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We introduce SEMu, a Dynamic Symbolic Execution technique that generates test inputs capable of killing

stubborn mutants (killable mutants that remain undetected after a reasonable amount of testing). SEMu aims

at mutant propagation (triggering erroneous states to the program output) by incrementally searching for

divergent program behaviours between the original and the mutant versions. We model the mutant killing

problem as a symbolic execution search within a speci�c area in the programs’ symbolic tree. In this framework,

the search area is de�ned and controlled by parameters that allow scalable and cost-e�ective mutant killing.

We integrate SEMu in KLEE and experimented with Coreutils (a benchmark frequently used in symbolic

execution studies). Our results show that our modelling plays an important role in mutant killing. Perhaps

more importantly, our results also show that, within a two-hour time limit, SEMu kills 37% of the stubborn

mutants, where KLEE kills none and where the mutant infection strategy (strategy suggested by previous

research) kills 17%.
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1 INTRODUCTION

Thorough testing is often required in order to assess the core logic and the ‘critical’ parts of the
programs under analysis. Unfortunately, performing thorough testing is hard, tedious and time
consuming.
To support thorough testing, mutation testing aims at guiding the design of test cases that are

likely fault revealing. The key idea of mutation is to use arti�cially introduced defects, called
mutations, to identify untested (or weakly tested) cases and to guide test generation. Thus, testers
can improve their test suites by designing mutation-based test cases, i.e., test that reveal the
arti�cially introduced defects.
The mutation testing practice has shown that it is relatively easy to detect a large number of

mutants by simply covering the mutated statements [2, 25, 33]. Such trivial mutants are not useful
as they fail to provide any particular guidance towards test case design [35]. However, practical
experience has also shown that there are some few mutants that are relatively hard to detect (a.k.a.
stubborn mutants [41]) and can provide signi�cant advantages when used as test objectives [33, 41].
Interestingly, these mutants form special corner cases that when tested often reveal faults [39?
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]. The importance of using the stubborn mutants as test objectives has also been underlined by
several industrial studies [6, 9] including a large study with Google developers [33].

Stubborn mutants are hard to detect mainly due to a) the di�culty of infecting the program state
(causing an erroneous program state when executing the mutated/defective point) and b) due to the
masking e�ects that prohibit the propagation of erroneous states to the program output (aka failed
error propagation [5] or coincidental correctness [1]). Either being the case, the issues linked with
these mutants form corner cases which are most likely to escape testing (since stubborn mutants
form small semantic deviations) [39].
Killing stubborn mutants (designing test cases that reveal undetected mutants) is challenging

due to the large number of potential program execution paths, constraints and data states of the
program versions (original and mutant versions) that need to be di�erentially analysed. The key
challenge here regards the handling of the failed error propagation (masking e�ects), which is
prevalent in stubborn mutants. E�ective error propagation analysis is still an open problem [27, 34]
as it involves state comparisons among the mutant and the original program executions that grow
exponentially with the number of the involved paths (from the mutation point to the program
output).

Many techniques targeting mutation-based test generation have been proposed [4, 27, 36]. Most
of these techniques focus on generating unit-level test suites from scratch, mainly by either covering
the mutated point or by causing an erroneous program state at the mutation point. Interestingly,
there is no work leveraging the value of existing tests to perform thorough testing by targeting
stubborn mutants, which are mostly hard to propagate. Moreover, none of the available symbolic
execution tools generate test inputs by targeting the strongly killing of mutants1.

We present SEMu, an approach based on dynamic symbolic execution that generates test inputs
capable of killing stubborn mutants. The particular focus of SEMu is on the e�ective and scalable
handling of mutant propagation. Our technique executes both the original and mutant program
versions with a single symbolic execution instance, where the mutant executions are “forked” when
reaching the mutation points. The forked execution follows the original one and compares with it.
The comparisons are performed based on the involved symbolic states and related (propagation)
constraints that ensure execution divergences that are probably leading to divergent behaviours.
A key issue with both symbolic execution and mutation testing regards their scalability. To

account for this problem, we develop a framework that allows de�ning the mutant killing problem
as a search problem within a speci�c area around the mutation points. This area is de�ned by
a number of parameters that control the symbolic exploration. We thus, perform a constrained
symbolic exploration, starting from a pre-mutation point (a point in the symbolic tree that is before
the mutation point) and ending at a post-mutation checkpoint (a point after the mutation point)
where we di�erentially compare the symbolic states of the two executions (forked and original)
and generate test inputs.
We assume the availability of program inputs that can reach the areas we are targeting. Based

on these inputs, we infer preconditions (a set of consistent and simpli�ed path conditions), which
we use to constrain the symbolic exploration to only a subset of program paths that are relevant
to the targeted mutants. To further restrict the exploration to a relevant area, we systematically
analyse the symbolic tree up to a relatively small distance from the mutation point (performing a
shallow propagation analysis).
To improve the chances for propagation we also perform a deep exploration of some subtrees.

Overall, by controlling the above parameters we can de�ne strategies with trade-o�s between

1A list of test generation techniques can be found in the related surveys of mutation testing [27, 36]
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depth and deepness. Such strategies allow the di�erential exploration of promising code areas,
while keeping their execution time low.

We integrate SEMu2 into KLEE [7] and evaluate it on 47 programs from Coreutils, real-world
utility programs written in C. We also compare SEMuwith the mutant infection strategy, denoted as
infection-only, that was proposed by previous work [15, 42]. Our results show that SEMu achieves
signi�cantly higher killing rates (approximately +37% and +20%) of stubborn mutants, for both
KLEE (alone) and infection-only strategy, on the majority of the studied subjects.
In summary, our paper makes the following contributions:

(1) We introduce and implement a symbolic execution technique for generating tests that kill
stubborn mutants. Our technique leverages existing tests in order to perform a deep and
targeted test of speci�c code areas.

(2) We model the mutant killing as a search problem within a speci�c area (around the mutation
point). Such a modelling allows controlling the symbolic execution cost, while at the same
time allows forming cost-e�ective heuristics.

(3) We report empirical results demonstrating that SEMu has a strong mutant killing ability,
which is signi�cantly superior to KLEE and other mutation-based approaches.

The paper is organized as follows. Section 2 presents the targeted problem, the working scenario
of our work, the symbolic program repesentation, used through the paper and an overview of
symbolic execution, as implemented in our work. Section 3 provides our modelling approach of
the problem of killing mutants, where exhaustive exploration, conservative search space pruning,
and heuristic search are presented. Section 4 presents the cost-control heuristics used to form
our heuristic search-based mutant killing modelling approach. The empirical evaluation of our
approach, including the reserach questions, experimental setup and procedure, employed tools and
subjects, is presented in Section 5. The results of the empirical evaluation are presented in Section
6. The related work is discussed in Section 7. Section 8 concludes this work.

2 CONTEXT

Our work aims at the automatic test input generation for selected methods/components of the
systems under test. In particular, our working scenario assumes that testers have performed some
basic testing and want to dig into some speci�c parts of the program. This is a frequent scenario
used to increase con�dence in the critical code parts (encode the core program logic) or on parts
that testers feel uncertain. To do so, it is reasonable to use mutation testing by adding tests that
detect the surviving mutants (mutants undetected by the existing test suite) [35, 41].
We consider a mutant as detected (killed) by a test when its execution leads to a di�erent

observable output from that o� the original program. According to our scenario, the targeted
mutants are those (killable) that survive a reasonable amount of testing. This de�nition depends on
the amount of the performed testing; strong test suites kill more mutants than weak ones, while
‘adequate’ test suites kill them all [3, 41].

To adopt a baseline for basic or ‘reasonable amount of testing’ we augment the developer test
suites with KLEE. This means that the stubborn mutants are those that are killable and survive the
developer and coverage-guided automatically generated test suites. The surviving mutants form the
objectives for our test generation technique.

