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ABSTRACT: Currently major efforts are underway toward refining the horizontal resolution (or 
grid spacing) of climate models to about 1 km, using both global and regional climate models 
(GCMs and RCMs). Several groups have succeeded in conducting kilometer-scale multiweek GCM 
simulations and decadelong continental-scale RCM simulations. There is the well-founded hope 
that this increase in resolution represents a quantum jump in climate modeling, as it enables 
replacing the parameterization of moist convection by an explicit treatment. It is expected that 
this will improve the simulation of the water cycle and extreme events and reduce uncertainties 
in climate change projections. While kilometer-scale resolution is commonly employed in limited-
area numerical weather prediction, enabling it on global scales for extended climate simulations 
requires a concerted effort. In this paper, we exploit an RCM that runs entirely on graphics process-
ing units (GPUs) and show examples that highlight the prospects of this approach. A particular 
challenge addressed in this paper relates to the growth in output volumes. It is argued that the 
data avalanche of high-resolution simulations will make it impractical or impossible to store the 
data. Rather, repeating the simulation and conducting online analysis will become more efficient. 
A prototype of this methodology is presented. It makes use of a bit-reproducible model version 
that ensures reproducible simulations across hardware architectures, in conjunction with a data 
virtualization layer as a common interface for output analyses. An assessment of the potential of 
these novel approaches will be provided.
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W
 hile the basic scientific concepts of anthropogenic climate change are now well  

 established, uncertainties in climate projections have remained staggeringly large. For  

 instance, current estimates of the equilibrium climate sensitivity (ECS)—the equilibrium 

global surface warming in response to a doubling of atmospheric CO
2
 concentration—are 

between 1.5° and 4.5°C. Over the last 40 years, this uncertainty range, covering a probability 

of 66%, has not narrowed (National Research Council 1979), and according to the most recent 

IPCC assessment report, even extreme values of the ECS (below 1°C and above 6°C) cannot be 

excluded (IPCC 2013). This evident uncertainty makes it difficult to plan for adequate response 

strategies essential to mitigate the anticipated warming. Reducing this uncertainty is also of 

paramount importance in order to provide more reliable projections of sea level rise, regional 

climate change, and extreme events, which are essential to climate change adaptation.

The key reason behind the slow progress in reducing the uncertainties of climate projec-

tions is likely the lack of adequate computational resolution, together with the importance of 

small-scale processes in the climate system. In particular, there is evidence that the response 

of tropical and subtropical clouds may significantly amplify or reduce global warming, de-

pending upon changes in cloud reflectivity with global warming (Bony and Dufresne 2005; 

Sherwood et al. 2014; Schneider et al. 2017, 2019). Likewise, eddy-resolving ocean models 

are expected to contribute toward reducing uncertainties in ECS by better representing ocean 

heat uptake (e.g., Gregory et al. 2002; Ringler et al. 2013; Hewitt et al. 2017), but in the cur-

rent article we will focus on atmospheric models.

With the advent of emerging supercomputing platforms, and with the progress in high-

resolution climate modeling, there are now promising prospects to refine the horizontal resolu-

tion1 of global climate models from today’s 50–100 km to 1–2 km, thereby explicitly resolving 

some of the small-scale convective cloud processes (e.g., thunderstorms and rain showers). 

There is the well-founded hope that this increase in resolution might lead to a quantum jump in 

climate modeling, as it enables replacing the parameterizations of moist convection and grav-

ity wave drag by explicit treatments (Palmer 2014). It is also hoped that this will improve the 

simulation of the water cycle and of extreme events and reduce uncertainties in ECS. However, 

what resolution will actually be needed for the later purpose is not yet fully understood. On 

the one hand, convective cloud processes (dynamics, turbulence, and microphysics) occur on 

scales that are not fully resolved at kilometer resolution (Skamarock 2004; Neumann et al. 

2019; Panosetti et al. 2019b). On the other hand, studies have indicated that there is some 

bulk convergence at grid resolutions around 2 km, that is, the feedbacks between convective 

clouds and the larger-scale flow are partly captured at resolutions at which the structural 

details of the cloud field are not yet fully resolved (Langhans 

et al. 2012; Harvey et al. 2017; Ito et al. 2017; Panosetti et al. 

2019, 2020). Following Schulthess et al. (2019) and Neumann 

1 In this paper we are using the terms “resolution” 

and “grid spacing” synonymously.
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et al. (2019), we thus assume that a global resolution of 1 km is a suitable near-term target. 

Thus, further improvements in the parameterizations of the turbulence and microphysical 

processes appear essential, as these processes will remain poorly resolved.

The development and testing of climate models with horizontal resolutions of around 1 km is 

already well underway. Both global and regional models have contributed to this development, 

with the former refining the horizontal resolution on a global domain, and the latter expanding 

the computational domains of high-resolution limited-area models (Fig. 1). The target (1 km on 

a global domain) can be approached both ways. The figure also shows an estimate of the rela-

tive computational costs (green lines), assuming that the vertical resolution is kept constant, 

whereupon the number of operations scales with N
z
A∆x−3, with A denoting the horizontal area 

of the domain, N
z
 the number of vertical levels, and ∆x the horizontal grid spacing. This scaling 

assumes perfect computational scalability and that the time step is refined together with the 

horizontal resolution, consistent with maintaining a constant Courant number, a measure for 

how far information propagates per time step relative to the grid spacing.

Some prototype simulations (e.g., Miyamoto et al. 2013; Fuhrer et al. 2018) are already close 

to the target (Fig. 1, right-hand panel), but these models have not yet been run over climate 

time periods, but merely over days to seasons. There are also major initiatives on the further 

development of these approaches, such as the Energy Exascale Earth System Model (E3SM; 

https://e3sm.org/) of the U.S. Department of Energy, or the high-resolution modeling activities 

at many weather and climate centers culminating in simulations of nine atmosphere-only 

codes at kilometer-scale resolution for a 40-day-long common simulation period (Satoh et al. 

2019; DYAMOND: www.esiwace.eu/services-1/dyamond-initiative).

In any case, realizing the potential of global convection-resolving climate simulations requires 

enormous efforts and innovative solutions at the interface of computer and climate sciences. 

