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KILLING VECTOR FIELDS ON TANGENT BUNDLES
WITH CHEEGER-GROMOLL METRIC

By

Mohamed Tahar Kadaoui ABBASSI and Ma\^ati SARIH

Abstract. This paper deals with properties of the Cheeger-Gromoll

metric $\overline{g}$ introduced in 1988 by Musso and Tricerri on the tangent

bundle $TM$ associated to a given Riemannian metric $(M, g)$ .
One can find here essentially the two following results:
1. A classification of Killing vector fields on $(TM,\overline{g})$

2. A generalization of a result of M. Sekizawa conceming the

non rigidity of the. Cheeger-Gromoll metric.

1. Introduction

Let $(M, g)$ be a Riemannian manifold and $TM$ its tangent bundle with the

natural projection $\pi$ : $TM\rightarrow M$ .
Although the Sasaki metric $Tg$ on $TM[9]$ is a “naturally defined” Rie-

mannian metric, it is ”extremely rigid” [8]. $0$ . Kowalski [6] has shown that it is
never locally symmetric unless the base metric is locally Euclidean. E. Musso and

F. Tricerri [8] have generalized this fact: they have shown that it has constant

scalar curvature if and only if the base metric is flat. To surmount this hindrance

E. Musso and F. Tricerri have suggested the Cheeger-Gromoll metric $\overline{g}$ on $TM$

[3] as an altemative. Indeed, M. Sekizawa [10] has shown that its scalar curvature

is never constant if the original metric on the base manifold has constant cur-
vature. The authors have also studied some other properties of this metric [1],

many of which will be used here.

Throughout this work, $TM$ will be endowed with the Cheeger-Gromoll metric
$\overline{g}$ . We give, firstly, a theorem on general forms of all Killing vector fields on
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$(TM,\overline{g})$ (Theorem 3.6). If some assumptions are imposed, then the forms of

Killing vector fields become simpler ones (Theorems 4.1, 4.2 and 4.3); some ideas
of these results are inspired from similar ones for the case of the Sasaki metric
[12]. In \S 5, we give a generalization of a result of M. Sekizawa [10] conceming
the non rigidity of the Cheeger-Gromoll metric on the tangent bundle (Theorem

5.7).

In this paper, manifolds are assumed to be connected and smooth and the

so-called “Einstein’s summation” will be used everywhere.

The authors would like to thank Professor M. Sekizawa for his helpful

comments on this work.

2. $Preh_{1}\dot{m}na\dot{n}es$

A local coordinate neighborhood $\{(U;x^{j}, i=1, \ldots, n)\}$ in $M$ induces on
$TM$ a local coordinate neighborhood $\{\pi^{-1}(U);x^{i}, v^{j}, i=1, \ldots, n)\}$ . Let $X=(X^{i})$

be a vector field on $M$ . Then the complete lift $X^{c}$ , the vertical lift $X^{v}$ and

the horizontal lift $X^{h}$ of $X$ are given, with respect to the induced coordinates,

by: $X^{C}=(X^{j}, v^{j}(\partial X^{i}/\partial x^{j})),$ $X^{v}=(0, X^{j})$ and $X^{h}=(X^{i}, -\Gamma_{jk}^{i}v^{j}X^{k})$ respectively,

where $(\Gamma_{jk}^{i})$ denote the Christoffel’s symbols of $g$ . (cf. [9], [15])

On the other hand, to any $(1, 1)$ -tensor field $P$ on $M$ , one can associate two

vector fields $\iota P$ and $*P$ defined on $TM$ by:

$\iota P=(0, P_{j}^{i}v^{j})$ and $*P=(P_{j}^{i}v^{j}, -\Gamma_{lk}^{i}P_{j}^{l}v^{j}v^{k})$ .

Then $\iota P$ is a vertical vector field and $*P$ is a horizontal one, and we have
$X^{c}=X^{h}+\iota(\nabla X)$ , where $\nabla X=(\nabla_{j}X^{j})$ and $\nabla$ denotes the covariant differentia-

tion with respect to the Levi-Civita connection of $g$ .

In this paper, we need new lifts of vector fields on $M$ . For any vector field $X$

on $M$ , let $X_{A}$ and $X_{B}$ be vector fields on $TM$ defined at any point $(x, u)\in TM$ by

$X_{A}(x, u)=(1-r^{2})X^{v}(x, u)+g_{X}(u, X(x))U(x, u)$ ,

$X_{B}(x, u)=(1-r^{2})X^{v}(x, u)+g_{x}(u, X(x))U(x, u)+*(C(X))(x, u)$ ,

where $r^{2}=g_{X}(u, u),$ $U$ is the canonical vertical vector field defined, locally, by
$U=(0, v^{i})$ , i.e., $U(x, u)=(0, u^{i})$ , and $C(X)$ is $(1, 1)$ -tensor field on $M$ defined by
$g(C(X)Y, Z)=-g(Y, \nabla_{Z}X)$ for all vector fields $Y$ and $Z$ on $M$ . The components

of $C(X)$ with respect to the local coordinates are $(-g^{ik}g_{jl}\nabla_{k}X^{l})$ . Clearly the lifts
$X_{A}$ and $X_{B}$ are smooth vector fields on $TM$ .

