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Abstract

The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or
tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent
development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in
clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-
coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors
have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150
kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug
development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics,
tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the
treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in
relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
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Background
Kinases are enzymes that transfer a phosphate group to a

protein while phosphatases remove a phosphate group

from protein. Together, these two enzymatic processes

modulate numerous activities of proteins in a cell, often in

response to an external stimulus [1]. Approximately 538

known kinases are encoded in the human genome, and

these kinases maintain cellular function by turning protein

function on, while corresponding phosphatases reverse

this action [2, 3]. These counter mechanisms greatly

improve the plasticity of epigenome by regulating protein

activity in virtually every imaginable way. Biochemically,

protein kinases catalyze the following reaction [3]:

MgATP1−
þ protein−O : H→ protein−O

: PO3
2−
þMgADPþ H

þ

Recent advances in our understanding of the fundamen-

tal molecular mechanisms underlying cancer cell signaling

have elucidated a crucial role for kinases in the carcino-

genesis and metastases of various types of cancer [4].

Since most protein kinases promote cell proliferation,

survival and migration, when constitutively overexpressed,

or active, they are also associated with oncogenesis [5].

Genome-wide studies of kinase mutations have revealed

genetically inherited variants of specific kinases are caus-

ally associated with cancer initiation, promotion, progres-

sion as well as recurrence [4, 6]. Over the last three

decades, multiple human malignancies have been identi-

fied to be associated with modulation and dysfunction of

protein and lipid kinases and deactivated phosphatases on

account of chromosomal reshuffling and genetic muta-

tions [7–9]. Apart from the oncological issues, dysregula-

tion of kinases has been demonstrated in many human

disorders including immune, neurological and infectious

diseases [10–13]. However, there is probably no greater

clinical niche for kinases as the key targets for developing

drugs than in cancer therapy. Kinome, the complete set of

protein kinases encoded in its genome has become an

attractive target for the treatment of numerous types of
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cancer. Single and multiple kinase inhibitors, both syn-

thetic and natural molecules, are now targeted therapeutic

strategies for treatment of human malignancies. The

ROCK kinase inhibitor fasudil for treating cerebral vaso-

spasms was the first approved small molecule for clinical

use [14]. Kinase inhibitors now account for a quarter of all

current drug discovery research and development efforts.

Key oncogenic kinase drug targets include the PIK3CA,

BRAF, and epidermal growth factor receptor (EGFR),

which activates significant tumor cell signaling pathways

and is related to the mutations and/or deletions in phos-

phatase and tensin homolog (PTEN), a phosphatase that

negatively regulates PI3K [6, 7, 15]. Approximately 538

kinases are encoded in the human genome. Apart from

this wide range of kinase-based drug targets, inhibition of

distinct kinase signaling pathways can be less cytotoxic to

non-cancerous cells, thus presenting the selective killing

of tumor cells with considerably lower toxic manifesta-

tions [16, 17]. Interestingly, specific-kinase inhibitors, cur-

rently in clinical treatments, e.g., imatinib and dasatinib,

produce more favorable outcome compared to conven-

tional cytotoxic therapy [18, 19]. These kinase inhibitors

have achieved a significant increase in patient survival rate

in myeloid leukemia (CML) and gastrointestinal stromal

tumors (GIST), thus translating basic molecular research

into effective patient treatment. Due to improved clinical

efficacy, U.S. Food and Drug Administration (FDA) has

approved many small-molecule kinase inhibitors for clin-

ical use (Fig. 1). These kinase inhibitors include target

kinome members such as EGFR, ERBB2, VEGFRs, Kit,

PDGFRs, ABL, SRC and mTOR, all providing improved

clinical outcome and patient health status [4, 20]. The

majority of these inhibitors target the ATP-binding site

[21, 22], while a few of the non-ATP competitive kinase

inhibitors target novel allosteric sites [23]. Consequently,

the inhibition of kinase activity in treated patients

prompts multiple anti-proliferative mechanisms, which

leads to clinical remission of cancer.

The current procedure for developing robust and select-

ive kinase inhibitors has swiftly evolved from synthesizing

analogs of staurosporine to sophisticated structure-based

design methodologies, facilitated by molecular docking,

crystallography and nuclear magnetic resonance spectros-

copy [24, 25]. Since 2001, more than 10,000 patent appli-

cations for kinase inhibitors have been filed in the United

States alone. In addition to the small-molecule kinase

inhibitors, kinase-targeted antibodies have also demon-

strated efficacy in various cancers, for example, cetuximab

in colorectal and head and neck cancer, and trastuzumab

in breast cancer [26, 27]. Trastuzumab and cetuximab

bind to the extracellular domain of HER2 and EGFR

respectively, and block the binding of the natural ligand,

thus avoiding conformational rearrangement essential to

the activation of the kinase and its downstream kinase-

signaling pathways. Currently, FDA has approved 35 drugs

(31 for cancer therapy) including orally effective direct

protein kinase inhibitors that target a limited number of

enzymes (Table 1). However, despite these encouraging

results, the problems with drug resistance, toxicity, and

compromised efficacy present critical challenges in both

clinical and experimental oncology [3]. Furthermore,

problems in the synthesis of novel kinase inhibitors have

plagued drug development through an inadequate under-

standing of the selectivity of the kinase inhibitors [16, 28].

Fig. 1 Chemical structures of representative kinase inhibitors used for treatment of various human cancers
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A key challenge in the clinical assessment is to identify the

most efficient combination of kinase targets and then de-

velop treatment combinations for targeted cancer. These

issues have prompted research initiatives that may over-

ride various limitation of kinase inhibition, particularly

evading the treatment-related drug resistance. In this

current review, the authors examined the status, novel

methodologies of drug design and validation of the pro-

spective kinase inhibitors for clinical usage.

Role of kinases in cancer
Targeting the kinases harboring oncogenic transform-

ational capacity and metastasis has led to a notable

change in the clinical management of cancer (Fig. 2).

Hundreds of kinases play overlapping and intricate roles

in cell transformation, tumor initiation, survival and pro-

liferation. Diving kinases while justifying their coinciding

functionalities is difficult. However, in order to under-

stand and discuss their oncogenic undertakings, they

can be vaguely categorized based on their hallmark roles

in cancer. The first group is the kinases that play a fun-

damental role in the primary oncogenic transformation

and thus present themselves as prospective drug targets.

Cytoplasmic tyrosine kinases are critical conveyers of

extracellular signals, and mutations in these kinases have

been reported to occur in various oncogenic conditions.

