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SUMMARY

This article presents the techniques and results of a novel model-based test case generation approach that
automatically derives test cases from UML state machines. The main contribution of this article is the fully
automated fault-based test case generation technique together with two empirical case studies derived from
industrial use cases. Also, an in-depth evaluation of different fault-based test case generation strategies on
each of the case studies is given and a comparison to plain random testing is conducted. The test case
generation methodology supports a wide range of UML constructs and is grounded on the formal semantics
of Back’s action systems and the well-known input-output conformance relation (ioco). Mutation operators
are employed on the level of the specification to insert faults and generate test cases that will reveal the faults
inserted. The effectiveness of this approach is shown and it is discussed how to gain a more expressive test
suite by combining cheap but undirected random test case generation with the more expensive but directed
mutation-based technique. Finally, an extensive and critical discussion of the lessons learnt is given as well
as a future outlook on the general usefulness and practicability of mutation-based test case generation.
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1. INTRODUCTION

Today’s dependable computer-based infrastructure rapidly grows in complexity due to a continuous

evolution towards very large, heterogeneous, highly dynamic and ubiquitous computer systems.

This is a serious challenge to the task of engineering trustworthy systems: the more complex a

system is, the more difficult is the verification of its correctness. It seems that despite the many

advances in automated verification, i.e., in model checking and theorem proving, the demand for

new features and flexibility always creates systems that establish the next limits for automated

verification. However, the situation is not hopeless.

Where formal verification is not feasible, a formal testing approach may be applied. Such formal

testing comprises formal models of the system under test and a testing theory that captures the

essential properties of the testing technique. The latter includes, most notably, the semantics of
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the communication between the tester and the system under test (SUT), and a precise definition of

conformance between the SUT and a model. Hence, formal testing is model-based testing with solid

theoretical foundations. It was first advocated by Gaudel [1, 2].

The approach presented here is based on formal mutation testing [3, 4]. Instead of programs,

however, abstract models of the SUT are mutated. All mutations are introduced by so called

mutation operators that alter the models syntactically. Mutated models represent faulty designs and

the goal of the presented approach is to generate test cases that can kill these faulty designs. Put

differently, a sequence of actions is sought that triggers different behaviour between the original

and the mutated model. When executed on the SUT, the tests will detect if a mutated model has

been implemented.

The advantage of this style of testing is that it is fault-centred. In contrast to covering certain

states or transitions in a model, the focus is on covering possible flaws in the design of a system.

This testing strategy is very fine grained: whatever can be considered a fault on the modelling level

can be covered by a test case.

However, there also is a price to pay. Model-based mutation testing is computationally expensive.

Hundreds of mutants need to be analysed and the test case generation process involves an

equivalence check of two models that is undecidable in general. The situation is even more complex

for non-deterministic models. Simple equivalence checking is not sufficient in this case, instead a

conformance relation that is a preorder needs to be checked. Can this work in practice? State of

the art in industry answers negatively. As of today there are no commercial model-based mutation

testing tools available.

In the EU FP7 project MOGENTES† this challenge has been accepted and a model-based

mutation testing tool for UML state transition diagrams has been developed. To ease the task of

test data generation and to stay formal, the tool first maps UML to labeled transition systems (LTS).

Besides defining a formal meaning for semantic variation points in the UML standard the mapping

also provides access to existing testing theories on LTS. In particular Tretmans’ testing theory based

on the conformance relation ioco [5] has been selected as it supports partial and non-deterministic

models. This automated mapping process is described in detail elsewhere [6, 7].

The test case generator essentially performs an ioco check. The tool takes an original and a

mutated model as input and explores their state space in order to detect a difference in behaviour.

The exploration depth is limited by a given boundary. If the mutated model produces an output

that is not allowed by the original model, non-conformance is detected. In this case a test case is

generated that shows the difference in behaviour. If executed on the SUT, the test checks whether

the faulty behaviour has been implemented. The general idea and its extension to hybrid system

testing has been presented previously [8]. The conformance checker itself has also been discussed

in detail in previous work of the authors [9].

Focus of this article are different test case generation strategies once non-conformance has been

detected. The strategies vary in the number of generated test cases, the generation time, and in the

structure of the test cases built. The latter refers to the fact that some strategies generate linear test

cases, others adaptive ones. A variety of test case selection strategies has been implemented and

their respective effectiveness has been compared with the help of two case studies. The first case

study is a car alarm system provided by the industrial partner Ford. As a second, larger case study,

the electronic control unit of a wheel-loader bucket arm has been used.

The aim has been to explore the space of possible test case generation strategies and to investigate,

on non-trivial models, the cost and bug-detection capabilities associated to each of the strategies.

The first, most straightforward and expensive, strategy presented here is to cover all paths to the

point of non-conformance in the LTS. This strategy naturally evolves to one for generating adaptive

test cases. Next, the ability to check whether existing test cases can already kill a mutant, is added.

Finally, a strategy where a set of random tests is generated in a first step and then improved by

mutation-based test-case generation in a second step is proposed. This results in a total of six

different mutation testing strategies.

†http://www.mogentes.eu/
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In order to compare these strategies to more traditional ways of test case generation, pure random

testing and test case generation with hand-written test purposes have been added to the experiments.

The latter is implemented via an interface to the CADP‡ tools. It provides access to the TGV test

case generator [10] as well as to model checkers and simplifiers of CADP.

The main questions to be investigated in this article are:

• What is the best strategy to select test cases? The strategies will be compared with respect to

the number of generated test cases, as well as to their ability to find bugs.

• Is mutation testing better than random testing? The aim is to find as many bugs as possible

with a relatively small test suite. The comparison to random testing is interesting because

the fault-based technique requires sophisticated algorithms and it is necessary to justify that

the investment pays off. The relation to other structural coverage criteria, like e.g. transition

coverage, is out-of-scope of this study.

• How efficient is a test case generation strategy? Details on the run-times of each test case

generation strategy are reported.

• How severe is the equivalent mutants problem? Equivalent mutants show the same behaviour

as the original. Hence, no test case can possibly kill them and trying to generate one will fail.

The effects on the efficiency of the algorithms is investigated.

• Do partial models help? In the larger case study of the wheel-loader, two partial models are

used. Each model is focusing on different functional aspects of the system. Partial models

result in a smaller state space but might compromise bug detection capabilities, hence the

effects of partial models are explored.

• Does the combination of random testing and mutation testing help? Random testing and

mutation testing are orthogonal in the sense that the first is cheap and undirected while the

latter is expensive and directed. This work investigates the question whether a combination of

both increases the fault detection capabilities. The conjecture is that a few long random tests

will quickly detect most of the trivial bugs and the fault-based strategies will cover the more

subtle faults.

• Given a set of faulty implementations, can all known bugs be revealed? Both case studies have

been implemented in Java and a set of mutated implementations has been created and cleaned

of equivalent mutants. The percentage of the remaining non-equivalent mutants that are killed

by the generated test suites (mutation scores) is reported.

This article is an extended version of a previous conference paper [11]. The main new contribution

is the large wheel-loader case study that challenges the mutation-based test case generation

approach. To give the reader an idea of the complexity involved, it shall be mentioned that a full

state machine model of the wheel loader consists of six orthogonal (parallel) regions, multiple

nested states, and timing constraints. In addition a significantly extended presentation of the test

case generation strategies is given, which includes further examples.

The rest of the article is structured as follows. Section 2 presents a first case study and sketches

the mapping from UML to LTS. Section 3 introduces a formal characterisation of the resulting test

cases and an algorithm for the generation of adaptive test cases. Section 4 explains the different test

selection strategies and Section 5 presents the empirical results gained when applying them to the

two case studies. Before concluding the article in Section 8, the experimental results are discussed

in Section 6 and related research is reviewed in Section 7.

2. A UML MODEL

In order to demonstrate the basic concepts of the mutation-based test case generation approach, a

simplified version of a car alarm system (CAS) is used. The example is taken from Ford’s automotive

‡http://www.inrialpes.fr/vasy/cadp/
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Figure 1. Testing interface of the car alarm system.
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Figure 2. State machine of the car alarm system.

demonstrator within the MOGENTES project. The following requirements serve as the basis for the

UML test model:

R1 Arming The system is armed 20 seconds after the vehicle is locked and the bonnet, luggage

compartment, and all doors are closed.

R2 Alarm The alarm sounds for 30 seconds if an unauthorised person opens the door, the luggage

compartment, or the bonnet. The hazard flasher lights will flash for five minutes.

R3 Deactivation The anti-theft alarm system can be deactivated at any time, even when the alarm

is sounding, by unlocking the vehicle from outside.

2.1. Testing Interface

Figure 1 shows the class diagram of the car alarm system’s UML model. According to the

requirements the diagram comprises four classes and four signals. The class AlarmSystem is labelled

as SUT and may receive any of the Lock, Unlock, Close, or Open signals. At the same time, the

SUT calls methods of the classes AlarmArmed, AcousticAlarm, and OpticalAlarm – all of them

labelled as being part of the environment. In this way, the diagram of Figure 1 specifies the possible

observations (all calls to methods being part of the environment) and the stimuli the SUT can take

(all signals). Hence, the diagram specifies the testing interface.

2.2. State Machine

Figure 2 shows the CAS state machine diagram. From the state OpenAndUnlocked one can traverse

to ClosedAndLocked by closing all doors and locking the car. Actions of closing, opening, locking,

and unlocking are modelled by corresponding signals Close, Open, Lock, and Unlock. As specified

in requirement R1, the alarm system is armed after 20 seconds in ClosedAndLocked. Upon entry

of the Armed state, the model calls the method AlarmArmed.SetOn. Upon leaving the state, which

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



KILLING STRATEGIES FOR MODEL-BASED MUTATION TESTING 5

Table I. Number of mutated models per mutation operator.

Mutation Operator # CAS Upper Bound

Set Guard To False 19 O(t) t. . . # of transitions
Remove Entry Action 3 O(sen) sen . . . # of states with entry actions
Remove Exit Action 3 O(sex) sex . . . # of states with exit actions
Remove Signal Trigger 12 O(tst) tst . . . # of signal triggered transitions
Remove Time Trigger 3 O(ttt) ttt . . . # of time triggered transitions
Mutate Transition Signal Events 36 O(tst · s) tst . . . # of signal triggered transitions, s . . . # of signals

can be done by either unlocking the car or opening a door, AlarmArmed.SetOff is called. Similarly,

when entering the Alarm state, the optical and acoustic alarms are enabled. When leaving the alarm

state, either via a timeout or via unlocking the car, both acoustic and optical alarm are turned

off. When leaving the alarm state after a timeout (cf. requirement R2) the chosen treatment of

the underspecification in the requirements is that the system returns to an armed state only in

case it receives a close signal. Turning off the acoustic alarm after 30 seconds, as specified in

requirement R2, is reflected in the time-triggered transition leading to the Flash sub-state of the

Alarm state.

2.3. Mutations

Since test cases that cover particular fault models are desired, the specification is mutated and test

cases are created that can identify the different behaviours. Applying the six mutation operators

listed in Table I to the CAS model of Figure 2 yields a total of 76 mutated UML state machines.

Table I also gives an upper bound on how often each mutation operator can be applied.