Remark that $X_{B}$ is a vertical field; it is the vertical part of $X_{A}$ .
The Cheeger-Gromoll metric $\overline{g}$ on $TM$ has components [1]:
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$\left\{\begin{array}{l}\overline{g}_{ij}=g_{ij}+v^{\lambda}v^{\tau}\Gamma_{i\lambda}^{k}\Gamma_{j\tau}^{l}G_{kl}\\\overline{g}_{in+j}=v^{\tau}\Gamma_{i\tau}^{k}G_{kj}\\\overline{g}_{n+in+j}=G_{ij}\end{array}\right.$ $i,j=1,$ $\ldots,n$ ,

where $G_{ij}$ is the function on $\pi^{-1}(U)$ defined by:

$G_{ij}=1/(1+r^{2})(g_{ij}+g_{ik}g_{jl}v^{k}v^{l})$ .

3. Classification of Killing Vector Fields on $(TM,\overline{g})$

The general forms of Killing vector fields on $(TM,\overline{g})$ are given by

THEOREM 3.1. Let $(TM,\overline{g})$ be the tangent bundle with the Cheeger-Gromoll

metric of a Riemannian manifold $(M, g)$ . Let

(i) $X$ be a Killing vector field on $(M, g)$ ;

(ii) $P$ be a $(1, 1)$ -tensor field on $(M, g)$ which is
$(P_{1})$ Parallel with respect to $g$ and
$(P_{2})$ skew-symmetric with respect to $g$ , when considered as a vector field valued

linear mapping on the space of vector fields on $M$;

(iii) $Y$ be a vector field on $(M, g)$ which satisfies
$(Y_{1})$ the second covariant derivation $\nabla^{2}Y$ of $Y$ is skew-symmetric, when con-

sidered as a vector field valued bilinear mapping on the space of vector fields on $M$;

$(Y_{2})$ $-R(X, C(Y)(W))V-R(X, C(Y)(V))W$

$=2[g(\nabla_{X}Y, V)W+g(\nabla_{X}Y, W)V-2g(V, W)\nabla_{X}Y]$

for all vector fields $X,$ $V$ and $W$ on $M$.
Then the vector field $Z$ on $TM$ defined by

$(TK)Z=X^{c}+lP+Y_{B}$ is a Killing vector field on $(TM,\overline{g})$ .
Conversely, every Killing vector field on $(TM,\overline{g})$ is of the form $(TK)$ .

PROOF. The proof will be devided into a series of propositions and lemmas.

We have shown in [1] (Theorem 5.11), that the vertical lift to $TM$ of a non-
zero vector field on $M$ is never a Killing vector on $(TM,\overline{g})$ contrary to the Sasaki

metric case where the vertical lift to $TM$ of a parallel vector field on $M$ is a
Killing vector field on $(TM, Tg)[9]$ . This fact for the Sasaki metric was a fun-

damental tool on which S. Tanno had based to give general forms of all Killing

vector fields on $(TM, Tg)[12]$ . Now, we will give an analogous of Tanno’s the-
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orem (Theorem A. [12]) on the classification of Killing vector fields, in the case of

Cheeger-Gromoll metric.

Recall that a vector field $Z=(Z^{I})$ is a Killing vector or an infinitesimal

isometry with respect to the metric $\overline{g}=(\overline{g}_{IJ})$ if and only if $L_{Z}\overline{g}=0$ , where $L_{Z}$

denotes the Lie derivative with respect to $Z$ , i.e.,

$Z^{K}\partial_{K}\overline{g}_{IJ}+\partial_{I}Z^{K}\overline{g}_{KJ}+\partial_{J}Z^{K}\overline{g}_{KI}=0$ ; $I,$ $J=1,$
$\ldots,$

$2n$ .

Putting (I, $J$ ) $=(i, j),$ $(i, n+j)$ and $(n+i, n+j)$ , the last equation is trans-

formed to the system:

First of all, we shall study the particular cases $X^{c},$ $\iota P$ and $X_{B}$ .

PROPOSITION 3.2 [1]. In order that a complete $l_{l}ftX^{c}$ to $TM$ of a vector field
$X$ on $M$ be a Killing vector field of $(TM,\overline{g})$ , it is necessary and sufficient that $X$

itself is a Killing vector field of $(M, g)$ .

