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THE CHALLENGE



Why did discovering quantum teleportation take 60 year?

Claim: bad formalism since ‘too low level’ cf.

“GOOD QM”

von Neumann QM
' HIGH-LEVEL language

low-level language

Wouldn’t it be nice to have a such a ‘good’ formalism,
in which discovering teleportation would be trivial?

Claim: it exists! And I’ll present it to you.

Isn’t it absurdly abstract coming from you guys?

Claim: It could be taught in kindergarten!



THE APPROACH



1. Analyse quantum compoundness.
⇒ A notion of quantum information-flow emerges.
• Physical Traces. Abramsky & Coecke (2003) CTCS’02; cs/0207057

• The Logic of Entanglement. Coecke (2003) PRG-RR; quant-ph/0402014

• Quantum Information-flow, Concretely, and Axiomatically. quant-ph/0506132

2. Axiomatize quantum compoundness.
⇒ ... full quantum mechanics emerges!
• A Categorical Semantics of Quantum Protocols. Abramsky & Coecke

(2004) IEEE-LiCS’04; quant-ph/0402130

• Abstract Physical Traces. Abramsky & Coecke (2005) TAC’05.

⇒ ... & quantum logic ... & open systems/CPM’s!
• De-linearizing Linearity I: Projective Quantum Axiomatics from SCC.

Coecke (2005) QPL’05; quant-ph/0506134.

• †-CCC’s and Completely Positive Maps. Selinger (2005) QPL’05.



EXPLICIT OPERATIONALISM

Primitive data are processes/operations f, g, h, . . .
which are typed as A → B,B → C,A → A, . . .
where A,B,C, . . . are kinds/names of systems.

Sequential composition is a primitive connective
on processes/operations cf.

f ◦ g : A→ C for f : A→ B & g : B → C

Parallel composition is a primitive connective both
on systems and processes/operations cf.

f⊗g : A⊗C → B⊗D for f : A→ B & g : C → D



NO DOGMAS nor TABOOS!

Do you want ...

• states to be ontological or empirical?

• vectorial, projective, POVM-/CPM-/open system-style?

• hidden variables, quantum potential, contextuality,
(non-)locality, Bayesianism, ... ?

The bulk of the developments ignores these choices, but,
they can be implemented formally since we both have

• great axiomatic freedom

• great expressiveness



CATEGORY THEORY!

Audience: “Seriously, you don’t expect us to learn that?”

Bob: “No! Of course not!”

Bob: “We are gonna go far back in time, ...
Bob: “to the time you were all still at kindergarten, ...”

Bob: “We’re gonna draw pictures!”

The sheer magic of the kind of category theory we need
here is that it formally justifies its own formal absence.



A NEW FORMALISM

ILanguage and calculus: purely graphical

IBehind the scene: categorical algebra

IConcrete model: Hilbert space QM, ...

IConcrete model: and also many others, ...

INot assumed: some number field, any kind

of matrix calculus, vectors and sums thereof,
elements of objects/types (cf. state space)
and corresponding mappings, ...
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f

B

A

sψ
A

A

πA

Sequential and parallel composition:

f
B

A

ψ
A

g
C f

B

A

D

C

g

f
B

A

C

C D

A B

h

ψ
B

A
π

ψ
A

πf
B

sf
B

A
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THE SOLE AXIOM

=



Since

= = =

the axiom is equivalent to
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When setting

=: f =:

fff

we obtain
=f

g

= f

g

f

g

=

f

g



COMPOSITIONALITY
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COMPOSITIONALITY bis
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We define bipartite projectors as

Pf : A∗ ⊗B → A∗ ⊗B
as

f

f†



that is, approximately, as

Pf : A⊗B∗ → A∗ ⊗B
as

f

f

f

f

=



The concepts of bipartite state

f

and of bipartite projector

f

f

yield the following corrolaries ...