The first mutation operator sets the guard of a transition to false§. This removes the behaviour

of the transition. Sometimes, however, behaviour is not linked to a specific transition but to entry

and exit actions. These behaviours occur whenever a certain state is entered/left, regardless of the

transition used. The mutation operators that remove such behaviours are called Remove Entry Action

and Remove Exit Action. Similarly, for each signal/timer triggering a transition there is a mutation

operator removing it (Remove Signal Trigger and Remove Time Trigger). Finally, there is a mutation

operator that replaces the signal triggering a transition by an arbitrary other (but compatible) signal.

Due to combinatorial effects this operator is responsible for nearly half of the generated mutants.

Mutation testing relies on two assumptions: (1) competent engineers write almost correct code

and (2) there exists a coupling effect so that complex errors will be found by test cases that can

detect simple errors. This is the main reason that only first-order mutants are used for test-case

generation, i.e. each mutated state machine results from applying a single mutation operator to a

single location in the model. The number of first-order mutants grows in the same order as the

number of mutatable elements (model size) grows, unless the mutation operator is parametrised

with other model elements. In the latter case the growth increases from linear to quadratic given one

parameter.

Note that the approach presented in this article also addresses the well-known problem of

equivalent mutants. In model-based mutation testing, a conformance check between the original

and the mutant is conducted. If non-conformance between the mutant and the original is found,

a test case is generated that kills the mutant. If it is impossible to discover any non-conforming

behaviour up to a certain search depth, the mutant is considered to be equivalent up to that depth

and no test case is generated.

2.4. From UML to LTS via Action Systems

Since the algorithms for test case generation work on the level of labeled transition systems (LTS,

[12]), the UML state machine model defined by the user has to be converted into an LTS. This

§This may lead to a transition transforming into a self-loop as the model will ’swallow’ the trigger event.
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process is fully automated and the tool accepts a wide range of input models. Supported UML

features include nested states, orthogonal regions, (final-, initial-, junction-, and choice pseudo)

states, entry and exit actions, transitions with effects, triggers with change/signal/call events, as well

as a large set of OCL constraints as transition guards. Supported OCL constructs are standard logic

operators, select, collect, exists, forall, oclIsInState, and literals (integer, Boolean). Besides enums,

signals, Booleans, integers, there is also support of active or passive classes with methods, member

fields, signal reception, associations, and a restricted form of inheritance. The conversion process

itself comprises the following steps:

1. The given UML model is transformed into a labeled and object-oriented intermediate

representation called Object-Oriented Action System (OOAS). It is based on Back’s action

system [13] formalism. During this step the exact UML semantics are set, e.g., the treatment

of UML events and orthogonal regions. As a result, an executable model of the system is

derived.

2. The object-oriented intermediate representation is further simplified into a non-object-

oriented (but still labeled) version of the action system.

3. The action system derived in the second step is explored. This process yields the LTS of the

UML model: Roughly speaking the execution of one labeled action within the action system

adds one transition to the LTS.

Further information about this conversion can be found in previous work [6, 7] of the authors.

Applying the tool to the car alarm system (see Figure 2) yields the LTS shown in Figure 3. All

labels in the system are prefixed by either obs (observable) or ctr (controllable) with observables

being system outputs and controllables being inputs of the car alarm system. As explained in

Section 2.1, these prefixes are automatically deduced from the diagram specifying the testing

interface (see Figure 1). An exception to this is the label obs after that stands for an observable

timeout. Briefly speaking, after is observable because it represents a special case of the ioco timeout

δ that is defined observable within the ioco theory (see Section 3.1).

3. TEST CASE GENERATION

In this section, the test case generation technique is presented. First, the conformance relation

that enables the comparison of original and mutated specifications is explained. Then, the actual

implementation of the conformance checker is outlined. This includes a discussion of the properties

of all generated test cases and the algorithm for test case selection.

3.1. Input-Output Conformance

Conformance relations are needed to determine if a SUT behaves correctly regarding a given

specification. In order to decide conformance, some testing hypotheses have to be stated [1]. One

is that the implementation can be represented with the same formalism as the specification. In the

presented tool this is always the case since the conformance between two specifications (an original

and a mutated version) is decided. The mutated testing model serves as SUT, while the non-mutated

testing model serves as specification. In order to be able to deal with partial system models, the ioco

relation [5] is used.

The trace semantics of an action system yields a Labeled Transition System (LTS) M , see

Section 2.4 and previous work [9]. A labeled transition system is defined as tuple 〈S,L, T, s0〉
where

• S is a countable set of states

• L = LU ∪ LI is a countable set of labels divided into input labels LI and output labels LU

such that LI ∩ LU = ∅
• T ⊂ S × (L ∪ {τ})× S is the transition relation, and

• s0 ∈ S is the initial state.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
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Figure 3. Labeled transition system of the car alarm system.

The special label τ denotes an internal action. For a given LTS the following notation is used, where

s, s′, si ∈ S, S′ ⊆ S, ai ∈ L, σ ∈ L∗.

s
a
→ s′ =df (s, a, s

′) ∈ T (1)

s
a
→ =df ∃s

′ • (s, a, s′) ∈ T (2)

s
a

6→ =df 6∃s′ • (s, a, s′) ∈ T (3)

s
ǫ
⇒ s′ =df s = s′ ∨ ∃s0 . . . sn • s = s0

τ
→ s1

τ
→ . . .

τ
→ sn−1

τ
→ sn = s′ (4)

s
a
⇒ s′ =df ∃s1, s2 • s

ǫ
⇒ s1

a
→ s2

ǫ
⇒ s′ (5)

s
σ
⇒ s′ =df ∃s0, . . . , sn • s = s0

a1⇒ s1
a2⇒ . . .

an⇒ sn = s′with σ = a1 . . . an (6)

s
σ
⇒ =df ∃s

′ • s
σ
⇒ s′ (7)

s after σ =df {s
′ | s

σ
⇒ s′} (8)
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Equation 1 introduces s
a
→ s′ as an alternative notation for the transition (s, a, s′). Then, s

a
→

states that there starts a transition labeled with a from state s leading to some arbitrary successor

state (Equation 2). Equation 3 states the contrary, i.e., that there does not exist such a transition.

s
ǫ
⇒ s′ means that either both states are the same (s = s′) or that there exists a set of intermediate

states such that s′ is reachable from s via a sequence of internal (τ ) transitions only (Equation 4).

s
a
⇒ s′ means that it is possible to reach state s′ from state s by action a - with internal transitions

before or after a as required (Equation 5). Equation 6 states that state s′ is reachable from state s by

a trace σ (a sequence of transitions labeled with a1...an). Internal actions may be required before,

after or between the transitions of this trace. Equation 7 defines that there exists a state s′ that is

reachable from s by trace σ. The relation after¶ (Equation 8) determines the set of states reachable

after trace σ starting from state s. Moreover, an LTS M has finite behaviour if all traces have finite

length. It is deterministic if ∀σ ∈ L∗ • |s0 after σ| ≤ 1 holds.

For the ioco relation, SUTs are considered to be weakly input-enabled, i.e., all inputs (possibly

preceded by τ transitions) are enabled in all states: ∀a ∈ LI , ∀s ∈ S • s
a
⇒. This class of LTS is

referred to as IOTS(LI , LU ) where IOTS(LI , LU ) ⊂ LTS(LI ∪ LU ). A state s from which the

system cannot proceed without additional inputs from the environment is called quiescent, denoted

as δ(s). In such a state, all output and internal events are disabled: ∀a ∈ LU ∪ {τ} • s
a
Y→. For

observing quiescence, the transition relation T is extended by adding self-loops with the special

label δ at quiescent states: Tδ =df T ∪ {(s, δ, s) | s ∈ S ∧ δ(s)}. Let Mδ be the LTS over the alphabet

L ∪ {τ, δ} resulting from adding δ self-loops to an LTS M . The deterministic automaton obtained

via subset construction from Mδ is called suspension automaton Γ = 〈SΓ, L ∪ {δ}, TΓ, s0Γ〉 [5].

The behaviour of Γ is defined via the set of suspension traces:

Straces(Mδ) =df {σ ∈ (L ∪ {δ})∗ | s0Γ
σ
⇒}

The set of outputs that can occur in a state s ∈ S (in a set of states S′ ⊆ S respectively) is defined

as follows:

out(s) =df {a ∈ LU | s
a
→} ∪ {δ | δ(s)}

out(S′) =df

⋃

s∈S′

out(s)

The ioco relation states that for all suspension traces in the specification, the outputs of the

implementation after such a trace must be included in the set of outputs produced by the specification

after the same trace. Formally, for an implementation model i ∈ IOTS(LI , LU ) and a specification

s ∈ LTS(LI ∪ LU ) the relation ioco is defined as follows:

i ioco s =df ∀σ ∈ Straces(s) • out(i afterσ) ⊆ out(s afterσ) (9)

3.2. Conformance Checking

A tool for checking the input-output conformance of two system models named Ulysses has been

implemented in SICStus Prolog‖. Figure 4 depicts the computation steps of this tool. Ulysses expects

two labeled action systems as input: (1) a system specification AS and (2) a mutated version of

the same specification ASM . In Section 2.4 the transformation from a UML model to an LTS has

already been presented. The last step of this conversion is actually performed in Ulysses by exploring

a given labeled action system. Previous work [9] can be consulted for further details. The LTS is

enriched by quiescence and subsequently converted into a deterministic automaton. Executing these

steps, which are depicted in the first box of Figure 4, result in the so-called suspension automaton

of the model.

¶Not to be confused with the timeout observation after (t) in Figure 3.
‖https://sicstus.sics.se/
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Figure 4. The computation steps of Ulysses.

Ulysses generates the suspension automata for both input models AS and ASM . Afterwards,

the ioco check for these two models is performed (see the central box in Figure 4). The checker

generates a product graph from which controllable test cases (last box in the Ulysses process)

are extracted. Note that the calculation of the suspension automata and the synchronous product

calculation modulo ioco (SPioco) are performed on-the-fly, which means that the automata are only

unfolded as required by the conformance check [9].

Example 1. Consider the example of Figure 5. The first two LTSs show the partial suspension

automata of the CAS specification and of one of its mutants. The partial specification defines the

disarming of the alarm system when the car is unlocked. In the mutant, the disarming via an Unlock

is not possible as the controllable action Unlock has been replaced by Open. After making the mutant

input-complete the Unlock action is added as a self-loop in the particular state. For readability of

Figure 5, the non-input-enabled version of the mutant is shown.

The mutant is not ioco to the specification because the subset inclusion of the observations after

the trace

tr = 〈Close,Lock , after(20 ),AlarmArmed SetOn,Unlock〉

does not hold, i.e.,

out(Mutant after tr) = {δ} 6⊆ {AlarmArmed SetOff } = out(Specification after tr)

The product LTS in Figure 5 is computed as follows. Like in conventional synchronous product

calculation, both transition systems proceed to their next state on common events. Additionally, if

the mutant provides an input which is not available in the specification then the product terminates

after such an event in a pass state. In the example, Open is such an unspecified controllable event.

Conversely, when an input is available only in the specification then, due to the input-enabledness of

the mutant, the mutant stays in the current state and the specification moves to the next state. After

output events that occur in the specification but not in the mutant, the product terminates in a pass

state. Finally, after an unspecified output of the mutant the product terminates in a fail state.

