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Résumé — Une nouvelle méthode de restauration 3D basée sur une approche couplée géométrie-

mécanique — Une nouvelle méthode de restauration 3D a été développée en couplant un logiciel de

modélisation géométrique avec un code d’élément fini de mécanique. Cette méthode permet à l’utilisa-

teur d’imposer le déplacement sur le plan de failles afin d’obtenir la géométrie initiale désirée tout en cal-

culant une déformation continue dans les blocs par le programme de mécanique. Le maillage du bloc 3D

permet de tenir compte des éventuelles hétérogénéités induites par les couches géologiques et l’évolution

latérale des faciès. Les résultats sont discutés dans des cas extensifs et compressifs; en rétro-déformation

ainsi qu’en déformation directe. Le cas compressif correspond à la restauration d’un anticlinal faillé

constitué de bancs massifs, sable et argile en alternance. Il a aussi été restauré en 2D, via une mise à plat

surfacique, et les conclusions des deux restaurations 2 et 3D sont comparées. Le second cas, une modéli-

sation directe, est un cas de glissement gravitaire le long d’une marge dans laquelle des chenaux sableux

sont interstratifiés dans une matrice argileuse. Les résultats permettent de quantifier la rotation du champ

de contraintes sur les interfaces sable/argile.

Abstract — KINE3D: a New 3D Restoration Method Based on a Mixed Approach Linking Geometry

and Geomechanics — We developed a new methodology for 3D restoration by coupling a geometric
modelling software and a mechanical finite-element code. This method allows the geologist to impose the
displacement on the main faults in order to get an adequate restored geometry and to compute the 3D
strain and stress fields within the main blocks based on the unfolding with the mechanical approach.
Complex meshing of the solid take into account heterogeneities due to the layering and facies variation.
Results are discussed on compressive and extensional contexts, as well as in backward and forward
approaches. The compressive case is illustrated by the restoration of a faulted anticline with massive
sand and shaly beds. This case has been also restored with 2D surface unfolding processes and we will
compare the information that geologists may get from the various methods. The second case concerns the
deformation, in a gravity gliding context, of a sandy channel embedded into a shaly matrix. The mixed
approach allows to quantify the reorientation of the stress field on the sand/shale boundary.
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INTRODUCTION

2D and 3D geological restorations are classically achieved

through a geometrical approach. The rheology of the natural

material is approximated by deformation modes, namely

essentially flexural slip and simple shear. These two modes

allow to represent the bulk behaviour of sedimentary rocks in

addition to the rigid block rotation (domino style), the flow

(for the salt and some shales) and obviously the mass evolu-

tion due to compaction and layer parallel shortening. Under

the flexural slip hypothesis, the main rock discontinuities, and

therefore the main shear zones, are the lithological bed inter-

faces (Suppe 1983). At the opposite, with the simple shear

mode, the material acts as a granular medium (such as uncon-

solidated sand) and the shear zones are planar and correspond

to the shear angle of the material (White et al. 1986). This

global approach is the base of restoration tools such as

LOCACE (Moretti and Larrère 1989), GEOSEC (Rowan and

Kligfield 1989) and 2D/3D MOVE. These methods can easily

be incorporated in forward as well as in backward modelling

approaches. It has been for instance done in THRUSPACK

(Divies 1997). The displacements are defined by giving a

known part of the final geometry that could either be the

geometry of a layer or the displacement along a fault. Final

state in this case refers to the computation: it is the present one

or the past one for backward and forward modelling respec-

tively. Usually in forward modeling the target geometry is

given at the bottom of the layers, assimilated to the top of the

décollement level whereas in backward modeling the target

geometry is often given by at the top of the layer, supposedly

flat at a given time step. Nevertheless the methods will allow

us to implement other choices. Purely geometrical approaches

are also used in usual surface unfolding techniques (Bennis et
al. 1991, Rouby et al. 2000, Rouby et al. 2002). Such meth-

ods are now all based on a parameterization of the surfaces

when in the years 90’s trial based on triangulated surfaced has

been tested (Gratier and Guillier 1993). They happen to be too

dependent on the triangulation and search direction of the best

fit during the flattening of the triangles.

On the other hand, mechanical approaches allow to com-

pute the deformation given initial conditions: geometry,

behaviours, boundary forces and/or displacements with their

evolution versus time. In Earth Science, since the boundary

forces are usually unknown, the boundary conditions are

often imposed displacements and/or thermal conditions. 