1
4th-TELEPORTATION

=
id

id

id

since id ◦ id = id



1
4th-TELEPORTATION

=

since id ◦ id = id



FULL TELEPORTATION

f =
fi i

for 1 ≤ i ≤ 4



FULL TELEPORTATION

f =f -1

i

i

for 1 ≤ i ≤ 4



LOGIC GATE TELEPORTATION

f
=

f

since f ◦ id = f



ENTANGLEMENT SWAPPING



HILBERT SPACE QM

f : H1 → H2 is a linear map

ψ : C→ H cf. ψ(1) ∈ H

s : C→ C cf. s(1) ∈ C

H∗ := conjugate Hilbert space of H

f † := linear adjoint of f

ψ = |ψ〉 π = 〈φ| for π := φ†
ψ
π

= 〈φ | ψ〉



HILBERT SPACE QM

f : H1 → H2 is a linear map

ψ : C→ H cf. ψ(1) ∈ H

s : C→ C cf. s(1) ∈ C

H∗ := conjugate Hilbert space of H

f † := linear adjoint of f

ψ = |ψ〉 π = 〈φ| for π := φ†
ψ

π
= |ψ〉〈φ|



EPR-states and their adjoints:

: C→ H∗ ⊗H :: 1 7→
∣∣∑

i

ei⊗ei
〉

: H∗ ⊗H → C :: Φ 7→
〈∑

i

ei⊗ei
∣∣ Φ
〉

: H∗ ⊗H → C :: φ1⊗φ2 7→ 〈φ1 | φ2〉
∑
i

We verify the axiom:

= (−)⊗
(∑

i

ei⊗ei
)

=
∑
i

(−⊗ei)⊗ei

=
∑
i

〈− |ei〉 · ei = id



Exercise. Verify that in Hilbert space bipartite pro-
jectors on one-dimensional subspaces indeed factor as

f

f†



A key role is played by

H∗1 ⊗H2 ' H1→H2

i.e. bipartite states Ψ ∈ H∗1 ⊗H2 are representable by
linear functions f : H1 → H2 and vice versa. Indeed

Ψ =
∑
ij

mij |ij〉
'←→

m11 · · ·m1n
... . . . ...

mk1 · · ·mkn


'←→ f =

∑
ij

mij |j〉〈i|

e.g.

|00〉 + |11〉 '←→ id = |0〉〈0| + |1〉〈1|



PROCESSES ' 2-STATES

f

B

A

Ψ
A* B

I{ { }}
f Ψ

'

for the bijection f 7→ pfq i.e.

f
B

A

A* B

f7→



Proof of injectivity.

f

=

f g

= = g

f

=

g
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Proof of injectivity.

Ψ
A*

B

A

_-

Ψ
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B

A

A*

=
Ψ

A* B

<



The inner-product of ψ, φ : I→ A is

〈φ | ψ〉 :=
ψ
π

= φ† ◦ ψ : I→ I

where π := φ† cf.

bra := 〈φ | ket :=| ψ〉 bra-ket := 〈φ | ψ〉

e.g. for f : A→ B we have

| f ◦ ψ〉 =
ψ
f

= f ◦ ψ 〈f ◦ φ |= π

f†
= φ†◦ f †



Adjointness implies

〈f ◦ φ | ψ〉 =
π

f†

ψ
= 〈φ | f † ◦ ψ〉

Unitarity means U−1 = U † i.e.

†U
† = =

U

U

U

hence

〈U ◦ φ | U ◦ ψ〉 =

π

ψ

=

π

ψ

= π
ψ

†U

U
= 〈φ | ψ〉



UPPER STAR STRUCTURE

A “contravariant” Barr-Kelly-Laplaza involution

f : A→ B 7→ f ∗ : B∗→ A∗

called upper star arises as
=:

ff *



LOWER STAR STRUCTURE

A “covariant” involution

f : A→ B 7→ f∗ : A∗→ B∗

called lower star arises as
=:

ff*
†



From

=:

ff * and

=:

ff*
†

follows
=

f(f  )
*

†*

=

f †

and analogous we can prove that (f ∗)∗ = f †



Hence the star operations

=:

ff * and

=:

ff*
†

provide a decomposition of the adjoint:

f† = (f∗)∗ = (f∗)∗

In particular, for the Hilbert space model we have

(−)∗ := transposition

(−)∗ := complex conjugation



TRACE STRUCTURE

A Joyal-Street-Verity partial trace

f : C ⊗ A→ C ⊗B 7→ TrC(f ) : A→ B

arises as
=:

fTr ( f )C



TRACE STRUCTURE bis

A corresponding full trace

h : A→ A 7→ Tr(h) : I→ I

arises as
=:

hTr( h )

⇒ h “carries a diamond” cf. probabilistic weight



From

=:

ff *

follows

ff =

f f
*

*

=
and hence

=g

f

f

g



EQUIVALENT BORN RULES

Tr(ρφ ◦ P)
???
= 〈φ | P ◦ φ〉 for ρφ := |φ〉〈φ|

=

P

φ

π P

φ

π =
P

φ

π

C∗⊗ C ' C



ALGEBRA BEHIND THE SCENE

Symmetric monoidal bifunctor −⊗− : C×C→ C and

• ⊗-involution dual A 7→ A∗;