This category includes the PI3K family of dual specific

protein/lipid kinases, which are the most frequently mu-

tated kinases implicated in 30–50% of human cancers

[29]. PI3KCA, perhaps the most notable member of

PI3K family is associated with the pathology of colorec-

tal cancer [30], breast cancer [31], ovarian cancer [32],

endometrial carcinoma [33], and hepatocellular carcin-

oma [34]. The PI3KCA kinase catalyzes the production

of PIP3, a phospholipid which activates downstream sig-

naling components such as protein kinase AKT and pro-

motes tumor cell growth and survival [35]. Similarly,

Table 1 List of FDA-approved kinase inhibitors and their drug
targets

Drug target Protein substrate Drug

ALK Tyrosine Crizotinib, Ceritinib, Alectinib, Brigatinib

BCR–Abl Tyrosine Bosutinib, Dasatinib, Imatinib, Nilotinib,
Ponatinib

B-Raf Serine/threonine Vemurafenib, Dabrafenib

BTK Tyrosine Ibrutinib

CDK family Serine/threonine Palbociclib, Sorafenib, Ribociclib

c-Met Tyrosine Crizotinib, Cabozantinib

EGFR family Tyrosine Gefitinib, Erlotinib, Lapatinib,
Vandetanib, Afatinib, Osimertinib

JAK family Tyrosine Ruxolitinib, Tofacitinib

MEK1/2 Dual specificity Trametinib

PDGFR α/β Tyrosine Axitinib, Gefitinib, Imatinib, Lenvatinib,
Nintedanib, Pazopanib, Regorafenib,
Sorafenib, Sunitinib

RET Tyrosine Vandetanib

Src family Tyrosine Bosutinib, Dasatinib, Ponatinib,
Vandetanib

VEGFR family Tyrosine Axitinib, Lenvatinib, Nintedanib,
Regorafenib, Pazopanib, Sorafenib,
Sunitinib

Fig. 2 Categorization of different kinases implicated in human cancer. CTK: cytoplasmic tyrosine kinase, S/T Kinase: serine/threonine kinase, LK:
lipid kinase, RTK: receptor tyrosine kinase. SK1: Sphingosine kinase 1, PI3K: phosphoinositide 3-kinase, PKCi: Protein kinase Ci, mTOR: mammalian
target of rapamycin, CDKs: cyclin-dependent kinases, ATM: Ataxia telangiectasia mutated, Akt: protein kinase B, S6K: ribosomal protein S6 kinase,
STK11/LKB1: Serine/threonine kinase 11 or liver kinase B1, PLKs: Polo-like kinases, b-Raf: B-Raf proto-oncogene, Aur A & B: Aurora Kinase A & B, c-SRC:
Proto-oncogene tyrosine-protein kinase Src, c-YES: c-Yes proto-oncogene (pp62c-Yes), Abl: Abelson murine leukemia viral oncogene homolog 1, JAK-2:
Janus kinase 2, RON: Recepteur d’Origine Nantais, FGFRs: Fibroblast growth factor receptors, c-Met: c-MET proto-oncogene, c-Ret: c-RET proto-oncogene,
IGF-IR: Insulin-like growth factor 1 receptor, EGFR: Epidermal growth factor receptor, PDGFR-α: Platelet-derived growth factor receptor α, c-Kit: proto-oncogene
c-Kit or Mast/stem cell growth factor receptor, Flt3,Flt-4: Fms-like tyrosine kinase 3, 4, PDGFR-β: Platelet-derived growth factor receptor β, ALK: Anaplastic
lymphoma kinase, HER-2: human epidermal growth factor receptor-2
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active form of the protein kinase Akt/PKB contributes

to oncogenic transformation of cells [36]. Likewise,

V599E and V600E mutations in BRAF kinase are associ-

ated with various carcinomas while BRAF somatic mis-

sense mutations occur in 66% of malignant melanomas

[37]. The oncogenic mutations in JAK2 kinase such as

single point mutation (Val617Phe) and JAK2 exon 12

mutations are implicated in both myeloproliferative dis-

orders and myelodysplastic syndromes [38, 39]. Simi-

larly, genetic alterations in other kinases such as ALK,

IGF-1R, c-Kit, FGFR1–4, c-Met, c-Ret, c-SRC, regulate

fundamental molecular mechanisms for tumor cell

growth and development [9, 40]. Apart from tumor initi-

ation, kinases are also vital for tumor cell survival and

proliferation and may be present as downstream mem-

bers of oncogenic kinase pathways. This category of

kinases includes EGFR, a receptor tyrosine kinase, which

has been shown to prevent autophagic cell death by

maintaining intracellular glucose levels through inter-

action and stabilization of the sodium/glucose cotran-

sporter 1 (SGLT1) [41]. Oncogenic alterations in EGFR

make up approximately 45% of mutations in the tyrosine

kinase domain [42, 43]. This leads to the loss of the

inhibitory regulatory domains for dimerization resulting

in hyper-proliferation of cancer cells via G1/S cell cycle

progression [44, 45]. Other crucial members of the

kinase family are aurora kinases (Aurora A-C). Aurora

kinases are strategic kinases involved in defective spindle

pole organization, and their pathophysiology correlates

strongly with their oncogenic functions [46]. Aurora-A

is an oncogenic kinase, and its amplification is docu-

mented in 10–25% of ovarian cancers [47]. Interestingly,

Aurora A gene was originally named BTAK (breast

tumor activated kinase) because its mRNA is overex-

pressed in breast cancer and is involved in the oncogenic

transformation of breast cells [48]. Aurora A phosphory-

lates p53 at Ser215 and inhibits p53-DNA binding, dis-

rupting cell cycle check activities [49]. It is also related

to the activation of NF-κB, which boosts cancer cell sur-

vival by evading apoptosis [50]. Similar to Aurora-A,

Aurora B and C are overexpressed in tumor cells and

help cell survival, metastasis, and avoidance of apoptosis

[51–53]. Other examples of tumor cell survival kinases

include MEK1 [54], MEK2 [54], mTOR [55], and S6 kin-

ase [56] which are all downstream members of MAPK,

PI3K–Akt and EGFR pathway, respectively. In recent

years, the mechanistic basis for developing kinase inhibi-

tors from the second class of kinases has improved sig-

nificantly. Types of serine/threonine kinases include

MAP kinases (activated by protein phosphatases), ERK

and stress-activated JNK and p38. Currently, there are

about 30 Aurora kinase inhibitors in different stages of

pre-clinical and clinical development [57]. The third cat-

egory of kinases implicated in oncogenesis includes

kinases overexpressed in tumors and surrounding tissues

of cancers, which are important for the maintenance of

tumors in the host. These include mutations in neuro-

trophic growth factor receptor which are involved in pilocy-

tic astrocytoma, the most common childhood brain tumor

[58]. Other examples include VEGFRs, fibroblast growth

factor receptor (FGFR) kinases, protein kinase CK2 and

TrkB [9, 16]. Overall, oncogenic kinases underlie and define

multiple features of cancer including rapid proliferation,

survival, growth, and metastasis, and have promoted the

development of a plethora of kinase inhibitors. The fourth

category of kinases, RTK with 58 known members and 20

subfamilies, were discovered more than a quarter of a cen-

tury ago [40]. These kinases have a similar molecular archi-

tecture, and their mutations and aberrant activation are

associated with carcinogenesis and angiogenesis. Four prin-

cipal mechanisms are involved in abnormal RTK activation

in human cancers; these include autocrine activation,

chromosomal translocations, RTK overexpression, and

gain-of-function mutations. RTKs are activated by growth

factor binding by inducing receptor dimerization or in

some cases subset of RTKs forms oligomers even in the

absence of activating ligand [59, 60]. Principal members of

RTK include 20 members including EGFR and others [61].