This approach is largely used at large (asthenospheric/

lithospheric) scales to understand the Earth evolution (see for

instance Poliakov et al. 1993, or Burov and Poliakov 2001

with the PARAVOZ code), and at a smaller scale to quantify

site evolutions (for instance the site of a dump in a valley, the

slope stability near a drilling rig, etc). 

At the basin scale (between 100 and 5 km length and 2 to

10 km deep) the geomechanical approach is still poorly used

for various reasons. First of all, the modeller has to face the

major difficulty of postulating a constitutive law for geological

period and kilometric scale materials. A second challenge is

to determine the initial conditions, especially the pre-

existing discontinuities that will localize the shear zones.

Starting with a homogeneous material, one cannot localize

faults at their known positions. On the contrary, introducing

weak zones over-specifies the problem, therefore producing

results which are only reflecting the hypotheses. Moreover,

the friction on the fault planes is a poorly known parameter,

laboratory measurements on small scale samples, as well as

data deduced from the seismicity at small time scale and

large space scale, being not easily extrapolated to the large

time scale of a basin evolution. 

Nevertheless, the increase of the computer CPU facility

and the quality of the seismic image let now the explo-

rationist dream about a full 4D modelling, meaning a com-

plete representation of the evolution of a zone during its geo-

logical history with quantification of the deformation versus

time. Such an approach would constitute a major step in the

frame of basin modelling in complex areas and of the under-

standing of fractured reservoirs. 

Knowledge of the dynamics of the deformation is neces-

sary to predict the fracturation of a deformed reservoir, as the

geometry of the drainage area versus time is a required input

for the oil maturation/migration software. During the last

couple of years, research into deformation in gravity gliding

contexts (West African margin, Gulf of Mexico, etc.) have

testified that the rheology of the components and the associ-

ated facies boundaries played a major role in the stress orien-

tation, and therefore could not be neglected (Calassou and

Moretti 2002, Moretti et al. 2003). 

Based on this analysis of the problem, we started to

develop a 3D-restoration tool based on a mixed approach:

geometry and geomechanics. The geometry at various time

steps, as well as the major fault offsets, will be defined using

the GOCAD geomodeller (Mallet 2001), whereas the restora-

tion within the main “blocks” will be computed by a finite-

element mechanical code. We have chosen Code_Aster, EDF

property, which will be briefly described in the following

pages before discussing, on examples, the interest of this

method. A prototype was developed in 2004 by F. Lepage (F.

Lepage et al., 2004), the industrial tools is now developed in

the frame of KINE3D, IFP-Earth Decision Sciences joint

project. Facing the same problems, other authors have also

developed GOCAD plugins based on a dynamic-relaxation

solution (Santi et al. 2003; Muron, 2005), or stand-alone

algorithms (like DYNEL for example).  

1 METHOD

1.1 Generating a Suitable Simulation Mesh for 
3D Deformation Modelling

As previously said, the entire geometric modelling part, 

and therefor the meshing, is undertaken by the chosen 
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geomodeller, the finite-element geomechanical code being

only used to perform the simulation (computation of a

“deformed” geometry). This step is crucial for the restoration

process and will be so describe briefly here. 

Through the use of high-resolution data like seismic cubes

or well loggings, geological characterisations often lead to

the construction of high-resolution structural models that cap-

ture most of the details of the reservoir geometry. From the

geometrical point of view, in 3D, these models are a set of

discrete representations of the geological objects of dimen-

sion 0, 1 and 2, namely faults, horizons, and their borders.

These objects and their borders have various topologies: for

example, they can be either closed or open. Building such

structural models is a crucial research topic and numerous

techniques have been proposed so far (one can for example

refer to Caumon et al. 2003). In the following, they will be

considered as an input. 

Theses structural models must be used as constraints

for building the 3D mesh dedicated to the finite-element sim-

ulation. However, in such models, there is most of the time a

poor description of the contacts between surfaces, although

cases where faults or fractures are inter-connected and organ-

ised in complex networks are quite common. Contacts are

just an information, stating that a set of objects are supposed

to intersect, and that this intersection is materialised by a set

of objects of lower dimension. At this step, contacts have

thus no real geometrical or topological meaning, and corre-

sponding structural models can not be considered as valid

(Lepage 2003, Prévost et al. 2004). To achieve model consis-

tency, a Soft Frame Model approach can be used, as

described in Lepage 2003. This gives us a general frame for

describing and remeshing the input data properly, so that it is

ready to be used as constraints for the generation of the 3D

simulation mesh. 