2.1 Symbolic Encoding of Programs

Independently of its language, we de�ne a program as follows.

2Publicly available at https://github.com/thierry-tct/KLEE-SEMu.
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De�nition 2.1. A program is a Labeled Transition System (LTS) P = (C, c0,Cout ,V , eval0,T )

where:

• C is a �nite set of control locations;
• c0 ∈ C is the unique entry point (start) of the program;
• Cout ⊂ C is the set of terminal locations of the program;
• V is a �nite set of variables;
• eval0 is a predicate capturing the set of possible initial valuations of V ;
• T : C × GC → C is a deterministic transition function where each transition is labeled
with a guarded command of the form [д]f where д is a guard condition (i.e., a formula in
�rst-order logic) over V and f is a function updating valuation of variables V . GC denotes
the set of labels of the transition system, that is, the set of guarded commands over V . Thus,
(ci , [дi ]fi , ci+1) means that the program execution can move from location ci to location ci+1
if condition дi is satis�ed. When it does, the program updates the variables’ value according
fo fi .

The LTS modelling a given program de�nes the set of control paths from c0 to any cout ∈ Cout . A
path is a sequence of n connected transitions πP = ⟨(c0,дc0, c1), . . . , (cn−1,дcn−1, cn=out )⟩ such that
(ci ,дci , ci+1) ∈ T for all i . Any well-terminating execution of the program goes through one such
path. Since we consider deterministic programs, this path is unique and determined by the initial
valuation, i.e., the test input, v0 of the variables V . More precisely, each path πP de�nes a path
condition ϕ (πP ) which symbolically encodes all executions going through πP . This path condition
consists of a Boolean formula such that the test with inputv0 executes through πP i�v0 |= ϕ (πP ). By
solving ϕ (πP ) (e.g. with a constraint solver like Z3 [8]), one can obtain an initial valuation satisfying
the path condition, thereby obtaining a test input that goes through the corresponding program
path. The execution of the program, with the resulting test input, is a sequence of n + 1 couples of
variable valuations and locations, noted τ(P,v0 ) = ⟨(v0, c0), . . . , (vn−1, cn−1), (vn=out , cn=out )⟩, such
that v0 |= eval0 and for all i , vi |= дi and vi+1 = fi (vi ). While vout is the valuation of all variables
when τ(P,v0 ) terminates, the observable result of τ(P,v0 ) (its output), notedOut (τ(P,v0 ) ), is the subset
of vout restricted only to all observable variables. Since a path π encompasses a set of executions,
we can also represent the set of outputs of those executions into a symbolic formula Out (π ).

2.2 Symbolic Encoding of Mutants

A mutation alters or deletes a statement of the original program P. Thus, a mutant results from
changing the transitions of P that correspond to that statement, i.e., two transitions for branching
statements; one for the others.

De�nition 2.2. Let P = (C, c0,V , eval0,T ) be an original program. A mutant of P is a program
M = (C, c0,V , eval0,T

′) with T ′ = (T \Tm ) ∪T ′m such that:





Tm ⊆ T ∧ |Tm | > 0

∀(c1, [д
′]f ′, c ′2) ∈ T

′
m ,∃(c1, [д]f , c2) ∈ Tm : ([д′]f ′ , [д]f ) ∨ (c ′2 , c2)}

Here, Tm is the subset of the transitions of P that are mutated to createM, and T ′m is the subset of
transitions ofM that result from the mutation of Tm . Thus,M is created by replacing Tm , in P,
by T ′m .

It may happen that a programmutation leads to an equivalent mutant, i.e., semantically equivalent
to the original program, that is, for any test input t ,Out (τ(P,v0 ) ) ≡ Out (τ(M,v0 ) ). All non-equivalent
mutants, however, should be discriminated, i.e., killed, by at least one test input. Thus, there
must exist a test input t that satis�es the following three conditions (referred to as Reach, Infect,
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Fig. 1. Example. The rounded control locations represent conditionals (at least 2 possible transition from

them).

Propagate RIP [3, 10, 21]): the execution ofM with t must (i) Reach a mutated transition, (ii) Infect
(cause a di�erence in) the internal program state, i.e., change the variable valuations or the reached
control locations, (iii) Propagate this di�erence up to the program outputs. In the remainder of
the paper we state that a test reaches a mutant if the test satis�es condition (i), a test performs
a mutant infection if it satis�es condition (ii) and a test causes mutant propagation if it satis�es
condition (iii). One can encode those conditions as the symbolic formula: kill (P ,M ) ≜ ∃πP ,πM :

ϕ (πP ) ∧ ϕ (πM ) ∧ (Out (πP ) . Out (πM )). Any valuation satisfying this formula forms a test input
killing M . For given πP and πM , kill (πP ,πM ) ≜ ϕ (πP ) ∧ ϕ (πM ) ∧ (Out (πP ) . Out (πM )) denotes
the formula encoding the test inputs that killM and go through πP and πM in P andM , respectively.

De�nition 2.3. Let P be an original program andM1, . . . ,Mn be a set of mutants of P . Then the
mutant killing problem is the problem of �nding, for each mutantMi :

(1) two paths πP and πMi
such that kill (πP ,πMi

) is satis�able;
(2) a test input t satisfying kill (πP ,πMi

).

2.3 Example

Figure 1 shows a simple C program. The corresponding C code and transition system are shown
in the left and middle of Figure 1, respectively. The transition system does not show the guarded
commands for readability. The right side of Figure 1 shows two test inputs and their corresponding
traces (as sequences of control locations of the transition system). The transition system contains
12 control locations, corresponding to the 12 numbered lines in the program. The squared nodes
of the transition system represent the non-branching control locations and the circular nodes
represent the branching control location. For simplicity, we assume that each line is atomic. The
initial condition eval0 is x ∈ Int where Int is the set of all integers. Two mutants M1 and M2 are
generated by mutating statements 8 and 9, respectively.M1 results from changing the statement
“ − −x” into “x− = 2” and M2 results from changing the statement “n = x” into “n = x + 1”. The
mutants M1 and M2 result from the mutation of the guarded command of the transitions 8 → 5

and 9→ 10, respectively.
The test execution of t1 reachesM1 but notM2, while t2 reachesM2 but notM1. Test t1 infects

M1 and t2 infectsM2. The test execution of t1 on the original program and mutantM1 return 2 and
0, respectively. The mutantM1 is killed by t1 because 2 , 0. Similarly, the test execution of t2 on
the original program and mutantM2 return 0 and 0, respectively. Test t2 does not kill mutantM2.
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2.4 Symbolic Execution

One can apply symbolic execution to explore the di�erent paths, using a symbolic representation of
the input domain (as opposed to concrete values) and building progressively the path conditions of
the explored paths. The symbolic execution starts by setting an initial path condition to ϕ = True .
At each location, it evaluates (by calling a dedicated solver) the guarded command of any outgoing
transition. If the conjunction of the guard condition and ϕ is satis�able then there exists at least one
concrete execution that can go through the current path and the considered transition. In this case,
the symbolic execution reaches the target location and ϕ is updated by injecting into it the guarded
command of the transition. This procedure enables the symbolic execution to discard infeasible
paths (when the conjunction of the guard command and ϕ is unsatis�able) without exploring them,
thus, removing their negative impact on the symbolic exploration. When multiple transitions are
available, the symbolic execution successively chooses one and pursues the exploration, e.g., in a
breadth-�rst manner.
As the symbolic execution progresses, it explores additional paths. The explored paths can

together be concisely represented as a tree [16] where each node is an execution state ⟨ϕ,σ ⟩ made
of its path condition ϕ and symbolic program state σ (itself constituted by the current control
location – program counter value – and the current symbolic valuation of variables). The path
condition ϕ is dynamically constructed through the dynamic execution, i.e., by using the symbolic
inputs and states on every program predicate.
Still, the tree remains too large to be explored exhaustively. Thus, one typically guides the

symbolic execution to restrict the paths to explore, e�ectively cutting branches of the tree. Precondi-
tioned symbolic execution attempts to reduce the path exploration space by setting the initial path
condition (at the beginning of the symbolic execution) to a speci�c condition. This precondition
restricts the symbolic execution to the subset of paths that are feasible given the precondition. The
idea is to derive the preconditions from pre-existing tests (aka seeds in the KLEE platform) that
reach the particular points of interests. This allows us to provide vital guidance towards reaching
the areas that should be explored symbolically, while drastically reducing the search space. In the
rest of the paper, we refer to a preconditioned symbolic execution that explores the paths followed by
some concrete executions as “seeded symbolic execution”.