In the product LTS pass and fail states are denoted by accordingly labeled self-transitions. If a

product LTS contains a fail state, it is possible to derive a controllable test case that is able to detect

this faulty behaviour. Note that the selected test cases are positive (implicit fail verdicts) and that

they cover the faulty behaviour of a mutant in order to prove the absence of the mutation.

3.3. Test Case Selection and Coverage

In the following, the required properties of the selected test cases are stated and then a selection

algorithm for adaptive test cases is presented.

Given a product LTS (SP, LP, T P, sP
0
) being the result of an ioco check and a set Fail ⊂ SP

denoting the set of fail states. An unsafe state is defined as a state in which an unspecified output

can occur.

Unsafe =df {s ∈ SP | s
a
→ f ∧ f ∈ Fail ∧ a ∈ LU}

Unsafe states play the central role in any test case generation strategy presented here, since they

represent the test goals that should be covered by the set of generated test cases. In the following the

general properties of a generated test case TC = (STC , LTC , TTC , sTC
0

), selected from a product

LTS, are presented.
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Specification

ctr Close

δ

ctr Lock

δ

obs after ( 20 )

obs AlarmArmed SetOn

δ

ctr Unlock

obs AlarmArmed SetOff

Mutant

ctr Close

δ

ctr Lock

δ

obs after ( 20 )

obs AlarmArmed SetOn

δ

ctr Open

obs AlarmArmed SetOff

Product

ctr Close

δ

ctr Lock

δ

obs after ( 20 )

δ

obs AlarmArmed SetOn

ctr Open

pass
ctr Unlock

obs AlarmArmed SetOff
δ

fail

Test Case

ctr Close

ctr Lock

obs after ( 20 )

obs AlarmArmed SetOn

ctr Unlock

obs AlarmArmed SetOff

pass

Figure 5. The two LTSs on the left show parts of the suspension automata of the CAS specification and of
one of its mutants. The two LTSs on the right depict the resulting ioco product and a selected test case.

STC\{pass, inconc} ⊆ SP ∧ LTC ⊆ LP ∧ sTC

0
= sP

0
(inclusion)

s 6
a
→ ⇐⇒ s ∈ {pass, inconc} (sink states)

s = pass ⇐⇒ ∃u ∈ Unsafe • u
a
→ s ∧ s 6∈ Fail ∧ a ∈ LU (passing)

(s ∈ STC ∧ s
a
⇒ ∧s

b
⇒) =⇒ (a, b ∈ LI ∧ a = b) ∨ a, b ∈ LU (controllability)

∃! u ∈ STC • (u ∈ Unsafe) ∧ u
a
→ pass (test goal unique)

∃ σ • sTC

0

σ
⇒ u ∧ u ∈ Unsafe (test goal reachable)

A test case is a sub-transition system of the calculated product extended with two additional

verdict states pass and inconc (inclusion). In the test case, a sink state is always a verdict state

pass or inconc. Note, fail verdicts are implicit and not included (sink states). The pass verdict is

characterised by successfully passing an unsafe state (passing). A test case does not contain choices

over controllables (controllability) [5]. Reaching an unsafe state is the test goal of mutation testing.

Hence, exactly one unsafe state precedes a pass verdict state (test goal unique) per test case. Finally

and most importantly, the test case must be able to reach its test goal, i.e., the unsafe state (test goal

reachable).

There are two kinds of test cases that may reach the test goal, i.e., a given unsafe state: First, a

linear test case that includes one path to the unsafe state. Second, a branching adaptive test case that

may include several paths to an unsafe state. In the following, the properties of the two kinds are

presented.
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KILLING STRATEGIES FOR MODEL-BASED MUTATION TESTING 11

Algorithm 1 getTC (s,Goal) : S × P(S) 7→ P(S × (L ∪ {δ, inconc})× S)

1: if s ∈ Goal then

2: return ∅
3: else

4: σ := shortestTrace(s,Goal)
5: if σ = 〈〉 then

6: return {(s, inconc, s)}
7: else

8: E := edges(σ)
9: Goal := Goal ∪ states(E)

10: return E ∪
⋃
{{(s1, a, s2) ∈ TP } ∪ getTC (s2,Goal) |

∃a′, s′
2
• (s1, a

′, s′
2
) ∈ E ∧ a, a′ ∈ LU ∧ a 6= a′ ∧ s2 /∈ Fail}

11: end if

12: end if

3.3.1. Linear Test Cases are necessary if the target test harness does not support branching

behaviour. The following two additional properties characterise linear test cases:

∃! σ • sTC

0

σ
⇒ u ∧ u ∈ Unsafe (linear test case)

sTC a
→ inconc ⇐⇒ sTC σ

⇒ u ∧ u ∈ Unsafe ∧ ∃s′ • ((sTC , a, s′) ∈ T P∧

a ∈ LU ∧ a 6∈ hd(σ)) (inconclusive linear)

Such a test case contains exactly one path to the unsafe state (linear test case). Since a model’s

behaviour may branch, an observation may lead away from the linear path. In this case, the test has

to be stopped with an inconclusive verdict (inconclusive linear). Here, the head operator hd returns

the first element in the trace σ.

3.3.2. Adaptive Test Cases integrate several paths to the unsafe state into one test case. They only

give an inconclusive verdict if it is impossible to reach the unsafe state:

sTC a
→ inconc ⇐⇒ sTC σ

⇒ u ∧ u ∈ Unsafe ∧ ∃s′ • ((sTC , a, s′) ∈ T P∧

a ∈ LU ∧ s′ 6
σ
′

⇒ u) (inconclusive adaptive)

Note the difference from the linear test case in the last conjunct. A linear test case reports

inconclusive if an observation leads away from the single path to the unsafe state. In contrast, in

the adaptive case, inconclusive is only reported if after an observation it is impossible to reach the

unsafe state.

In the following, the extraction of such an adaptive test case from a given product LTS (see

Section 3.2) is described. An adaptive test case is a selection of transitions of the product LTS

augmented with the verdicts pass and inconc (inconclusive). Only positive test cases are generated,

i.e., fail verdicts are implicit and not included.

Algorithm 1 describes the procedure getTC. It is the recursive part of the test case extraction

and selects transitions from the product LTS. In the following description, set variables are denoted

by capital letters. As an input, Algorithm 1 requires a state s of the product LTS and and a set of

goal states Goal. Initially, the algorithm is called with the initial state s0 and the unsafe state u that

shall be covered by the resulting test case: getTC (s0, {u}). The algorithm searches for the shortest

trace from the initial state to an unsafe state and recursively extends this trace for all branching

output transitions. More precisely: at first the current state is checked, whether it is already a goal

state (Line 1). If this is the case, the empty set is returned. Otherwise, a trace leading to a goal

state is searched. In Line 4 the shortest trace between the given start state s and one state in

the set of goal states is determined. Note that there can exist several shortest traces of the same

length. In this case, one of them is chosen non-deterministically. If there exists no such trace then
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12 B. K. AICHERNIG ET AL.

all observations in state s terminate in an inconclusive state. Otherwise the transitions E along

trace σ (Line 8) are part of the test case. The transitions of a trace are determined by the function:

edges : (L ∪ δ)∗ 7→ P(S × (L ∪ δ)× S). In Line 9, the set of states in E obtained by the function

states are added to the set of goal states. Hence, the goal becomes to reach one state of the test case

which in turn leads to an unsafe state. Next, the test case is recursively extended by all branching

observable events along the trace σ (Line 10). Here, the set comprehension creates a set of sets of

transitions. Each set corresponds to a subgraph in the test case after a branching observation. The

recursive algorithm terminates when all branching outputs have been processed.

The return value of Algorithm 1 is of type P(S × (L ∪ {δ, inconc})× S). It already incorporates

inconc verdicts represented as self-looped transitions. In order to accomplish a valid, adaptive test

case TCu, pass verdicts still have to be added. This is accomplished by inserting transitions to pass

states as follows:

TCu =df getTC (s0, {u}) ∪ {(u, a, pass) | ∃s • u
a
→ s ∧ a ∈ LU ∧ s /∈ Fail} (adaptive test case)

Hence, an adaptive test case is of type P(S × (L ∪ {δ, inconc})× (S ∪ pass)).

4. MUTATION KILLING STRATEGIES

The preceding section provided the theoretical basis for the presented model-based mutation testing

framework. This section describes eight different strategies called S1 to S8 to select test cases.

Strategies S1 to S6 are mutation-based, while S7 and S8 serve as benchmarks for the mutation-based

strategies. Strategy S7 is better known as random testing and strategy S8 uses manually designed

test cases.

4.1. S1 - All Paths Killing Strategy

Strategy S1 first converts the product graph obtained during the ioco check to a tree. The unfolding

of the graph is implemented via a breadth-first search beginning from the graph’s initial state. To

avoid infinite loop unfolding, the following two stopping criteria are defined: (1) The algorithm

stops to explore a certain path if a user-specified maximum depth d is reached. (2) The exploration

will also stop if some state of the product graph has been visited the nth time in that path. The

bound n can also be specified by the user. Additionally, no path of the tree contains a sequence of

δ transitions (quiescence). Instead, just one δ transition is added. This keeps the tree as compact as

possible and saves time during test case execution.

After this unfolding, linear test cases are extracted for all paths that lead to an unsafe state in the

product tree. First, the path leading from the respective unsafe state to the root node of the product

tree is added to the test case via a backward traversal, cf. Section 3.3.1 (linear test case). Second,

the selected path will be augmented with verdicts inconclusive and pass according to Section 3.3.1

(inconclusive linear) and (passing).

Example 2. Consider the LTSs depicted in Figure 6. The Specification describes a vending machine

for hot beverages that delivers coffee or hot chocolate once it is ready and a coin has been inserted.

Otherwise it reports NotReady and terminates. The Mutant behaves in the same way, but it delivers

tea instead of hot chocolate. The Product Graph depicts the result of the ioco check between these

two LTSs. Since the observable Tea is not specified, it leads to a fail state (depicted in dark grey). The

predecessor of the fail state is the unsafe state (depicted in light grey). The graph is then unfolded

to the Product Tree (see Figure 7). In this example, the graph has been completely unfolded except

for the δ loop, which is executed at most once. From the tree, S1 then selects the two possible test

cases leading to the unsafe state. Test Case 1 represents the choice of immediately inserting a coin.

Test Case 2 does not immediately insert a coin but waits (δ) beforehand. As already explained in

Section 3.3.1 (inconclusive linear), inconclusive verdicts have been added. Hence, the test cases are

not only a straight path but have short branches marking behaviour leading away from the test goal

of passing the unsafe state.
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Specification

obs Ready

obs NotReady

ctr Coin

δ

obs Coffee

obs Choc

Mutant

obs Ready

obs NotReady

ctr Coin

δ

obs Coffee

obs Tea

Product

obs Ready

obs NotReady

ctr Coin

δ

obs Coffee

obs Choc
obs Tea

fail

Figure 6. This example describes a vending machine for hot beverages delivering coffee or hot chocolate in
the specification, but coffee or tea in the mutated version. The LTSs show the specification, the mutant, and

the product modulo ioco.

