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One’s ability to use upper limbs is critical for performing activities of daily living necessary

for enjoying quality community life. However, after stroke, such abilities becomes

adversely affected and it often deprives one of their capability to perform tasks that

need coordinated movement in the upper limbs. To address issues with upper limb

dysfunction, patients typically undergo rehabilitative exercises. Given the high patient to

doctor ratio particularly in developing countries like India, conventional rehabilitation with

patients undergoing exercises under one-on-one therapist’s supervision often becomes

a challenge. Thus, investigators are exploring technology such as computer-based

platforms coupled with cameras that can alleviate the need for the continuous presence

of a therapist and can offer a powerful complementary tool in the hands of the

clinicians. Such marker-based imaging systems used for rehabilitation can offer real-time

processing and high accuracy of data. However, these systems often require dedicated

lab space and high set-up time. Often this is very expensive and suffers from portability

issues. Investigators have been exploring marker-less imaging techniques e.g., Kinect

integrated computer-based graphical user interfaces in stroke-rehabilitation such as

tracking one’s limb movement during rehabilitation. In our present study, we have

developed a Kinect-assisted computer-based system that offered Human Computer

Interaction (HCI) tasks of varying challenge levels. Execution of the tasks required

one to use reaching and coordination skills of the upper limbs. Also, the system was

Performance-sensitive i.e., adaptive to the individualized residual movement ability of

one’s upper limb quantified in terms of task performance score. We tested for the usability

of our system by exposing 15 healthy participants to our system. Subsequently, seven

post-stroke patients interacted with our system over a few sessions spread over 2

weeks. Also, we studied patient’s mean tonic activity corresponding to the HCI tasks

as a possible indicator of one’s post-stroke functional recovery suggesting its potential

of our system to serve as a rehabilitation platform. Our results indicate the potential of

such systems toward the improvement of task performance capability of post-stroke

patients with possibilities of upper limb movement rehabilitation.
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INTRODUCTION

One’s ability to make adequate use of upper limbs is crucial
for independently performing Activities of Daily Living (ADL)
(Magermans et al., 2005). For executing ADL, one often needs
to reach out and pick up an object while making coordinated
hand movements. However, after stroke, such abilities become
adversely affected and patients suffer from loss of dexterity,
uncoordinated movement in upper limbs, etc., (Aqueveque et al.,
2017). Consequently, stroke survivors become dependent on
caregivers thereby adversely affecting their community life and
ability to earn their own living. The situation becomes critical
given the high prevalence of post-stroke cases. Globally, ∼15
million people are affected with stroke every year (Green and
King, 2010). Reports indicate that ∼80% of stroke patients have
upper limb dysfunction with ∼30% of them regaining some
functional recovery with rehabilitation in the first 6 months
post-stroke (Turolla et al., 2013).

After stroke, the patients are commonly referred to
physiotherapy units for rehabilitation. The conventional
rehabilitation techniques require patients to have one-on-one
sessions with clinicians. For developing countries like India,
timely and adequate access to rehabilitation facilities including
trained clinicians is restricted due to the limited availability of
healthcare units and skilled clinicians. Given the high patient
to doctor ratio particularly in developing countries like India
(Deo, 2013), the post-stroke patients undergoing rehabilitation
are often relieved from hospitals early. Also, in conventional
rehabilitation, patients undergo exercises under one-on-one
therapist supervision and the therapist’s continuous presence
often becomes a challenge with high patient load. Patients
undergo repetitive exercises with limited variations that often
become monotonous to them (Clarke, 2014). Thus, technology-
assisted platforms built using the fundamentals learnt from
conventional rehabilitation can offer intensive, interesting,
and quantified rehabilitation while manipulating the tasks
and thereby offering variations in challenge level. Also, such
systems can alleviate the need for the continuous presence of
a therapist by offering a powerful complementary tool in the
hands of clinicians. For this, investigators have been exploring
technology-assisted tools such as robot-based (Krebs et al.,
2004; Hidler et al., 2005) and computer-based (Bao et al., 2013)
platforms for rehabilitation.

Often, the robot-assisted platforms use goal-directed tasks
such as following a pattern (Masia et al., 2009) that requires
one to make a coordinated movement of upper limb. Again,
researchers such as Wang et al. (2013) and Squeri et al. (2014)
have used point-to-point reaching task to be performed under the
assistance of a robot. The degree of task difficulty was varied by
manipulating the range of movement needed to execute the task
(Squeri et al., 2014). Added to offering tasks of varying challenges,
researchers have used autonomous systems that can adapt to
user’s ability. One such robot-assisted autonomous system was
used by Masia et al. (2009) and this system was capable of
adaptively offering tasks of increasing difficulty once the user
could satisfactorily complete a task of lower difficulty. The robot-
assisted techniques, though powerful, often suffer from high cost,