Overall, one could make the following steps to generate test inputs for a program P via symbolic
execution:

(1) Precondition: specify a logical formula over the program inputs (computed as the disjunction
of the path conditions of the paths followed by the executions of the seeds) to prune out the
paths that are irrelevant to the analysis.

(2) Path exploration: explore a subset of the paths of P , e�ectively discarding infeasible paths.
(3) Test input generation: for each feasible path πP , solve ϕ (πP ) to generate a test input t that

executes τ(P,t ) following πP .

3 KILLING MUTANTS

3.1 Exhaustive Exploration

A direct way to generate test inputs killing some given mutants (of program P ) is to apply symbolic
execution on both P and the mutants, thereby obtaining their respective set of (symbolic) paths.
Then, we can solve kill (πP ,πMi

) to generate a test input that kills mutantMi and goes through πP
in P and through πMi

inMi .
Figure 2 illustrates the use of symbolic execution to kill mutantM2 of Figure 1. The Sub�gure 2

(a) represents the symbolic execution of the original program, and the Sub�gure 2 (b) represents
the symbolic execution of the mutantM2. We skip the symbolic execution subtree rooted at control

, Vol. 1, No. 1, Article . Publication date: September 2020.



Killing Stubborn Mutants with Symbolic Execution 7

int func (int x) {

1.    int n = 0, arr[] = {0,5,0};

2.    if (x >= 0) {

3~8.      ...

} else {

9.        n = x;

}

10.   if (n) 

11.       n++; 

12.   return n;

}

Original Program
Ø: True;   σ↦ {n: 0}
Ø: True;   σ↦ {n: 0}
Ø: x < 0;   σ↦ {n: 0}

Ø: x ≥ 0;   σ↦ {n: 0}
Ø: x < 0;   σ↦ {n: x}

Ø: x < 0;   σ↦ {n: x}
Ø: x < 0;   σ↦ {n: x+1} Ø: False;   σ↦ {n: x}

…

(𝜋𝜋𝑃𝑃1) (𝜋𝜋𝑃𝑃2)
Output: x+1 x

Path Condition: Ø
Program State : σ

(a) Symbolic execution on the original program of Figure 1 (relevant portion).

int func (int x) {

1.    int n = 0, arr[] = {0,5,0};

2.    if (x >= 0) {

3~8.      ...

} else {

9.        n = x+1;

}

10.   if (n) 

11.       n++; 

12.   return n;

}

Mutant M2

Ø: True;  σ↦ {n: 0}
Ø: True;   σ↦ {n: 0}
Ø: x < 0;   σ↦ {n: 0}

Ø: x ≥ 0;   σ↦ {n: 0}
Ø: x < -1;   σ↦ {n: x+1}

Ø: x < -1;   σ↦ {n: x+1}
Ø: x < -1;   σ↦ {n: x+2} Ø: x = -1;   σ↦ {n: x+1}

…

(𝜋𝜋𝑀𝑀21 ) (𝜋𝜋𝑀𝑀22 )

Output: x+2 x+1

Path Condition: Ø
Program State : σ

(b) Symbolic execution on the mutantM2 of Figure 1 (relevant portion).

Fig. 2. Example program ilustrating the symbolic execution to generate test to kill a mutant. The Subfigure

(a) and (b) represent the original program and a mutant, respectively.

location 3 since the corresponding paths do not reach mutantM2 and can easily be pruned using
static analysis. Also, we do not represent the symbolic variables arr and x , which are not updated
in this example. The symbolic execution on the original program leads to the paths π 1

P
and π 2

P
such

that ϕ (π 1
P
) ≡ (x < 0), ϕ (π 2

P
) ≡ False ,Out (π 1

P
) ≡ x +1 andOut (π 2

P
) ≡ x . The symbolic execution on

the mutantM2 leads to the paths π
1
M2

and π 2
M2

such that ϕ (π 1
M2

) ≡ (x < −1) and ϕ (π 2
M2

) ≡ (x = −1),

and Out (π 1
M2

) ≡ (x + 2) and Out (π 2
M2

) ≡ (x + 1). For easier visualization, Figure 3 illustrates a

side-by-side view of the symbolic executions represented in Figure 2.
The test generation that targets mutantM2 solves the following formulae:

(1) kill (π 1
P
,π 1

M2
) ≡ ((x < 0) ∧ (x < −1) ∧ (x + 1 , x + 2)). Satis�able: example solution is x = −2.

(2) kill (π 1
P
,π 2

M2
) ≡ ((x < 0) ∧ (x = −1) ∧ (x + 1 , x + 1)). Unsatis�able: no possible output

di�erence.
(3) kill (π 2

P
,π 1

M2
) ≡ (False ) ∧ (x < −1) ∧ (x , x + 2)). Unsatis�able: infeasible path (π 2

P
).

(4) kill (π 2
P
,π 2

M2
) ≡ (False ) ∧ (x = −1) ∧ (x , x + 1)). Unsatis�able: infeasible path (π 2

P
).

This method e�ectively generates tests to kill mutants. However, it requires a complete symbolic
execution on P and on each mutantMi . This implies that (i) all the path conditions and symbolic
outputs have to be stored and analysed, and (ii) kill (πP ,πMi

) has to be solved possibly for each pair
of paths (πP ,πMi

). This leads to large computational cost that makes the approach impractical.

, Vol. 1, No. 1, Article . Publication date: September 2020.



8 Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon

1 2 9

1011

12

3

…

10

M2

Ø: x<0

σ↦{n:x}

12

Path Condition: Ø
Program State :σ

Ø: x<0
σ↦{n:x+1}

Ø: x<0

σ↦{n:x}

Ø: False

σ↦{n:x}

Ø: x<0
σ ↦{n:x+1}

11

12 12

Ø: x<-1
σ↦{n:x+1}

Ø: x=-1
σ↦{n:x+1}

Ø: x<-1
σ↦{n:x+2}

n=x+1n=x

Ø: x<0

σ↦ {n:0}

x+1 x x+1x+2

(𝜋𝜋𝑃𝑃1) (𝜋𝜋𝑃𝑃2) (𝜋𝜋𝑀𝑀21 ) (𝜋𝜋𝑀𝑀22 )

Output:

𝑘𝑘 = 0𝑘𝑘 = 1𝑘𝑘 = 2𝑘𝑘 = 3𝑘𝑘 = 4𝑘𝑘 = 5

Fig. 3. Example of Symbolic execution for mutant test generation. A�er control location 9, the symbolic

execution on the original program contains transition 9→ 10 with n = x while the symbolic execution of the

mutantM2 contains transition 9→ 10 with n = x + 1.