Product Tree

obs NotReady obs Ready

ctr Coin

obs Coffee

obs Choc

obs Tea

fail

δ

ctr Coin

obs Coffee

obs Choc

obs Tea

fail

Test Case 1

obs NotReady

inconc

obs Ready

ctr Coin

obs Coffee

pass

obs Choc

pass

Test Case 2

obs NotReady

inconc

obs Ready

δ

ctr Coin

obs Coffee

pass

obs Choc

pass

Figure 7. The first LTS depicts the tree version of the product graph shown in Figure 6 according to the
unfolding procedure of killing strategy S1. The other two LTSs show the two possible test cases that were

extracted from the tree by S1.

4.2. S2 - Target-Oriented Killing Strategy

The second test case generation strategy directly works on the product graph and extracts only one

arbitrary linear test per unsafe state (not one for each path leading to an unsafe state as in S1). Notice

that one mutation at the UML level may lead to more than one unsafe state in the LTS product graph.

The test case is obtained by applying a depth-first-search from the unsafe state back to the initial

state. The search depth is bounded and the first path reaching the initial state builds the test case.

Finally the test case is completed with the observable events leading to pass states. It has to be

noted that this approach is only suited to generate test cases for systems with deterministic output

behaviour, i.e., systems that respond with exactly one output event to an input event.

Example 3. Let us consider the product LTS in Figure 6 and a bounded search depth of two. Then

a depth-first-search starting from the unsafe state may yield 〈Coin, δ〉. Since the initial state has

not been reached within the search depth limit the search backtracks to the next path, i.e., 〈Coin,

Ready〉. The reversal of this path in conjunction with the two observations Coffee and Choc at the

end complete the test case.

4.3. S3 - Adaptive Killing Strategy

This strategy generates a test case for every unsafe state of a mutant. It is similar to the second

one (S2), except that the depth is theoretically unbounded since the test case generator applies

Algorithm 1. Generated test cases are adaptive, i.e., their branching structure allows the tester to
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Step 1

obs Ready

ctr Coin

Step 2

obs Ready

ctr Coin

obs NotReady

Step 3

obs Ready

ctr Coin

obs NotReady

inconc

Step 4

obs Ready

ctr Coin

obs NotReady

obs Coffee obs Choc

inconc

pass pass

Figure 8. This figure shows the stepwise derivation of a test case from the product LTS given in Figure 6
according to S3.

follow different output responses of the implementation. The following example illustrates the test

selection algorithm.

Example 4. Again, consider the vending machine example depicted in Figure 6. The selection of

a test case is shown according to Algorithm 1 in four steps, see Figure 8: starting from the initial

state of the product LTS, the shortest trace to the unsafe state is determined, see Step 1. Next, each

transition with an observable event in the trace is completed with all other branching observable

transitions. In the given trace in Step 1 there is only one observable transition, i.e., Ready, and

according to the product LTS in Figure 6 the transition NotReady branches from the same state as

Ready. Consequently, NotReady is added to the test case, see Step 2. The LTS in Step 2 shows the

result of the first recursion level. The recursion proceeds for each newly discovered state, reached

via branching transitions. In the example the state after NotReady is a new state. Furthermore, the

set of goal states is extended to all states discovered so far, i.e., all states of Step 2. In the next

recursion there exists no trace from the new state of Step 2 to any goal state. Hence, according to

Algorithm 1 an inconc self-loop is added to the new state, see Step 3. At this point, the recursion

terminates and the function getTC returns the LTS of Step 3. Finally, the two observable transitions

leading to a pass state are added, see Step 4.

4.4. S4 - Lazy Killing Strategy

The fourth strategy builds on S3 but avoids creating test cases for unsafe states in a given product

graph which are already covered by existing test cases. In order to check if a certain unsafe state

is covered by an existing test case a test purpose tp is generated for that unsafe state. Then the

existing test cases are checked by computing the synchronous product with tp. This is similar to

the synchronous product calculation in the tool TGV [10], however TGV computes it between test

purpose and specification. A test case tc satisfies a test purpose if the product calculation prunes no

events from tc, i.e., tc× tp = tc.
The generated test purpose ensures that a given test case passes through the unsafe state

to a pass state. Given an unsafe state u, the set of states L2U which lead to u, i.e.,

L2U =df {s ∈ S | ∃σ • s
σ
⇒ u} is determined. The set of pass states associated with u are

Pass =df {s ∈ S | ∃a ∈ LU • (u, a, s) ∈ T ∧ s /∈ Fail}. The resulting test purpose tpu has the

transition relation Tu =df {(s1, a, s2) ∈ T | s1, s2 ∈ L2U ∨ (s1 = u ∧ s2 ∈ Pass)} ∪ {(s, ∗, s) | s ∈
Pass}. The remaining behaviour after reaching a state s ∈ Pass is not of interest, denoted by the ∗
label allowing any transitions to occur thereafter.

This strategy guarantees to generate at least one test case for every unsafe state. However, note

that generated test cases can still be included in other test cases. This depends on the order of the

processed unsafe states. If the first processed unsafe states are deep, it is theoretically possible that

no generated test case is included in another one.

Example 5. Given is a coffee vending machine which accepts some amount of coins before

delivering coffee. After each coin the machine notifies the user when it is ready to accept the next
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Product LTS

ctr Cancelctr Coin

obs Ready

obs Ready

obs Coffee δ

fail

L2U

ctr Coin

obs Ready

obs Ready

TP

ctr Coin

obs Ready

obs Ready

obs Coffee

*

Figure 9. The first LTS shows a partial product graph of a coffee vending machine, the second LTS represents
the subgraph from which every state leads to the unsafe state (grey state in the product LTS), and the third

LTS shows the derived test purpose.

coin. The machine has a cancel button which aborts the coin collection process. The behaviour after

pushing the cancel button is omitted. After receiving the right amount of coins and before delivering

coffee the machine sends a second Ready signal. A mutated version of the vending machine just

keeps collecting coins and instead of delivering coffee it becomes quiescent. This faulty behaviour

is reflected with the quiescence transition in the product LTS depicted in Figure 9. The test purpose

for the unsafe state is determined as follows. First, the set of states leading to the unsafe state (L2U)

is computed by searching backward from the unsafe state to the initial state. Then, the test purpose

is completed with all observable transitions from the unsafe state which do not lead to fail, followed

by a star labeled self-loop.

The obtained test purpose enables to assess if a given test case is able to kill a mutant via a certain

unsafe state. Consider the two linear test cases TC1 = 〈Coin, Ready, Cancel〉 and TC2 = 〈Coin,

Ready, Coin, Ready, Ready, Coffee, Coin〉; note that obs and ctr keywords are omitted. The

calculation of the synchronous product TC1 × TP yields 〈 Coin, Ready 〉 which is not equal to

TC1. Hence, the test case is not able to kill the mutant via the given unsafe state. For TC2 the

product with the test purpose yields the test case itself. Thus, TC2 fulfils the test purpose.

4.5. S5 - Lazy Ignorant Killing Strategy

Like S4, strategy S5 also avoids creating duplicate test cases. However, S5 further tries to minimise

the size of the generated test suite. Before creating test cases for a mutated specification, S5 first

checks whether any of the previously created test cases is able to kill the mutated specification. A

test case tc kills a mutant m iff ¬(m ioco tc). In order to verify the violation of ioco, a trace of the

test case where the subset inclusion of observations does not hold, has to be found as can be seen in

Equation 9.

Therefore, the synchronous product modulo ioco of the test case tc with the mutated specification

m is computed. The following rules define the operational semantics for the product calculation:

a ∈ L ∪ {δ} tc
a
⇒ tc′ m

a
⇒ m′

(tc,m)
a
⇒ (tc′,m′)

(1)
a ∈ LI tc

a
⇒ tc′ m

a
; m′

(tc,m)
a
⇒ (tc′,m)

(2)

a ∈ LU ∪ {δ} tc
a
; tc′ m

a
⇒ m′

(tc,m)
a
⇒ (fail ,m′)

(3)

Rule (1) describes the case where tc and m synchronise on common events and proceed to their

next state. Due to the input-enabledness assumption the mutated specification has to accept all input

events in every state. This is realised by making every state of m input-complete by adding self-

loops for the remaining input events, see Rule (2). Rule (3) states that the test case reaches a fail

state when the mutant produces an output event which the test case cannot follow. Given these rules
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Specification

ctr Coin

δ

obs Ready

obs Coffee

δ

Mutant

ctr Coin

δ

obs Ready

δ

δ

Test Case

ctr Coin

ctr Coin

obs Coffee obs Ready

pass pass

Figure 10. The first LTS shows the specification of a coffee vending machine, the second LTS represents a
mutated version where no coffee is delivered, and the third LTS depicts a test case which kills the mutant.

a mutant is killed when a fail state can be reached, i.e.,

∃σ ∈ (L ∪ {δ})∗ • (tc,m)
σ
⇒ (fail ,m′).

The check is done without calculating the full ioco product between the specification and the

mutant, which is the first difference to S4. Strategy S4 always calculates the full ioco product. In

S5, if an existing test is able to kill the mutant, the test suite is considered strong enough and no new

test cases are generated for the mutant. This is the second difference to S4 as S4 will only skip test

case generation for covered unsafe states, while S5 never generates any additional test case for a

killed mutant. Due to this minimisation, strategy S5 is sensitive to the ordering of mutants. Strategy

S5 starts with an empty test suite.

Example 6. Consider the test case and the mutated specification in Figure 10. In the following,

the stepwise execution of the test case on the mutant leading to a fail verdict is explained. The first

event (Coin) is processed with Rule 1 since both, the test case and the mutant can execute the event.

The second coin is inserted into the machine without a prior observation of the Ready signal. This

unspecified input event is handled by Rule 2. Here, the tester moves to its next state whereas the

mutant remains in its current state. Finally, the test case expects the observation of either Coffee or

the Ready event. However, the mutant stays quiescent which leads to a fail state according to Rule 3.

By showing that there exists an execution trace of the test case to a fail state it is ensured that the

test case is able to kill the mutant.

4.6. S6 - Random First Killing Strategy

Strategy S6 works like S5 but instead of starting with an empty test suite, S6 uses randomly

generated test cases to start with. In effect, S6 is a combination of random (S7) and fault-based

testing (S5). The idea is to kill as many mutants as possible with a few random test cases. For the

surviving mutants additional test cases are generated according to approach S5. Random test cases

are easy to generate while the computationally more costly mutation-based test cases are generated

only for a subset of all mutants.

4.7. S7 - Random Killing Strategy

This strategy uses a random selection approach in order to generate test cases. Put differently, S7 is

not a fault-based test case generation strategy and included for evaluation purposes only.

Generating random test sequences is rather easy and computationally not very demanding. The

basic idea is to record the events that should be used to stimulate the system as well as all events

that can be observed from the system while doing a random walk on the specification. Since the

random test cases are linear (cf. 3.3.1), inconclusive verdicts have to be added where appropriate.

More precisely, such a verdict is given, if the SUT produces a correct observation different from the

randomly selected expected observation. Obviously, an inconclusive verdict does not kill a mutant.

The following example demonstrates this.
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Random Walk

obs Ready

δ

δ

ctr Coin

obs Coffee

Random Test

obs NotReady

inconc

obs Ready

δ

δ

ctr Coin

obs Coffee

pass

obs Choc

inconc

Figure 11. The LTS on the left shows a possible random walk through the specification shown in Figure 6.
The LTS at the right shows the test case obtained by adding test verdicts to the random walk sequence.