Although the mechanical finite-element code we use

could handle various kinds of elements for 3D meshes, only

tetrahedral elements have been considered for our studies,

because of the flexibility they provide and the relative ease of

shape and size control. To keep meshes as coarse as possible

and to prevent over-refinements while keeping an overall sat-

isfying shape quality for tetrahedra, boundaries (elements of

the constraining structural model) are recovered using a

Boundary-Constrained Delaunay mechanism, and the shape

of elements is optimised through a modified Delaunay refine-

ment process, combined with an edge-swap and a smoothing

technique (Lepage, 2003). It is possible as well to vary the

resolution inside the volume of interest. Resulting meshes

have been previously successfully tested in the frame of ther-

mal finite-element (Kohl et al. 2003) and flow finite-volume

(Lepage 2003, Prévost et al. 2004) simulations, so their suit-

ability for geomechanical applications like 3D restoration

would demonstrate that they are a good support for most of

the numerical methods solving classical PDEs in Geoscience.

In the particular context of 3D restoration (or forward

deformation modelling), fault blocks must be free to move

independently from the other ones, so they must be made of

their own mesh elements. Unfortunately, the tetrahedraliza-

tion process described above results in matching elements

(apices, edges and faces of tetrahedra) across interfaces.

Thus, as a post-processing, nodes are split along main faults

and horizons. This can be done efficiently, using topological

considerations only (see Caumon et al. 2003 for the analo-

gous 2D problem). This information will also be useful for

defining material regions (groups of connected tetrahedra) or

setting boundary conditions, where one has to identify nodes

lying on a given fault or a given horizon.

1-2 Setting Boundary Conditions on Displacement

As explained in the introduction, the boundary conditions

will be based on displacement, not on forces. Like in the 2D

restoration process, this displacement field corresponds to the

definition of the geometries of selected markers and/or con-

tacts between two interfaces (horizons and/or faults). We

selected a solution that works in both forward and backward

models. 

These boundary conditions on displacement have two

major purposes: on one hand, to manage the contacts

between the different fault blocks and their relative move-

ments, on the other hand, to make sure that part of the final

computed geometry matches a given “target” known geome-

try, which is in most of the cases the one of an horizon of the

model. In the following, for sake of clarity, these two differ-

ent kinds of boundary conditions will be treated separately.

However, it will be shown how they can be simultaneously

taken into account during simulations. 

1.2.1 Matching a Given Target Geometry (Numerically
Known)

This kind of boundary condition consists of imposing known

displacement values (in the X, Y and/or Z directions) on some

nodes of the mesh, letting the other nodes free to move and

accommodate the induced deformation. As previously said,

this aims at matching a given target geometry defining part of

the final state. Resulting displacement constraints can thus

come from various requirements. For example, in the case of

backward deformation modeling (restoration), a simple target

geometry could be that of the flattened top horizon of a folded

structure. An even simpler one could be that of the plane

defined by Z = 0 for the same horizon. The geologist may also

wish to maintain vertical a given plan, that would correspond

to the 3D extension of the 2D pin-line concept.

Clearly the uniqueness of the simulated final state, has to

be guaranteed by a mechanism avoiding rigid body move-

ments, especially rotation around a vertical axis; it could be

done by giving the final position of at least 2 selected nodes.
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1.2.2 Managing Contacts and Relative Movements of Fault
Blocks

Interfaces, i.e. surfaces, separating pairs of adjacent fault

blocks can be either horizons or faults. Managing node dis-

placements on horizons is mandatory if one considers them

as slipping interfaces. In this work, they will be rather consid-

ered as sticking interfaces and in that case, relative block

movements on horizons must be forbidden. If mesh elements

match across horizons and if nodes lying on them are not

split, then this requirement will be automatically satisfied. On

the contrary (if mesh elements do not match or if nodes lying

on horizons are split), specific displacement constraints are

needed (see Fig. 1). This is also obviously the case for faults,

which must be treated as slipping interfaces. 

Various approaches can be used for describing the relative

movements of fault blocks:

– Given displacement values (direction and norm) on slip-

ping interfaces like faults, one can compute a constraining

displacement for all the nodes of the mesh that lie on these

surfaces. The main difficulty is to compute such a consis-

tent displacement field, which must take into account the

contacts between the interfaces. Moreover, in the case of

faults, displacement values are often seen as a result of the

modeling, more than as an input. However, this approach

can perfectly be used when considering horizons as stick-
ing interfaces (see Fig. 1);

– One can impose displacements only on a restricted set of

nodes (for example those that lie on the borders of the

horizons affected by a given fault, when setting boundary

conditions for a fault), and let the other ones move freely,

as shown in Figure 2. Note that this does not guarantee to

keep fault blocks in contact.