• contravariant⊗-involution adjoint fA→B 7→ f †B→A ;

•Units ηA : I→ A∗ ⊗ A with ηA∗ = σA∗,A ◦ ηA;

A �
'

I⊗ A �
η†A∗ ⊗ 1A

(A⊗ A∗)⊗ A

A

1A

6

'
-A⊗ I

1A ⊗ ηA
-A⊗ (A∗ ⊗ A)

'

6



ALGEBRA BEHIND THE SCENE

Symmetric monoidal bifunctor −⊗− : C×C→ C and

• ⊗-involution dual A 7→ A∗;

• contravariant⊗-involution adjoint fA→B 7→ f †B→A ;

•Units ηA : I→ A∗ ⊗ A with ηA∗ = σA,A∗ ◦ ηA;

=



BIFUNCTORIALITY OF ⊗

A1 ⊗ A2
f1 ⊗ id

-B1 ⊗ A2

A1 ⊗B2

id⊗ f2

?

f1 ⊗ id
-B1 ⊗B2

id⊗ f2

?

f

g f

g
=



NATURAL SYMMETRY

A1 ⊗ A2
f1 ⊗ f2

-B1 ⊗B2

A2 ⊗ A1

σA1,A2

?

f2 ⊗ f1

-B2 ⊗B1

σB1,B2

?

g

f g
=

f



STATES AND NUMBERS

We use the unit I for −⊗− i.e.

A ' I⊗ A ' A⊗ I

to define states and numbers respectively as

ψ : I→ A

and

s : I→ I



NATURAL SCALAR MULTIPLES

Scalars satisfy

s ◦ t = I
'

- I⊗ I
s⊗ t

- I⊗ I
'

- Is ◦ t =

and we define scalar multiplication as

s • f := A
'

-A⊗ I
f ⊗ s

-B ⊗ I
'

-Bs ◦ t =

for which we can then prove

(s • f ) ◦ (t • g) = (s ◦ t) • (f ◦ g)
(s • f )⊗ (t • g) = (s ◦ t) • (f ⊗ g)

i.e. diamonds can move around freely in ‘time’ and ‘space’



NATURAL SCALAR MULTIPLES

f fs

s

f

s

= =

and similarly

ψ
B

A
π

ψ
B

A
π

=

i.e.

ψ ◦ π = A
'

- I⊗ A
ψ ⊗ π

-B ⊗ I
'

-Bs ◦ t =



NO-CLONING NO-DELETING

Cf. Dieks-Wooters-Zurek 1982 & Pati-Braunstein 2000

Obviously we do not want to be −⊗− a categorical
(co-)product since that would imply existence of

A
∆−→ A⊗ A A⊗B p−→ A

i.e. there are no logical rules

A ` A ∧ A A ∧B ` A



The squared Hilbert-Schmidt norm

||f || =
∑

i
〈f (ei) | f (ei)〉

exists in the picture formalism as

||f || := (pfq)† ◦ pfq

i.e.

f

f

†



The squared Hilbert-Schmidt norm

||f || =
∑

i
〈f (ei) | f (ei)〉

exists in the picture formalism as

||f || := (pfq)† ◦ pfq

Proof.

||f ||(1)=
(
η† ◦ (1⊗ f )† ◦ (1⊗ f ) ◦ η

)
(1)
∑

=
(
η† ◦ (1⊗ (f † ◦ f ))

) (∑
ei ⊗ ei

)
= η†

(∑
ei ⊗ f †(f (ei))

)
=
∑
〈ei | f †(f (ei))〉

=
∑
〈f (ei) | f (ei)〉 .



The corresponding Hilbert-Schmidt inner-product
also exists in the picture formalism as

〈f | g〉 := (pfq)† ◦ pgq

i.e.

g

f†

and generalizes ‘the one on states’ since

(pψq)† ◦ pφq = ψ† ◦ φ



ALL IS QUANTITATIVE!

The squared Hilbert-Schmidt norm yields:

a canonical norm on processes

The Hilbert-Schmidt inner-product yields:

an inner-product on processes



ABSTRACT GLOBAL PHASES

f ⊗ f † = eiθ· g ⊗ (eiθ· g)† = eiθ· g ⊗ e−iθ· g† = g ⊗ g†

Proposition 1.

s•f = t•g , s◦s† = t◦t† = 1I =⇒ f⊗f †= g⊗g†

Proposition 2.

f⊗f †= g⊗g† =⇒ ∃s, t : s•f = t•g , s◦s† = t◦t†

e.g.

s := (pfq)† ◦ pfq and t := (pgq)† ◦ pfq



Proof.