safety issues, no consideration of gravity while designing tasks,
etc. (Hidler et al., 2005). Computer-based platforms integrated
with optical motion capture systems (Hingtgen et al., 2006;
Perez-Marcos et al., 2017) can offer another alternative. These
studies have used marker-based techniques to track one’s hand
movement during a reaching task. Such systems used in stroke
rehabilitation offer real-time processing and high accuracy of
data. However, these systems often require a dedicated lab space,
high set-up time and multiple cameras (Hingtgen et al., 2006).
Often this is expensive and suffers from portability issues (Yang
et al., 2014). In an attempt to develop cost-effective platforms,
researchers have used single camera-based system (Sucar et al.,
2010) that also uses markers. For example, the marker can
be a ball held by the user (Sucar et al., 2010). Investigators
have been exploring marker-less imaging techniques like Kinect
integrated computer-based graphical user interface to track one’s
limbmovement for functional assessment and rehabilitation (Bao
et al., 2013; Roy et al., 2013; Sin and Lee, 2013; Webster and
Ozkan, 2014; Kim et al., 2016; Gauthier et al., 2017; George
et al., 2017; Liao et al., 2018). Researchers such as Kim et al.
(2016) have used Kinect-assisted skeletal tracking, displayed on
a computer-based graphical user interface for estimation of Fugl
Meyer Assessment (FMA) score using the skeletal tracking data.
Similarly, Kinect-assisted computer-based tasks have also been
designed for upper-limb rehabilitation exercises. For example,
Bao et al. have reported the use of Kinect-assisted computer-
based upper limb rehabilitation therapy that aimed to improve
the upper limb functionalities in post-stroke patients (Bao et al.,
2013). Again, Liao et al. have used the Kinect-based system
for postural tracking of a patient’s upper limb for improving
shoulder and elbow movements (Liao et al., 2018). Instead of
offering only visual feedback, researchers have augmented such
systems with auditory feedback (Sin and Lee, 2013). In one
of the recent review articles (Webster and Ozkan, 2014), the
use of Kinect coupled with computer-based graphical interface
powered by Virtual Reality (VR) has been reported for upper
limb rehabilitation exercises. As mentioned in this review paper,
researchers such as (Chang et al., 2012; Webster and Ozkan,
2014) have proposed a Kinect-assisted system in which patients
can manipulate virtual object through shoulder extension. Also,
such systems have been used for guidance and correction of
targeted upper extremity movements like shoulder abduction
combined with elbow flexion (Webster and Ozkan, 2014) during
exercise. Researchers have developed Kinect-assisted VR-based
systems for upper limb rehabilitation in which post-stroke
patients were asked to move their upper limb to steer a boat, pick
up bottles, etc. in the VR world (Gauthier et al., 2017; George
et al., 2017). In these studies, Kinect-assisted skeletal tracking was
used to intermittentlymeasure the functional ability of patients to
monitor their functional progress during rehabilitative exercises.
Further, researchers have presented Kinect-assisted VR-based
game environments aimed toward improving the range of
motion and other functionalities of patients (Borghese et al.,
2012; Pastor et al., 2012). Though these studies have challenged
the patient’s functional ability while exposing them to the Kinect-
assisted VR-based exercise platform, yet, in most of these cases,
there was no task specific variation in the VR environment
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that can be motivating for patients. Additionally, none of these
studies have investigated one’s functional recovery along with
physiological manifestation as gauged by clinicians using their
expert eyes or physiological data acquisition. This is important,
since physiological manifestations are often related to one’s
sensorimotor recovery (MacIntosh et al., 2008) that might be
interesting to investigate while patients are exposed to a VR-
based environment augmented with a Kinect device.

Investigators have been exploring the use of VR-based
platforms augmented with Kinect. This is because, Kinect can
offer several advantages such as cost-effectiveness, portability,
ease of configuration, etc., (Lange et al., 2011). Though it has
multiple advantages, the accuracy and precision for sensitive
human-based applications are still under critical examination
(Huber et al., 2015). As evident from literature, the error
and imperfection in Kinect data can be due to the sensor,
measurement setup, etc., (Khoshelham and Elberink, 2012).
The sensor-related errors can be addressed through proper
calibration, and the measurement setup-related error can be
addressed by maintaining adequate lighting condition and
controlling the distance of object from the sensor (Khoshelham
and Elberink, 2012). However, given the advantages of using
Kinect, investigators have been exploring its use in rehabilitation
by augmenting it with computer-based systems. Computer-based
platforms offer flexibility in design while making it easy to
develop exercise tasks with variations for motivating the users
(Bao et al., 2013). Thus, with Kinect-assisted computer-based
systems, developing cost-effective, portable, and motivating
exercise platforms with easy setup facilities has now become a
reality. Also, literature review indicates the potential of such
systems to address the issues of a reduced range of motion
and coordination skill of post-stroke patients (Roy et al.,
2013) thereby making it suitable for upper limb rehabilitation.
Additionally, it would be interesting to explore the potential of
such systems for adapting the task challenge level based on one’s
residual movement ability in an individualized manner.