Fig. 1. (left) Approaching the target of global kilometer-scale climate simulations, represented by the 

sun symbol, either by refining the resolution of GCMs or by expanding the computational domain 

of high-resolution RCMs. The horizontal axes represent the domain size (fraction of Earth’s surface 

covered by the simulations) and the vertical axes the grid spacing (km). (right) A selection of avail-

able simulations are indicated by the data points, showing simulations longer than 10 years in full 

colors, and short prototype simulations in faint colors. The green contours in the right panel show 

lines of same computational load, assuming that the time step is refined such as to keep the CFL 

number constant. Red symbols relate to RCMs: 1 = Knote et al. (2010), 2 = Kendon et al. (2014); 3 = 

Ban et al. (2014); 4 = Leutwyler et al. (2017); 5 = Liu et al. (2017), Prein et al. (2017); 6 = Bretherton 

and Khairoutdinov (2015); 7 = Fuhrer et al. (2018). Blue symbols relate to GCMs: a = CMIP1 models 

(IPCC 1995; average horizontal resolutions of models); b = CMIP3 models (IPCC 2001); c = CMIP5 

models (IPCC 2013); d = Sakamoto et al. (2012); e = CMIP6 HighRes MIP (Haarsma et al. 2016), f = 

Neumann et al. (2019), g = DYAMOND simulations (Satoh et al. 2019), h = Miyamoto et al. (2013).
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Some of these aspects will be addressed in this paper: How can we efficiently leverage the next 

generations of supercomputers? What programming languages should we use to make our cli-

mate codes future-proof? How can we overcome the data avalanche generated by high-resolution 

models? How can we trade storing the model output with recomputation of model simulations?

We will discuss these aspects by exploiting a version of the Consortium for Small-Scale 

Modeling (COSMO) limited-area model that has extensively been used at kilometer resolution 

in the last decade, and that can be run entirely on modern supercomputers at unprecedented 

speed. While this framework is still far away from the global-domain kilometer-scale target, 

the main challenges are exposed and potential solutions can be assessed. The second and 

third sections of the paper outline the main challenges and potential strategies, the fourth 

section presents some specific applications and results, and the final section presents the 

conclusions of the study.

Challenges of kilometer-scale resolution

Exploiting next generation hardware architectures. While high-performance computing 

(HPC) system performance has continued to increase year after year (https://top500.org), a series 

of fundamental technology transitions had profound impacts on programming models and 

simulation software. After transistor power efficiency has grown exponentially for decades, 

the energy required to move data has become the dominant performance constraint (e.g., Kes-

tor et al. 2013). Figure 2 presents the energy consumption for elementary store and compute 

operations. It illustrates the fact that for common operations (reading two double precision 

floating point numbers from system memory, performing an addition, and storing the result 

back into system memory) the energy required for the data transfers is approximately 100 

times larger than that required to execute the actual arithmetic operation. Finally, energy 

constraints for large HPC systems have led to heterogeneous node designs with accelerators 

such as graphics processing units (GPUs). With the end of exponential scaling of transistor size 

toward the end of the last decade (often referred to as Moore’s law), disruptive architectural 

changes and architectural diversity and complexity are expected to continue to increase. To 

take advantage of the computational power of the largest HPC systems, climate models have 

to be able to run on these emerging hardware architectures.

Lacking proper programming abstractions, details of these novel hardware architectures 

are exposed to the application developer via software libraries (e.g., MPI to handle data 

movement between remote memories), extensions to programming languages (e.g., OpenACC 

Fig. 2. Comparison of the energy consumption to transfer a single 64-bit floating point number from dif-

ferent levels of cache (L1, L2, L3) and system memory (DRAM), and the energy consumption to execute 

a 64-bit arithmetic operation (addition, multiplication, and fused multiply add). Data are for Intel Xeon 

X5670 and AMD Opteron 2435 processors, adapted from Molka et al. (2010).
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compiler directives for GPU programming) or entirely new programming languages (e.g., 

CUDA, a language for GPU programming). The climate modeling community has begun to 

realize the enormity of the challenge facing them. A climate model typically has on the order 

of one million lines of source code, rendering the traditional programming paradigms and 

development process unsustainable. As a consequence, global fully coupled climate models 

are not capable of efficiently leveraging current leadership class HPC systems. The effort 

required for the maintenance, validation, and migration of climate models has increased 

drastically. This has become known as the software productivity gap (Lawrence et al. 2018).

One important design principle of modern software engineering is the separation of con-

cerns. It means splitting a computer program into different parts, where each part deals with 

a separate concern. To this end, there has been an increased interest in the development of 

higher-level abstractions for weather and climate models (e.g., Bertagna et al. 2019; Adams 

et al. 2019; Fuhrer et al. 2014; Clement et al. 2018). For example, domain-specific languages 

(DSLs) can help separate hardware architecture-dependent details from the source code 

written by the climate scientists (see “Domain-specific languages explained” sidebar). As 

a result, the source code of a global climate model (GCM) or regional climate model (RCM) 

implemented using a DSL is more concise and more easily maintainable.

Domain-specific languages explained
A domain-specific language (DSL) is a language specialized to a specific application domain, in our case the dynamical 
cores of weather and climate models. To illustrate the power of DSLs, two implementations of a simple fourth-order 
horizontal diffusion operator are given below. The code on the left is an abridged FORTRAN implementation extracted 
from a climate model. The original optimized version entails significantly more code to specify parallelism, data 
placement, and data movement. The code on the right shows an implementation in the gtclang (https://github.com/
MeteoSwiss-APN/gtclang) high-level DSL, which is part of the GridTools Framework. The code shown corresponds to 
the complete code implemented by the domain (climate) scientist. Details of how data are stored in memory and order 
of iteration over the computational grid are no longer visible. The responsibility to generate optimized, parallel code for 
a specific hardware architecture is delegated to the DSL compiler. As a result, the DSL implementation is very concise 
and maintainable. DSLs vary in the level of abstraction. In the example shown, the responsibility to choose an appro-
priate numerical scheme for the Laplacian remains with the domain scientist. A DSL with a higher level of abstraction 
may hide the choice of numerics as well as computational grid from the user.

Fig. SB1. Comparison of a second-order Laplacian in (left) FORTRAN and (right) gtclang.
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Choice of numerical methods. Weather and climate models consist of a dynamical core 

and physical parameterizations. For large-scale atmospheric simulations at resolutions 

explicitly resolving deep convection, choosing a fully compressible, nonhydrostatic set of 

primitive equations is essential (Davies et al. 2003). The optimal (fastest for a given accu-

racy) numerical approach for solving these equations depends on the hardware architec-

ture and the underlying numerical method. In particular, the exchange of data across the 

computational mesh (and thus data movement across compute nodes) is strongly influenced 

by the numerical method employed. Some schemes avoid global communication (i.e., data 

are moved only between neighboring grid points), but have rigorous time step restrictions 

(e.g., horizontally explicit, vertically implicit methods; see Lock et al. 2014). Others require 

iterative solvers and/or global communication at each time step, but allow for much longer 

time steps (e.g., semi-implicit semi-Lagrangian or pseudo-spectral methods; see Tanguay 

et al. 1990; Temperton et al. 2001).