]1 s := (pfq)† ◦ pfq and t := (pgq)† ◦ pfq

f

f
s

=: † g

f
t

=: †

]2 f ⊗ f †= g ⊗ g†

gf

= †f g†



Proof.

]3 s • f = t • g with s/t := (pf/gq)† ◦ pfq

g

f

= †

f

† gff



Proof.

]4 s ◦ s† = t ◦ t† with s/t := (pf/gq)† ◦ pfq

g

f

= †

f

†f

f

†f

g

f†



PROJECTIVE vs VECTORIAL

Hilbert space H
HHHHHHHHHHHHHHH

Birkhoff & von Neumann (1936)

j
lattice of subspaces L(H)

kill redundant global scalars

?

go abstract
- abstract lattices

FdHilb
go abstract

- ‘vectorial’ strong compact closure
HHHHHHHHHHHHHHH

our approach

j
‘projective’ strong compact closure

kill redundant global scalars

?



ABSENCE OF GLOBAL PHASES

Proposition. WProj (C) ' C (canonically) iff

f ⊗ f † = g ⊗ g† =⇒ f = g

iff
Pf = Pg =⇒ pfq = pgq

iff
ψ ◦ ψ† = φ ◦ φ† =⇒ ψ = φ

iff

Equal Preparations Produce Equal States



OPEN SYSTEMS AND CPMs

f
B

A

f
B

A

†

⇒ projective process



OPEN SYSTEMS AND CPMs

f
B

A

f
B

A

†

C

C

⇒ projective process with ancila



OPEN SYSTEMS AND CPMs

f
B

A

f
B

A

†

C

C

C*

⇒ projective process with hidden ancila

= open process on open system



OPEN SYSTEMS AND CPMs

f
B

A

f
B

A

†

C

C

C*

In the case of Hilbert spaces and linear maps we exactly
obtain completely positive maps (Selinger 2005)!



ABSTRACT QM

System of type A := Object A

Composite of A and B := Tensor A⊗B

Process of type A→ B := Morphism f : A→ B

State of A := Element ψ : I→ A

Evolution of A := Unitary U : A→ A

Measurement on A := “Projectors” {Pi : A→ A}i
• Data := ν ∈ {i}i
• Dynamics := ψ 7→ Pν ◦ ψ
• Probability := ψ†◦ Pν ◦ ψ = Tr(Pν ◦ ρψ) : I→ I



Some extra structure is required both for

• Specification of the families {Pi : A→ A}i
• Combining {Pi}i into a single M : A→ ...

But, you can pick your favorite!

For each unitary morphism U : A→
⊕

iAi we have

{Pj := π†j ◦πj}j M :=

(⊕
i

π†i

)
◦U : A→

⊕
i

A

where πj := pj ◦ U . Alternatively, {fi}i has to satisfy∑
i fi = 1A and the corresponding measurement is

M := 〈fi〉i : A→
⊕
i

A .



DIGEST

... first full formal descrition of protocols

... types reflect kinds

... classical data-flow is included

... quantum info-flow is explicit

... kindergarten description/correctness proofs

... space for formal/conceptual choices

... the thing people call QM-relationalism?



APPLICATIONS

— “why computer scientists care about this stuff” —

Quantum programing language design

Quantum program logics for verification

Quantum protocol specification

Quantum protocol verfication

Appropriate semantics for new quantum computational
paradigms e.g. one-way (Briegel), teleportation based
(Gottesman-Chuang), measurement based in general,
topological quantum computing (Kitaev et al.) etc.



RELATED WORK

Penrose. Applications of negative dimensional tensors
(1971) ⇒ Diagramatic reasoning in physics (GR)

Kauffman. Teleportation topology. quant-ph/0407224
⇒ Independent logic of entanglement observation as
Coecke PRG-R-03-12 & quant-ph/0402014

Baez. Quantum quandaries: a category-theoretic per-
spective. quant-ph/0404040⇒ Independent Rel-QM
connection observation as Abramsky-Coecke quant-ph/
0402130; also, GR-QM structural connection

Deligne. Catégories tannakiennes. In The Grothendieck
Festschrift (1990). ⇒ Representation Theorem !!!