The following lemma is immediate from $(K)$ :

LEMMA 3.3.
1- If $P=(P_{j}^{i})$ is a $(1, 1)$ -tensor field on $M$, then:

$L_{\iota P}\overline{g}=(c_{\gamma j}\nabla_{i}^{0_{P_{r}^{\gamma}v^{r}}}$ $\frac{1}{1+r^{2}}(A+B_{ij}^{\gamma}G_{ij}\nabla_{j}P_{r}v_{-C_{ij})}^{r}\gamma i$ ,

where
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$A_{ij}=(g_{\gamma j}P_{i}^{\gamma}+g_{\gamma}{}_{t}P_{j}^{\gamma})+(g_{\gamma}{}_{t}P_{r}^{\gamma}+g_{\gamma r}P_{i}^{\gamma})v^{r}v_{j}$ ,

$B_{ij}=(g_{\gamma j}P_{r}^{\gamma}+g_{\gamma r}P_{j^{\gamma}})v^{r}v_{j}$ ,

$C_{ij}=(g_{\gamma s}P_{r}^{\gamma}+g_{\gamma r}P_{s^{\gamma}})v^{r}v^{s}G_{ij}$ .

2-If $Y$ is a vector field on $M$, then

$L_{Y_{B}}\overline{g}=\left(\begin{array}{ll}-(\nabla_{i}\nabla_{j}Y^{k}+\nabla_{j}\nabla_{i}Y^{k})v^{k} & D_{ij}\\D_{ji} & 0\end{array}\right)$ ,

where $D_{\xi\zeta}=-g^{lk}G_{k\xi}v^{r}v^{s}[R_{ls\zeta\gamma}\nabla^{\gamma}Y_{\gamma}-\nabla_{\zeta}Y^{\gamma}(glrg_{\gamma s}+gf_{S}g_{\gamma r}-2g\iota_{\gamma}g_{rs})],$ $\xi,$ $\zeta=1,$ $\ldots,n$ .

As corollaries of lemma 3.3, we obtain

PROPOSITION 3.4. Let $P$ be a $(1, 1)$ -tensor field on $(M, g)$ satisfying the con-

ditions $(P_{1})$ and $(P_{2})$ in Theorem 3.1. Then $\iota P$ is a Killing vector field on $(TM,\overline{g})$ .

PROPOSITION 3.5. Let $Y$ be a vector field on $(M, g)$ satisfying the conditions
$(Y_{1})$ and $(Y_{2})$ in Theorem 3.1. Then $Y_{B}$ is a Killing vector field on $(TM,\overline{g})$ .

Now, we consider the O-section $(v^{j}=0)$ in the coordinate neighborhood
$(\pi^{-1}(U);x^{i}, v^{i}, i=1, \ldots, n)$ in $TM$ induced from $(U;x^{i}, i=1, \ldots, n)$ in $M$ , and

its neighborhood $W$ . For a vector field $Z$ on $TM$ , and $(x, v)=(x^{i}, v^{j})$ in $W$ , we

can write, by Taylor’s theorem,

$Z^{i}(x, v)=Z^{i}(x, 0)+\partial Z/\partial v^{r}(x, 0)v^{r}+\frac{1}{2}(\partial/\partial v^{r}(\partial Z^{i}/\partial v^{s}))(x, 0)v^{r}v^{s}+\cdots[*]_{\lambda}^{i}$ ,

$Z^{n+i}(x, v)=Z^{n+i}(x, 0)+\partial Z^{n+i}/\partial v^{r}(x, 0)v^{r}$

$+\frac{1}{2}(\partial/\partial v^{r}(\partial Z^{n+i}/\partial v^{s}))(x, 0)v^{r}v^{s}+\cdots[*]_{\lambda}^{n+i}$ ,

where $[*]_{\lambda}^{I}(I=1, \ldots, 2n)$ is of the form: $[*]_{\lambda}^{I}=\frac{1}{\lambda!}(\partial^{\lambda}Z^{I}/\partial v^{i_{1}}\partial v^{i_{2}}\cdots\partial v^{i_{\lambda}})$ .

$(x^{a}, \theta(x, v)v^{b})v^{i_{1}}v^{i_{2}}\cdots v^{i_{\lambda}}$ ; $1\leq i_{1},$
$\ldots,$

$i_{\lambda}\leq n$ .

The following lemma is valid.