In the real atmosphere, the speed of sound is the fastest velocity in the system. Thus, the 

temporal evolution of the atmosphere at a given location is influenced by a neighborhood 

determined approximately by sound propagation (Fig. 3, left). This neighborhood is referred 

to as the physical domain of dependence. Any numerical scheme must respect this principle, 

and the numerical domain of dependence must be identical to or larger than its physical 

counterpart. However, in order to minimize data communication, the numerical domain of 

dependence should also be as small as allowable. For some implementations (Zängl et al. 

2015; Skamarock et al. 2012; Baldauf et al. 2011; Kühnlein et al. 2019) data are exchanged 

at about twice the minimum rate as determined by sound propagation (Fig. 3, middle), while 

the spectral approach requires global communication at each time step (Fig. 3, right). It is 

thus evident that data communication requirements are strongly affected by the underlying 

numerical approach, and the implied computational costs are influenced in turn by the hard-

ware configuration of the employed supercomputer (e.g., its node-to-node network topology). 

With higher computational resolution (when more compute nodes become involved), or with 

current hardware trends (when data movement become more costly), numerical methods with 

little across-node communication will often have a faster performance.

Fig. 3. Data exchange in atmospheric models. To ensure numerical stability, the exchange of data in an 

atmospheric model must exceed that of the physical propagation in the real atmosphere. (left) In the real 

atmosphere information travels approximately with the speed of sound. Within an hour, an air parcel over 

Zurich will thus exchange information within a radius of about 1,200 km. The data exchange in numerical 

models strongly depends upon the numerical formulation. For instance, (middle) in a split explicit scheme, 

data will be exchanged within a radius about twice that size, while (right) in a spectral model, data will 

be exchanged globally at each time step.
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Among other methodologies, the split-explicit approach, as employed in our work-horse 

COSMO model, is well suited for this challenge, as it restricts communication to near-neighbors 

and provides perfect weak scaling (Fuhrer et al. 2018). Perfect weak scaling means that the 

computational domain of a simulation can be expanded in parallel with the number of compu-

tational nodes employed, without increasing the wall-clock time required to run the simulation.

Coping with the data avalanche. The climate modeling community is already struggling to 

cope with the data volumes produced by the current simulation efforts. For instance, perform-

ing all the simulations considered for phase 6 of the Coupled Model Intercomparison Project 

(CMIP6; Eyring et al. 2016) would amount to about 800 TB of output for each of the 100 

participating models (Balaji et al. 2018). While it is impossible to foresee all the experiments 

envisioned in future editions, projecting the output volume of the compulsory Diagnostic, 

Evaluation and Characterization of Klima (DECK) simulations (Table 1) seems like an illustra-

tive exercise. The DECK consist of four simulations, which every model participating in CMIP6 

needs to complete (see Table 1 for details). Performing these simulations at kilometer-scale 

resolution would exceed the expected overall data volume of CMIP6 by about three orders of 

magnitude (Table 1, fourth column). This assumes that only a small fraction of the total data 

is written to disk, while for some applications higher output frequency is needed (see, e.g., 

examples in “Sophisticated analysis using the virtualization layer” section). A more recent 

development are DECK simulations with up to 100–1,000 ensemble members (large/grand 

ensembles; e.g., Maher et al. 2019). While these simulations would be particularly useful to 

address rare and extreme events, the expected data volume typically prevents storing data at 

subdaily intervals, which would be essential for, for example, the analysis of diurnal cycles, 

weather system dynamics, precipitation, and wind extremes.

One possibility to overcome the output avalanche is to merely store the simulation setup, 

initial conditions and restart files, and rerun the simulation on demand when needed to 

perform a specific analysis. A more sophisticated scheme would restart the simulation in 

parallel from a series of restart 

files. This, in principle, enables 

us to arbitrarily trade off stor-

age for computation. Depending 

upon the available hardware 

resources, an optimized design 

of a resimulation (in terms of 

cost and time) might employ an 

alternate software configuration 

(e.g., using a different number 

of compute nodes), or even an 

alternate hardware platform.

To ensure exactly the same 

results when resimulating the 

chaotic dynamical system, we 

must ensure that the simulation 

code itself is bitwise reproduc-

ible, that is, produces exactly the 

same output, bit by bit, when re-

run with the same input. Bitwise 

reproducibility is potentially also 

required across different hard-

ware architectures, depending 

Table 1. Data volumes of the CMIP6-DECK simulations. 
The third column shows the estimate by the Centre for 
Environmental Data Analysis for a simulation employing 
a grid spacing of 0.5°, 40 model levels in the atmosphere, 
and 60 levels in the ocean (Juckes et al. 2015; CEDA 
2018). The fourth column shows the same output list 
projected to an R2B11 mesh of the ICON model, employ-
ing 1.25 km grid spacing, 180 levels in the atmosphere, 
and 200 levels in the ocean. The fifth column shows total 
data volume available for analysis for the 1.25 km simula-
tion (footprint of 2.9 TB in single-precision floating-point 
format), accounting for all 3D prognostic variables (8 in 
the atmosphere and 5 in the ocean) at each model time 
step (10 s). Adding all the available 2D fields (e.g., sea ice, 
soil, vegetation) would amount to about an additional 
3D variable. The CMIP6 DECK simulations (first two 
columns, from top to bottom) include a preindustrial 
control simulation, an atmospheric model intercomparison 
simulation, a simulation forced by a 1% yr−1 CO2 increase, 
and a simulation with abrupt quadrupling of CO2.

Simulation
Length 

(yr)
CMIP6 at 
0.5° (TB)

CMIP6 at 
1.25 km (PB)

Data at 
1.25 km (ZB)

piControl 500 5 16.2 4.5

amip 36 1.7 1.3 0.4

1pctCO
2

150 1.6 5.3 1.4

abrupt-4 × CO
2

150 8 22.2 1.4
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on the setup of the resimulation. Whether bitwise reproducibility is required will depend upon 

the targeted analysis. Consider for instance an analysis focusing on a few major hurricanes 

in an extended simulation, then the lack of bitwise reproducibility presents a serious hurdle 

(as hurricanes might disappear or change with the chaotic dynamics). Alternatively, for the 

statistical evaluation of short-term precipitation events, bitwise reproducibility might not be 

needed, provided the simulation considered is sufficiently long.

It is often assumed that bitwise reproducibility comes at a significant performance cost. 