3.2 Conservative Pruning of the Search Space

To reduce the computational demands induced by the exhaustive exploration, we apply two
safe optimizations (preserve all opportunities to kill the mutants) that avoids exploring program
paths that are not promising. We take advantage of the fact that mutants, which are results of
simple syntactic alterations, share a large portion of their code with the original program. This is
recommended by other studies [22] in the context of speci�cation-based testing, creating mutants
from speci�cations or system models. Though, here we aim at source code, which involves a lower
level representation and execution.

3.2.1 Meta-mutation. Our �rst optimization stems from the observation that all paths and path
pre�xes of the original program P that do not include a mutated statement, i.e., location whose
outgoing transitions have changed in the mutants, also belong to the mutants. Thus, the symbolic
execution of P and that of the mutants may explore a signi�cant number of identical path pre�xes.
As seen in Figure 3, the symbolic execution is identical for the original and mutantM2 up to control
location 9. Instead of making two separate symbolic executions, SEMu performs a shared symbolic
execution based on a meta-mutant program. A meta-mutant [28, 29, 40] represents all mutants in a
single code. A branching statement (named mutant choice statement) is inserted at each mutation
point and controls, based on the value of a special global variable (the mutant ID), the execution of
the original and mutant programs.
The symbolic execution on the meta-mutant program initialises the mutant ID to an unknown

value and explores a path normally until it encounters a mutant choice statement. Then, the path
is duplicated once for the original program and once for each mutant, with the mutant ID set to
the corresponding value, and each duplicated path is further explored normally. While the e�ect
of this optimization is limited to the pre�xes common to the program and all mutants, it reduces
the overall cost of exploration at insigni�cant computation costs and without compromising the
results.

3.2.2 Discarding non-infected mutant paths. In practice, many execution paths reach a mutant
(cover the mutation point) but fail to infect the program state (introducing an erroneous program
state). Extending the execution along such paths is a waste of e�ort as the mutant will not be killed
along those paths. Thus, SEMu terminates anticipatively the exploration of any path that reaches
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the mutant but fails to infect the program state. This procedure automatically stops the exploration
of mutant paths for equivalent mutants that cannot infect program states. Regarding equivalent
mutants that can infect the program state but never propagate the infection to the output, this
procedure cannot discard them.

3.3 Heuristic Search

Even with the aforementioned optimizations, the exhaustive exploration procedure remains too
costly due to two factors: the size of the tree to explore and the number of couples of paths πP and
πMi

to consider. To speed up the analysis, one can further prune the search space, at the risk of
generating useless test inputs (that kill no mutant) or missing opportunities to kill mutants (by
ignoring relevant paths).
A �rst family of heuristics reduce the number of paths to explore by selecting and prioritizing

them, at the risk of discarding paths that would lead to killing mutants. A second family stop
exploring a path after k transitions and solve, instead of kill (πP ,πMi

), the formula

partialKill (πP [..k],πMi
[..k]) ≜ ϕ (πP [..k]) ∧ ϕ (πMi

[..k]) ∧ (σ (πP [..k]) . σ (πMi
[..k]))

where, for any path π , π [..k] denotes the pre�x of π of length k and where σ (π [..k]) is the
symbolic state reached after executing π [..k]. It holds that kill (πP ,πMi

)⇒∃k : partialKill (πP [..k],
πMi

[..k]), since a mutation cannot propagate to the output of the program if it does not infect the
program in the �rst place. The converse does not hold, though: statements after a mutation can
cancel the e�ects of an infection, rendering the output unchanged at the end of the execution. The
problem then boils down to selecting an appropriate length k where to stop the exploration, so as
to maximize the chances of �nding an infection that propagates up to the observable outputs.
Regarding equivalent mutants, any mutant that cannot infect the program state is discarded

during the conservative pruning of the search space (Section 3.2.2). Mutants that can infect the
program state, but without propagating the infection to the output, are treated like killable mutants.
Only note that, in this case, the appropriate length k represents the point where the e�ects of all
potential infections are canceled.
As illustrated in Figure 3, generating a test at k = 3 (control location 10 and line number 10 in

Figures 2a and 2b), requires to solve the constraintpartialKill (π 1
P
[..3],π 1

M2
[..3]) ≡ (x < 0∧x , x+1).

The constraint solver may return x = −1 which does not propagate the infection to the output.
However, generating a test at k = 5 (control location 12 and line 12 in Figures 1a and 2b), using the
original path π 1

P
andmutant path π 1

M2
, requires to solve the constraint x < 0∧x < −1∧ (x+1 , x+2).

Any value returned by the constraint solver kills the mutant.
An ideal method to kill a mutantM would explore only one path πP and one path πM , and up to

the smallest pre�x length k where the constraint solver can generate a test that killsM . However,
identifying the right πM and the optimal k is hard, as it requires precisely capturing the program
semantics. To overcome this di�culty, SEMu de�nes heuristics to prune non-promising paths on
the �y and to control at what point (what pre�x length k) to call the constraint solver. Once path
pre�x candidates are identi�ed, SEMu invokes the solver to solve partialKill (πP [..k],πM [..k]).

3.4 Infection-only Strategy

The infection-only strategy generates tests by aiming at mutant infection (without any exploration
for propagation). To generate test inputs infecting some given mutants (of program P ), the infection-
only strategy applies symbolic execution on both P and the mutants, thereby obtaining their
respective set of (symbolic) paths. Then, for each mutantMi (linked with mutated statement sMi

), it
solves the infection condition partialKill (πP [..kP ],πMi

[..kMi
]) to generate a test input that infects
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Fig. 4. Illustration of SEMu cost-control parameters. Subfigure (a) illustrates the Precondition Length where

the green subtree represents the candidate paths constrained by the precondition (the thick green path prefix

is explored using seeded symbolic execution). Subfigure (b) illustrates the Checkpoint Window (here CW is

2). Subfigure (c) illustrates the Propagation Proportion (here PP is 0.5) and the Minimum Propagation Depth

(here if MPD is 1 the first test is generated, for unterminated paths, from Checkpoint 1).

mutantMi and goes through πP in P and through πMi
inMi . Here kP is the �rst occurrence of sMi

in πP and kMi
is the �rst occurrence of sMi

in πMi
.

As illustrated in Figure 3, generating a test using the infection-only strategy, requires to solve
the constraint partialKill (π 1

P
[..3],π 1

M2
[..3]) ≡ (x < 0 ∧ x , x + 1). While such an approach can be

e�ective [28], it has limitations as the constraint solver does not consider failed propagation. For
instance, in this case, the constraint solver may return x = −1 which infect the mutantM2 but does
not propagate this infection to the output.

4 SEMU COST-CONTROL HEURISTICS

SEMu consists of parametric heuristics to control the symbolic exploration of promising code
regions. Any con�guration of SEMu sets the parameters of the heuristics, which together de�ne
which paths to explore and the test generation process. SEMu also takes as inputs the original
program, the mutants to kill and a set of pre-existing test inputs to drive the seeded symbolic
execution. During the symbolic exploration, SEMu selects which paths to explore and when to stop
the exploration to generate test inputs based on the obtained path pre�x.

4.1 Pre Mutation Point: Controlling for Reachability

To improve the e�ciency of the path exploration, it is important to quickly prune paths that are
infeasible (cannot be executed) or irrelevant (cannot reach the mutants, i.e., the execution of the
paths does not result in executing the mutated statements). To achieve this, we leverage seeded
symbolic execution (as implemented in KLEE) where the seeds are pre-existing tests. We distinguish
between seeds and tests in order to denote the starting points of the symbolic exploration (the paths
from which we deviate) and the tests that are included in the test suites, respectively. We proceed
in two steps. First, we explore the paths in seeded mode up to a given length (precondition length).
Then, we stop following the seeds’ executions and switch to a non-seeded symbolic execution. The
location of the switching point thus determines where the exploration stops using the precondition.
In particular, if it is set to the entry point of the program then the execution is equivalent to a full
non-seeded symbolic execution. If it is set beyond the output then it is equivalent to a fully seeded
symbolic execution. Formally, let Π denote the complete set of paths of a program P , {t1, . . . , tn } be
the set of seeds, and l be the chosen precondition length. Then the sets of explored paths resulting
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from the seeded symbolic execution of length l and with seeds {t1, . . . , tn } is the largest set Π
′ ⊆ Π

satisfying π ∈ Π′ ⇒ ∃ti : ti |= ϕ (π [..l]).