Example 7. Given the vending machine specification from Figure 6, a random walk could yield a

sequence like the LTS at the left of Figure 11. After adding test verdicts, a non-adaptive random test

like the LTS at the right of Figure 11 would have been obtained. Notice the differences between this

test case and the one produced by approach S1: the observable Coffee is needed for a pass verdict

and the unsafe states do not have to be considered.

4.8. S8 - Purposeful Killing Strategy

The last strategy serves the purpose of comparing the mutation-based test case generation

methodology with manual test case generation. More precisely, S8 uses manually created test

purposes together with a system specification and the tool TGV [10] to generate test cases.

In TGV a test purpose is a deterministic IOLTS (IOTS) that is equipped with two sets of sink

states, called Accept and Refuse. The former defines the pass verdicts and at least one accept

state must be present while the latter is used to limit the exploration of the graph during test case

generation. A test purpose has to use the same alphabet as the specification transition system. TGV

uses transitions labeled with a star (“*”) in test purposes as a shorthand for “otherwise”. Test cases

are then generated “on-the-fly” from the synchronous product of the specification TS and the test

purpose.

Example 8. Given the specification of the car alarm system (see Section 2), the test purpose

shown in Figure 12 is needed to create a test for the AcousticAlarm SetOff event. Notice that there

are several different ways through the state machine to reach the event under investigation. TGV,

however, will only report one particular event trace, in this case the LTS on the right of Figure 12.

5. EXPERIMENTAL RESULTS

In the preceding sections, the theoretical basis of the model-based mutation testing framework has

been discussed and eight different strategies for test case selection have been presented. This section

goes one step further as empirical results of applying the different approaches to two case studies are

shown. All of the experiments were conducted on a computer equipped with two 2.5 GHz quad-core

processors and 30 GB RAM running a 64-bit Linux. While the test case generator does not support

multi-threaded computations, it is possible to run multiple instances in parallel, each instance taking

care of one mutant.
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Test Purpose

*

obs after ( 30 )

obs AcousticAlarm SetOff

accept

TGV Test

ctr Close

ctr Lock

obs after ( 20 )

obs AlarmArmed SetOn

ctr Open

obs AlarmArmed SetOff

obs OpticalAlarm SetOn

obs AcousticAlarm SetOn

obs after ( 30 )

obs AcousticAlarm SetOff

pass

Figure 12. The LTS on the left represents a test purpose to test the AcousticAlarm SetOff event of the car
alarm system. The second LTS depicts the corresponding test case generated by TGV (S8).

Table II. Number of test cases for the CAS generated by the eight different approaches.

S1 S2 S3 S4 S5 S6 S7 S8

Max. Depth 10 14 23 23 23 150 (19) 150 30
Gen. TCs [#] 16 210 302 504 129 63 11 3 9

Duplicates [#] 12 179 174 217 0 0 0 0 0
Unique [#] 3 469 110 269 123 59 11 3 9

Gen. Time [min] 188 91 23 70 23 10 0.25 -

5.1. Car Alarm System

The car alarm system (CAS) has already been presented in Section 2. It serves as a first case study

to compare all eight strategies on (1) the level of test case generation by means of metrics like the

number of generated test cases and the time needed for their generation and (2) on the level of test

case execution by comparing the fault detection rates, i.e. the mutation scores, of the generated test

suites applied on various faulty implementations.

5.1.1. Test Case Generation All fault-based strategies use a set of 76 faulty specifications

(cf. Section 2.3) as an input to test case generation. Note that because the car alarm system is

deterministic, all test cases are linear. As already described in Section 4, the test cases resulting

from S1 and S2 have been generated via straightforward path search. The strategies S3 - S5 employ

Algorithm 1. Strategy S6 generates test cases randomly and according to Algorithm 1. Table II

highlights the main differences between the strategies regarding the generated test cases.

S1 - All Paths Killing Strategy For the experiments, the maximum depth for loop unfolding

was chosen to be 10 (d = 10) and a two-times maximum visit per state per trace (n = 2) has been

defined. As can be seen in Table II, this greedy test case generation strategy produces a very large

number of tests. Also, approximately 75% of the generated tests are duplicates. From the non-

duplicate test cases, another 562 tests turned out to be a complete subsequence of one of the other

remaining test cases. Hence, about 3500 tests remain. The number of test cases generated by S1 has

been considered as being too high for a model of this size. Hence this strategy has been given up

and the tests have not been executed on the CAS implementations.
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S2 - Target-Oriented Killing Strategy 58% of the test cases generated by S2 were identified

to be duplicates and another 22 were covered as a subsequence in other test cases. Because the

maximum test length has been set to 14 for this strategy the test-case generation times are not

directly comparable between S1 and S2. Note that all unique test cases with a length of up to 10 that

were produced by this strategy were included in the set of tests generated by the first strategy (S1).

S3 - Adaptive Killing Strategy Strategies S1 and S2 generated test cases that were restricted by

a depth of 10 and 14 respectively. Strategy S3 creates theoretically unbounded test cases. Therefore,

the generation time is not readily comparable with the ones of approaches S1 and S2 (but to those

of S4 to S7).

S4 - Lazy Killing Strategy Compared to S3, the total number of generated test cases decreases

from 504 to 129. At the same time, the amount of time spent to generate the tests increases from 23

to 70 minutes. This happens because S4 needs to compute a subset of already generated test cases

that covers a maximum number of the unsafe states in the ioco product graph. If an unsafe state

(there may be several per mutated specification) is not covered, a new test case is emitted.

S5 - Lazy Ignorant Killing Strategy This strategy brings a further reduction in the number of test

cases, i.e., approximately one half, compared to S4. Like for approach S4 no duplicate test cases are

generated. Since the number of unsafe states is possibly much higher than the number of mutants,

the number of checks to determine if a test case kills a mutant is lower than the number of checks to

determine if a test case covers an unsafe state. Hence, the generation time reduces from 70 minutes

for approach S4 to 23 minutes.

S6 - Random First Killing Strategy In the experiments, the test suite was initialised with one

randomly generated test case to start with. In Table II, the maximum depth not put in brackets is the

depth of the randomly generated initial test case, while the figure in brackets is the maximum depth

of the additionally generated tests to cover all faulty specifications.

S7 - Random Killing Strategy Random test case generation for the CAS proved to be straight

forward. The only decision that had to be taken was the maximum depth and the amount of test

cases to be produced. From Figure 3 it can be derived that the outer loop from State 0 over State 4

involves 14 steps at minimum. For random testing the exploration depth should be chosen much

greater. Hence, the chosen depth for three generated random test cases has been 50, 100, and 150

respectively.

As can be seen in Table II the time spent generating these three random test cases is negligible

when compared to the other strategies (incl. S8).

S8 - Purposeful Killing Strategy For the experiments, 9 different test purposes have been created

by hand and TGV [10] was used to generate test cases. Three out of the 9 test cases check for

observable timeouts (time-triggered transitions: 20, 30, 300 sec delay). Four test cases check the

entry and exit actions of the states Armed and Alarm. One test case checks for the deactivation of

the acoustic alarm after the timeout. One more complex test case has a depth of 30 transitions going

once through the state SilentAndOpen to Armed before going to Alarm again and leaving after the

acoustic alarm deactivation by an unlock event. Hence, each observable event is covered by at least

one test case. The designer of the test purposes relied on a printout of the UML state machine.

5.1.2. Test Case Execution

SUT / Implementation Classical mutation analysis has been applied to evaluate the effectiveness

of the different test suites. For this purpose the CAS has been implemented in Java according to the

state machine of Figure 2. Java interfaces have been designed for both SUT and the environment
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Table III. Mutations of the CAS implementation.

Mutants Equivalent Redundant Different Faults

SetState 6 0 1 5
Close 16 2 6 8
Open 16 2 6 8
Lock 12 2 4 6
Unlock 20 2 8 10
Constr. 2 0 1 1

Total 72 8 26 38

so that it was easy to connect SUT and the test driver. Note, in general it is easier to write a test

driver for a simulation using the same signals as the test model, i.e. staying on the same level of

abstraction, than to create a test driver for real hardware.

The interface of the SUT declares a method for each of the signals Lock, Unlock, Close and Open.

Since the implementation uses simulated time, the interface also declares a tick method that is called

by the environment, i.e. test driver, to tell the CAS that one unit of time has passed.

Test Driver The test driver implements the environment interface. This interface declares call-

back methods for the signals AlarmArmed SetOn, AlarmArmed SetOff, AcousticAlarm SetOn,

AcousticAlarm SetOff, OpticalAlarm SetOn and OpticalAlarm SetOff.

Abstract test cases that are provided in the ALDEBARAN format (suffix .aut)∗∗ are parsed by the

test driver. Whenever a controllable action is found, the corresponding method of the SUT is called.

The SUT can respond to the test driver by calling a call-back method. These calls are recorded by

the test driver. Whenever the test driver parses an observable action, this action is compared to the

oldest recorded call-back method call. If the labels match, the execution of the test case is continued,

otherwise it is aborted and the test verdict fail is given.

When an after event is parsed denoting that the test driver shall wait for a specified time, the tick

method is called repeatedly. Before calling the tick method for a last time, the recorded observations

are checked for unspecified behaviour. Then tick is called once again and parsing of the test case is

continued.

When the end of a test case is reached without detecting unexpected behaviour, the verdict pass

is given.

Results In order to derive a set of faulty implementations, version 3 of µJava [14] has been used.

All traditional mutation operators (method-level operators) have been applied. In total, µJava created

72 mutated implementations. After careful manual inspection, 8 of these mutated implementations

were found to be equivalent to the original program, and another set of 26 mutants was found to be

redundant because the mutants were syntactically equivalent to other mutants.†† Usually, in mutation

testing one should avoid equivalent or redundant mutants. Because of that, they have been singled

out and a sum of 38 (72 - 8 - 26) different faulty implementations of the CAS remain.

Further details are shown in Table III. For each method, the table lists the total number of

mutated implementations, the number of mutants that turned out to be equivalent to the original

implementation, and the number of equivalent pairs of mutated implementations. The methods

Close, Open, Lock and Unlock are public and defined by the interface while Set State and the

constructor (Constr) are internal methods. From the table, one can observe that the mutation of

internal methods has a strong effect on the external behaviour since there are no equivalent mutants

for these methods.

∗∗http://cadp.inria.fr/man/aldebaran.html#sect6
††The high number of syntactically equivalent mutants is due to what seemingly is a bug in the LOI operator of µJava,
version 3. The operator generates redundant mutants when applied to a final static Integer field of another class.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



KILLING STRATEGIES FOR MODEL-BASED MUTATION TESTING 21

Table IV. Overview of how many faulty SUTs of the CAS could not be killed by the test cases generated
with the different approaches.

S2 S3 S4 S5 S6 S7 S8

SetState 0 0 0 0 0 0 0
Close 1 0 0 0 0 0 2
Open 0 0 0 1 0 0 4
Lock 0 0 0 0 0 0 2
Unlock 1 0 0 0 0 1 5
Constr. 0 0 0 0 0 0 0

Total 2 0 0 1 0 1 13
Mutation score [%] 95 100 100 97 100 97 66
Impl. Coverage [%] 99 99 99 99 99 99 88

All 38 unique faulty CAS implementations were used to evaluate the effectiveness of the

generated test cases. Of course, all tests were validated beforehand on the non-mutated CAS

implementation.