However, recently, various approaches to ensure bitwise reproducibility with small perfor-

mance overheads have been demonstrated by Demmel and Nguyen (2013). Arteaga et al. 

(2014) demonstrated how to integrate such approaches into full scientific applications. These 

developments enable efficient resimulation and will be discussed later in this paper.

Compliance with data policies, FAIR principles. In recent years the issue of data sharing 

and data accessibility has received growing attention (National Academies of Sciences, 

Engineering, and Medicine 2018a,b; Schuster et al. 2019). To make maximum use and reuse of 

scientific data, it should be Findable, Accessible, Interoperable und Reusable (FAIR; Wilkinson 

et al. 2016). Publishers have taken action and their data policies address data accessibility. 

For example, the American Meteorological Society (AMS) issued a policy statement that “the 

AMS encourages the Earth System Science community to provide full, open, and timely access 

to environmental data and derived data products, as well as all associated information nec-

essary to fully understand and properly use the data (metadata)” (www.ametsoc.org/ams/index 

.cfm/about-ams/ams-statements/statements-of-the-ams-in-force/full-and-open-access-to-data). 

Moreover, many journals require that the storage archive for the underlying data are docu-

mented in the article upon publication. Organizations such as the Coalition for Publishing 

Data in the Earth and Space Sciences (COPDESS) have been founded to facilitate FAIR data.

It is not clear yet how the FAIR principles can be extended to include the workflow proposed 

in this study, namely, resimulating data once it is required for further analysis. The aspect 

of timely access to the data is especially challenging, and often the required source code is 

subject to some license agreement. It is clear that these emerging strategies will also require 

updates of data policies. In particular, guaranteeing bitwise reproducibility over extended 

time periods (say, 5–10 years) should become a central element of the FAIR principles, as for 

some applications, recomputation will become more cost effective than storing the output.

Strategies toward kilometer-scale resolution

The target model. In this study we use the COSMO model (Steppeler et al. 2003; Baldauf et al. 

2011). COSMO is a community model used by many national weather services worldwide as 

well as research groups at over 100 universities. The COSMO model is a limited-area model 

used for both numerical weather prediction and climate modeling by the CLM community 

(www.clm-community.eu). The findings and results presented in this paper have all been carried 

out using a version of the COSMO model refactored for heterogeneous computing architectures 

(Fuhrer et al. 2014). This version also supports execution in single precision (Düben and 

Palmer 2014). The overall effort to refactor COSMO is approximately 20 man-years. We expect 

that the learnings presented in this article from COSMO carry over to many other models.

Domain-specific languages. Dynamical cores of atmospheric or ocean models such as COSMO 

typically do not contain singular performance hot spots that can simply be replaced with an 

efficient implementation.2 Rather, the program code often contains a series of iterations over 

all grid points (e.g., applying a fourth-order diffusion filter as in the sidebar “Domain-specific 

languages explained”). As mentioned in the “Exploiting next 

generation hardware architectures” section, achieving good 2 Spectral transforms are a notable exception.
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performance on current high-performance computing systems requires decorating the code 

with hardware dependent compiler directives to specify parallelism and the schedule of how 

the loop iterations will be executed (see “Use of OpenACC” section). Further, optimizations 

often entail changes in the looping structure (e.g., blocking), the data structures, and typi-

cally also the fusion of consecutive iterations over all grid points. The consequences of the 

above changes are loss of performance portability, significant decrease in maintainability of 

the code and often suboptimal performance.

Choosing an alternative route, the dynamical core of the COSMO model has been rewritten 

using the GridTools DSL (Gysi et al. 2015; Fuhrer et al. 2014). GridTools is a domain-specific 

language that eases the burden of the application developer by separating the architecture 

dependent implementation strategy from the user code. GridTools is currently implemented 

in C++ by using template metaprogramming; thus an application based on GridTools needs 

to be implemented in C++. GridTools has become publicly available under a permissive open-

source license in March 2019 (www.github.com/GridTools/).

Use of OpenACC. While code rewriting using DSLs offers many advantages in terms of per-

formance and maintainability, it may not be applicable to the entire code base. In addition, 

some parts like the physical parameterizations have been developed by a large and active 

community, which may not be ready for changing their programming paradigm. However, 

in order to avoid costly CPU to GPU data transfers, most parts of the code need to run on 

the GPU. To achieve this, an OpenACC compiler directive porting approach was used for all 

components of the COSMO model that had not been rewritten using DSLs (Fuhrer et al. 2014; 

Lapillonne and Fuhrer 2014).

The OpenACC compiler directives can be added to existing code to tell the compiler which 

part should run on the GPU, offering the possibility to incrementally adapt the code for GPUs. 

While the directive approach does not offer a hardware optimization comparable to DSLs, 

it allows us to achieve reasonable performance. Some parts of the code have been further 

optimized and restructured to achieve a better performance on GPUs. In some cases these 

changes are not performance portable, that is, they have a negative impact on the CPU execu-

tion time, such that two code paths—one for CPU and one for GPU—need to be maintained. 

Although this approach has proven successful to port large legacy codes, the OpenACC 

compiler directives have limitations and the long-term support of OpenACC compilers is not 

guaranteed at this stage. Thus our approach requires reevaluation in the future as new pro-

gramming paradigms emerge.

Overall the COSMO model with the rewritten GridTools dynamical core and with the other 

components ported with OpenACC directives runs about 3–4 times faster on GPUs than the 

original code on CPUs when comparing hardware of the same generation (Fuhrer et al. 2014; 

Leutwyler et al. 2016). Similar speedups have been reported by other studies (e.g., Govett 

et al. 2017).

Emerging programming paradigms for climate models. The complexity of climate models 

is already challenging at current resolutions. However, with further resolution increases, 

and with the need to account for newly emerging hardware architectures, these challenges 

become even more significant. In practice there is a high compartmentalization of the model 

development, with dynamical cores and physics packages mostly developed in isolation 

(Donahue and Caldwell 2018). The immediate downside of this approach is the proliferation 

of model components with incompatible structures. Transferring such components to other 

models often requires a large amount of work (Randall 1996).

The recognition of the need for standardizing Earth system models dates back to the 

1980s (Pielke and Arritt 1984). Kalnay et al. (1989) suggested a list of basic programming 
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rules to design plug-compatible physics packages, enabling a high degree of scientific code 

exchange. This led to the idea of a common software infrastructure that couples different 

components while enhancing interoperability, usability, software reuse, and performance 

portability (Dickinson et al. 2002). Notable examples of such coupling frameworks include the 

Earth System Modeling Framework (ESMF) combined with the National Unified Operational 

Prediction Capability (NUOPC) layer (Hill et al. 2004; Theurich et al. 2016), the Flexible Mod-

eling System (FMS) (Balaji 2012), the Program for Integrated Earth System Modeling (PRISM) 

framework (Guilyardi et al. 2003), and the Weather Research and Forecasting (WRF) Model 

code infrastructure (Michalakes et al. 2005).