EGFR represent RTKs family as the well-studied kinase,

implicated in several human cancers including lung cancer

[62], glioblastoma [63], breast cancer [64], cervical carcin-

oma [65] and related mutations [66]. Several small-

molecule inhibitors and monoclonal antibodies have been

approved by FDA against RTKs for cancer therapy. The key

drugs include Imatinib (against PDGFR, KIT, Abl, Arg),

Sorafenib (against Raf, VEGFR, PDGFR, Flt3, KIT) and

Lapatinib (against EGFR, ErbB2).

Kinase discovery and development timeline
The development of kinase inhibitors for the treatment of

human cancers started in mid 1970s (Fig. 3). In 1978, the

first oncogene was found to be a protein kinase [67]. This

discovery was supported by a successive finding in 1981

when tumor-promoting phorbol esters was shown to

exhibit hyperactivation of protein kinase C (PKC) [68]. In

the coming years, naphthalene sulphonamides, the first

protein kinase inhibitors were synthesized and served as a

basic design for developing further molecules [69]. During

this time, staurosporine, an antifungal drug was shown to

be a nanomolar inhibitor of PKC [70]. This drug was later

used as a parent compound to produce various analogs as

potential inhibitors of PKC. In the 1991 the 3-D structure

of protein kinase A (PKA) was elucidated, and it became

apparent that the residues that were involved in binding

ATP were conserved from kinase to kinase [71, 72]. This

discovery perpetuated a myth that it was “impossible” to

develop protein-kinase inhibitors with the requisite

potency and specificity. However, with the discovery of
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cellular targets for cyclosporin and subsequent develop-

ment of HA1077, an inhibitor of several protein kinases,

the field of kinase inhibitors rapidly progressed [14, 73, 74].

Finally, the breakthrough occurred in 2001 when imatinib,

a phenyl-amino-pyrimidine derivative targeting the

inactive conformation of the ABL1 kinase, was approved

for the treatment of CML (Fig. 4). Starting with a 2-

phenylaminopyrimidine derivative, chemists added a 3′

pyridyl group, benzamide, a flag methyl instead of N-

methylpiperazine to synthesize a drug candidate called

CGP57148B (later changed to imatinib) [75]. Clinical

targeting of BCR-ABL gene, formed by the fusion of ABL

gene from chromosome 9 to the BCR gene on chromo-

some 22, also called the Philadelphia chromosome,

improved the clinical management of leukemia patients

[76, 77]. Owing to its’ broad-spectrum nature imatinib has

since then been approved for various other oncology indi-

cations. Following the FDA approval of imatinib, different

strategies have been used for the development of single

and multi-target kinase inhibitors for cancer treatment

[78]. More active drugs, such as nilotinib, with a selectivity

profile similar to imatinib, were approved for imatinib-

resistant CML [79, 80]. Later on, the indolinone-derivative

sunitinib with a broad spectrum activity targeting VEGFR,

PDGFR, FGFR, KIT, and FLT3, was approved for the

treatment of renal cell carcinoma, as well as second-line

therapy in the imatinib-resistant gastrointestinal stromal

tumor (GIST) [81]. Sorafenib was later approved for the

treatment of renal cell and hepatocellular carcinoma due

to its ability to bind to the inactive conformation of the

VEGFR kinase [82]. Similarly, in the year 2009, pazopanib,

a 2-amino pyrimidine targeting VEGFR, PDGFR, and KIT

was approved for the treatment of advanced renal cell car-

cinoma [83]. A quick surge in clinical approval of kinase

inhibitors started following the approval of everolimus

(mTOR inhibitor) in 2009 for the treatment of metastatic

renal cell carcinoma (mRCC), astrocytoma and breast

tumors [84–86]. In the year 2011, four kinase inhibitors,

vemurafenib, vandetanib, ruxolitinib, and crizotinib were

approved for the treatment of melanoma, thyroid cancer,

myelofibrosis and ALK-positive non-small cell lung cancer

[87–90]. Successively, in 2012 and 2013 ten new kinase

inhibitors were approved by FDA for the treatment of

various malignancies. Since the initial development of

Fig. 3 Timeline of key events in the development of protein-kinase inhibitors for the treatment of cancer

Fig. 4 Interruption of the BCR-Abl pathway can be achieved by Gleevec (imatinib mesylate)
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imatinib, 28 kinase inhibitors have been approved by FDA

with Brigatinib and Osimertinib being the latest approvals

[91, 92]. Apart from the approved kinase inhibitors, there

is more than three thousand ongoing Phase I-III clinical

trials for hundreds of new kinase inhibitors. It is therefore

beyond the scope of this mini-review to discuss all the

protein kinase inhibitors that are in clinical Phase I–III.

Types of kinase inhibitors
Kinase inhibitors are very efficacious for the treatment of

cancer especially targeting specific mutations that chiefly

drive tumorigenesis. They are categorized according to

their capacity to catalyze the transfer of the terminal phos-

phate of ATP to the substrates that usually contain a

serine, threonine or tyrosine residue (Table 2). Many

reviewers have categorized types of kinase inhibitors

according to their mechanism of action. Initially, small

molecule protein kinase inhibitors were divided into three

classes, termed as types I, II, and III kinase inhibitors [93].

Dar and Sakot defined the type I kinase inhibitor as “a

small molecule that binds to the active conformation of a

kinase in the ATP pocket,” the type II inhibitor as “a small

molecule that binds to an inactive (usually Asp-Phe-Gly

(DFG)-OUT) confirmation of a kinase,” and the type III

inhibitor as “a non-ATP competitive inhibitor” or

allosteric inhibitor [93, 94]. Later on, Zuccotto et al. intro-

duced a new class of kinase inhibitors, i.e. type I½ inhibi-

tors, which bind to the protein kinases with the DFG-Asp

in and C-helix out conformation [95]. Later, Gavrin and

Saiah further divided the allosteric effectors into two sub-

classes (III and IV) where the type III inhibitors bind

within the cleft between the small and large lobes adjacent

to the ATP binding pocket and type IV inhibitors bind

outside of the cleft and the phosphor-acceptor region [96].

Afterwards, bivalent molecules that span two regions of

the protein kinase domain were labeled as type V inhibi-

tors [97]. Finally, small molecules that form covalent

adducts with the target enzyme were recently termed as

covalent inhibitors [94]. The classification described

herein uses these parameters with added subdivisions and

criteria, labeling them as types I, II, allosteric, and sub-

strate directed and covalent inhibitors.

Type I kinase inhibitors

Type I kinase inhibitors represent ATP-competitors that

mimic the purine ring of the adenine moiety of ATP.

Functionally, they interact with the conformational phos-

phorylated active catalytic site of the kinases. These kinase

inhibitors bind to the active conformational site and alter

the structural conformation otherwise favorable to phos-

photransfer [98, 99]. Type I inhibitors usually contain a

heterocyclic ring system that occupies the purine binding

site, where it serves as a scaffold for side chains that

occupy adjacent hydrophobic regions [100]. These hydro-

philic regions of the enzyme occupied by the ribose

moiety of ATP may be used to exploit the solubility of the

drugs or other active compounds [98]. To date, many

Type I kinase inhibitors for the treatment of cancer have

been approved by the FDA viz. bosutinib, crizotinib, dasa-

tinib, erlotinib, gefitinib, lapatinib, pazopanib, ruxolitinib,

sunitinib, and vemurafenib. Apart from the large-scale

clinical success, Type I kinase inhibitors also come with

adverse side-effects. Type I inhibitors display an inclin-

ation for low kinase selectivity as the targeted ATP pocket

is conserved through the kinome; therefore, increasing the

potential for off-target side effects. This little selectivity

for targeted kinases may result in cardiotoxicity and pos-

sible deterioration in cardiac function [101, 102].