In KINE3D, a classical “master/slave” formulation has

been adopted: the nodes lying on the “master” side of a given

interface are relatively fixed whereas the nodes lying on its

“slave” side are mapped to (projected on) the “master” side.

In the above first two approaches, this mapping function

associates every slave node to a projected location which is

an impact point somewhere on the master side:

– In the first approach, impact points are located inside the

tetrahedra faces defining the master sides of the consid-

ered interfaces (see Fig. 1);

– In the second approach, impact points are located inside

the tetrahedra edges defining the borders of the master

sides of the considered interfaces (see Fig. 2).
Impact points can thus be defined by their barycentric

coordinates relatively to at most 3 (first approach) or at most

2 (second approach) nodes of a master side. This can easily

be extended to the case of branching faults: whenever some

of the nodes of the master side of a given fault are part as

well of the slave side of another (branching) fault, linear rela-

tionships must be combined until the impact point formula-

tion only depends on nodes that are not part of any slave side. 

Note that the location of these impact points clearly depend

on the choice of the master and slave sides associated with

interfaces. The choice of the mapping function associated
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Figure 1

Example of a simple model made of three isopach layers. Meshes do not match across interfaces between layers. If horizons are considered

as sticking interfaces, specific displacement constraints must be set: every yellow-circled node is associated to a projected location

somewhere inside a tetrahedra face lying on the bottom of the above layer, which defines a linear combination between the overall

displacements of the yellow-circled node and the ones belonging  to the tetrahedra face.
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with each interfaces has a very strong impact on the final

solution as well, as it is directly used for imposing “hard” dis-

placements during stress/strain simulations. Such functions

must thus be defined carefully and have a realistic geological

meaning. In the particular case where the considered inter-

faces are faults and where only the nodes lying on the bor-

ders of a given horizon are constrained (second approach),

both slave and master nodes form 3D piecewise polygonal

lines, so a default choice for the mapping function could be

to associate a curvilinear abscissa to every slave node and to

associate it with an impact defined by the point of same

curvilinear abscissa on the master polygonal line (see Fig. 2). 
Imposing displacements only on a restricted set of nodes

(same as 2), and forcing the other ones to slip on the

fault/horizon being considered would be the more realistic

solution, as it guarantees to keep fault blocks in contact. The

development of this kind of boundary condition is currently

under development in IFP with Code-Aster (Bahloul, Master

thesis; 2005). We are also working to increase the user free-

dom on defining the slip on the fault plane.

1.2.3 Combining Boundary Conditions

The two kinds of boundary conditions described above are

different: the first one manages relative node movements,

whereas the other one manages absolute node movements.

Relative node movements are defined by a projection P map-

ping a node A to a linear combination of the location of some

p other reference nodes Ai (i in [0, p-1]), with weights ai (see

Fig. 3). Let us note u(A) the overall displacement of node A.

If one wants both kinds of constraints to be honoured, the

same linear relationship must exist between the final location

of A and the final location of “master” nodes Ai, so (Eq. 1):

A + u(A) = ∑i ai.(Ai + u(Ai))

u(A) - ∑i ai.u(Ai) = ∑i ai.Ai – A = P

Figure 3

Let us consider a horizon H and a fault F. Through the

projection P, the node A is mapped to the master side of fault F,

somewhere between nodes A0 and A1, such that A + P = a.A0 +

(1 – a) · A1. At the end of the simulation, the same linear

relationship must be found between the final locations of nodes

A, A0 and A1, which leads to the following formulation with

overall displacements: u (A) – a · u (A0) – (1 – a) · u (A1) = P.

A1 + u(A1)

H
A

P

F

A + u(A)

A0 + u(A0)
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+ +

+ +

- -

Figure 2

Setting displacement constraints for cancelling the effect of a fault. Here only the nodes lying on the fault-horizon contact are considered.

Nodes lying on the “master” side of the fault have relatively fixed locations whereas nodes lying on its “slave” side are mapped to the

“master” side. Impact points are located somewhere inside tetrahedra edges. Left: the “master” side has “– ” polarity. Right: the “master” side

has “+” polarity.
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The vector P is known and can perfectly be computed

before running any simulation. As a result, one can see that

for projected nodes, all boundary conditions can be simulta-

neously taken into account with a linear combination of the

overall displacements of a restricted set of nodes, as shown in

Figure 3. 

Setting displacement constraints can be thus summarised

as follows:

– Define a “slave” and a “master” side for each of the inter-

face of the model.