This heuristics is illustrated in Figure 4a where the thick (green) segments represent the portion
of the tree explored by seeded symbolic execution and the subtree below (light green) represents
the portion explored by non-seeded symbolic execution. The precondition leads to pruning the
leftmost subtree.
Accordingly, the �rst parameter of SEMu controls the precondition length (PL) at which to stop

the seeded symbolic execution. Instead of demanding a speci�c length l , the parameter can take
two values re�ecting two strategies to de�ne l dynamically: GMD2MS (Global Minimum Distance
to Mutated Statement) and SMD2MS (Speci�c Minimum Distance to Mutated Statement). When set
to GMD2MS, the precondition length is de�ned, for all explored paths, as the length of the smallest
path pre�x that reaches a mutated statement. When set to SMD2MS, the precondition length is
de�ned, individually for each path π , as the length l of the smallest pre�x π [..l] of this path that
reaches a mutated statement.

4.2 Post Mutation Point: Controlling for Propagation

From the mutation point, all paths of the original program are explored. When it comes to a mutant,
however, it happens that path pre�xes that cover the mutation point and infect the program state
fail to propagate the infection to the outputs. These pre�xes should be discarded to reduce the
search space. Accordingly, our next set of parameters control where to check that the propagation
goes on, the number of paths to continue exploring from those checkpoints, and when to stop the
exploration and generate test inputs. Overall, those parameters contribute to reducing the number
of paths explored by the symbolic execution as well as the length k of the path pre�xes from which
tests are generated.

It is worth noting that the risk to discard killing paths depends on the set value of each parameter,
as well as the program under analysis and the mutant considered. For instance, lets assume that, for
a given program and mutant, the killing paths are evenly distributed. By randomly discarding 50%
of the paths in order to reduce the search space, roughly 50% of the killing paths will be discarded
(note that only one killing path is needed to generate test to kill a mutant).

4.2.1 Checkpoint Location. The �rst parameter is an integer named the Checkpoint Window (CW)
which determines the location of the checkpoints. Any checkpoint is a program location with
branching statements, i.e., transitions with guarded command [д]f such that д , True , that is
found after the mutation point. Then, the checkpoint window de�nes the number of branching
statements (that are not checkpoints) between the mutation point and the �rst checkpoint, and
between any two consecutive checkpoints. The e�ect of this parameter is illustrated in Figure 4b.
The marked horizontal lines represent the checkpoints. In this case, the checkpoint window is set to
2, meaning that there are two branching statements between two checkpoints. At each checkpoint,
SEMu can perform two actions: (1) discard some branches (path su�xes) of the current path pre�x,
by ignoring some of the branches, and (2) generate tests based on the current pre�x. Whether and
how those two actions are performed is determined according to the following parameters.

4.2.2 Path Selection. The parameter Propagating Proportion (PP) speci�es the percentage of the
branches that are kept to pursue the exploration, whereas the parameter Propagation Selection
Strategy (PSS) determines the strategy used to select these branches. We implemented two strategies:
random (RND) and Minimum Distance to Output (MDO). The �rst one simply selects the branches
randomly with a uniform probability. The second one assigns a higher priority to the branches that
can lead to the program output more rapidly, i.e., by executing fewer statements. This distance is
estimated statically based on the control �ow and call graphs of the program. More speci�cally, for
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each target branch, we compute the minimum distance, on the program control �ow graph, from
the target branch to all output system calls statements (printf, puts, ... function calls). The branches
with smaller distances are selected by the MDO strategy. Note that the minimum distances are
(pre-)computed once and cached, at the start of the execution, through a reverse breadth �rst search
that starts from all output system call statements, and sets the minimum distances of each visited
branch to its depth level. This pre-computation has similar complexity with a breadth-�rst search
traversal, thus, does not incur a signi�cant overhead on SEMu. The two parameters are illustrated
in Figure 4c, where the crossed subtrees represent branches pruned at Checkpoint 0.

4.2.3 Early Test Generation. Generating test inputs before the end of the symbolic execution (on
the path pre�xes) allows us to reduce its computation cost. Being placed after the mutation point,
all checkpoints are potential places where to trigger the test generation. However, generating
sooner, on the one hand, reduces the chances of seeing the infection propagate to the program
output, in the case of a killable mutant. On the other hand, it also increases the chances to generate
a (spurious) test, based on an infection that cannot propagate to the output, in the case of an
equivalent mutant. To alleviate this risk, we introduce the parameter Minimum Propagation Depth
(MDP), which speci�es the number of checkpoints that the execution must pass through before
starting to generate tests. In Figure 4c, if MDP is set to 1 then tests are generated from Checkpoint
1 (for the two remaining paths pre�xes). Note that in case MDP is set to 0, tests are generated for
the crossed (pruned) path pre�xes at Checkpoint 0.

4.3 Controlling the Cost of Constraint Solving

Remember that partialKill requires the state of the original program and the mutant to be di�erent.
The subformulae representing the symbolic program states can be large and/or complex, which
may hinder the performance of the invoked constraint solver. To reduce this cost, we devise
a parameter No State Di�erence (NSD) that determines whether to consider the program state
di�erences when generating tests. When set to True , partialKill (πP [..k],πM [..k]) is reduced to
ϕ (πP [..k]) ∧ ϕ (πM [..k]); however, its solution has lower chances of killing mutantM .

4.4 Controlling the Number of A�empts

It is usually su�cient to generate a single test that reaches the mutant to kill it. However, the
stubborn mutants that we target may not be killed by the early attempts (applied closer to the
mutation point) and require deeper analysis. Furthermore, a test generated to kill a mutant may
collaterally kill another mutant. For those reasons, generating more than one test for a given mutant
can be bene�cial. Doing this, however, comes at higher test generation and test execution costs. To
control this, we devise a parameter Number of Tests Per Mutant (NTPM) that speci�es the number
of tests generated for each mutant, i.e., the number of partialKill formulas solved for each mutant.

5 EMPIRICAL EVALUATION

5.1 Research �estions

We �rst empirically evaluate the ability of SEMu to kill stubborn mutants. This is an essential
question, since there is no point in evaluating SEMu if it cannot kill some of the targeted mutants.

RQ1 What is the ability of SEMu to kill stubborn mutants?

By answering this question we �nd a strong killing ability of SEMu. We, therefore, turn our
attention to the question of whether the killing ability is due to the extended symbolic exploration
that is anyway performed by KLEE. We thus, compare SEMu with KLEE by running KLEE in the
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seed mode (using the initial test suite as a seed for KLEE test generation) to generate additional
tests. Such a comparison is also a �rst natural baseline to compare with. These motivate RQ2:

RQ2 How does SEMu compare with KLEE in terms of killed stubborn mutants?

Perhaps not surprisingly, we found that SEMu outperforms KLEE. This provides evidence that
our dedicated mutation-based approach is indeed suitable for mutation-based test generation. At
the same time though, our results raises further questions on whether the superior killing ability of
SEMu is due to its ability for mutant infection (suggested by previous research) or due to its ability
for mutant propagation (speci�c target of SEMu). In case we �nd that mutant infection is su�cient
for killing stubborn mutants then mutant propagation should be skipped in order to save e�ort and
resources. To investigate this, we ask:

RQ3 How does SEMu compare with the infection-only strategy in terms of killed stubbornmutants?