Table IV gives an overview of the number of survived faulty implementations for each test case

generation strategy. As can be seen from the table, the strategies S3, S4, and S6 were able to reveal

all faults. The table also shows that the minimisation algorithm applied in approach S5 reduced

the fault-detection capabilities. With the reduced number of test cases of S5, one mutant survived.

Despite random testing (S7) did not find all faulty implementations, it proved quite effective in the

given setting. Summing up, S5 and S7 still have a mutation score of 97%. The reason for the bad

performance of S2 is the fact that the two surviving faulty implementations need tests with a depth

of more than 14 interactions to be revealed and S2’s tests are restricted to a depth ≤ 14.

The last column shows the results of running the manually designed tests (S8). Overall,

25 mutants were killed which results in a mutation score of 66%. Clearly, the figures show that in

order to have a meaningful test suite, more (diverse) test cases have to be generated. Partly, this lack

of diverse test cases is based on the deterministic test selection behaviour of TGV: all TGV-based

tests have almost the same test sequence from OpenAndUnlocked to ClosedAndLocked, although

alternative paths are possible.

Often, coverage metrics on the implementation’s source code serve as a quality measure to

describe the adequacy of a test suite. Therefore, the coverage on the implementation in terms of basic

block coverage has been measured. The strategies S2 - S7 achieve a coverage of 99%, whereas S8

(TGV) only results in a basic block coverage of 88%. By comparing the last two rows of Table IV, it

becomes obvious that a high code coverage does not automatically guarantee high mutation scores,

which is the overall goal.

In summing up, the results show that the strategies are powerful in covering the implementation’s

source code and more importantly in detecting faults. However, the depth of the conformance

analysis is critical as a too shallow bound for the exploration depth results in missing test cases

and, in this example, in undetected faults. The results also show that the 3500 test cases of the first

strategy were too many by far: for the given model mutations, one path per mutation is sufficient to

detect all faults, provided this path is long enough. Finally, the combined strategy (S6) proved to be

a nice trade-off between generation time and effectiveness.

5.2. A Second Case Study: a Wheel Loader

In a second experiment, the model of an ECU (Electronic Control Unit) controlling the arm and the

bucket of a wheel loader served as a case study. Figure 13 shows the movable arm/bucket of a Lego

model next to the ECU that sits in the back. The system under test (ECU) was implemented by the

industry partner RE:Lab on a Freescale i.MX35 processor running Linux.

The principle system architecture of this demonstrator is as follows. The ECU receives signals

from an ISOBUS (CAN) network and controls the actuators of the bucket/arm. Information about

the current status of the system is displayed both on a directly connected TFT display and an
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Figure 13. A Lego model of a wheel loader used for test case execution in the MOGENTES project.

ISOBUS terminal in the cabin. Inputs to the ECU come from a joystick that is connected to the

ISOBUS.

Compared to the car alarm system, in which three core requirements could easily be identified, the

requirements of the wheel loader were much more complex. Important behavior that had to be tested

was providing suitable values for the actuators fulfilling the physical constraints, error management,

and general timing-related properties. This model proved to be a challenge as different low-level

bus-related events had to be modeled in detail (i.e., integer-parametrized events) while at the same

time it also showed a high degree of parallelism (i.e., interleavings of event sequences) and complex

time-out behavior.

5.2.1. Tool Improvements The following improvements were made to the mutation-based test-case

generation tool so that it can handle the additional features found in the second case study.

First, the transformation from UML to LTS has changed slightly with respect to time events. Now,

time is modeled by adding a parameter (the first one) to each action. This parameter denotes the time

that has passed as integer. Hence, the explicit after-action has been hidden. If an action is observable,

then the SUT waits exactly the specified time before the observable is shown. Otherwise, if an action

is controllable, then the parameter denotes the time that has passed between the occurrence of the

last action and the occurrence of the input from the environment. The reason for this change is the

existence of so-called mixed states in the LTS of the wheel-loader models. A mixed state has both

controllable and observable events enabled. In such mixed states, it is more consistent to link the

waiting time before a controllable action to this action, than to introduce a new observable action. In

the car alarm system, each time event was followed by observable actions only. As a consequence

of removing the after-actions, the exploration depths between the two case studies are not exactly

comparable. Notice that a trace through the system now closely resembles the usual notion of a

timed trace where each action is represented as tuple of time-delay and action.

Second, a change has been made to the test case generator Ulysses. The original strategies S1–

S5 relied on a breadth-first search up to the given search depth. This worked especially fine for
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Figure 14. The testing interface for the bucket control of the wheel loader.

strategies S3–S5 when handling models as small as the car alarm system, as the longest path in the

LTS was smaller than the search depth. When working with larger models it is necessary to adapt

these strategies as follows: now, the exploration of all alternative branches is stopped at the depth of

the first found fail-state. Previously, alternative branches without fail-states were fully explored up

to the given search depth. Unfortunately, this optimization does not help with equivalent mutants.

5.2.2. UML Models Figure 14 shows the test interface for the wheel loader. The ECU may receive

several different ISOBUS messages from its environment, like the AuxiliaryInputStatusMessage

that is generated by the Joystick. Practically all these messages carry several integer parameters.

The environment of the ECU is split into two classes modeling the electromagnets used to control

the bucket/arm and a terminal that is used for displaying user information like the current error state,

joystick position etc. All signal receptions in the environment classes are outgoing signals as seen

from the ECU. For example, the ECU is responsible for setting the current that flows through the

electromagnets and controls some valves on the actuators on the arm/bucket of the wheel loader.

To cope with the complexity of the SUT, two partial state-machine models have been built. The

aim of partial models is to capture different functional aspects of a system. The first partial model

X error includes all of the error handling functionality, the second partial model Extremes captures

the so-called positive behavior dealing only with valid data and correct timing behavior.

The state machine diagram of the model containing the error handling is shown in Figure 15. As

can be seen, it makes heavy use of hierarchical states, orthogonal regions, timeouts, and constrained

transitions.‡‡ Once initialized, several activities are started: error management, input reception,

output generation, and additional watch-dog-like tasks are all being run in parallel. In this model,

input reception and output generation are separated into two different regions as outputs need to be

generated at a fixed rate while inputs arrive at a variable rate.

However, when modeling the system without error handling, these two regions can be merged,

leading to a model which is simpler. Figure 16 shows the state machine of the partial model, which

focuses solely on the calculation of the outputs for setting the current by which the electromagnets

are powered.

5.2.3. Generated OOAS Test Models Translating the UML models into the OOAS language leads

to a model consisting of 122 (X error) and 119 actions (Extremes) respectively as can be seen in

Table V. These include the four input actions to the ECU, the three output actions to the terminal

and one output action to the electromagnet as can be seen in the specification of the testing interface

in Figure 14. All other actions are internal.

Figure 17 shows a sample test case. The first action belongs to the bus initialization phase. The

next three actions correspond to the initial outputs generated by the ECU. After 25 time units, all

‡‡While the state machine could be split into separate state machines per orthogonal region, the current UML-to-OOAS
transformation only supports one state machine per class.
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sm_ECU

Initialized

ErrorManagement

Active

ShowTerminalSystemOK /...

FILTERING

NO ERROR DETECTED

ResetUnvalid /entry

Inactive

ShowTerminalSystemError /en...

CONFIRMATION

ResetValid /entry

UNVALIDATION

ResetUnvalid /entry

Stopped

ShowTerminalSystemCritical /entry

ReceiveInput

Receiving ReceiveWait

ControllerOutput

ControlOutput

RecalculateOutput /entry

ControlSafe

SetSafeOutputs /entry

JoystickStatus

JoystickLostJoystickOK JoystickWeak

VirtualTerminalStatus

VTLostVTOK VTinit

SendHeartBeat

ECUalive

AddressClaim

ClaimAddress /entry

when un_valid_data_counter >= self.parameterSet.M

when un_valid_data_counter <> 0

when valid_data_counter >= self.parameterSet.N / IncreaseCorrection

when valid_data_counter <> 0when un_valid_data_counter <> 0
[ else ]

when self.oclIsInState(Initialized::VTLost), when oclIsInState(Initialized::JoystickLost)

[ correction_counter >= parameterSet.K ]

100 [ not (oclIsInState(Initialized::Stopped) or oclIsInState(Initialized::Inactive::CONFIRMATION)) ] / IncreaseUnvalid

AuxiliaryInputStatusMessage

20

[ not (oclIsInState(Initialized::Stopped) or oclIsInState(Initialized::Inactive::CONFIRMATION)) ] / IncreaseUnvalid

/ ShowJoystickPosition

[ (msg.Axis1 <= 64255) and (msg.Axis2 <= 64255 ) ] / IncreaseValid
[ else ]

/ SetTargetOutput

parameterSet.cycleTime

when not oclIsInState(Initialized::Active)

when oclIsInState(Initialized::Active)

1

30

AuxiliaryInputMaintenanceMessage

1

300

VirtualTerminalStatusMessage

100 / SendWorkingSetMaintenanceMessage

25

Figure 15. The UML state machine of the model describing the error handling (X error) of the bucket control
of the wheel loader.

four currents are set to 0 and the images stating that the ECU is in a healthy state and neither

bucket nor bucket arm are moving are sent to the terminal. Finally the first input can be processed.

The value 62649 represents the most right position on the X axis, the value 32127 represents no

deflection in the Y axis, the so-called rest position. The desired behavior is a rotation towards the

bottom but no movement of the bucket arm. The test case first checks, whether the image with id 56,

corresponding to the rightmost joystick position is sent to the terminal and that after 10 time units

the first port of the first electromagnet is powered with 50 mA.
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Extremes

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9q10q11q12q13

q14

q15

q16

q17

q18 q19 q20

q21

q22

q23 q24

/ SendAddressClaimed
25 / SetCurrent / SendImplementStatus

/ SendErrorManagerState

AuxiliaryInputStatusMessage

10 / ClockUpdate

/ ProcessInput

/ SendJoystickImage

10 / ClockUpdate

AuxiliaryInputMaintenanceMessage

/ SetCurrent

/ SendImplementStatus

/ HeartBeat

10 / ClockUpdate

/ SetCurrent

/ SendImplementStatus

10 / ClockUpdate

AuxiliaryInputStatusMessage

/ HeartBeat

/ ProcessInput

/ SendJoystickImage

10 / ClockUpdate

/ SetCurrent

/ SendImplementStatus

/ HeartBeat

1 / ClockUpdate

/ SetCurrent

/ SendDisplayImage

9 / HeartBeat
10 / ClockUpdate

100 / HeartBeat

Figure 16. The UML state machine of the partial model (Extremes) of the wheel loader.

obs send AddressClaimed to Terminal(0,0,4)

obs call Electromagnet SetCurrent(25,0,0,0,0)

obs send DisplayImage to Terminal(0,3)

obs send DisplayImage to Terminal(0,0)

ctr AuxiliaryInputStatusMessage(0,62649,32127)

obs send DisplayImage to Terminal(0,56)

obs call Electromagnet SetCurrent(10,50,0,0,0)

pass

Figure 17. A sample test case for the wheel
loader case study.