– Identify the nodes (from the slave sides of the interfaces)

which displacement has to be constrained for managing the

relative movements of the fault blocks, and compute their

projected location ∑i ai.Ai. This defines the projection 

vector P.

– Set the boundary conditions for the contact management,

using the above Equation 1.

– Set the boundary conditions defining the target geometry,

using formulations of type ux (A) = Dx and/or uy (A) = Dy

and/or uz (A) = Dz, where Dx, Dy and Dz are known 

displacement values.

– Whenever a node is concerned by both kinds of displace-

ment constraints, only the one coming from the manage-

ment of contacts must be taken into account.

1.3 Mechanical Assumptions 

Although rock behaviour could be much more complex, in

order to have a reversible computed transformation, an elas-

tic behaviour of the materials has been assumed. For sake of

simplicity, we use a hyper-elastic relationship for which the

second Piola-Kirchhoff stress tensor S derives from a poten-

tial of the Lagrangian strain tensor E. The latter represents

the deformation accounting for geometrical non-linearity (i.e.

finite rotation). Using the Einstein convention, its compo-

nents are (Eq. 2):

where u is the displacement vector and X the coordinate vec-

tor in the initial configuration. However, in the following

study cases, only the Cauchy stress tensor σ (deduced from S)

will be considered. Its three eigenvectors σ1, σ2 and σ3, with

associated eigenvalues σ1, σ2 and σ3, will be such that 

σ1 > σ2 > σ3. As a consequence, σ1, σ2 and σ3 will also be

respectively referred to as the maximum (or least tensile),

intermediate and minimum (most tensile) principal stress

directions; σ1, σ2 and σ3 will be respectively referred to as the

maximum, intermediate and minimum principal stress values. 

It is to be noted that the geometrical non-linearity of the

deformation requires an iterative Newton-Raphson algorithm

to find the solution in terms of increment of displacement for

a given deformation step. 

The prototype of this new software has been developed in

IFP in 2004 and tested in various cases studies. In the next

paragraph two different cases will be described: a backward

restoration in a compressive zone and a forward restoration

in extension, more specifically in gravity gliding context.

2 STUDY CASES

2.1 Restoration in a Compressive Context

2.1.1 Geological Setting

In compressive areas, traps are often the hinges of the anti-

clines. Unfortunately, onshore, in mountain belts, the seismic

images may still have a poor resolution. Their processing

may be difficult and does not always allow the explorationist

to locate precisely even the horizontal position of the top of

the structure. In this context, restoration is often the best tool

to precise the geometry.  In addition, in term of reservoirs, in

numerous cases, as for instance in the Andeous front belt, the

target is deep and the bulk reservoir porosity rather low. In

this case, the prediction of the fracture network and of the

resulting secondary porosity could be the key parameter for a

field economical development. Usually the fracture network

computation is inferred based on the final curvature of the

beds. A knowledge of the cumulative strain should clearly

help to improve this fracture model and the knowledge of the

stress based on the rock rheology would constitute another

step (Guiton et al. 2003).

The example studied here is an anticline in the Sub Andean

Zone of Bolivia. The reservoirs are the sand deposits of the

Palaeozoic, and the sources rocks, interbedded with these

reservoirs, are the shale of the same Palaeozoic. The

Devonian-Silurian sequence represented in the model is about

1.2 km thick, both sand and shale being quite massive. The

compression is late tertiary, from 10 Myr to now, see Moretti

et al. 1996 or Moretti et al. 2002 for details concerning this

area. A study of the fracture network in the low porosity sand-

stone of the reservoir could be found in Florez-Niño et al.,
(2005), this study highlights the role of the kinetic of the

deformation over the fracture and fault network development

and links an estimated shear strain to the fracture density.

2.1.2 Model

Geometry

The 3D geometry of this anticline is based on the synthesis of

surface, seismic and well data. It is shown in Figure 4 and 5.

Bed length analysis indicates a shortening of about 10% of

deformation perpendicularly to the fold axis. The top-bottom

relationship, in thickness, has been tested using a 3D version

of the kink-method 2D approach (Galera et al., 2003).
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A - One parametrization
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B - One parametrization by piece of horizon
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Figure 4

2D unfolding, with or without fault lip imposed contacts.

A1 - Upper horizon, the green arrows represent 
the computed strain field.

A2 - Restored geometry, the lines are the isovalues 
of the parametrization.

A3 - Internal strain: spreaded variation of area. B3 - Internal strain: no variation of area.

B2 - Restored geometry, 
the fit on the fault lip is not perfect.