The infection-only strategy generates tests by aiming at mutant infection only (without any
exploration for propagation). When the symbolic execution path exploration reaches a mutated
statement having a mutation corresponding to mutantM , a test is generated by solving the mutant
infection condition forM .

5.2 Test Subjects

To answer our research questions, we experimented with the C programs of GNU Coreutils3

(version 8.22). GNU Coreutils is a collection of text, �le, and shell utility programs widely used in
unix systems. The whole codebase of Coreutils is made of more than 60,000 lines of C code4.

The repository of Coreutils contains developer tests for the utilities programs which are system
tests written in shell or perl scripts that involve more than 20,000 lines of code4.

Applying mutation analysis on all Coreutils programs requires excessive amount of e�ort. There-
fore, we randomly sampled 60 programs, based on which we performed our analysis. Unfortunately,
in 13 of them mutation analysis took excessive computational time (due to costly test execution),
for which we terminated the analysis. Therefore, we analysed 47 programs. These are: base64,
basename, chcon, chgrp, chmod, chown, chroot, cksum, date, df, dirname, echo, expr,

factor, false, groups, join, link, logname, ls, md5sum, mkdir, mkfifo, mknod, mktemp,

nproc, numfmt, pathchk, printf, pwd, realpath, rmdir, sha256sum, sha512sum, sleep, stdbuf,

sum, sync, tee, touch, truncate, tty, uname, uptime, users, wc, whoami. The following Figure
presents the size of these subjects.

4000 6000 8000 10000 12000 14000
# Lines of Code

For each subject we selected the 3 functions that were covered by the largest number of developer
tests (from the initial test suite).

5.3 Employed Tools

We implemented our approach on top of LLVM5 using the symbolic virtual machine KLEE [7].
The version of our tool is based on the KLEE revision 74c6155, LLVM 3.4.2. Our implementation
modi�ed (or added) more than 8,000 lines of code on KLEE, and is publicly available6. We are

3https://www.gnu.org/software/coreutils/
4Measured with cloc (http://cloc.sourceforge.net/)
5https://llvm.org/
6https://github.com/thierry-tct/KLEE-SEMu
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planning to add support for newer versions of LLVM. To convert system tests into the format of
seeds required by KLEE for the seeded symbolic execution, we use Shadow [24].

Our tool requires the targeted mutants to be represented in a meta-mutant program (presented
in Section 3.2.1), which were produced using the Mart [38] mutant generation tool. Mart mutates
a program by applying a set of mutation operators (code transformations) to the original LLVM
bitcode program. An example of the mutation operator is to change the addition operation "+" into
the substraction operation "-".
The mutants produced by the version of Mart used in this experiment are �rst-order mutants.

However, our approach also support higher-order mutants. In the case of higher-order mutants, the
meta-mutant program fed to SEMu is required to use the same mutant identi�er for all sub-mutants
of the higher-order mutant. When, applying SEMu on higher-order mutants, equivalent mutants
can be detected and discarded by using existing higher-order equivalent mutant detection tools
[13].

5.4 Experimental Setup

5.4.1 Selected Mutants. To perform our experiment we need to form our target mutant set. To
do so, we employed Mart by using its default con�guration and generated 172,919 mutants. This
con�guration generates a comprehensive set of mutants based on a large set of mutation operators,
consisting of 816 code transformations. It is noted that the operator set includes the classical 5
operators [23] that are used by most of the todays’ studies and mutation testing tools. The interested
reader is referred to Mart’s paper for further details [38].

To identify the stubborn mutant set we started by eliminating trivial equivalent and duplicated
mutants, and form our initial mutant setM1. To do so, we applied Trivial Compiler Equivalence
(TCE) [26], a technique that statically removes a large number of mutant equivalences. In our
experiment, TCE removed a total number of 102,612 mutants as being equivalent or duplicated.
This gave us 70,307 mutants to be used for our initial mutant set, i.e.,M1=70,307.

Then, we constructed our initial test suites TS (composed of the developer test suite and auto-
matically generated tests by a simple test generation run of KLEE). To generate these tests with
KLEE, we set a test generation timeout of 24 hours, while using the same con�gurations presented
by the authors of KLEE [7] (except for larger memory limit and max-instruction-time, set to
9GB and 30s respectively). This run resulted in 5,161 tests (2,693 developer tests and 2,468 tests
generated by the initial run of KLEE).
We then executed the initial test suites (TS) with the initial mutant set (M1) and identi�ed the

live and killed mutants. The killed mutants were discarded, while the live ones formed our target
mutant set (denoted it asM2), i.e.,M2 is the target of SEMu. In our experiment we found thatM2

included 26,278 mutants, which is approximately 37% of M1. It is noted that M2 is a superset of
the stubborn mutants as it includes both stubborn and equivalent mutants. Unfortunately, judging
mutant equivalence is undecidable and thus, we cannot remove such mutants before test generation.
Therefore, to preserve realistic settings we are forced to run SEMu on allM2 mutants.

To evaluate SEMu e�ectiveness we need to measure the extent to which it can kill stubborn
mutants. Unfortunately, M2 contains a large proportion of equivalent mutants [35], which may
result in signi�cant underestimations of test e�ectiveness [18]. Additionally,M2 may contain a large
portion of subsumed mutants (mutants killed collaterally by tests designed to kill other mutants),
which may in�ate (overestimate) test e�ectiveness [25]. Although we discarded easy-to-kill mutants
(mutants ofM1 that are killed byTS), it is still likely that a signi�cant amount of ‘noise’ still remains.

To reduce such biases (both under and over estimations) [18, 25], there is a need to �lter out
the subsumed mutants by forming the subsuming mutant set [17, 27]. The subsuming mutants
are mainly distinct (in the sense that killing one of them does not alter, increase or decrease, the
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chances of killing the others) providing objective estimations of test e�ectiveness. Unfortunately,
identifying subsuming mutants is undecidable and thus, several testers, e.g., Ammann et al. [2],
Papadakis et al. [25], Kurtz et al. [18] suggested approximating them through strong test suites.
Therefore, to approximate them, we used the combined test suite that merges all tests generated

by KLEE and SEMu across the execution of its 128 di�erent con�gurations,
n⋃

i=0
TSxi , where x0 is

KLEE and xi (0 < i ≤ n) are the n SEMu con�gurations (refer to Section 5.4.2 for details). This
process was applied onM2 and resulted in a set of 529 mutants, forming the mutant setM3. In the
rest of the paper we call the mutants belonging to M3 as reference mutants. We use M3 for our
e�ectiveness evaluation.
Overall, through our experiments we used two distinct mutant sets, M2 and M3. To preserve

realistic settings, the former is used for test generation, while the later is used for test evaluation
(to reduce bias).

5.4.2 SEMu Configuration. To specify relevant values for our modelling parameters (SEMu pa-
rameters) we performed ad-hoc exploratory analysis on some small program functions. Based on
this analysis we specify 2 relevant values for each of the 7 parameters (de�ned in Section 4). These
values provided us the basis for constructing a set of con�gurations (parameter combinations) to
experiment with. In particular the values we used are the following: Precondition Length: GMD2MS
and SMD2MS, Checkpoint Window: 0 and 3, Propagating Proportion: 0 and 0.25, Propagating Selec-
tion Strategy: RND and MDO, Minimum Propagation Depth: 0 and 2, No State Di�erence: True and
False, Number of Tests Per Mutant: 1 and 5.