Type II kinase inhibitors

Type II kinase inhibitors act by targeting the inactive con-

formation of kinases and interact with the catalytic site of

the unphosphorylated inactive conformation of kinases

[103]. Type II kinase inhibitors exploit new interactions

inside the lipophilic pocket derived from the change of con-

firmation of the phenylalanine residue of the “Asp-Phe-Gly

(DFG)” N-terminal loop conformation of kinases [16, 103].

These inhibitors interact reversibly with the target kinase

which leads to the formation of single or multiple hydrogen

bonds with the protein in the ‘hinge region’ and also

causes extra interactions in the open DFG-out conform-

ation [98, 103]. These lipophilic interactions have a high

degree of selectivity towards unwanted kinases affecting

an increase in the safety profile of Type II kinase inhibi-

tors. Type II inhibitors also display a high conservation of

Table 2 Classification of small molecule kinase inhibitors

Class of Kinase Inhibitor Mechanism of Action Examples

Type I Competes for the substrate and binds in the ATP-binding pocket of the
active conformation

Bosutinib, Cabozantinib, Ceritinib, Crizotinib,
Gefitinib, Pazopanib, Ruxolitinib, Vandetanib

Type II Type II inhibitors bind to the DFG-Asp out protein kinase conformation,
which corresponds to an inactive enzyme form

Imatinib, Sorafenib, Axitinib, Nilotinib

Type III (Allosteric Inhibitor) Occupy a site next to the ATP-binding pocket so that both ATP and the
allosteric inhibitor can bind simultaneously to the protein.

Trametinib, GnF2

Type IV (Substrate Directed
Inhibitors)

Undergo a reversible interaction outside the ATP pocket and offer
selectivity against targeted kinases

ONO12380

Type V (Covalent Inhibitor) Bind covalently (irreversible)to their protein kinase target Afatinib, Ibrutinib, HK1–272
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distinctive H-bond pattern between the inhibitor and the

glutamic and aspartic acids of the kinase [98, 104]. Due to

the exclusivity of inactive protein kinase conformations, it

was theorized than type II kinase inhibitors would be

more selective. However, there is considerable overlap of

selectivity between type I and type II inhibitors. The dis-

covery of Type II kinase inhibitors such as imatinib and

sorafenib was serendipitous, and it wasn’t until much later

that their mode of action was discovered. The role of ima-

tinib in the consequent development of small molecule

protein kinase inhibitors cannot be overstated. All Type II

inhibitors share a similar pharmacophore and hydrogen

bonds that interact with DFG-out kinase conformational

structure as revealed by the discovery of the Type II kinase

inhibitor co-crystal structure [105]. Since canonical ATP-

binding sites of activated kinases, the target sites of Type I

inhibitors, do not share these features, this pocket is con-

served to a lesser extent across the kinome, and hence

promises better prospects for the rational design of select-

ive inhibitors [100, 103]. Overall, Type II kinase inhibitors

display high selectivity towards kinase inhibition as com-

pared to Type I kinase inhibitors along with the profound

impact on cellular activity.

Type III or allosteric inhibitors

The third class of kinase inhibitors bind outside the

catalytic domain/ATP-binding site and modulates kinase

activity in an allosteric manner. Some authors have

divided the allosteric inhibitors into two subtypes where

type A inhibitors bind to an allosteric site next to the

adenine-binding pocket whereas the type B inhibitors

bind elsewhere [97]. Overall, Allosteric or Type III

inhibitors exhibit the highest degree of target kinase

selectivity as they exploit binding sites and physiological

mechanisms that are exclusive to a particular kinase

[106]. With respect to ATP, these drugs are steady-state

noncompetitive or uncompetitive inhibitors because

ATP cannot prevent their interaction with the target

kinase. One of the earliest allosteric inhibitors was CI-

1040, an orally active, highly specific, small-molecule

inhibitor of the MEK1/MEK2 pathway [107]. A recent

chemical proteomics study confirms the allosteric activ-

ity of type III inhibitors as they showed a higher selectiv-

ity, but also stated that these are special cases as most of

them are designated MEK1/2 inhibitors that bind to a

particular cavity adjacent to the ATP-binding site [108].

Another allosteric kinase inhibitor GnF2 binds to the

myristate binding site of BCR–ABL1 [109]. GnF2 also

displays sound IL-3 reversible anti-proliferative and

apoptotic effect on two mutants identified as E255V and

Y253H [109]. Likewise, TAK-733 binds to the MEK1-

ATP complex in the gate area and the back cleft adjacent

to the ATP-binding pocket; however, it cannot bind to

the adenine pocket owing to its occupation by ATP

[110]. Other examples include RO0281675 and analogs

thereof [111, 112]. Overall, targeting kinases using allo-

steric inhibitors is thought to be a crucial approach for

overcoming hurdles in kinase inhibitor research, such as

limited selectivity, off-target side effects, and drug resist-

ance. In future, more active and target specific allosteric

inhibitors will be discovered as larger stress is placed on

cell-based assays in which kinases are explored in their

native cellular context.

Substrate-directed inhibitors

These are also called Type IV kinase inhibitors and

undergo a reversible interaction outside the ATP pocket,

located in the kinase substrate-binding site. These inhib-

itors don’t compete with ATP and offer a higher degree

of selectivity against targeted kinases [113]. Substrate-

directed inhibitors include ATP-noncompetitive inhibi-

tors such as ON012380 which are targeted against Phila-

delphia chromosome-positive leukemias [114]. More

importantly, ON012380 was found to override imatinib

resistance at physiologically relevant concentrations of <

10 nM [115].

Type V or covalent inhibitors

The covalent kinase inhibitors form an irreversible cova-

lent bond with the kinase active site and target a catalytic

nucleophile cysteine within the active site of the enzyme

[116, 117]. The chemical rationale for developing Type V

inhibitors is based on exposed cysteine side chain in the

ATP site which can be targeted for covalent reaction with

a drug candidate with an electrophilic Michael acceptor in

the right position [118, 119]. This type of kinase inhibition

takes place via trapping of a solvent-exposed cysteine resi-

due either by SN2 displacement of a leaving group or by

reacting with a Michael acceptor incorporated within the

kinase inhibitor [113, 120, 121]. Covalent inhibitors target

respective kinase by formation of a rapidly reversible colli-

sion complex followed by an irreversible enzyme-inhibitor

complex [122]. Afatinib (targets EGFR (ErbB1), ErbB2,

and ErbB4) and ibrutinib are currently FDA-approved

drugs that form a covalent bond with their target kinase.