LEMMA 3.6 [12]. In the above situation, the following

$X=(X^{i}(x))=(Z^{j}(x, 0))$ , $Y=(Y^{j}(x))=(Z^{n+i}(x, 0))$ ,

$K=(K_{r}^{i}(x))=(\partial Z^{j}/\partial v^{r}(x, 0))$ ,

$E=(E_{rs}^{i}(x))=(\partial/\partial v^{r}(\partial Z^{j}/\partial v^{s})(x, 0))$ ,

$P=(P_{r}^{i}(x))=((\partial Z^{n+i}/\partial v^{r})(x, O)-\partial Z/\partial x^{r}(x, 0))$

are tensor fields on $M$.
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With the notations of lemma 3.6, we can write:
$(T_{1})Z^{j}(x, v)=X^{i}+K_{r}^{i}v^{r}+\frac{1}{2}E_{rs}^{i}v^{r}v^{s}+\cdots[*]_{\lambda}^{i}$ ,

$(T_{2})Z^{n+l}(x, v)=Y^{i}+\tilde{P}_{r}^{i}v^{r}+\frac{1}{2}Q_{rs}^{i}v^{r}v^{s}+\cdots+[*]_{\lambda}^{n+i}$ ,

where $\tilde{P}_{r}^{i}$ and $Q_{rs}^{i}$ are given by

$\tilde{P}_{r}^{i}(x)=\partial Z^{n+i}/\partial v^{r}(x, 0)$ and $Q_{rs}^{i}=\partial^{2}Z^{n+i}/\partial v^{r}\partial v^{s}(x, 0)$ ,

and we have:
$(T_{3})\partial Z^{j}/\partial v^{j}(x, v)=K_{j}^{i}+E_{rj}^{i}v^{r}+\cdots+\langle*\rangle_{\lambda-1}^{i}$ ,

$(T_{4})\partial Z^{n+i}/\partial v^{j}(x, v)=\tilde{P}_{j}^{i}+Q_{rj}^{i}v^{r}+\cdots+\langle*\rangle_{\lambda-1}^{n+i},$
$\ldots$ etc.

When we apply Taylor’s theorem to the left hand sides of $(K)$ to some order
$\lambda$ , the results are the same as one obtains by substituting $(T_{1}),$ $(T_{2}),$ $(T_{3}),$ $(T_{4})\ldots$

into $(K)$ up to order $\lambda-1$ . Furthermore the vanishing of the right hand sides of

the equations of $(K)$ implies the vanishing of each coefficient (up to order $\lambda-1$ ).

Substituting $(T_{1})$ and $(T_{2})$ into $(K_{1})$ and taking the part which does not

contain $v^{r}$ , we have

$X^{\gamma}\partial g_{ij}/\partial x^{\gamma}+\partial X^{\gamma}/\partial x^{i}g_{\gamma j}+\partial X^{\gamma}/\partial x^{j}g_{\gamma i}=0$ .

Hence, $X=(X^{j})$ is a Killing vector field on $(M, g)$ . Since, by proposition 3.2, $X^{c}$

is a Killing vector field on $(TM,\overline{g}),$ $Z-X^{c}$ is also a Killing vector field. There-
fore, in the following, denoting $Z-X^{c}$ by the same letter $Z$ , one may assume
that $X^{j}=0$ in $(T_{1})$ . Then $(\tilde{P}_{r}^{i})=(P_{r}^{i})$ is a tensor field on $M$ by lemma 3.6.

Putting $(T_{1})$ and $(T_{2})$ into $(K_{2})$ (from now on, we omit this statement)

and taking the part which does not contain $v^{r}$ , we get: $Y^{\gamma}\Gamma_{i\gamma}^{k}gkj+\partial Y^{\gamma}/\partial x^{i}g_{\gamma j}+$

$K_{j^{\gamma}}g_{\gamma i}=0$ , that is
$(D_{1})K_{j}^{\gamma}g_{i\gamma}=-g_{\gamma j}\nabla_{j}Y^{\gamma}=-\nabla_{i}Y_{j}$ , i.e.,
$(D_{1}^{\prime})K_{j}^{i}=-\nabla^{i}Y_{j}$ .
Taking the coefficient of $v^{s}$ in $(K_{1})$ , we get

$K_{s}^{\gamma}\partial g_{ij}/\partial x^{\gamma}+Y^{\gamma}(lkglk$

$+\partial Y^{\gamma}/\partial x^{l}\Gamma_{js}^{k}gk\gamma+\partial K_{s}^{\gamma}/\partial x_{j}g_{\gamma i}+\partial Y^{\gamma}/\partial x^{j}\Gamma_{is}^{k}gk\gamma=0$ .