We then experiment with the constructed con�gurations in order to select the most prominent
SEMu con�guration and form our approach. It is noted that di�erent values and combinations form
di�erent strategies. Examining them is a non-trivial task since the number of con�gurations is
exponentially increased, i.e., 27 = 128 and mutant execution takes considerable amount of time. In
our study, the total test generation by the various con�gurations of SEMu and KLEE took roughly
276 CPU days (number of days for a single CPU single thread execution), while the execution of
the mutants took approximately 1,400 CPU days.

To identify and select the most prominent con�guration, we executed our framework on all test
subjects under all constructed con�gurations. We restrict the symbolic execution time to 2 hours.
We then randomly split the set of test subjects into 5 buckets of equal size (each one containing
20% of the test subjects). Then, we pick 4 buckets (80% of the test subjects) and select the best
con�guration by computing the ratio of killed reference mutants. We assess the generalization
of this con�guration on the left out bucket (5th bucket that includes 20% of the test subjects). To
reduce the in�uence of random e�ects, we repeated this process 5 times by leaving every bucket
out for evaluation. At the end we selected the median performing con�guration (performance on
the bucket that had been left out). It is noted that such a cross validation process is commonly used
in order to select stable and potentially generalizable con�gurations.
Based on the above procedure we selected the SEMu con�guration: PL = GMD2MS, CW =

0, PP = 0.25, PSS = RND, MPD = 2, NSD = False, NTPM = 5.

5.5 Experimental Se�ings and Procedure

To perform our experiment we set, on KLEE, the following (main) settings (which are similar to
the default parameters of KLEE): a) we set a memory usage threshold of 8 GB, (a threshold never
reached by any of the studied methods), b) we set the search strategy on Breadth-First Search (BFS),
which is commonly used in patch testing studies [24] and c) we set a 2 hours time limit for each
subject.
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It is noted that our current implementation supports only BFS. We believe that such a strategy �ts
well with our purpose as it is important that the mutants and original program paths are explored
in a lock step in order to enable state comparison at the same depth. The time budget of 2 hours was
adopted because it is frequently used in test generation studies, e.g., [7]. It is noted that since SEMu
performs a deeper analysis than the other methods, adopting a higher time limit would probably
lead to an improved performance, compared to the other methods. Of course reducing this limit
could lead to reduced performance.
We then evaluated the e�ectiveness of the generated test suites by computing the ratio of

reference mutants that they kill. Unfortunately, in 11 among the 47 test subjects we considered,
none of the evaluated techniques managed to kill any mutant. This means that for these 11 subjects
we approximate having 0 stubborn mutants and thus, we discarded those programs. Therefore, the
following results regard the 36 programs for which we could kill at least one stubborn mutant.

To answer RQ1 we compute and report the ratio of the reference mutants killed, i.e.,M3 set, by
SEMu when it targets the 26,278 surviving mutants, i.e.,M2 set.
To answer RQs 2 and 3 we compute and contrast the ratio of the reference mutants killed by

KLEE (executed in "seeding" mode), the infection-only strategy (a strategy suggested by previous
research [15, 42]) and SEMu (for fair comparison, we used the initial test suite as seeds for the three
approaches). We also report and contrast the number of mutant-killing tests that were generated.
Since the generated tests may include large numbers of redundant tests, i.e., a test is redundant
with respect to a set of tests when it does not kill any unique mutant compared to the mutants
killed by the other tests in the set [27], we compare the sizes of non-redundant test sets, which we
call mutant-killing test sets. The size of these sets represents the raw number of end objectives that
were successfully met by the techniques [3, 27].

To compute the mutant-killing test sets we used a greedy heuristic. This heuristic incrementally
selects the tests that kill the maximum number of mutants that were not killed by the previously
selected tests.

5.6 Threats to Validity

All in all we targeted 133 functions from 47 programs from Coreutils. This level of evidence
su�ciently demonstrates the potential of our approach, but should not be considered as a general
assertion of its test e�ectiveness.

We generated tests at the system level (system tests), relying on the developers’ tests suites. We
believe that this is the major advantage of our approach because this way we focus on stubborn
mutants that encode system level corner cases that are hard to reveal. Another bene�t of doing so
is that at this level we can reduce false alarms, experienced at unit level (feasible behaviors at unit
but infeasible at system level), [14]. Unfortunately though, this could mean that our results do not
necessarily extend to unit level.

Another issue may be due to the tools and frameworks we used. Potential defects and limitations
of these tools could in�uence our observations. To reduce this threat we used established tools, i.e.,
KLEE and Mart, that have been used by many empirical studies. To reduce this threat further we
also performed manual checks and made our tool publicly available.

In our evaluation we used the subsuming stubborn mutants in order to cater for any bias caused
by trivial mutants [25]. While this practice follows the recommendations made by the mutation
testing literature [27], the subsuming set of mutants is a subject to the combined reference test
suite, which might not be representative to the input domain. Nevertheless, any issue caused by
the above approximations could only reduce the mutant killed ratios and not the superiority of our
method. Additional (future) experimentations will increase the generalizability of our conclusions.

, Vol. 1, No. 1, Article . Publication date: September 2020.



Killing Stubborn Mutants with Symbolic Execution 17

semu infection-only klee 
0

10
20
30
40
50
60
70
80
90

100

Pr
op

or
tio

n 
of

 M
ut

an
ts

 K
ille

d 
(%

)

Fig. 5. Comparing the stubborn mutant killing ability of SEMu, KLEE and the infection-only.

The comparison between the studied methods (infection-only) was based on a time limit that
did not include any actual mutant test execution time. This means that when reaching the time
limit, we cannot know how successful (at mutant killing) the generated tests were. Additionally, we
cannot perform test selection (eliminate ine�ective tests) as this would require expensive mutant
executions. While, it is likely that a tester would like to execute the mutants in order to perform
test selection, leaving mutant execution out allows a fair comparison basis between the studied
methods since mutant execution varies between the methods and heavily depends on test execution
optimizations used [27]. Nevertheless, it is unlikely that including the mutant execution would
change our results since SEMu generates less tests than the baselines (because it makes a deeper
analysis than the baselines).

6 EMPIRICAL RESULTS

6.1 Killing ability of SEMu

To evaluate the e�ectiveness of SEMu we run it for 2 hours per subject program and collect the
generated test inputs. We then execute the reference mutants with these inputs and determine
the killed ones. Interestingly SEMu kills a large portion of the reference mutants. The median
percentage of killed mutants is 37.3%, indicating a strong killing ability. To kill these mutants SEMu
generated 153 mutant-killing test inputs (each test kills at least one mutant that is not killed by any
other test).

6.2 Comparing SEMu with KLEE

Figure 5 records the proportion of the killed reference mutants by SEMu, seeded mode of KLEE
and infection-only (investigated in RQ3). It is noted that the boxes include the proportions of
killed mutants among the di�erent test subjects we use. The thick horizontal line on the boxplots
represents the median value of the proportion of killed mutants. It is computed from the proportion
of killed mutants of all test subjects. From these results we can observe that SEMu has a median
value of 37.3% while KLEE has a median value of 0.0%.

To further validate the di�erence we use the Wilcoxon statistical test (paired version) to check
whether the di�erences are signi�cant. The statistical test gives a p-value of 0.006 suggesting
that the two samples’ values are indeed signi�cantly di�erent. As statistical signi�cance does not
provide any information related to the volume of the di�erence, we also compute the Vargha
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Fig. 6. Comparing the mutant killing ability of SEMu and KLEE in per program basis.