Afatinib, unlike the first-generation EGFR-TKIs such as

gefitinib and erlotinib, is a mutant-selective EGFR inhibi-

tor with low toxicity profile despite its irreversible mech-

anism [123]. Similar to Afatinib, ibrutinib also targets

mutant-EGFR kinase with a distinct binding conformation

[124]. Both of these kinase inhibitors initiate Michael reac-

tion with the addition of a nucleophile (the -SH of cyst-

eine) to an α, β unsaturated carbonyl compound [125].

C481 within hinge region of the Bruton tyrosine-protein

kinase is hypothesized to form a covalent link with ibruti-

nib [126]. A recently approved kinase inhibitor, neratinib

(HKI-272), inhibits Herceptin-2 (HER-2), and prevents re-

currence in patients with early-stage HER2-positive breast
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cancer [127]. Overexpression of HER-2 is seen in 25–30%

of breast cancer patients and predicts a poor outcome in

patients with primary disease. Likewise, CL-387785, a co-

valent inhibitor, overcomes resistance caused by T790 M

mutation of the epidermal growth factor receptor (EGFR)

[128]. These kinase inhibitors also display an extended

dissociation half-life which minimizes off-target side ef-

fects [118]. Other advantages include prolonged pharma-

codynamics, suitability for rational design, high potency,

and ability to validate pharmacological specificity through

mutation of the reactive cysteine residue [119]. The

approved covalent kinase inhibitors (Ibrutinib, Afatinib,

and Neratinib) have shown that small molecules contain-

ing weak reactive electrophiles can be mutant specific in

action with low toxicity. These kinase inhibitors have initi-

ated resurgence of interest in covalent inhibitors, and

feature an acrylamide functionality to specifically target

the cysteine side chains of kinases. Example include a

recent study showing nine irreversible EGFR and two

BTK inhibitors with higher kinase inhibitory selectivity

than reversible compounds [108]. The Type V or covalent

kinase inhibitors have substantial potential for exploration

as 200 different kinases have a cysteine chain located near

the ATP pocket.

Biochemical mechanism
Biochemically, kinase inhibitors are classified according

to the activation state of the protein kinase target in-

cluding the nature of DFG-Asp (active in, inactive out),

the C-helix (active in, inactive out), and the regulatory

spine (active linear, inactive distorted). Apart from type

III or allosteric inhibitors, all the FDA-approved kinase

inhibitors form hydrogen bonds with one or more hinge

residues. Overall, most kinase inhibitors form: (i) hydro-

phobic contacts with catalytic spine residues; (ii) contact

with the RS3 R-spine residue within the C-helix; (iii)

interaction with the gatekeeper residue; and (iv) residues

that occur just before the DFG-D of the activation seg-

ment [94, 129]. The following section briefly discusses

the biochemical mechanism of action of FDA-approved

kinase inhibitors.

Frequent mutations in various protein kinases present

specific kinase inhibition as a therapeutically relevant

approach in oncology. Kinase inhibitors have evolved to

target many different regulatory and inhibitory mecha-

nisms. There are various mechanisms by which kinase

inhibitors bind to their target kinases broadly classified

into kinase inhibitors that bind either covalently or non-

covalently to or around the ATP binding site. Primarily,

kinases bind with ATP in a cleft between the N- and C-

terminal lobes of the kinase domain. In this domain, the

adenine group of ATP is bound by two hydrophobic sur-

faces and interact via hydrogen bonds to the connector of

two lobes, called the “hinge region” [130–132]. The cleft

of ATP contains various elements such as the flexible acti-

vation loop (A-loop), along with closed conformations

which are responsible for the catalytic activity of the

kinase [133, 134]. The active or inactive state of the pro-

tein kinase is determined by the position of the A-loop,

including the DFG motif at its N-terminal, which has vari-

ous conformations [28, 98, 134, 135]. The only component

of kinases that does not vary between the active and

inactive states is the catalytic loop. The active state of the

protein kinase when the Asp in the DFG motif coordi-

nates one magnesium ion, which prepares the phosphates

of ATP for the transfer of the phosphoryl group. The Phe

in the DFG motif packs under the helix-C positioning

both helix-C and A-loop for catalysis [98, 133, 136].

Protein kinases return to their inactive conformation once

kinase transfers the phosphoryl group from ATP to tyro-

sine, serine or threonine of the substrate protein. This

process also involves the returning of the A-loop to the

closed position by the change of A-loop from the DFG-in

to the DFG-out conformation [98, 137, 138]. However,

ribose binding and the phosphate binding site of ATP

usually remains unexplored by the majority of kinase in-

hibitors [134, 139]. Based on the biochemical mechanisms

of action, kinase inhibitors are categorized as covalent and

non-covalent kinase inhibitors. The non-covalent kinase

inhibitors are classified into those who either bind or do

not bind to the hinge region of the kinase [140]. The

DFG-in or Type I kinase inhibitors bind to hinge region

and represent the vast majority of non-covalent kinase

inhibitors [98]. In these kinase inhibitors, the Asp in the

DFG motif coordinates the phosphates of ATP, and the

Phe in the DFG motif stabilizes the position of helix-C

and the A-loop for catalysis [20]. However, the ATP-

binding pocket is highly preserved among members of the

kinase family, and it is hard to find highly selective Type I

kinase inhibitors. Moreover, the pre-clinical to clinical

translation of Type I kinase inhibitors is hindered as they

compete with high levels of intracellular ATP leading to a

discrepancy between biochemical and cellular analysis.

Contrary to the Type I inhibitors, Type II inhibitors bind

to the DFG-out confirmation of kinases. These inhibitors

induce a conformational shift in the target enzyme such

that the target kinase is no longer able to function. Type II

inhibitors use an additional hydrophobic pocket adjacent

to the ATP site exposed by the movement of A-loop from

DFG-in to DFG-out conformation [141]. This gives the

Type II inhibitors higher selectivity as they recognize

novel regions of the active cleft outside the highly con-

served ATP-binding site. Like Type II kinase inhibitors,

the allosteric inhibitors or Type III inhibitors also display

high selectivity as they explore binding sites and regula-

tory mechanisms that are unique to a particular kinase.

They contain a heterocyclic system that forms one or two

hydrogen bonds with the kinase hinge residue. Like Type II
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inhibitors, they also induce the DFG-out confirmation and

move phenylalanine side chain to a new position [98, 99].

Examples include compounds such as CI-1040, which

inhibit MEK kinase by occupying a pocket adjacent to the

ATP-binding site [107]. Interestingly, exploration of allo-

steric kinase inhibitors also helps to recognize unique

kinase activation targets, which could be explored for thera-

peutic intervention in other diseases states. Recently, there

has been an increased interest in the development of irre-

versible (covalent) kinase inhibitors that form covalent

bonds with cysteine or other nucleophilic residues in the

ATP-binding pocket. These inhibitors have typically been

developed by incorporation of an electrophilic moiety into

an inhibitor that already possesses submicromolar binding

affinity to the target of interest. The covalent kinase inhibi-

tors bind to a cysteine residue in or around the active site,

thus preventing the binding of ATP to the protein kinase

[117, 127]. These kinase inhibitors undergo the “Michael

reaction”, which is a reaction that triggers the addition of a

nucleophile, such as a cysteine, to an α, β unsaturated car-

bonyl functionality. Nucleophile additions cause the forma-

tion of adducts at the electrophilic β-position and inactivate

kinases by irreversibly blocking the binding of ATP to

kinase [142]. These kinase inhibitors are highly selective as

they overcome endogenous ATP competition and target a

specific cysteine at the corresponding position in a kinase.

