3

The aim of this note is to fill a gap in the proof of Theorem 6.1 in [1]-stating that every Killing p-form ($p \geq 2$) on a compact quaternion-Kähler manifold $M^{4 m}(m \geq 2)$ is parallel. This gap, pointed out by Liana David, is due to two wrong coefficients in the formulas at the middle of page 329. The correct equations read

$$
\begin{array}{lll}
p d^{+} u=d\left(L^{-} u\right), & (p-1) d^{c} u=d(J u+3 u), & p d^{-} u=d\left(\Lambda^{+} u\right)-\delta^{c} u, \\
(p-1) \delta^{+} u=-2 d(C u), & (p-1) \delta^{c} u=-2 d\left(\Lambda^{+} u\right)-2 d^{-} u, & (p-3) \delta^{-} u=-2 d(\Lambda u) .
\end{array}
$$

The remaining part of the proof works verbatim for $p>3$, but an extra argument is needed for $p=2$ and $p=3$.

The case $\boldsymbol{p}=\mathbf{2}$. From the six equations above, one obtains the vanishing of $d^{+} u, \delta^{-} u$, and $\delta^{+} u+d^{c} u+3 d u$, but no longer that of $\delta^{c} u$ and $d^{-} u$. Correspondingly, the proof of Lemma 6.3 fails. Fortunately, an ad hoc argument shows that $d u=0$ in this case. Indeed, the third equation of the system (7) shows that $d u$ is an eigenform of $2 C-J$ for the eigenvalue 9 . On the other hand, Lemma 5.1, Lemma 5.2, and the decomposition

$$
\Lambda^{3}(H \otimes E)=H \otimes\left[\Lambda_{0}^{2,1} E \oplus E\right] \oplus \operatorname{Sym}^{3} H \otimes\left[\Lambda_{0}^{3} E \oplus E\right]
$$

show that the eigenvalues of $2 C-J$ on the four summands of $\Lambda^{3} M$ are $3,4 m+5,15$, and $4 m+11$, respectively. For $m \geq 2$, none of them equals 9 .

The case $\boldsymbol{p}=3$. The proof works well in this case, except that one does not obtain $\delta^{-} u=0$ in Lemma 6.2. However, this relation is not needed until the point (b) at the bottom of

[^0][^1]page 331. In order to rule out that case, one has to replace the argument given there with the fact that for $p=3$ and $m \geq 2$, the inequality $p \geq 2 m+1$ is impossible.

Remark 1 The assumption that $m \geq 2$ is essential. For $m=1$, the quaternionic projective space $\mathbb{H} \mathrm{P}^{1} \simeq S^{4}$ carries non-parallel Killing 2-forms and 3-forms (cf. [2]).

References

1. Moroianu, A., Semmelmann, U.: Twistor forms on quaternion-Kähler manifolds. Ann. Glob. Anal. Geom. 28, 319-335 (2005)
2. Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503-527 (2003)

[^0]: The online version of the original article can be found under doi:10.1007/s10455-005-1150-3 .

[^1]: A. Moroianu (\boxtimes) • U. Semmelmann

 CMLS, Ecole Polytechnique, Palaiseau 91128, France
 e-mail: andrei.moroianu@math.polytechnique.fr