All these frameworks are coded in FORTRAN, which remains the preferred programming 

language for software development in climate models. However, the new generations of atmo-

spheric and computer scientists are more familiar and proficient with higher-level languages, 

for example, Python. Python has been increasingly used by academics and scientists due to 

its clean syntax, great expressiveness and a powerful ecosystem of open source packages, 

making it ideal for fast prototyping (Millman and Aivazis 2011). Yet, its direct application in 

high-performance computing has historically been limited by the inherent execution slow-

ness of the Python interpreter. Solutions to overcome the interpreter overhead exist, including 

DSLs endowed with lower-level and optimized back ends.

In most of the traditional frameworks, the calling sequence of parameterizations (or com-

ponents like ocean, land, and sea ice) is hard-coded for efficiency reasons. sympl (System for 

Modeling Planets; Monteiro et al. 2018) attempts to circumvent this and other limitations by 

providing a toolset of Python objects to build hierarchies of Earth system models, in which 

each component represents a physical process. A model is thus conceived as a chain of comput-

ing blocks, which act on and interact through the state, that is, the set of variables describing 

the model state at any point in time. The state is encoded as a dictionary of multidimensional 

arrays which enables metadata-aware operations (Hoyer and Hamman 2017). To illustrate how 

this dictionary works, consider a scientist who intends to develop a new parameterization. 

In doing so, he/she requires access to specific variables of the model state. In current climate 

modeling frameworks, this requires specific knowledge about how the data are stored and 

how it can be accessed. In contrast, sympl provides a transparent set of tools for accessing the 

data in the model state dictionary. The tools take care of some of the annoying issues, such 

as the transformation of data between different units. In doing so, it hides the complexities 

of the data storage in the respective parent model, and can in principle provide a general 

approach across many different models.

Currently several research groups are exploring sympl. In our own work, we are using 

it to investigate the physics time stepping. Although it appears to be of similar importance 

as the choice of the spatial discretization (Knoll et al. 2003), in the majority of the current 

weather and climate codes the time stepping is merely accurate to first order, and the results 

and sensitivity of models depend upon the choice of the calling sequence (e.g., Donahue and 

Caldwell 2018; Gross et al. 2018). It is not only the lack of a common interface, but also the 

simplified time stepping, that hinders the exchange of parameterizations. With the help of an 

idealized hydrostatic model in isentropic coordinates, we are currently conducting numerical 

experiments to quantify the impact of the employed coupling strategy on the solution. We find 

that sympl is a suitable prototype framework for building flexible, modular and interoperable 

codes, and believe that such frameworks could aid the development of future climate codes.

Bit-reproducible code. A bit-reproducible climate model produces the exact same numerical 

results for a given precision, regardless of its execution setup—which includes the choice of 

domain decomposition, the type of simulation (continuous or restarted), compilers, and the 

architectures executing the model (here, CPU or GPU).
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One source of nonreproducibility stems from the way arithmetic operators are evaluated 

on a computer. A floating-point arithmetic operation is equivalent to the application of the 

operator on the operands, followed by a rounding of the result: r(a + b) ≠ a + b, where r(⋅) 

denotes the rounding function. The latter function produces a representable floating-point 

value in the computer’s memory from a real number. For simple operations (addition, sub-

traction, multiplication, division and square root), the IEEE-754 standard ensures bitwise 

reproducibility across hardware architectures (IEEE 2008; Arteaga et al. 2014). However, 

the associativity property of arithmetic operators is broken. This means that (a + b) + c = a 

+ (b + c) is not preserved, as r[r(a + b) + c] ≠ r[a + r(b + c)]. Although the rearrangements are 

equivalent in their mathematical form, they are not equal in a floating point computation.

Achieving reproducibility across architectures is a challenge, as compilers do not produce 

the same executable code when targeting different hardware architectures (i.e., GPU or CPU). 

Mathematical expressions can be rewritten (contraction, reassociation, fast mathematics) in 

different manners to ensure best performance on the targeted architecture, leading to po-

tentially different results due to the aforementioned properties of floating-point arithmetic. 

The key points to achieve bit reproducibility with COSMO are to (i) forbid the reassociation of 

mathematical expression, (ii) forbid the creation of alternative execution strategies for a given 

computation, (iii) forbid the usage of mathematical approximation or contraction operators, 

and (iv) provide portable transcendental functions (i.e., logarithm, exponential function, or 

the trigonometric functions) to ensure reproducibility of their evaluation.

Compilers can be more or less aggressive with the level of optimization they apply. By using 

execution flags, the user can have some control over the optimizations applied during compi-

lation. We used a set of flags that limits instructions rearrangement as much as possible [see 

Table ES1 in the online supplemental material (https://doi.org/10.1175/BAMS-D-18-0167.2)]. This 

increases the probability that compilers targeting different architectures produce identical 

mathematical expressions. Finally, we wrote a preprocessor to automatically add parentheses 

to every mathematical expression of the model, ensuring a unique way to evaluate these ex-

pressions. The preprocessor also replaces all intrinsic 

function calls with our custom version of portable 

transcendental functions.

In our work with COSMO, reproducibility between 

the CPU (Intel Xeon E5-2690) and GPU (Nvidia Tesla 

K80) versions of the model has been achieved, al-

though at the time of writing discrepancies remain 

in some modules relevant for long simulations and 

with restarted simulations. These challenges still 

need to be addressed. The performance penalty 

of making the code bit reproducible is acceptable 

(Fig. 4). On the CPU the bit-reproducible version is 

37% slower than the original version of the program 

code, and on the GPU it is 13% slower. Overall this 

demonstrates that the overhead associated with 

bit reproducibility may be smaller than previously 

thought.

Virtualization layer. Data produced by high-

resolution simulations are expected to be poten-

tially valuable for a large number of climate and 

impact scientists over the course of decades. The 

way these data are commonly analyzed today is 

Fig. 4. Performance penalty of a bit-reproducible 

COSMO version (providing reproducibility across 

an Intel Xeon E5–2690 CPU and a Nvidia Tesla K80 

GPU). The dynamics section (green) hardly shows 

any penalty. The physics (blue) suffers from a 

large penalty (almost 2.5 times slower) due to the 

constraints imposed upon the compiler to avoid in-

struction rearrangement when the CPU is targeted. 