Various covalent kinase inhibitors target kinases such as

BTK [143], Fes [144], VEGF-R2 [145], and RSK2 [146]

through their ability to bind to a cysteine residue.

Recent clinical developments
Traditional cancer therapies follow palliative as well as

off-targeted approaches in oncology. In contrast, kinase

inhibitors symbolize a class of targeted cancer therapeutic

agents with limited nonspecific toxicities. So far, 28 inhibi-

tors with activity targeted to one or multiple kinases have

been approved for clinical use. With over 500 members,

the kinase family has received a high degree of attention

from academic researchers as well as pharmaceutical in-

dustries [147]. After the clearance of possible hindrances,

owing to the high degree of active site similarities and pos-

sible off-target activity, kinase inhibitors have gained

scientific limelight [21, 24, 78, 148, 149]. In a 13-year

summary of targeted therapies including kinase inhibitors,

the clinical success rate of kinase inhibitors was superior

to other cancer therapies [150, 151]. Nevertheless, this

clinical success does come with exceptions; attempts to

control cytotoxicity during treatment, particularly with

sunitinib and EGFR/VEGF-system targeting drugs have

yielded disappointing results [152–155]. Overall, during

the last 5 years, Aurora kinases [156], casein kinase II

[157], cyclin-dependent kinases [158], focal adhesion

kinase [159], protein kinase B [160], phosphatidylinositol

4,5-bisphosphate 3-kinase delta and gamma [161], polo-

like kinase I [162], tyrosine-protein kinase SYK [163], high

affinity nerve growth factor receptor family [164] and

Wee1-like protein kinase [165] have been targeted in

Phase I clinical trials. Although recent developments have

shown Aurora kinases as major new targets in kinase

inhibitor development [166, 167]. After initial hurdles,

two compounds palbociclib and ribociclib have passed the

phase III clinical trials and are in clinical use [168].

Recent kinase developments include precision therapy

based on tumor genomic data. The ability to perform gen-

etic studies of tumors and follow-up treatment decisions

based on the identification of tumorigenesis drivers has

resulted in significant benefits for patients in need of

effective systemic therapy. The detailed information

regarding all the clinical trials is out of the scope of this

mini-review; however, a few important developments are

highlighted. A small number of small molecule tyrosine

kinase inhibitors have recently received FDA approval for

treatment of non-small cell lung cancer (NSCLC) with

EGFR mutations or ALK translocations [169]. Afatinib, a

second-generation, non-competitive kinase inhibitor tar-

geting all members of the ErbB family of receptors (also

known as Her-2/neu) was approved in 2013 as frontline

therapy for NSCLC patients with EGFR-deletion 19 and

L858R mutations [170]. Despite several challenges that

need to be overcome, reviewed in [171, 172], precision

medicine has yielded important dividends for patients

with advanced cancers [173]. In order to counter currently

undruggable targets and acquired resistance, immunother-

apy has gained widespread recognition in recent years

[174]. Additionally, kinase targeted antibody therapy for

hematological malignancies, and solid tumors have become

established over the past 20 years. Key examples of anti-

body constructs targeting kinases include Trastuzumab and

T-DM1 (targeting ERBB2/HER2) in breast and bladder can-

cer [175, 176], Bevacizumab (targeting VEGF) in ovarian,

metastatic colon cancer and glioblastoma [177], Cetuximab,

Panitumumab and necitumumab (targeting EGFR) in

colorectal cancer and NSCLC [178]. Other experimental

candidates include scFv, affibody and minibody (ERBB2/

HER2 and FGFR1) [179–182], Protein–Fc (VEGFR1 and

VEGFR2) [183] and Intact IgG (EGFR, ERBB2, and VEGF)

in breast and lung cancer studies. Also, there is an

increased development of PI3K and mTOR inhibiting

compounds. Dual PI3K/mTOR inhibitors in advanced clin-

ical trials include NVP-BEZ235 (glioblastomas) [184],

XL765 (breast cancer) [185], GDC0980 (mRCC) [186],

PF04691502 (breast cancer) [187], GSK2126458 (colorectal,

breast, non-small cell lung, and pancreatic cancers) [188],

Quinacrine (various leukemias) [189, 190] and PKI587

(advanced solid malignancies) [191]. Also, buparlisib and

idelalisib, both PI3K inhibitors, have entered phase III clin-

ical trials [192, 193]. In line with PI3K/mTOR inhibitors,

various kinase inhibitors have entered into clinical trials for
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gastrointestinal cancers [194], thyroid carcinoma [195],

breast cancer [196], and endocrine tumors [197]. Many pre-

viously approved kinase inhibitors are being tested in clin-

ical trials against BRAF and cyclin-dependent kinases 4/6

mutations [20, 99]. BRAF somatic mutation, particularly

BRAF V600E/K, drive tumorigenesis through constitutive

activation of the downstream MAPK pathway [198]. Mul-

tiple drugs including vemurafenib, dabrafenib, PLX3603,

ARQ736, CEP-32496, BMS-908662, BGB283, encorafenib

in combination with other chemotherapies are being tar-

geted for BRAF-mutated cancers [199]. It is now suggested

that dabrafenib, a selective BRAF inhibitor may target other

kinases indicating polypharmacology (that is, drugs that act

on more than one target) [108]. A paper published by

Klaeger and colleagues explains the potential of 243 clinic-

ally evaluated kinase drugs [108]. Although multiple new

kinases have been targeted during the last 5 years, a large

share of the cancer kinome is still untargeted. Furthermore,

use of these targeted therapies is not without limitations.

Reservations on the use of kinase inhibitors include the

development of resistance and the lack of tumor response

in the general population and these constraints still need to

be resolved.

Natural bioactives as kinase inhibitors
Overexpression of kinases is observed in multiple carcin-

omas. In recent years, there has been a major paradigm

shift in discovery and screening of natural compounds as

potential kinase inhibitors. Emerging data has revealed

numerous mechanisms by which natural compounds miti-

gate kinase mutations. Classically, many of the biological

actions of small molecule compounds, especially polyphe-

nols, have been credited with their antioxidant properties,

either through their reducing capacities or their possible in-

fluence on intracellular redox states. These small molecule

bioactives can directly bind receptor tyrosine kinases and

alter their phosphorylation state to regulate multiple cell

signaling pathways (Fig. 5). Elevated levels of the EGFR and

HER-2 have been identified as common components of

multiple cancer types and appear to promote solid tumor

growth [200, 201]. EGFR inhibition is exhibited by multiple

polyphenols including resveratrol [202], quercetin [203],

curcumin [204], and green tea extracts [205]. HER-2 over-

expression in tumor cells is also attenuated by these bioac-

tives [206–208]. Fibroblast growth factors are involved in a

variety of cellular processes, such as tumor cell prolifera-

tion, drug resistance, and angiogenesis [209]. Oncogenic

alterations of RTK kinases including FGFR1, FGFR3, and

FGFR4 are inhibited by natural compounds [210–212].