B1 - Upper horizon, the large points represent 
the imposed links between the fault lips.
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Boundary Conditions

The top horizon of the anticline is flattened (in both 2D and

3D reestorations), imposing a constant vertical coordinate for

all the nodes of the mesh lying on the top surface. The hori-

zontal coordinates are let free to accommodate the deforma-

tion excepted for two points at the extremities of the right

border. The faults of this structure are known to be syn-

folding and there is no thickness variation across them. In

this case, faulting is Tertiary whereas the modeled layers are

Paleozoic. Therefore, in 3D, faults could be unfaulted by

imposing coincidence of both top and bottom horizons.

2.1.3 Results of the 2D Unfolding

The surfacic restoration is based on parameterization of the

surface. The unfolding is achived by imposing a depth value

and looking for the best result, imposing a preservation of

both lengths and angles (Mallet, 2001). If the surface is

unfoldable, there is one solution (one imposes also the final

position of 2 points to avoid rotation as in 3D). If the surface

is not perfectly unfoldable, the research of the best solution

will result on imposing some light internal deformations.

Two strategies are possible within the frame of the Gocad

research algorithms: one may use one parameterization for

the full horizon or one by patch. When using different

patches the link is given by the position of two points on the

lips of the faults. The figure 4 shows the results for both

methods applied at the top of the structure which is an Upper

Devonian horizon. The large points on the center of the faults

represent the location where the boundary conditions have

been imposed and the lines on the surfaces represent the 

isovalues of the parameterization. 

Figure 6

Stress field resulting from the restoration presented in Figure 5.

Top: maximum (least tensile) principal stress value. Blue

(negative values) means extension and red (positive values)

means compression. Bottom left: closer view displaying the

least tensile principal stress direction. Bottom right: closer

view displaying the most tensile principal stress direction. It

is rather parallel to the bedding.

By using one parameterization (4A), the fit is perfect on the

faults, by construction. By using one parameterization by patch

(4B), the fault lips fit only on the two points that has been

imposed. Both cases point out a geometrical imperfection on
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Figure 5

3D restoration of a faulted  anticline in the Sub-Andean Zone of Bolivia. Left: initial geometry. Right: restored geometry.



I Moretti et al. / KINE3D: a New 3D Restoration Method Based on a Mixed Approach Linking Geometry and Geomechanics

the small block in the eastern front of the anticline since there

is no way to have a perfect fit between the lips without

imposing internal deformation. The one-parameterization

approach has the advantage of being fully automatic and to

compute a continuous unfolded surface, an internal deforma-

tion is imposed to reach this fit that could, or not, be consid-

ered as negligible by the geologist. At the opposite, the 

second approach (4B) has the advantage to highlight the geo-

metrical problem inherited from the initial geometry. This

problem may, in this case, be easy solved by changing

slightly the geometry of the faults in the flank of the anti-

cline. Nevertheless, at this stage, the explorationist may con-

sider that his interpretation is good enough to implement the

well or to answer to any other question he has to face.

2.1.4 Results of the 3D Restoration

The next step, could be the 3D restoration, the results obtained

with KINE3D is shown in Figure 5, with satisfying fitting of

the blocks. The volume change is less than 10-3. The change in

top length perpendicularly to the fold axis is about 2 km. It is

comparable with the results of a 2D balancing with the flexural

slip hypothesis (Moretti et al. 2002). This illustrates that length

conservation along the compression is quite satisfied by our

methodology. 

Despite the strong approximation of hyper elasticity, the

stress field resulting from the simulation can be qualitatively

interesting in analysing the bulk distribution of the deformation.

To this end, we consider the opposite stresses associated to 

forward deformation. Figure 6 shows the maximum (least ten-

sile) principal stress magnitude σ1. It clearly shows the outer-

arc extension (in blue) and inner-arc compression (in red) 

in the hinge of the anticline. Figure 6 shows as well the 

magnitude and orientation (with arrows) of the maximum

(least tensile) and minimum (most tensile) principal stresses σ1

and σ3, on left and right pictures respectively. In the left flank

and hinge, the extension is oriented along the bedding and the

compression perpendicular to it. This illustrates the dominant

influence of unfolding in this area. To the opposite, the right

flank is dominated by unfaulting deformation. It is particularly

obvious for the nearest block from the hinge, where compres-

sion from bottom to the top results from misfit in the top

geometry. This latter point was already highlighted in a previ-

ous work with surface restoration. Therefor the light geometri-

cal problem at the contact between the horizon and the faults in

the eastern flank of the anticline that became apparent in the

2D restoration, results now to a wrong stress and strain tensors.  