Nevertheless, the entire time loop (red) containing 

both sections displays only a moderate performance 

penalty.
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by storing them on disk and letting the analysis applications access them. This solution 

enables the analyses to access the data with arbitrary access patterns (e.g., forward or 

backward in time) and guarantees that the exact same data can be reanalyzed to produce 

the same results. However, high-resolution simulations produce petabytes of data today, 

and may produce exabytes in the near future (Table 1): storing this amount of data for long 

periods of time is not cost effective and, in some cases, not possible at all. This issue can 

be addressed by employing online (or in situ) analyses. Online analysis provides a solution 

to this problem by not storing data and by coupling analyses and simulations. However, 

this approach leads to a loss of flexibility (e.g., the data access pattern of the analysis must 

follow the simulation), and most of the times it requires one to instrument the model code 

with analysis software (Zhang et al. 2012) that runs as the data are produced by the model. 

While this alleviates the storage issues (for our European-scale simulations, storage for 

the monthly restart files amounts to only 38 GB in comparison to the standard output per 

month of 0.4 TB), this approach makes the analysis less flexible.

We developed and tested SimFS (Di Girolamo et al. 2019), a virtualization layer that is in 

between the analysis applications and the simulation data (https://github.com/spcl/SimFS). SimFS 

exposes a virtualized view of the simulation data: the data are seen by the analysis as if they 

were on disk, while they may not be stored there. SimFS is responsible to recreate data that 

is being accessed by an analysis but not present on disk (i.e., on demand).

Analysis applications can be transparently interfaced to the virtualization layer: calls to 

standard I/O libraries (e.g., NetCDF, HDF5) are intercepted by a SimFS client library that can 

be loaded at runtime into the analysis application, without requiring any changes of the 

analysis code. To guide optimizations and gain control and information about the virtualized 

environment, the analysis can also interface SimFS through a set of specialized application 

programming interfaces (APIs).

Virtualizing the simulation data means enabling the analysis of multipetabytes datasets on 

terabytes storage systems. As a consequence, SimFS may need to evict data when the given 

storage share becomes full. To select which files to evict, SimFS tracks the analyses access 

patterns and employs caching and prefetching strategies to (i) identify the most relevant (i.e., 

most accessed) parts of simulation data and keep them on disk, avoiding their resimulation, 

and (ii) minimize the time to recover missing data.

Figure 5 sketches the SimFS workflow. The scientists set up the initial simulation that runs 

to completion (top left) and produces the restart files (black files in top right) that are stored. 

Later, analysis tools access the simulation data through the virtualization layer (bottom left). 

SimFS intercepts these accesses and manages/restarts simulations to recreate the requested 

output data if not already present (bottom right). The system can be configured to cache the 

simulation data on a hierarchy of data storage mediums (e.g., fast flash memories, mechani-

cal disks, magnetic tapes).

SimFS requires that simulations can be restarted and deliver bitwise-identical output (see 

“Bit-reproducible code” section). If bitwise reproducibility is not provided, analyses should 

be able to operate on data that can differ from the one produced by the initial simulation.

Results and applications

Near-global benchmarking. As stated in the introduction, there is significant thrust in 

the modeling community to decrease the grid spacing of global climate simulations to the 

kilometer-scale in order to address some of the most pressing deficiencies in understanding 

and projections of climate change. Figure 1 summarizes some of the pioneering simulations 

that have been reported in the literature, notably the prototype simulations of Miyamoto et al. 

(2013) and Fuhrer et al. (2018). But how far are we from actually achieving kilometer-scale 

simulations on leadership class HPC facilities?

Unauthenticated | Downloaded 08/27/22 04:04 PM UTC

https://github.com/spcl/SimFS


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 0 E579

One of the most important metrics for assessing the usability of climate simulations is the 

simulation throughput measured in simulated years per wall-clock day (SYPD). Different ap-

plications of global climate models require different minimal simulation throughput in order 

to be feasible. For example, a global climate model achieving 1 SYPD on a given HPC system 

can be considered useful for simulations spanning several decades. While not sufficient for 

all applications, 1 SYPD can be considered a reasonable first target for global kilometer-scale 

climate simulations.

Since COSMO is one of the few models which has been systematically adapted to run on 

modern supercomputer architectures with GPU-accelerated node designs, it is an interesting 

benchmark to consider. Fuhrer et al. (2018) report a simulation throughput of 0.043 SYPD for 

idealized, near-global simulations using the COSMO model on 4,888 nodes of the Piz Daint 

supercomputer at CSCS with a grid spacing of 0.93 km. In a detailed analysis, Schulthess 

et al. (2019) conclude, that this result corresponds to a shortfall of about a factor 100 with 

respect to the defined goal.

Summit, the system currently leading the TOP500 ranking of supercomputers, has ap-

proximately 5 times more GPUs than Piz Daint and a more recent generation of GPUs (NVIDIA 

Tesla V100 16 GB) which execute COSMO 1.5 times faster than the GPUs in Piz Daint (NVIDIA 

Tesla P100 16 GB). We cannot expect to be able to scale COSMO to the full Summit system, but 

results from Fuhrer et al. (2018) indicate that further linear strong scalability by a factor of 3 is 

possible. Taking these factors into account, we find that running a global climate simulation 

with a realistic setup (cf. Table 1 of Schulthess et al. 2019) and a horizontal grid spacing of 

1 km on the currently largest supercomputer available would fall short of the 1 SYPD target 

by approximately a factor of 20 (Schulthess et al. 2019). A recent study by Neumann et al. 

(2019) reports a shortfall of a factor of 30, extrapolating results from the ICON model at 5 km 

grid spacing and assuming perfect weak scaling.

Addressing the remaining shortfall will likely require a combination of several strategies, 

including algorithmic, software, and hardware improvements. Addressing the challenge of 

I/O for global kilometer-scale simulations will require fundamental changes in our simulation 

and analysis workflow such as SimFS.

Fig. 5. Overview of the rerun (vs store) approach using SimFS. (top left) The scientist runs the initial 

simulation that produces the restart files and during which a first online analysis can be performed. The 

restart files are made available to SimFS, which can use them to restart the model. (bottom left) Later, 

analysis applications are transparently interfaced to SimFS via common I /O libraries (e.g., NetCDF, HDF-5) 
or by using the SimFS API. SimFS checks if a simulation output file requested by an application is available 

on the configured storage mediums (e.g., fast flash memories, mechanic disks, magnetic tapes). If the 

file is not available, SimFS runs the model in order to recreate the file, otherwise it lets the requesting 

application open it.
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However, at a resolution of 2 km, the simulation throughput of COSMO on Piz Daint for 

a near-global climate simulation setup already reaches 0.23 SYPD, thus the model can in 

principle already be used for decadelong simulations at such a resolution. Some examples 

for regional climate simulations shown in the next section.