Similarly, curcumin and chrysin block expression of recep-

tor d’origine nantais (RON) in tumor cells [213, 214]. The

product of the human SRC gene, c-Src, is found to be over-

expressed and highly activated in a wide variety of human

cancers [215]. It is also accompanied by elevated levels of

Abl [216] and JAK-2 kinases [217]. Interestingly, the over-

expression and translocation of oncogenic cytoplasmic

tyrosine kinases such as c-SRC [218], Abl [219], c-Met

[220] and JAK-2 [221, 222] are tempered by natural com-

pounds. Serine/threonine kinases, within the kinase family,

play vital roles regarding their involvement in human can-

cers. Akt, a crucial kinase modulates diverse cellular pro-

cesses involved in the regulation of cell survival, cell cycle

progression and cellular growth [223]. Up to date, more

than 50 proteins have been identified as the phosphoryl-

ation substrates of Akt. Resveratrol modulates expression

of Akt in breast [224], uterine [225], prostate [226, 227],

skin [228] and glioma cells [229]. It targets the kinases at

ATP-binding site competitively and reversibly [230, 231].

Furthermore, myricetin has been reported to target

Akt to inhibit cell transformation and proliferation by

directly binding to the ATP-binding site of Akt [232].

Similar effects are also exhibited by curcumin [233],

Fig. 5 Structures of key natural bioactives which pharmacologically modulate kinases
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quercetin [234, 235], green tea molecules [236], anthocy-

anins [237] and other polyphenols [238–240]. Hyper-

activity of cyclin-dependent kinases (CDKs) is one of the

key mechanisms underlying tumorigenesis [241]. The

overexpression of CDKs is inhibited by various small

molecule compounds [242–246]. Likewise, hyperactivity

of mTOR pathway is also downregulated by natural com-

pounds [229, 247–249]. The mTOR pathway is a critical

effector in cell-signaling pathways and is commonly

deregulated in human cancers. Furthermore, small mol-

ecule compounds also inhibit the activity of polo-like

and Aurora kinases [207, 210, 250, 251]. B-Raf kinases,

key kinases intimately involved in cancer cell prolifera-

tion [252], are also inhibited by natural plant com-

pounds such as curcumin, luteolin, quercetin and

ursolic acid [253, 254]. Finally, the overexpression of

oncogenic lipid kinases such as PI3K and SK1 is also

mitigated by small molecule bioactives. More than 30%

of various solid tumor types were recently found to

contain mutations in PI3K [255]. Well explored bio-

active molecules such as resveratrol [228], curcumin

[256], quercetin [235] and green tea polyphenols [257]

inhibit PI3K pathway. Similar to the parent compounds,

metabolites of bioactives also inhibit PI3K pathway

[258]. Sphingosine kinase 1 (SphK1) is also an import-

ant component of carcinogenesis as it converts the

proapoptotic lipids ceramide and sphingosine into the

anti-apoptotic lipid sphingosine-1-phosphate [259].

Inhibition of SphK1 is exhibited by few chelating bioac-

tives [260–262]. Oncogenic kinases are vital proteins that

couple extracellular signals with intracellular signaling

pathways, which contribute to all stages of cancer devel-

opment. Accumulated data reveals that plant compounds,

particularly polyphenols, exert anti-cancer effects through

acting on protein kinase signaling pathways. Many natural

bioactives bind directly to oncogenic protein kinases and

then alter their phosphorylation state, thus mitigating cell

signaling pathways in carcinogenesis processes.

Challenges and limitations
Despite numerous advances, scientists are still trying to

understand pathophysiology and application of kinase

inhibitors for therapeutic benefit in clinical oncology.

Kinase inhibition triggers a strong discerning pressure

for cells to acquire resistance to chemotherapy through

kinase mutations [263]. Thus, the treatment and path-

ology of cancer are further complicated by the plethora

of such mutations that occur in different kinases [264].

There are two types of chemotherapy resistance: de novo

resistance, which refers to the failure of an agent to pro-

duce any detectable response after initial treatment and

acquired resistance. Multiple mechanisms including the

targeted kinase, the structure of inhibitor, and the under-

lying genetic features of the tumor contribute to treatment

failure and both types of resistance. Acquired resistance

refers to the progression of a tumor that initially responds

to treatment and subsequently becomes resistant to treat-

ment despite continual administration of the inhibitor.

Interestingly, most of the kinase resistant cases fall into

the acquired resistant category. Treatment resistance asso-

ciated with kinase inhibitors is induced by changes in the

kinase gatekeeper residue as hydrophobic interactions on

this site are crucial for the binding affinity of the inhibitor

[265, 266]. Since a small gatekeeper residue allows an

inhibitor to access the “gated” hydrophobic regions of the

binding pocket, changes in this region hinder activity of

kinase inhibitors. The gatekeeper residue has no inter-

action with ATP but is usually in contact with Type I and

Type II kinase inhibitors and sterically impedes inhibitor

binding [98]. These mutations mainly lead to in the substi-

tution of one amino acid for another in the protein made

by a gene, thus conferring resistance to cell cycle termin-

ation and chemo drugs. A classic example is induction of

imatinib resistance due to gatekeeper mutations in Thr

315 (coded by ACT) in BCR-ABL kinase [254]. Other

examples of such gatekeeper mutations include T790

(EGFR) [267], G697R (FLT3) [268], BCR–ABL1 (T315I)

[269], PDGFRα (T674I) [270] and KIT (T670I) [271]

oncogenic mutations. In the case of the EGFR kinase, the

T790 M mutation induces resistance to quinazoline inhib-

itors by increasing affinity for the natural substrate ATP

[272]. It is one of the most common mutations in which

methionine substitutes for threonine at amino acid pos-

ition 790, conferring a growth advantage to cancer cells

alongside drug-resistant variant of the targeted kinase

[273]. Similarly, 20% of cases of acquired TKI resistance

involve amplification of the MET gene [274]. These events

thereby provide signalling redundancy and eliminate con-

sequences of clinical kinase inactivation. Furthermore, the

lipid modifying PI3K together with the Ras-Raf-MAPK

also undergoes several resistance-inducing mutations

[275]. Interestingly, these mutations cause a minute or no

change in kinase activity but confer inhibitor resistance to

kinase inhibitors [276]. An example includes gatekeeper

mutation T790 M in EGFR which causes gefitinib and

erlotinib resistance via hyper affinity for ATP [277, 278].

Overcoming gatekeeper-mutation induced drug-resistance

in the clinic is extremely difficult and requires structural

fine-tuning of the drug candidates. To surmount resist-

ance to inhibitors gefitinib and erlotinib, kinase inhibitors

that bind covalently to the ATP-binding site of EGFR are

been developed [117, 279]. Such next-generation EGFR

inhibitors selectively target the inhibitor-sensitizing muta-

tions and display an improved safety profile by sparing

wild-type EGFR activity in normal cells. A recent study

using chemical proteomics analyzed 243 clinically evalu-

ated kinase drugs and showed that some kinase inhibitors

are highly selective, especially KIs targeting mutant EGFR
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[108]. Likewise, G-loop mutations in ABL, p38α, FGFR1,

CK2α1, JNK3, AURORA-A, ROCK1 and CDK5 kinases

prompt oncogenic or drug-sensitizing mutations [280].