2.2 Forward Deformation in a Gravity Gliding
Context

2.2.1 Geological Setting

During the last couple of year, exploration became very

active in turbiditic systems of the deep offshore, especially in

the south Atlantic margins (Brazil and West Africa) and

within the Gulf of Mexico. The reservoirs as well as the tec-

tonic context of these zones are quite particular. The reser-

voirs are usually constituted of sandy channels interbedded in

a shaly/silty matrix. 

These channels are now well imaged by the high-resolution

3D seismic image even if some of the features imaged by the

seismic data are still debated. One of the open questions is

the influence of the post-depositional deformation versus the

sedimentological features. In the central West African margin

(Lower Congo basin and neighbors), the explored channels
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Figure 7

Forward deformation of a channel embedded into a shaly matrix. Left: initial mesh with a detail showing the mesh within and around the

channel. Right: as a boundary condition, a radial extension of 10% is imposed.
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are post-extension. Nevertheless, they are clearly affected by

faults that influence the continuity of the reservoirs. For more

than 100 Myr, there is no tectonic activity in this zone but

gravity gliding of the margin occurs due to the increasing sedi-

mentary load and to the tertiary uplift of the African continent

(Duval et al. 1992). In this context the deformation is clearly

multi-directional and the data show extension both parallel and

perpendicular to the margin as emphased by the huge rotations

deduced from surface unfolding (Rouby et al. 2000, 2002).

Analogue models, designed to represent the spreading of a

margin, have highlighted that the development of the fault pat-

tern and the fracturation on the channels are strongly depen-

dent on the sand/shale interfaces (Panien et al. 2001, Moretti et
al. 2003). We discussed in these papers how the borders of the

channels evolved as faults during the gliding and how the

stress re-orientation within the channel leads to the develop-

ment of a fracture network perpendicular to the channel bor-

der. Seismic and field data, as analogue and 2D numerical

models, have confirmed this evolution (Moretti et al. 2003).

In Moretti et al. 2003, a 2D-elastic geomechanical model

with triangular elements and an infinitesimal strain of 1%

(radial extension) was used  to study the stress orientation in

and around the channels versus the Young’s coefficient and

Poisson’s ratio contrasts, with a 2D elastic relaxation solution.

Thanks to the link between GOCAD and Code_Aster, a 3D

geometry can now be considered for this model, leading to a

more realistic description of the channel-matrix interaction.

2.2.2 Model

Geometry

The geometry of the channel is exactly the one defined in the

analogue model presented in Figure 9. The aspect ratio,

width and thickness, have been deduced from the channel

visible in seismic data, presented in Calassou and Moretti

2003. The Young’s modulus E and Poisson’s ratio ν for the

surrounding shales are respectively set to 85 MPa and 0.20.

For the more competent sandy channel, E is set to 100 MPa
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Figure 8

Stress field resulting from the forward deformation presented in Figure 7 (maximum – least tensile – principal stress direction is vertical).

Top left: intermediate principal stress direction (perpendicular to the edge of the channel inside of it). Top right: most tensile principal stress

direction (parallel to the edge of the channel inside of it). Bottom: views of the stress field displayed in principal components with ellipsoids.

Red ellipses are normal to the intermediate principal stress direction, and white ellipses are normal to the most tensile principal stress

direction.
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and ν to 0.20 to analyze the influence of a contrast in

Young’s modulus.

Boundary Conditions

The study case corresponds to a forward model. A quarter of

cylinder represents the part of the margin that is studied, in

order to allow a direct comparison with the analogue models.

In these models, a wall maintained the silicone in its initial

position. This wall was taken off, triggering the gliding of the

silicone under its own weight. The silicone is viscous, i.e.

with rate-dependent deformation. For rate-independent

numerical models with elastic material, we have extended the

border by a given value.

A uniform radial extension of 10% has been imposed on

the free border of the model as shown by the comparison of

the two bottom meshes: blue for the initial and red for the

final (see Fig. 7). The two borders of symmetry are vertical

and the top and bottom surfaces are imposed to remain flat,

thus enforcing plane strain conditions. This last boundary

condition does not correspond to natural cases since a subsi-

dence is expected during gravity gliding. Nevertheless, in the

numerical experiment presented in Figure 6, there is no grav-

ity and no compaction, therefore, the vertical displacement

induced by the gliding is out of the scope of the simulation.

2.2.3 Results

A simple analytical calculation in the context of small 

deformation (see Annex 2) shows that the radial extension of

a homogeneous linear elastic material (i.e. without channel)

would result in horizontal equal most tensile and intermediate

principal stress values. This means that any two perpendicu-

lar horizontal vectors are solutions for the direction of these

principal stresses. The numerical solution in large deforma-

tion leads to similar conclusions.