Using the equality $\partial g_{ij}/\partial x^{\gamma}=\Gamma_{\gamma i}^{t}g_{tj}+\Gamma_{\gamma j}^{\iota}g_{ti}$ and $(D_{1})$ , we see that the above

equation can be simplified to
$(D_{2})\nabla_{j}\nabla_{j}Y_{s}+\nabla_{j}\nabla_{i}Y_{s}=0$ .
Taking the part which does not contain $v^{r}$ , in $(K_{3})$ , we get
$(D_{3})P_{i}^{\gamma}g_{\gamma j}+P_{j}^{\gamma}g_{\gamma i}=0$ .
Taking the coefficient of $v^{s}$ in $(K_{2})$ , we get

$P_{s^{\gamma}}\Gamma_{i\gamma}^{k}gkj+\partial P_{s^{\gamma}}/\partial x^{i}g_{\gamma j}+E_{sj}^{\gamma}g_{\gamma i}+P_{j^{\gamma}}\Gamma_{is}^{k}gk\gamma=0$ ,
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or equivalently

$g_{i\gamma}E_{js}^{\gamma}+\nabla_{j}P_{s}^{\gamma}g_{j\gamma}=0$ , i.e. $g_{i\gamma}E_{js}^{\gamma}+\nabla_{j}P_{sj}=0$ ,

where $P_{sj}=P_{s^{\gamma}}g_{\gamma j}$ .
Since $E_{js}^{\gamma}$ is symmetric in $j$ and $s$ , and $(\nabla_{i}P_{s^{\gamma}})g_{\gamma j}=\nabla_{j}P_{sj}$ is skew-symmetric

in $j$ and $s$ by $(D_{3})$ , we have
$(D_{4})E_{js}^{\gamma}=0$ and $\nabla_{i}P_{s^{\gamma}}=0$ .
Taking the coefficient of $v^{s}$ in $(K_{3})$ , we get

$(D_{5})$ $K_{s^{\gamma}}\partial g_{ij}/\partial x^{\gamma}+Y^{\gamma}(g_{is}g_{j\gamma}+g_{i\gamma}g_{jS}-2g_{\gamma s}g_{ij})+K_{i}^{\gamma}\Gamma_{\gamma s}^{k}gkj$

$+Q_{si}^{\gamma}+K_{j}^{\gamma}\Gamma_{\gamma s}^{k}+Q_{sj}^{\gamma}g_{\gamma i}=0$ .

We put $Q_{rs}^{i}=-(\Gamma_{kr}^{i}K_{s}^{k}+\Gamma_{ks}^{i}K_{r}^{k})-2Y^{j}g_{rs}+(Y^{k_{gkr}}\delta_{s}^{i}+Y^{k_{gks}}\delta_{r}^{i})+T_{rs}^{i}$ .

By simple calculation using $(D_{5})$ , we can verify that

$T_{is}^{r}g_{rj}+T_{js}^{r}g_{ri}=0$ .

If we put $T_{isj}=T_{is}^{r}g_{rj}$ , then $T_{isj}$ is symmetric in $i$ and $s$ , and skew-symmetric

in $i$ and $j$ . Hence $T_{isj}=0$ . That is
$(D_{6})Q_{sr}^{i}=-(\Gamma_{kr}^{i}K_{s}^{k}+\Gamma_{ks}^{i}K_{r}^{k})-2Y^{j}g_{rs}+(Y^{k_{gkr}}\delta_{s}^{i}+Y^{k_{gks}}\delta_{r}^{i})$ .

Taking the coefficient of $v^{s}v$ ‘ in $(K_{2})$ , we get by virtue of $(D_{6})$

$(D_{7})$ $(K_{s^{\gamma}}R_{it\gamma}^{k}+K_{t}^{\gamma}R_{is\gamma}^{\iota})gkj+2\nabla_{i}Y^{\gamma}(g_{\gamma s}g_{jl}+g_{\gamma t}g_{js}-2g_{\gamma j}g_{st})$

$+\partial/\partial v^{s}(\partial/\partial v^{t}(\partial Z^{\gamma}/\partial v^{j}))(x, 0)g_{\gamma i}=0$ .

Taking the skew-symmetric part in $s$ and $j$ of $(D_{7})$ , we get

$(D_{8})2R_{jsi\gamma}K_{t}^{\gamma}+R_{jti\gamma}K_{s^{\gamma}}-R_{sti\gamma}K_{j}^{\gamma}+2\nabla_{i}Y^{\gamma}(3g_{\gamma s}g_{jt}-3g_{\gamma j}g_{st})=0$ .

Taking the symmetric part in $s$ and $t$ of $(D_{8})$ , we get
$(D_{9})R_{jsi\gamma}K_{t}^{\gamma}+R_{jti\gamma}K_{s^{\gamma}}=-2\nabla_{j}Y^{\gamma}(g_{\gamma s}g_{jt}+g_{\gamma l}g_{js}-2g_{\gamma j}g_{st})$ .