Table V. Important characteristics for both
versions of the wheel loader model.

Model Metrics X err Extr

Number of actions 122 119

Max. depth for ioco check 35 25

Mutants [#] 58 192

Equivalent mutants [#] 35 106

Mutants causing a livelock 0 8
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Experiments [15] have shown that the tool Ulysses is very sensitive about the ranges of parameter

values. In this case study, this has to be considered twice. First, one needs to take care of choosing

the right time unit. Time events in this model can be as high as 3000 milliseconds. While a range

from 0 to 300 for a parameter works perfectly fine with Ulysses, a range of 0 to 3000 can render the

enumeration of the actions to a bottleneck of the exploration. To avoid this issue, 10 milliseconds has

been chosen as a time unit for this model. So a time value of 10 denotes 100 milliseconds in reality.

Second, attention has to be given to the parameters of the action AuxiliaryInputStatusMessage. This

action models the message from the joystick to the ECU containing the deflection of both axes and

it is parameterized with two integers ranging from 0 to 65355. The tool Ulysses would enumerate

all these values, branch execution on each step and run into the state space explosion problem. In

order to cope with the complexity of the fault-based strategies on this use case, the input values of

the partial models have been partitioned into equivalence classes.

Model X error The X error model is complete regarding the state machine, but rigorously

constricted in its input parameters. In order to be able to explore the model deep enough, only

two values for the joystick deflection have been considered: One valid joystick deflection value

representing the leftmost joystick deflection and one invalid value representing an error reported by

the joystick. Since the Y axis in this model is fixed to the neutral position and both the valid and the

invalid value are in the parameter of the X axis, this model is referred to as X error.

Model Extremes The second partial model Extremes captures the calculation of the outputs to the

actuators in a way that the tool Ulysses can reach interesting depths in reasonable time. In this model,

nine possible deflection values for the joystick deflection have been chosen. They include eight

deflections representing eight different directions and additionally the neutral position being in the

middle. Since no value representing an error value is included, most parts of the error handling can

be ignored. Only if a timeout occurs, the system is defined to switch to an error state, in which it halts

forever. Thus all orthogonal regions were eleminated by merging their contents into one remaining

region. While this does not solve the underlying problem of exponential branching of execution

paths, it allows to explore the model deep enough and enables the generation of meaningful test

cases.

5.2.4. Mutations When using large models the number of generated mutants becomes important, as

the processing of one equivalent mutant may take up to three hours (see Table VII). Hence, the total

number of possible mutants given the set of tool-supported mutation operators has been considered

too large and only the following three mutation operators have been selected:

1. Increase literal integer values in effects by one

2. Increase literal integer values in guards by one

3. Increase time in time events used as triggers by one

Together these mutation operators capture the fault model of so-called off-by-one errors. The

assumption is that more course-grained faults, like e.g., the removal of a transition, will be covered

by these fine-grained faults. For program mutation this effect is known as “coupling effect” and

has been investigated e.g. by Offutt[16]. Although this effect has not yet been shown for UML

state machines, the authors conjecture that it holds. The intuitive reason is that in order to reach the

unsafe state in the model, the tester has to steer the system along some path while always checking

the SUT’s behavior for conformance. Hence in order to reach a state where the off-by-one error

reveals itself to the environment, the system will have executed a sequence of inputs/outputs and

traversed a set of transitions, covering, e.g. the “guard false” mutation operator to some extent. The

conjecture is also corroborated by the results presented for this case study. In general, however,

relating fault coverage with more classical notions of coverage and finding an ordering of mutation

operators with respect to effectiveness remains future work.

A total of 58 mutants (model X error) and 192 mutants (model Extremes) has been obtained using

these three mutation operators.
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Table VI. Number of generated test cases and mutation scores for strategies S3–S7.

Strategy S3 S4 S5 S6 S7
Model X err Extr X err Extr X err Extr X err Extr X err Extr

Gen. test cases [#] 31 356 17 150 14 60 13.3 28.3 3 3
Mutation score [%] 33.76 66.62 33.76 66.62 33.61 65.34 34.63 65.64 27.33 56.26

Total mut. score [%] 74.12 74.12 72.84 73.04 60.14

Table VII. Run-times t in minutes for generating test cases according to strategy S3–S6.

Strategy S3 S4 S5 S6
Model X err Extr X err Extr X err Extr X err Extr

Avg. t for equivalent mutant 161.8 35 162.3 35 162.7 36 156.8 36.8
Total t for equivalent mutants 5663 3711 5679 3709 5696 3812 5487 3849
Avg. t for mutant causing livelock 0 6.2 0 6.2 0 7.2 0 5.6
Total t for mutants causing livelock 0 50 0 50 0 58 0 40
Mutants triggering TC [#] 23 78 9 41 6 23 5.3 9.3
Avg. t for mutant triggering TC 7.3 2.1 19.6 5.9 27.7 3.4 36.2 6.8
Total t for mutants triggering TC 168 167 176 241 166 79 181 410
Mutants killed by existing TC [#] – – 14 37 17 55 17.6 71
Avg. t for mutant killed by TC – – 0.1 1.7 0.1 0.3 0.4 0.7
Total t for mutants killed by TC – – 2 63 1 15 25 48

Total t for TC gen 5831 3928 5857 4063 5863 3964 5693 4347

5.2.5. Test Case Generation Strategies S3–S7 have been applied to the two models of the wheel

loader. For strategy S7, which uses a random exploration to generate a test suite, the same parameters

(three test cases with search depth 150 each) have been used as in the car alarm system case study.

The values reported in TableVII are the mean values of three runs.

For strategy S6 that uses these test cases as initial test suite, the test case generation process has

also been repeated three times. Hence, the reported values for strategy S6 are also mean values. In

total, twelve independent test suites using fault-based test case generation approaches have been

generated.

Table V lists the metrics of the models which are independent of the strategy: For the Extremes

model, a search depth of 25 has been chosen, for the X error model, a search depth of 35 was used.

Up to these exploration depths, 106 of the 192 mutants of the Extremes model and 35 of the 58

mutants of the X error model had to be considered equivalent, i.e., they are input-output conform to

the original model with respect to the given exploration depths.

Since it might happen that mutated specifications run into infinite loops of internal actions, a so-

called livelock, there is a timeout of 5 minutes for each step between two visible actions during test

case generation. Eight of the Extremes mutants caused a livelock, but none of X error.

The main difference among the fault-based test case generation strategies S3–S6 lies in the

number of generated test cases. Table VI lists the number of test cases for each application of a

strategy for both test models. Compliant with the results of the car alarm system case study the

number of generated test cases decreases as the strategy gets more sophisticated.

For the X error model the number of generated test cases ranges from 31 using the strategy S3

to 14 using strategy S5 and an average of 13.3 using strategy S6. Hence, by using a combination of

random and fault-based test case generation one is able to shrink the size of the generated test suite to

less than half compared to a test suite created by a strategy that does neither of these optimizations.

For the Extremes model the number of generated test cases ranges from 356 using the strategy S3

to 60 using strategy S5 and only 28.3 on average when using strategy S6. Hence, the size of the test

suites can shrink to less than one tenth.

In contrast to the significant reduction of the number of test cases, the total run-times for the

test case generation process for each strategy stays almost constant. Table VII shows the run-

time of the purely fault-based strategies as well as the run-times of the combined strategy S6. The
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Table VIII. Details for three runs of both versions of the wheel loader model generated by strategy S6.

Test Case Generation with S6 Extremes X error
Rand1 Rand2 Rand3 Rand1 Rand2 Rand3

Generated test cases (excl. random) [#] 21 28 36 13 14 13
Mutants triggering a new test case [#] 7 12 9 5 6 5

Mutants killed by existing test cases [#] 79 65 69 18 17 18

total generation time for one test suite using strategies S3–S6 ranges from at least two days (3928

minutes) to approximately four days (5863 minutes), depending on which model is used.

The table also presents the time spent by mutant-type. The first two rows show the time spent

processing equivalent mutants: if the non-conformance between the original and the mutant cannot

be shown within the given depth, processing just one mutant takes from 35 to 163 minutes. This is

independent of the strategy and responsible for the largest portion of time spent. Hence, equivalent

mutants are the main reason, why the total time spent on test case generation does not differ much

among the presented strategies.

The next two rows show how much time is spent on processing mutants where test case generation

fails due to a livelock. As already presented in Table V this only happens in the Extremes model.

It can be seen that the livelocks in the mutants occur at the beginning of the exploration, therefore

comparatively little time is spent on processing these mutants.

The number of mutants triggering a new test case depends on the strategy. In strategy S3, all

mutants that are neither equivalent up to the search depth nor fail because of a livelock trigger the

generation of new test cases. The average time needed for processing such a mutant highly depends

on how sophisticated the killing approach is. For example, strategy S3 generates many short test

cases, which lowers the average generation time. In the more sophisticated strategies S4–S6, this is

often suppressed by the check whether an existing test case can already kill the mutant.

The last three rows show what happens if a mutant is killed by an existing test case: The average

time to kill a mutant is comparatively low. For the Extremes model, which has a larger range for

input values that need to be enumerated, it is below two minutes. For the X error model it is even

faster taking less than half a minute on average.

Test case generation using a random walk is comparatively fast. The generation of each test suite

containing three test cases took between two and three minutes.

Strategy S6 (the combination between random and fault-based test case generation) has been

repeated three times. Table VIII presents the associated data in detail.

5.2.6. Test Case Execution

SUT / Implementation Like in the first case study, a simulation of the ECU has been implemented

in Java. The source code consists of approximately 500 lines. It is based on the state machine of

Figure 15, which includes the behavior of the state machine presented in Figure 16. In fact, test-

driven development has been used. First a large set of random tests has been generated and then one

test case after another has been implemented until all tests passed. In addition, the implementation

had to pass all generated test cases of strategies S3–S7.

The design is similar to the implementation of the car alarm system and interfaces for both SUT

and the environment have been defined. The environment contains methods corresponding to the

signals of both, terminal and electromagnet. The interface of the ECU contains a method for each

signal and additionally one tick method for modeling time.

Test Driver The test driver is built analogously to the test driver of the car alarm system. Again,

it implements the Java interface of the environment, thus observing signals sent to Terminal and

Electromagnet. Most parts of the code implementing the test driver for the car alarm system have

been reused. Some parts had to be extended because of the occurrence of “mixed states” and the

new notion of time.
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Results Again the µJava [14] tool has been used and all method-level mutation operators have

been applied. This yielded 1511 mutated implementations. After testing, the surviving mutants

have been inspected manually to see whether they were equivalent or the injected fault was too

subtle for the generated test cases to find. From a total of 345 to 532 (depending on the strategy)

surviving mutants, 178 were found to be equivalent. Within this set, 80 equivalent mutants arose

from a post-increment/decrement of the last occurrence of a local variable. Redundant clauses in if

statements, which made the code more readable, were the reason for another 39 equivalent mutants.

Further 33 equivalent mutants arose from swapping comparison operators that behave the same if

the variable only stores positive integers. One integer variable is used as enum. Exchanging the

comparison operator “equals” to “greater equals” for the largest value and “smaller equals” for the

smallest value, leads to 8 equivalent mutants. In four cases, a variable was increased or decreased

in a way that the function using it still returned the same value. Another four equivalent mutants

arose by negating the integer value zero and the final two equivalent mutants changed the value of a

variable right before it was set to the correct value.