Figure 8 shows the computed minimum (most tensile) and

intermediate principal stresses σ3 and σ2 with scaled arrows.

Due to plane strain conditions, the maximum (least tensile)

principal stress σ1 is vertical. This figure also displays a 

representation of the computed stress field with ellipsoids.

Red ellipses are normal to the intermediate principal stress

direction σ2 (thus are defined by σ1 and σ3) and white

ellipses are normal to the minimum principal stress direction

σ3 (thus are defined by σ1 and σ2).

The results show that there is a complete re-orientation of

the principal stresses. Inside the channel, the “least tensile” hori-

zontal stress σ2 is perpendicular to the edge of the channel and

becomes parallel to this edge outside the channel at the

sand/shale border. This result is similar to the conclusion of

both 2D numerical modeling and analogue experiments

(Moretti et al. 2003), as shown in Figure 9. This model suggests

the development inside the channel of a fault network perpen-

dicular to the channel boundary, a feature which has been

observed in 3D seismic data (Calassou and Moretti 2003).

CONCLUSIONS

The link between Code_Aster and GOCAD that has been

presented here let us be very optimistic on the possibility to

achieve 3D restoration in complex geological cases and to

compute a qualitatively consistent stress field related to the

deformation. The possibility to take into account variations in

the rock behavior within the main blocks is particularly inter-

esting. Today, the method can still be improved by enlarging

the characteristic of the target geometry. The developed

methodology is an alternative to the work described in

Muron and Mallet 2003, based on energy minimization 

criteria and the dynamic relaxation approach (Muron 2005;

Mueller et al. 2005). 
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Figure 9

2D analogue experiment showing the fracturation of a channel under gravity gliding. The silicone glides under its own weight, which leads to

the development inside the channel of a fault network perpendicular to the channel boundary.
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The comparison between the surfacic and the volumetric

restoration results may be interpreted on different ways.

Restoration has two main goals: 

– insure the correctness of the interpreted geometry;

– compute the past geometries to quantify the deformation

and/or the migration pathway evolution at the basin or

reservoir scales. 

It is obvious that to reach the second goal the volumetric

restoration constitute a major step. At the opposite, the inco-

herence of the geometries may be often shown, as in the

compressive case (fig 4 to 6), based on a surface restoration

if the hypotheses of this unfolding are constrained enough.

In cross-section, a similar analyze could be done when pass-

ing from length balancing to full 2D flexural slip restoration.

Within KINE3D, various tools, from length balancing to 3D

volumetric restoration including cross-section balancing and

surface unfolding will be available within the same environ-

ment. It will allow the users to solve their problems step by

step: complete a 3D meshing on a faulted area to realize that

the lengths of the horizons are incoherent is a little bit time

consuming. At the opposite full 3D volumetric restoration

taking into account the rheologies and the reorientations of

the stress induce by the facies borders is a requirement for the

next generation of fractured reservoir modelers and basin

modeling tools. 
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ANNEX-1

Code_Aster

Code_Aster has been developed and used internally by Élec-
tricité de France (EDF) for more than 15 years. Since 1997

and every two years, EDF releases a fully documented free

version of the source code of Code_Aster, available online

(http://www.code-aster.org) and managed by a group of

twenty permanent developers. This version is updated every

six months. A “development” version can also be downloaded

on the website (current version is now Code_Aster v. 7.3). 

ANNEX-2

Radial extension of a homogeneous elastic cylinder

Let us consider a homogeneous linear elastic and isotropic

cylinder which initial geometry is defined by a radius Ri and

a thickness h. This cylinder is submitted to a radial displace-

ment-controlled extension such that the final radius is 

Rf > Ri. This extension is uniform along the thickness which

is forced to remain unchanged with the deformation, such

that plane strain conditions are satisfied. Let us use the cylin-

drical coordinates (r, θ, z) associated to the orthonormal basis

(er, eθ, ez), which vectors are along the radius, along the 

circumference and along the cylinder revolution axis respec-

tively. The displacement field is :

Note that it only depends linearly on the radial coordinate.

For take of simplicity we write the deformation tensor in its

linear form εε, with components:

Introducing the radial displacement field, we obtain:

The Cauchy stress tensor σσ can then be determined with

the linear elastic relationship, σσ = λtr (εε) II + 2 µεε, where λ

and µ are the Lamé coefficients, II is the second order iden-

tity tensor and tr (.) is the trace operator. We therefore obtain:
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