Now, by $(D_{3})$ and $(D_{4})$ , we see that $\iota P$ is a Killing vector on $(TM,\overline{g})$ by

Proposition 3.4. By $(D_{1}),$ $(D_{2}),$ $(D_{9})$ and Proposition 3.5, $Y_{B}$ is a Killing vector

field on $(TM,\overline{g})$ .
We put $[Z]=Z-\iota P-Y_{B}$ which is a Killing vector field on $(TM,\overline{g})$ . Using

the preceding arguments, we see that $([Z]^{A})(x, 0)=(\partial[Z]^{A}/\partial x^{B})(x, 0)=0$ , for

$A=i,n+i$ and $B=j,$ $n+j$ at a point $p=(x, 0)$ .

Since a Killing vector field [Z] (or more generally an infinitesimal affine

transformation) is determined by the values of its components and their first

partial derivatives at a point (cf. [5, p. 232]), we have $[Z]=0$ on $TM$ .

Finally, propositions 3.2, 3.4 and 3.5 and the facts that have already been

shown complete the proof of Theorem 3.1.
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4. Classification of Killing Vector Fields on $(TM,\overline{g})$ in Particular Cases

Let $(M, g)$ be a compact oriented Riemannian manifold with volume element
$dv$ . We can define the global scalar product $\langle\alpha,\beta\rangle_{g}$ of two p-forms $\alpha$ and $\beta$ as
follows: $\langle\alpha,\beta\rangle_{g}=\int_{M}g(\alpha,\beta)dv$ , where $g(\alpha,\beta)$ denotes the scalar product of $\alpha$ and
$\beta$ , with respect to $g$ , locally defined by $g(\alpha,\beta)=\alpha_{i_{1}\cdots i_{p}}\beta^{i_{1}\cdots i_{p}}$ .

The norm associated to the global product $\langle, \rangle_{g}$ is denoted by I $\Vert_{\langle,\rangle_{g}}$ .

THEOREM 4.1. In theorem 3.1, if $(M, g)$ is compact, then $Y$ satisfying $(Y_{1})$

and $(Y_{2})$ is parallel. Hence $(TK)$ is $Z=X^{c}+\iota P+Y_{A}$ .

$PR\infty F$ . By considering the double covering manifold if necessary, we can
assume that $M$ is orientable. Let $Y$ be a vector field on $M$ satisfying $(Y_{1})$ . We

can write, using $(Y_{1}),$ $\nabla_{j}\nabla^{i}Y_{r}=\nabla_{i}(g^{ij}\nabla_{j}Y_{r})=g^{ij}\nabla_{j}\nabla_{j}Y_{r}=0$ . In this case, we have
$(\alpha)\nabla_{j}(Y_{r}\nabla^{f}y^{r})=\nabla_{i}Y_{r}\nabla^{i}Y^{r}+Y_{r}\nabla_{i}\nabla^{i}Y^{r}=\nabla_{j}Y_{r}\nabla^{j}Y^{r}$ .
If we denote by $Y^{*}$ the l-form on $M$ obtained by contraction of $Y$ with

respect to $g$ , then the quantity $Y_{r}\nabla^{i}Y^{r}$ is the local expression of the vector field $V$

obtained by contraction of the $(2, 1)$ -tensor field $Y^{*}\otimes\nabla_{*}Y;\nabla_{*}Y$ being defined

locally by, $(V_{*}Y)^{ij}=\nabla^{j}Y^{j}$ .
On the other hand, the quantity $\nabla_{j}Y_{r}\nabla^{i}Y^{r}$ is nothing but $g(\nabla Y^{*}, \nabla Y^{*})$ . The

equality $(\alpha)$ is then transformed to $\nabla_{i}V^{l}=(\nabla Y^{*})_{ir}(\nabla Y^{*})^{ir}$ , that is
$(\beta)divV=g(\nabla Y^{*}, \nabla Y^{*})$ .

Integrating both sides of the last equation $(\beta)$ , we get
$(\gamma)\int_{M}divVdv=\Vert\nabla Y^{*}\Vert_{\langle,\rangle_{g}}^{2}$ .
Applying Green’s theorem ($\int_{M}divVdv=0[5]$ , I.p. 281), it follows from $(\gamma)$

that $\Vert\nabla Y^{*}\Vert_{\langle,\rangle_{g}}^{2}=0$ .
Thus $\nabla Y^{*}=0$ i.e. $\nabla Y=0$ . Therefore $Y_{B}=Y_{A}$ , which gives the result.

THEOREM 4.2. In theorem 3.1, if $(M, g)$ satisfies one of the following three

conditions:

(i) $M$ is compact and orientable with vanishing first Betti number $b_{1}(M)$ ;

(ii) $M$ is compact and orientable with strictly positive Ricci Curvature;

(iii) $(M, g)$ is an Einstein space with non-zero scalar curvature $d_{l}fferent$ from
$2n(1-n)$ , then $Y$ satisfying $(Y_{1})$ ‘and $(Y_{2})$ vanishes, in which case $(TK)$ becomes
$Z=X^{c}+lP$ .