Another clinical challenge associated with kinase inhibi-

tors is variation in clinical results from combinations of

kinase inhibitors. Examples of clinical failure include com-

bined gefitinib and trastuzumab treatment in breast can-

cer, erlotinib and bevacizumab in renal cell carcinoma,

and cetuximab and bevacizumab in colorectal cancer.

Conversely, combinations of lapatinib and pertuzumab

with trastuzumab in breast cancer, and combination of

bevacizumab and erlotinib in NSCLC have exhibited clin-

ical success. Further, in some cases, the combinations of

kinase targeting agents reduced patient survival compared

with the treatment using single drug [281]. However, these

discrepancies are proposed due to misinterpretation of the

preclinical data, rather than a failure of the preclinical

model itself [282, 283]. Additionally, these preclinical

studies of drug combinations are probably biased towards

validating well-characterized targets thereby limiting their

ability to prioritize novel targets. Further, many kinase in-

hibitors are associated with toxicities and off-target effects

such as cardiotoxicity, hypertension, hypothyroidism, skin

reactions and proteinuria [284, 285]. Looking specifically,

inhibition of EGFR is associated with dermatological

problems, VEGFR inhibition with cardiotoxicity, HER2

and ALK inhibition with gastric irregularities and derma-

tological problems, and BCR-ABL inhibition causes

cytopenia, in addition to cardiotoxicity and cardiac com-

plications [286, 287]. Another challenge is in translating

RNAi therapy into drugs, particularly in kinase inhibition.

The majority of drug targets cannot be battered by shRNA

(or gene knockout) as most shRNAs cannot be replicated

by drugs since most proteins cannot be translated to ther-

apy [288]. Thus, clinical resistance to kinase inhibitors

remains the major limitation to kinase-based -therapies.

Resistance to chemotherapy has also been well recognized

as a significant challenge in oncology, a problem also

confronted by kinase inhibitors. Beyond the stated illustra-

tive examples, numerous other pathways outside the

scope of this review can influence the clinical activity of

kinase inhibitors.

Numerous follow-up strategies are being employed to

overcome the challenge of kinase inhibitor resistance.

A first approach is to develop inhibitors that can

tolerate diverse amino acids at the gatekeeper position

[289, 290]. A second approach is to target the kinase

with inhibitors that bind at alternative binding sites

[115, 291]. A third approach involves targeting other

pathways that may be required for kinase transform-

ation [292]. These approaches have been demonstrated

to work in cell line studies, and strategies are being

developed for their clinical use. However, it is also vital

to consider the possibility that multiple different

resistance mechanisms might develop concurrently in

patients, thereby challenging clinical ability to over-

come acquired resistance to kinase inhibitors.

Future developments
Even though only a small fraction of the kinome is currently

being targeted, kinase inhibitor drug discovery has pro-

gressed dramatically in the past decade. Clinical evaluation

of kinase inhibitors has shown that therapeutic responses

vary widely in individual patients and across patient popula-

tions, and seem to depend on many diverse factors. Many

new candidate molecules have entered clinical trials, and

much more are still at the preclinical stage. Most of the

current kinase inhibitor discoveries have developed through

rational drug design rather than through random screening

and analysis of structure-activity relationships. An important

strategy required for future development is to understand

the basis of unexpected toxicities related to kinase inhibitors.

Improvement in the documentation of toxicities of kinase

inhibitor would provide a valuable database for understand-

ing whether there are particular kinases of which inhibition

should be avoided or specific substructures that result in

problematic metabolites. This strategy will help to develop

kinases with better selectivity benefitting the vast patient

population. Also, there is a critical need for better ways to

monitor target kinase inhibition in humans using minimally

invasive techniques. This may include monitoring of cancer

biomarkers that may serve as benchmarks for the clinical

development of kinase inhibitors. The development of such

technologies will help to discover and eradicate tumors

using targeted kinase inhibition with minimal toxicities.

There is also an urgent need for developing more non-ATP-

competitive kinase inhibitors as the current collection of

kinase inhibitors is limited to ABL, IKK, AKT, CHK1, MEK,

SRC, IGF1R inhibitors [99, 293–296]. Furthermore, there is

need to develop sophisticated modeling of chemotherapy

resistance in response to kinase inhibitors. This will help to

overcome kinase resistance and allow for the systematic

application of combinations of kinase inhibitors. Further-

more, novel pre-clinical models are required to identify the

best cocktails of kinase inhibitors combined with natural

bioactives. Advanced high-throughput cell-based screening

using well-defined phosphorylation readouts should be

established. However, it may prove challenging to screen

and develop natural kinase inhibitors using the cellular read-

out only. It is also important to understand that kinase

inhibitors are not only important for the treatment of

cancer, but also help us better understand the physiological

roles of kinases. In the field of oncology, kinase inhibitors

are proving to be well tolerated compared with conventional

cytotoxic chemotherapeutic treatments. The future of

kinase-targeted therapeutics in cancer appears promising,

and implementation of these strategies will help to achieve

therapeutic advances and overcome treatment hindrances.
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Conclusions
By transferring the γ-phosphate from the ATP-cofactor

onto diverse substrates, kinases regulate key cellular func-

tions. As many human diseases result from mutations and

overexpression of kinases, this enzyme class symbolizes an

important targeted strategy for drug development. Kinases

also play indispensable roles in signaling pathways that

regulate tumor cell functions. Deregulation of kinases

leads to a variety of pathophysiological changes triggering

cancer cell proliferation and metastases. Hyperactivation

of kinases also increases anti-apoptotic effects. Currently,

about one-third of all protein targets under research in

the pharmaceutical industry are kinase-based. Kinase

inhibitors represent targeted therapy resultant of the

understanding of molecular genetics and molecular signal-

ing pathways. Most of the FDA-approved kinase inhibitors

target ATP binding site of kinase enzymes and display

therapeutic indications against tumorigenesis. This class

of therapeutics represents a transformation from conven-

tional chemotherapy to targeted cancer treatment. Kinase

inhibitors have overcome a major drawback of traditional

cancer treatment as it effectively discriminates between

normal non-malignant cells and rapidly proliferating

cancer cells. This leads to fewer off-target effects and low

toxicities in the cancer patient population. Kinase inhibi-

tors are also often useful in combination with cytotoxic

chemotherapy or radiation therapy. A vital challenge for

clinical use of kinase inhibitors in the prevention of drug-

resistant cancer stem cells. This phenomenon occurs due

to cellular pressure to compensate for the loss of function

of an important kinase. Pharmacogenomic factors includ-

ing gene polymorphisms also contribute to primary kinase

drug-resistance. Due to the clinical importance of kinase

inhibitors, multiple strategies are required to overcome

resistance mechanisms and develop more effective

targeted therapies. A key approach is to allosterically in-

duce and stabilize inactive kinase conformations. In the

future, scientific advances may eventually allow scientists

to combine mutagenesis screens through next generation

sequencing and proteomic techniques with the computa-

tional modeling of compound interactions with all

possible mutant variants of a targeted kinase. This will

lead to the development of well-tolerated kinase inhibitors

compared to traditional chemotherapeutic treatments.

Overall, kinase inhibitors represent a new and promising

approach to cancer therapy, one that is already providing

beneficial clinical effects.
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