Delaney e�ect size (Â12 value) that quanti�es the frequency the observed di�erence. The results

give a Â12 of 0.736, which indicates that SEMu is superior to KLEE in 73.6% of the cases.
Figure 6 depicts the di�erences and overlap between the reference mutants killed by SEMu and

KLEE, per studied subject. From this �gure, we can observe that the number of programs with
overlapping killed mutant is very small indicating that the two methods di�er signi�cantly. We
also observe that SEMu performs best in the majority of the cases. Interestingly, a non negligible
number of mutants are killed by KLEE only. These cases fall within a small number of test subjects.
We investigated these cases and found that the di�erences were big either because there was only
one reference mutant, which was killed by KLEE alone, or because of the large number of surviving
mutants that force SEMu to perform a shallow search. Unfortunately, SEMu spends much time
trying to kill every targeted mutant and thus, when a large number of them is involved, the 2 hours
time limit we set is not su�cient to e�ectively kill them.
In fact, given a con�guration of SEMu, the time budget needed to target all the mutants is

proportional to the number of mutants. That is why, for a �xed time budget, the e�ectiveness of
SEMu may decrease as the number of mutants increases, leaving some mutants untargeted when
the time budget is exhausted. One way to mitigate this, when a large number of mutants is involved,
perhaps is to prune the paths more aggressively or reduce the number of attempts for these cases.
A future work will automatically set the appropriate parameters’ values based on the program
under analysis and the number of mutants, in a way that optimises the e�ectiveness of SEMu. This
will enable each mutant to have a share of the time budget.

To better demonstrate the e�ectiveness di�erences of the methods we also record the number of
the mutant killing test inputs (each test kills at least one mutant that is not killed by any other test).
We found that SEMu generated 153 mutant-killing test inputs, while KLEE generated only 62.

6.3 Comparing SEMu with infection-only

A �rst comparison between SEMu and infection-only can be made based on the data from Figure 5.
According to these data SEMu has a median value of 37.3% while infection-only has a median of
17.2%. Interestingly, this shows a big di�erence in favour of our approach. To further validate this
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Fig. 7. Comparing the mutant killing ability of SEMu and infection-only in per program basis.

�nding, we performed a Wilcoxon statistical test and got a p-value of 0.04 suggesting that the two
samples’ values are statistically signi�cant (at the commonly adopted 5% con�dence level). Like

in RQ2 we also computed the Vargha Delaney e�ect size Â12 and found that SEMu yields higher
killing rates than infection-only in 61% of the cases.
To demonstrate the di�erences we also present our results in a per test subject basis. Figure 7

shows the di�erences and overlap between the killed reference mutants. From these results we
observe a large overlap between the mutants killed by both approaches, with SEMu being able
to kill more mutants for most of the cases. We also observe that in 5 of the cases infection-only
performed better than SEMu, while SEMu performed better in 13.

Similarly, to the previous RQs we compare the strategies by counting the number of the mutant
killing test inputs that were generated by the strategies. Interestingly, we found that SEMu generated
87% more mutant killing test inputs than the "infection-only" one (153 vs. 82 inputs) , indicating
the usefulness of our framework.

7 RELATED WORK

Many techniques targeting mutation-based test generation have been proposed [4, 27]. However,
most of these focus on generating test suites from scratch, by maximizing the number of mutants
killed, mainly by either reaching the mutants or by targeting mutant infection. In contrast we
aim at the thorough testing of speci�c program areas by taking advantage of existing tests and by
targeting stubborn mutants that are hard to propagate.

The studies of Papadakis and Malevris [29, 30], and Zhang et al. [42] proposed embedding mutant
related constraints, called infection conditions, within meta-programs. These meta-programs inject
and control the mutations in order to force symbolic execution to cover them. As a result, symbolic
execution modules can produce test cases that satisfy the infection conditions and have good
chances to kill the mutants. Although e�ective, these approaches only target mutant infection,
which makes them relatively weak [39].
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To bypasss the abovementioned problem, the studies of Papadakis and Malevris [28] and Har-
man et al. [15] aimed at indirectly handling mutant propagation. The former technique searches
symbolically the path space of the mutant programs (after the mutation point), while the later one
searches the input program space de�ned by the path conditions in order to bypass constraints
not handled by the used solver and to indirectly make the mutants propagate. In contrast SEMu
aims at incrementally di�erentially exploring the path space by considering the symbolic states
and making a relevant exploration.

Fraser and Zeller [12] and Fraser and Arcuri [11] applied Search-based testing in order to generate
mutation-based tests. Their key advancement was to guide the search by measuring the di�erences
between the test traces of the original and mutant programs. While powerful, such an attempt still
fails to provide the guidance needed in order to trigger such di�erences.
Moreover, search techniques rely on the ability to execute test cases fast (applied at the unit

level), making them less e�ective in cases of slow test execution (such as system level testing).
Nevertheless, a comparison between search-based test generation and symbolic execution falls out
of the scope of the present paper.
Much work on testing software patches has also been performed the recent years [19, 20,

37]. However, most of these methods aim at covering patches and not the program semantics
(behavioural changes). Moreover, these techniques target the general patch testing problem, which
in a sense assume very few patches with many changes. The case of mutation, though, involves
many mutants. These are created by inducing small syntactic deviations, a fact that our method
takes advantage in order to optimize the mutant killings.
Di�erential symbolic execution [31] aims at reasoning about semantic di�erences of program

versions, but since it performs a whole program analysis it can experience signi�cant scalability
issues when considering large programs and multiple mutants. Directed incremental symbolic
execution [32] guides the symbolic exploration through static program slicing. Unfortunately, such
a method can be expensive when used with many mutants. Nevertheless, program slicing could be
used to further guide SEMu towards the relevant mutant exploration space.

Shadow symbolic execution [24] applies a combined execution on both program versions under
analysis. It relies on analysis a meta-program that is similar to the mutant’s meta-program in order
to take advantage of the common program parts. The major di�erence with our method is that
we speci�cally target multiple mutants at the same time, limit the program exploration through
data state comparisons in order to optimize performance. Since shadow targets single patches and
exhaustively searches the path space (after the mutation point) it can experience scalability issues.

Overall, while many related techniques have been proposed, they have not been investigated in
the context of mutation testing and particularly to target stubborn mutants. Stubborn mutants are
hard to kill and their killing results in test inputs that are linked with corner cases and increase
fault revelation [39].

8 CONCLUSION

This paper introduced SEMu, a method that generates test inputs for killing stubborn mutants.
SEMu relies on a form of shared di�erential symbolic execution that incrementally searches a small
but ‘promising’ code region around the mutation point in order to reveal divergent behaviours.
This allows the fast and e�ective generation of test inputs that thoroughly exercise the targeted
program corner cases. We have empirically evaluated SEMu on Coreutils and demonstrated that it
can kill approximately 37% of the involved stubborn mutants within a two hour time budget. This
performance is approximately 20% higher than that of the baseline (infection-only) strategy.
An important characteristic of SEMu is that it allows performing thorough testing in selected

‘critical’ parts of the programs under test. Therefore, it allows improving test suites by generating
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mutation-based test inputs that kill stubborn mutants (mutants that survive the execution with
the available test suites). This is important as it allows testing corner cases that escaped testing
(encoded by stubborn mutants [39]). Moreover, SEMu aims at handling failed error propagation
(masking e�ects), which is challenging and prevalent in mutation testing.

Similarly to any technique that generates tests to kill mutants, the scalability of SEMu depends
on the nature and the number of the involved mutants. However, the design of SEMu enables
various con�gurations achieving di�erent trade-o�s when aiming at stubborn mutants. This makes
it possible to choose, based on the number of mutants and available time budget, the con�guration
that evenly share the allocated time budget across all mutants.
Our future work includes the examination of additional path search strategies and a thorough

evaluation of the relationship between the propagation distance and the likelihood of revealing
underlying program defects. These will enable tuning further the test generation process and will
improve scalability and e�ectiveness.
SEMu is publicly available as open-source: https://github.com/thierry-tct/KLEE-SEMu.
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