Table VI gives an overview of the percentage of killed mutated and non-equivalent

implementations for the test suites. This ratio is known as mutation score. In addition, the total

mutation score of the strategies when combining the test sets from both model versions is reported.

For those strategies including random test case generation, the test suites were generated three times.

The reported values for S6 and S7 are the respective mean values.

6. DISCUSSION

In the following the results gained from the two case studies are discussed. It is structured according

to the original questions stated in Section 1.

What is the best strategy to select test cases? The car alarm system case study has been used

to filter out strategies that will not scale to larger models. As expected, S1 results in too many

test cases. Like S1, strategy S2 generates a high number of test cases even for a relatively low

exploration depth. Also, S2 is not applicable to non-deterministic models. The effectiveness of S8

highly depends on the skills of the test engineer. The design of a set of test purposes covering all

essential aspects of a model is non-trivial and the relatively low mutation score of S8 for the CAS

has been discouraging. For these reasons S1, S2, and S8 are not included in the second case study.

Staying with the CAS, the adaptive test cases of S3 achieve the maximal mutation score but the

number of test cases is too high. Strategy S4 reduces this number and keeps the high mutation

score but the generation time increases. In order to decrease both, the number of test cases and

the generation time, S5 has been developed. However, when applying this strategy the mutation

score suffers slightly. Therefore, S5 is combined with random testing resulting in S6, which can

reestablish the high mutation scores of S3 and S4.

In the wheel-loader case study strategies S3 and S4 also deliver the best mutation scores. In

contrast to the CAS, their run-times are almost equivalent. As stated earlier, this is caused by the

large number of equivalent model mutants. Strategies S5 and S6 dramatically reduce the number of

test cases while the mutation score keeps nearly stable. In contrast to the CAS, strategies S3 & S4

achieve a better mutation score than strategy S6. Table VI shows that this is due to the Extremes

model. However, given the large number of test cases of S3 (356 test cases) and S4 (150 test cases)

for the Extremes model, S6 is still preferable in practice.

Both case studies show that pure random testing (S7) is achieving a relatively high mutation

score with only a few very long test cases. However, adding the test cases of an exact conformance

analysis (S6) still increases the mutation score.

Is mutation testing better than random testing? The answer depends on the requirements.

Random test case generation is fast and quickly reaches a high mutation score. Hence, these tests

are well suited during the development of the system. They have been used in the test-driven
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development of the Java implementation for the wheel loader case study. However, with random

testing there is no control about which areas of a model are explored. Therefore, many (long) tests

might be needed to cover certain faults. In some environments this is perceived as too expensive.

For example, in embedded systems testing with timers causing long waiting times, test execution is

costly. In this case, redundant tests should be avoided.

In relation to mutation testing, randomly generated tests have no connection to fault models.

Hence, it is not easy to decide how many random tests are needed. Therefore, the authors of this

work propose the combined approach S6, where first a small set of random tests is generated that

will find the most trivial bugs. Then for the more subtle bugs the missing test cases are systematically

generated by mutation analysis.

How efficient are the presented test case generation strategies? The wheel loader case study

shows that compared to random testing the presented mutation-based test case generation strategies

are rather expensive when considering run-time. The reasons are the conformance checking and

the number of mutants to be analyzed. Since the conformance check has exponential run-time, the

maximum exploration depth needs to be limited. In case of non-conformance this works reasonably

well. For example, in S5 the time to process a non-equivalent mutant for generating a test case

is 27.7 min (Table VII, Extremes model) or 3.4 min (Table VII, X error model). However, if the

mutant is equivalent (up to the maximum depth), then it can take hours before the next mutant can

be analyzed. Hence, we pay for equivalent mutants in terms of test case generation time.

How severe is the equivalent mutants problem? From the discussion of the previous question

it can be seen that the problem affects the current technique. With an equivalent mutant, a full

equivalence check has to be performed up to a certain depth. Since the problem is NP-complete, the

exploration depth is limited. The wheel loader case study demonstrates this.

Do partial models help? Yes! For testing different functional aspects of the wheel loader case

study, two partial models have been developed. The X error model enables the generation of test

cases long enough to test the error handling functionality (depth 35). Hence, this model is designed

for deeper exploration. In contrast, the Extremes model allows for a wider range of input values

to test the main functionality (depth 25). The combination of the generated tests results in higher

mutation scores (Table VI). The same effect can be noticed in the pure random testing strategy S7.

Combining the random tests from both models increases the total mutation scores (Table VI).

Does the combination of random testing and mutation testing help? Certainly! The data shows

that the combined approach S6 has a higher mutation score than the pure strategies S5 and S7.

Although, the mutation score only increases slightly, the combined approach S6 provides more trust

in the testing set: the qualitative advantage of S6 is that it gives a guarantee that all modeled faults

are being covered. What the random tests do not cover, the conformance checker will provide.

Given a set of faulty implementations, can all known bugs be found? In theory, only the

detection of modeled faults can be guaranteed. In practice, it is possible to find a large set of

additional faults. In the CAS, three of the fault-based strategies achieved 100% mutation score.

In the wheel loader case study it was possible to kill around 74% of the faulty implementations with

only one fault model (off-by-one errors).

7. RELATED RESEARCH

This is not the first work focusing on generating test cases from UML state machines. In the 1990s,

Offutt and Abdurazik presented a tool for test case generation from UML state machines [17]. Gnesi

et al. [18] define the semantics of a subset of UML state charts in the form of transition systems with

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



KILLING STRATEGIES FOR MODEL-BASED MUTATION TESTING 31

transitions labeled by input/output pairs. For this kind of models, they give a formal conformance

relation similar to ioco and present an algorithm to automatically derive test cases. Seifert et al. [19]

define so-called Compact Semantic Automaton (CSA) in order to efficiently represent the semantics

of a UML state machine. From CSAs, they derive traces of observable events which serve as input

for the test case generation algorithm defined by Tretmans [5]. Fröhlich et al. [20] systematically

transform use cases into UML state machines and generate test suites with a given coverage level by

applying AI planning methods. Various commercial tools support model-based testing with UML

state machines [21]. However, none supports mutation testing.

Model-based mutation testing was first used for predicate-calculus specifications [22]. Later,

Stocks applied mutation testing to formal Z specifications [23] without automation. Due to model

checking techniques, full automation became feasible. By checking temporal formulae that state

equivalence between original and mutated models, counter-examples are generated, which serve as

test cases [24]. In contrast to this state-based equivalence test, the presented technique checks for

input-output conformance allowing non-deterministic models. The idea of using an ioco checker

for mutation testing comes from Weiglhofer, who tested against Lotos specifications [25]. To the

knowledge of the authors, their work is the first to apply this technique to UML state machines.

Indeed, there has been previous work on mutation testing of UML state machines but in terms of

model validation [26]. It seems that the tool presented in this work is the first to actually generate

test cases from mutated UML state machines.

Hierons and Merayo [27] dealt with mutation-based test case generation for probabilistic finite

state machines. The work presents mutation operators and describes how to create input sequences

to kill a given mutated state machine. Briand et al. [28] investigated state-based testing of classes.

Their work presents results for testing state charts and evaluates their approaches on a set of mutated

implementations.

Black et al. argue in their work on automating model-based mutation testing with the model

checker SMV that “A practical system must extract state machines from higher level descriptions

such as SCR specifications, MATLAB state-flows, or UML state diagrams“ [29]. The authors of this

work agree and see one contribution of this work in satisfying this requirement.

Regarding time, the interleaving semantics of parallel running timers like UPPAAL [30] is not

yet supported.

8. CONCLUSION

In this article a detailed analysis of a new model-based mutation testing technique has been

presented. Different test generation strategies have been discussed in detail and were evaluated

in two case studies. A small but non-trivial industrial example served as a motivating example.

The second, larger case study should confirm whether the testing methods are practical for realistic

systems. Hundreds of thousands of test sequences were executed on the implementations under test.

The results of the experiments have answered seven research questions.

The results show that the proposed strategies for model-based mutation testing are expensive.

Equivalence checking is costly and the equivalent mutants problem reduces the efficiency of the

technique. This was pointed out in a recent survey on mutation testing by Jia and Harman:

“One barrier to wider application of Mutation Testing centers on the problems

associated with Equivalent Mutants. As the survey shows, there has been a sustained

interest in techniques for reducing the impact of equivalent mutants. This remains an

unresolved problem.” [31]

However, it could be shown that by applying partial models and adding random strategies the

situation was improved considerably. These techniques need further evaluation.

One important conclusion is that by adding mutation testing to a random testing strategy

approximately the same number of bugs were found with fewer test cases. Furthermore, by

combining the two strategies, knowledge can be gained about which of the modeled faults are
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covered by the test cases. This knowledge about the own test suite can be considered as an important

advantage of this approach.

Despite the equivalent mutant problem, the authors of this work see many directions for

further improvement. One obvious point for improvement is the conformance checker Ulysses.

It is basically an explicit model checker that can be improved in many ways. Currently, the

authors are working on a symbolic conformance checker for action systems based on constraint

solving [15, 32, 33, 34]. First experiments have shown promising results. By now, the symbolic tool

has been applied to the car alarm system. The refinement checks for 207 mutants require less than

three seconds, whereas Ulysses, the explicit ioco checker used in this work, spends 68 seconds for

the same set of mutants [33]. The symbolic tool is still under development and does not yet support

the full input language required for the translation from UML state machines to action systems.

Hence, it could not yet be applied to the very same case studies presented in this article.

The authors also pursue a second direction: in a further refinement of strategy S6 the authors

attempt to combine directed random exploration and mutation based test-case generation ”on-the-

fly”. The idea is that during the exploration of the system, mutations – which are close to the current

state – are dynamically inserted and conformance is checked. This strategy promises to remove the

need to pre-compute a huge set of model-mutants. It also fixes the expensive coverage analysis,

currently run as a kind of after-thought, as the information about the current location in the LTS

is retained across different applications of mutation operators. In addition and since the mutation

is guaranteed to be local, the depth of the conformance check can be bounded as well and so the

equivalent mutant problem is further mitigated.

There is a lot of work to be done, since

“Most work on Mutation Testing has been concerned with the generation of mutants.

Comparatively less work has concentrated on the generation of test cases to kill

mutants.” [31]

The presented work in this article addressed this gap in research.
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10. Jard C, Jéron T. TGV: theory, principles and algorithms. International Journal on Software Tools for Technology
Transfer (STTT) 2005; 7(4):297–315.

11. Aichernig BK, Brandl H, Jöbstl E, Krenn W. Efficient mutation killers in action. 4th International Conference on
Software Testing, Verification and Validation (ICST 2011), IEEE, 2011; 120–129.

12. Tretmans J. Model based testing with labelled transition systems. Formal Methods and Testing, Lecture Notes in
Computer Science, vol. 4949, Springer, 2008; 1–38.

13. Back RJ, Kurki-Suonio R. Decentralization of process nets with centralized control. Distributed Computing 1989;
3(2):73–87.

14. Ma YS, Offutt J, Kwon YR. MuJava: an automated class mutation system. Software Testing, Verification and
Reliability (STVR) 2005; 15(2):97–133.
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