PROOF. (i) $M$ being compact, $Y$ satisfying $(Y_{1})$ and $(Y_{2})$ is parallel, by

theorem 4.1. Applying Hodge’s theorem ([13]), we have $Y=0$ by virtue of

$b_{1}(M)=0$ .
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(ii) According to [2, theorem 1.76], $b_{1}(M)=0$ . So, we can apply (i).

(iii) contracting $(Y_{2})$ with respect to $i$ and $s$ , we obtain

$R_{s\gamma}\nabla^{\gamma}Y_{t}+R_{t\gamma}\nabla^{\gamma}Y_{s}=2(\nabla_{t}Y_{s}+\nabla_{s}Y_{t}-2\nabla^{r}Y_{r}g_{st})$ ,

where $(R_{ij})$ denotes the Ricci curvature tensor.

By assumption, $(M, g)$ satisfies: $R_{s\gamma}=S/ng_{s\gamma}$ , for non-zero scalar curvature $S$ .
Hence, we have

$(S/n-2)(\nabla_{s}Y_{t}+\nabla_{t}Y_{s})=-4\nabla^{r}Y_{r}g_{st}$ .

Multiplying by $g^{st}$ both sides of the last equation and summing over $s$ and $t$ ,

we get $(2n^{2}-2n+S)\nabla^{s}Y_{s}=0$ .

Since $S\neq 2n(1-n)$ , we have $\nabla^{s}Y_{s}=0$ , which means that $\nabla_{r}Y^{r}=0$ . Now,

using $(Y_{1})$ and the Ricci identity,

$\nabla_{i}\nabla_{j}Y^{r}-\nabla_{j}\nabla_{i}Y^{r}=R_{\iota ji}^{r}Y^{t}$ ,

we get

$\nabla_{i}\nabla_{j}Y^{r}=\frac{1}{2}R_{\iota ji}^{r}Y^{t}$ .

Contracting with respect to $r$ and $j$ , and applying $\nabla_{r}Y^{r}=0$ , we get $R_{ti}Y‘=0$ ,

that is $S/ng_{tl}Y^{\iota}=S/nY_{i}=0$ . Therefore $Y=0$ , since $S\neq 0$ .

THEOREM 4.3. Let $(TM,\overline{g})$ be the tangent bundle with the Cheeger-Gromoll

metric $\overline{g}$ of a Riemannian mamfold $(M, g)$ . If $M$ is compact and orientable, and if
the first and the second Betti numbers vanish, then the Lie algebra of Killing vector

fields on $(M, g)$ and the Lie algebra of Killing vector fields on $(TM,\overline{g})$ are
isomorphic, via the correspondence $X\rightarrow X^{c}$ .

PROOF. Applying theorem 4.2(i), it follows from $b_{1}(M)=0$ that $Y=0$ . Fur-

thermore, if the $(1, 1)$ -tensor field $P$ is parallel then, by $b_{2}(M)=0$ and Hodge’s

theorem, we have $P=0$ . Therefore, every Killing vector field on $(TM,\overline{g})$ is of the

form $X^{c}$ for some Killing vector field $X$ on $(M, g)$ . On the other hand, for any

vector fields $X$ and $X^{\prime}$ on $M$ , it is known that $[X, X^{\prime}]^{c}=[X^{c}, X^{\prime c}]$ .

REMARK 4.4. Let $(M, g)$ be a compact orientable Riemannian manifold

whose first and second Betti numbers vanish. The isomorphism stated in theorem

4.3 is also true in the case of the Sasaki metric [12, Theorem $D$]. Generally, one
can consider the following interesting questions: Consider on $TM$ a Riemannian

metric $G$ so that:
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(i) The projection $\pi$ : $(TM, G)\rightarrow(M, g)$ is a Riemannian submersion;

(ii) vertical and horizontal distributions are orthogonal,

1. Is the complete lift of any Killing vector field on $(M, g)$ a Killing vector

field on $(TM, G)$?

2. If yes, are the Lie algebras of Killing vector fields of $(M, g)$ and $(TM, G)$

isomorphic with the correspondenoe $X\rightarrow X^{c}$?

5. The Non-Rigidity of the Cheeger-Gromoll Mehic

Conceming the rigidity of the Cheeger-Gromoll metric, M. Sekizawa had

shown in [10, p. 417], the following result

THEOREM 5.1 [10]. The scalar curvature of the tangent bundle $(TM,\overline{g})$ with

the Cheeger-Gromoll metric $\overline{g}$ of a Riemannian manifold of constant sectional cur-
vature $(M, g)$ is never constant. In particular, $(TM,\overline{g})$ is never a space of constant

sectional curvature if $(M, g)$ is of constant sectional curvature.