Regional climate simulations. There are three areas where kilometer-scale resolution is 

raising hopes for significant benefits. First, there is a better representation of the underly-

ing surface—complex topography, coast lines, and land surface properties. Second, higher 

resolution allows us to better represent mesoscale processes and the associated feedbacks to 

the larger scale, such as fronts, orographic wind systems, boundary layer processes, and soil 

moisture–atmosphere feedbacks. Third, and likely most importantly, kilometer-scale resolu-

tion allows switching off two of the most critical parameterizations in climate models, namely, 

moist convection and gravity wave drag, which constitute critical sources of uncertainties in 

climate change projections. Explicit simulation of convection has led to significant improve-

ments in simulations of the diurnal cycle of precipitation, addressing aspects of frequency 

and intensity of heavy hourly precipitation (e.g., Kendon et al. 2012; Ban et al. 2014, 2015; 

Prein et al. 2015; Leutwyler et al. 2017; Berthou et al. 2020), which can potentially lead to 

hydrological impacts like flash floods, floods, and landslides. An example of this is shown 

in Fig. 6 for hourly precipitation over Europe on a summer day. The 12 km model produces 

widespread low-intensity precipitation (a long-standing problem of convective parameteriza-

tions), while a more realistic representation of intense summer precipitation is obtained in 

the 2 km model. Furthermore, kilometer-scale resolution is needed for resolving local-scale 

wind systems, like sea breeze and orographic circulations (e.g., Belušić et al. 2018), and for 

a better representation of clouds and their vertical profiles (e.g., Hentgen et al. 2019).

A comparison of cloud cover at different resolutions over the tropical Atlantic is shown in 

Fig. 7. In comparison with Moderate Resolution Imaging Spectroradiometer (MODIS; https://terra 

.nasa.gov/about/terra-instruments/modis) imagery observations, convection-parameterized simula-

tions at 50 and 12 km show an overestimation of clouds and do not reproduce the organized 

cloud structures visible in observations. In contrast, the 2 km simulation with explicit convec-

tion can qualitatively reproduce the characteristic cloud structures known as mesoscale cloud 

flowers (e.g., Bony et al. 2017). 

More detailed analysis demon-

strates that the use of explicit 

convection also significantly 

reduces top-of-the-atmosphere 

radiation biases. The simula-

tions suggest that the organiza-

tion of the subtropical clouds 

considered does not overly 

depend upon small-scale pro-

cesses truncated at kilometer-

scale resolution. Animations of 

these simulations are shown in 

the online supplement.

In addition to a better rep-

resentation of the present-day 

climate, convection-resolving 

climate models provide modi-

fied climate change signals. 

Although changes in mean 

Fig. 6. Total cloud cover and precipitation over Europe obtained from con-

vection-parameterizing (12 km horizontal grid spacing) and convection-

resolving model simulations (2 km horizontal grid spacing) at 1500 UTC 

2 Jul 2009. The simulation snapshots demonstrate major differences in the 

simulation of clouds and precipitation. Namely, the 12 km model shows 

widespread precipitation with low intensities and more clouds, while the 

2 km model simulates summer convection over Europe more realistically 

with more intense precipitation cells. The results are from a decadelong 

continental-scale simulation (Leutwyler et al. 2017).
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seasonal precipitation are generally robust between convection-resolving and convection-

parameterizing models, significant differences occur for projections of heavy hourly precipi-

tation events (Ban et al. 2015; Kendon et al. 2017) and for changes in the vertical structure 

of clouds (Hentgen et al. 2019).

Convection-resolving and convection-parameterizing models often exhibit important dif-

ferences for subdaily variables, or when feedback effects are considered. Most of the analysis 

in current climate studies is done using two-dimensional daily and/or hourly output fields, 

which are currently feasible to store. Three-dimensional fields are usually not available over 

extended time periods, which limits detailed investigations of the flow dynamics. Convec-

tive clouds can grow, mature, and dissipate within an hour, and thus it is difficult to gain 

deeper understanding of convection and its characteristics in current and future climates if 

restricted to hourly output fields.

Refining the horizontal resolution of regional climate models is a key focus in a number of 

internationally coordinated projects, like the Coordinated Regional Downscaling Experiment 

(CORDEX; www.cordex.org) and the European Climate Prediction System (EUCP; www.eucp 

-project.eu). Within these two projects, several groups across Europe are conducting regional 

Fig. 7. (top right) Cloudiness in MODIS shortwave satellite observations, compared against (middle) mid- 

and (bottom) low-level cloudiness in simulations at different horizontal resolutions on 15 Dec 2013. The 

simulation snapshots show the cloud cover fractions from convection-parameterizing simulations at 50 

and 12 km resolutions, and a convection-resolving simulation at 2 km resolution. The results are from 

monthlong simulations driven by the ERA-Interim reanalysis initialized on 25 Nov 2013. Red and yellow 

circles pinpoint regions with large differences between simulations. (top left) The geographical charac-

teristics of the considered computational domains.
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climate simulations in common domains with horizontal resolutions around 3 km, with 

the aim of producing a multimodel ensemble of climate simulations (Coppola et al. 2020). 

Similar initiatives are also underway within GEWEX (https://ral.ucar.edu/events/2018/cpcm). The 

availability of long-term high-resolution simulations would also enable to link to short-term 

case studies (e.g., Dauhut et al. 2015) and idealized simulations of convective events (e.g., 

Loriaux et al. 2017).

Sophisticated analysis using the virtualization layer. This section presents online analysis 

applications of convection-resolving COSMO simulations with SimFS, and briefly discusses 

the limitations of offline and online analyses. An offline analysis would follow the traditional 

approach of saving all necessary fields on disk (e.g., with a temporal resolution of 1 h) and then 

running the diagnostic. In contrast, an online analysis would be run as part of the main model 

forward integration, allowing for an almost arbitrary temporal resolution of input fields—for 

example, online forward trajectory calculations (Miltenberger et al. 2016). In the following, two 

applications are considered, with differing requirements in terms of the temporal resolution 

and data volume of the input fields. The results are based on a week-long COSMO simulation, 

starting at 0000 UTC 10 April 2000. The first application tracks precipitation cells, and the 

second uses backward trajectories to investigate the foehn flow in an Alpine valley.