Our aim in this section is to generalize the particular situation of the pre-
vious theorem. We begin with a classical result conceming the characterization of

spaces of constant sectional curvature in terms of dimension of the Lie algebra of

Killing vector fields. Such a result is well known in literature (See for example

[5, I. p. 238]).

THEOREM 5.2 [5, I]. The Lie algebra $i(M)$ of infinitesimal isometries of a

connected Riemannian manifold $M$ is of dimension at most $n(n+1)/2$ , where
$ n=\dim$ M. If $\dim i(M)=n(n+1)/2$ , then $M$ is a space of constant curvature.

Now, we consider three subsets of $l(TM)$

$i_{c}(TM)=\{X^{c}|X\in i(M)\}$ ,

$i_{l}(TM)=$ { $\iota P|P$ is a (1, 1)-tensor field on $M$ satisfying $(P_{1})$ and $(P_{2})$ } and

$i_{B}(TM)=$ { $Y_{B}|Y$ is a vector field on $M$ satisfying $(Y_{1})$ and $(Y_{2})$ }.

PROPOSITION 5.3.
1. $i_{c}(TM),$ $i_{l}(TM)$ and $i_{B}(TM)$ are R-vector subspaces of $i(TM)$ . Further-

more, $\dim i_{c}(TM)\leq(1/2)n(n+1),$ $\dim i_{\iota}(TM)\leq(1/2)n(n-1)$ , and $\dim i_{B}(TM)$

$\leq n^{2}+n$ .
2. $i(TM)=i_{c}(TM)\oplus i_{l}(TM)\oplus i_{B}(TM)$ .
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3. $\dim i(TM)$ is maximal $lf$ and only $\iota f$ the dimensions of $i_{c}(TM),$ $i_{l}(TM)$

and $i_{B}(TM)$ are maximal equal, respectively, to $(1/2)n(n+1),$ $(1/2)n(n-1)$ and
$n^{2}+n$ .

PROOF. 1. Using Theorem 5.2, it is clear that $\dim i_{c}(TM)\leq(1/2)n(n+1)$ ,

since $\dim i(M)\leq(1/2)n(n+1)$ . On the other hand, since elements of $i_{l}(TM)$

raise from skew-symmetric parallel $(1, 1)$ -tensor fields, we see that $\dim i_{\iota}(TM)\leq$

$(1/2)n(n-1)$ . Finally, condition $(Y_{1})$ on elements of $i_{B}(TM)$ let us assert that
$\dim i_{B}(TM)\leq n^{2}+n$ . $2$ . Follows immediately from Theorem 3.1. 3. Follows from

1 and 2 [Remark that $(1/2)n(n+1)+(1/2)n(n-1)+n^{2}+n=n(2n+1)$ , which
is the maximal dimension of $i(TM)$ ].

Now, if $(M, g)$ is of constant sectional curvature which is assumed to be

different from-2 and $0$ , then we can easily verify that $(M, g)$ is an Einstein space

with scalar curvature different from $2n(1-n)$ and $0$ ; hence $i_{B}(TM)$ is reduced to

the O-section of $TM$ by virtue of Theorem 4.2.
Applying 3 of Proposition 5.3, we have $\dim i(TM)<n(2n+1)$ . This implies,

by Theorem 5.2, that $(TM,\overline{g})$ is of non constant sectional curvature.

REMARK 5.4. The additional condition on the constant sectional curvature

of $(M, g)$ is not a geometrical constraint. It is nothing but a technical condi-

tion which comes from the analysis of equation $(Y_{1})$ in Theorem 4.2. In fact,

by Theorem 5.1, we can say that $(TM,\overline{g})$ is never a space of constant sectional

curvature if $(M, g)$ is a space of constant sectional curvature.

On the other hand, if we suppose that $(M, g)$ is a space of non constant

sectional curvature, then by Theorem 5.2, $\dim i(M)<(1/2)n(n+1)$ and so
$\dim i_{c}(TM)<(1/2)n(n+1)$ . Therefore, $\dim i(TM)<n(2n+1)$ , by 3 of Prop-

osition 5.3.
Applying again Theorem 5.2 to the case of $TM$ , we see that $(TM,\overline{g})$ is a

space of non constant sectional curvature. We have then proved the following

THEOREM 5.5. The sectional curvature of the tangent bundle $(TM,\overline{g})$ with the

Cheeger-Gromoll metric $\overline{g}$ of a Riemannian manifold $(M, g)$ is never constant.

REMARK 5.6. Using the same arguments as in the proof of [12, Theorem $E$],

one can state a similar result for the Cheeger-Gromoll metric. i.e., $(M, g)$ is of
constant curvature $k>1$ if and only $lf$ the restriction of the geodesic flow vector

field to $T_{r}M(r=1/\sqrt{k}-1)$ , is a Killing vector field with respect to the induced

metric of $(TM,\overline{g})$ .
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