Precipitation cells are identified every 6 min using a threshold of 2 mm h−1 and tracked in 

time with a criterion considering feature overlap and size (Rüdisühli 2018). Access to the data 

are provided through SimFS, that is, without storing it on disk. To speed up the analysis, the 

grid resolution is reduced by averaging the surface precipitation field over 3 × 3 grid points, 

and a minimum feature size of two coarse grid points is required. To facilitate the tracking, 

the overlap of features in consecutive steps is increased temporarily by 3 coarse grid points 

in all directions. Results are shown in Fig. 8. At 1000 UTC 12 April 2000, precipitation occurs 

over large areas, extending along a frontal band extending from the British Isles over Germany 

to the Alps, and in the form of small shower cells in the Bay of Biscay and adjacent regions 

(Fig. 8a). The cell tracking reveals the strongly differing lifetimes of the various cells, ranging 

from minutes to days (Fig. 8b). While short-lived cells produce less precipitation than longer-

lived cells, they are more frequent. An animation of this figure over an extended period is 

provided in the online supplement. SimFS allows us to use this approach for tracking pre-

cipitation cells at temporal resolutions of a few minutes in long climate simulations without 

storing the fields on disk.

The second application is based on air-parcel trajectories, which implies considerable com-

putational challenges for SimFS: the trajectories are run 12 h backward in time and hence do 

not follow the forward integration of the COSMO simulation (backward trajectories prohibit 

a standard online implementation). The trajectories are released in a narrow (2–5 km wide) 

Alpine valley and therefore the temporal resolution of the wind fields must be high in order 

to capture the spatial and temporal variability of the winds as the air parcels descend into 

the valley. The backward trajectories are initialized in the upper Rhine valley—a classical 

Alpine foehn valley (e.g., Würsch and Sprenger 2015) (see Fig. ES1). Trajectory computations 

use wind fields at different update intervals from 1 to 60 min. Results show that depending 

upon the case, there is considerable sensitivity to the temporal resolution, pinpointing differ-

ent origins of the air parcels. This illustrates the importance of using input fields with very 

high temporal resolution (1–5 min). This example further emphasizes the value of SimFS: it 

allows computing backward trajectories (which would be difficult with a standard online 

implementation) with winds at very high temporal resolution (which would not be possible 

with an offline implementation).

The two applications differ substantially in terms of their computational requirements. 

For the foehn flow the bottleneck is I/O, due to the demand of 3D wind fields at high 
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temporal resolution. The calculation of the trajectories is then rather cheap. In contrast, 

the precipitation cell tracking relies on 2D fields only. Therefore, it is not restricted by I/O 

but rather by the cell tracking algorithm itself. Both requirements are relevant when using 

SimFS to analyze long climate simulations. SimFS provides a lot of flexibility. For instance, 

an analysis may be designed conditional upon the occurrence of a particular weather event, 

such as the occurrence of a hurricane or in our example the occurrence of foehn flow at a 

particular location.

Conclusions and outlook

In this article we have explored the use of a high-resolution modeling system for extended 

simulations over a large computational domain, and discussed potential challenges associ-

ated with the further development of climate models. A series of fundamental technology 

transitions are having a profound impact on the development of models, simulation software, 

and modeling workflows:

1) Moving data has become more expensive than arithmetic operations. While in the past 

compute performance has commonly been expressed in floating point operations per 

second, the energy and runtime footprints of high-resolution atmospheric models are 

dominated by accessing system memory.

2) Energy costs of large compute centers have increased by a factor of 10–20 relative to hard-

ware costs over the last two decades (Schulthess et al. 2019) and are becoming a dominant 

factor in design and implementation strategies of major supercomputing centers.

3) While early supercomputers used chips that were specifically designed for science ap-

plications, today’s supercomputers are commonly based on commodity hardware that is 

produced in large quantities for a wide range of markets.

Fig. 8. (a) Six-minute surface precipitation (mm h−1) at 1000 UTC 12 Apr 2000 in the entire domain, and (b) 

tracked precipitation cells at the same time over the Bay of Biscay. The symbols depict the tracked events 

(star: genesis; cross: lysis; circle: continuation; right-pointing triangle: merging; left-pointing triangle: 

splitting; diamond: merging–splitting). The symbols and feature outlines are colored with the total cell 

lifetime (i.e., track duration). To indicate recent cell movement, the previous six positions (every 6 minutes) 

of the track center are also shown in fading colors.
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4) The common climate modeling workflow—that is, run the model on a supercomputer, store 

the results on a mass-storage system, and run analysis software on the stored results—in-

creasingly approaches a bottleneck. The bandwidth of mass-storage systems does not keep 

up with the speed at which high-resolution models produce data, and the cost of storage 

increases faster than that of compute power.

The high cost of data movement favors hardware architectures with deep memory hier-

archies having multiple layers of cache that have to be managed explicitly. Further, power 

constraints lead to heterogeneous node designs where accelerators such as graphics process-

ing units deliver the bulk of the compute capacity. Current atmospheric models are unable 

to fully exploit such hardware. One hindrance is currently used programming languages, 

which impose the burden of leveraging the hardware architecture on the model developer.

In this article we have used the limited-area model COSMO and have explored a range of 

options to address these challenges. In particular, we have accomplished the following:

• We further developed and used a model version that uses the domain-specific language 

(DSL) GridTools. These languages enable a high-level abstraction to stencil operations and 

allow for a separation of concerns, that is, the model source code is less contaminated by 

hardware-specific implementation details and optimizations.

• We developed and tested a novel modeling workflow that is based on recomputation and 

online analyses (rather than storing the results). This exploits a virtualization environment 

(SimFS), which transparently provides data access in a similar fashion as used today for 

the analysis of climate data on mass-storage systems.

• We explored a bit-reproducible version of the model code, to enable bitwise reproducible 

simulations across two different hardware architectures and different compilers.

• We tested new programming paradigms such as the sympl framework to ease the work with 

complex codes and parameterizations in a Python environment.

Some of the new developments (the GPU-enabled COSMO model) have been used op-

erationally at MeteoSwiss for several years, others (i.e., SimFS) have been developed and 

tested in extended regional climate model integrations, and still others will require further 

development before becoming applicable in full climate simulations (e.g., the use of sympl 

and bit-reproducible code versions). Results demonstrate the functionality of the approach, 

and also provide a look into future capabilities of climate models at high spatial resolution.

We discussed our experience with COSMO as background material for future model develop-

ments, but we are aware that additional challenges will emerge if applied to other numerical 

approaches and to global model applications. It is worth mentioning that the GridTools DSL 

is currently being extended for applications with some global meshes. However, we have not 

yet started to work on addressing the complexities of efficiently coupling atmosphere and 

ocean models in full-blown Earth system models.
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