Given the many advantages of using Kinect-assisted systems
for monitoring one’s limb movement during interaction with a
computer-based graphical user interface, further exploration into
its usage in adaptive exercise paradigms is warranted. Specifically,
such a system can keep track of one’s performance in an exercise
task. Subsequently, the exercise platform can be made adaptive
to one’s residual movement ability (through task performance)
while varying challenge level in an individualized manner.
In our present study, we have developed a Kinect-assisted
computer-based system powered with VR-based graphical user
interface that offered Human Computer Interaction (HCI)
tasks of varying challenge levels. Execution of the tasks
required one to use reaching and coordination skills. Also,
the system was Performance-sensitive being adaptive to the
residual movement ability of one’s upper limb quantified in terms
of task performance score in an individualized manner. We
tested for the usability of our system by healthy participants.
Subsequently, post-stroke patients interacted with our system
over a few sessions spread over 2 weeks and our results
indicate the potential of such a system to contribute to upper
limb rehabilitation.

The objectives of our study were 3-fold namely, to (i)
understand the usability of our Kinect-assisted Computer-based
HCI task platform among healthy individuals, (ii) know the
views of post-stroke patients regarding the usage of our system,
and (iii) understand the implications of interaction with the
HCI task platform on the ability of post-stroke participants to
perform hand movement over multiple exposures. Additionally,
we wanted to understand the implications of these exposures
on the physiology of post-stroke patients and the potential of
our system to be used as a rehabilitation platform in future.
This manuscript is organized as follows: section Materials and
Methods discusses design of system; section Experimental Setup
and Procedure describes experimental setup and procedure,
section Result summarizes results, section Discussion presents
the discussion, and section Conclusion presents conclusion.

MATERIALS AND METHODS

Our system was composed of (1) Human Computer Interaction
(HCI) Task, (2) HCI-Kinect Handshake (3) Strategy Generator,
and (4) Physiological Data Acquisition modules. Figure 1 shows
block schematic presentation of our system. As can be seen
from this Figure, while the user (participant) performed upper
limb exercise tasks, his hand position was picked up by a
Kinect sensor interfaced with an HCI-based graphical user
interface (using HCI-Kinect Handshake) presenting tasks of
varying difficulty levels. Simultaneously, user’s task performance
score was computed by our system that in turn was used by a
rule-based Strategy Generator to trigger switching of HCI-based
tasks of varying difficulties. Additionally, the user’s physiology
was acquired by a Physiological Data Acquisition module,
synched with the HCI-based platform by event markers. The data
collection was carried out in two stages, namely Stage 1 and Stage
2. Stage 1 was used to ensure that our system was working as
desired and understand the usability of our system. Stage 2 was
used to understand the potential of our system to contribute to
upper limb rehabilitation. Each Stage had two steps, namely Step
1 and Step 2. Step 1 was a calibration step in which we mapped
one’s hand movement from physical space to the virtual space.
Step 2 involved interaction with the HCI task in which one’s
upper limb movement capability was challenged through tasks of
varying difficulty levels. The Stages 1 and 2 were carried out with
healthy and post-stroke participants, respectively.

Human Computer Interaction (HCI) Task
Module
We designed HCI tasks using the python based Vizard software
(fromWorldviz Llc.) and OpenCV library. The HCI tasks needed
the participants to make coordinated movement in physical
space (following specific trajectories displayed on the HCI
monitor) coupled with stretching of upper-limb (i.e., reaching
with flexed arm). Variation in task difficulty was also a part
of the system design. The difficulty level depended on the (i)
shape of the trajectories and (ii) extent of arm flexion required to
complete a task.
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FIGURE 1 | Block schematic of designed system.

Design of HCI Tasks
We designed a Graphical User Interface (GUI) for the HCI
task. For each task, the GUI comprised of two sections, namely
(i) Sample Pattern (solid lines) and (ii) Dotted Pattern (dots)
displayed on both sides (Left and Right) of the Task monitor
(Figure 2A). The Sample Pattern was used to serve as a Reference
Pattern for the participant. The Dotted Pattern consisted of
white colored dots (shown as black dots in Figure 2A) each
of size 40 pixels in diameter displayed on a black colored
background (shown as white background in Figure 2A for
representation). The task required the participants to connect the
dots of the Dotted Pattern (Getting idea from reference pattern).
Henceforth, we refer the task of connecting the dots of the
Dotted Pattern as a Sketching Task. Here, we have used three
different patterns (e.g., Straight Line, Triangular, and Square
wave patterns) those were to be followed by the participants
while sketching the trajectories. Each pattern consisted of seven
dots [one dot at start (ST) and end (E) of the trajectory with
intermediate five dots]. For a Straight Line Pattern, the dots
(spaced by 107 pixels and angular separation θ

0 = 00) were
displayed (Figure 2A). The Triangular and Square wave Patterns
were formed by displaying the dots at the vertices of the pattern
[spaced by 107 pixels (θ0 = 600) and 107 pixels (θ0 = 900),
respectively]. Please note that the number of dots and the spacing
between dots were chosen as a typical case (can be changed based
on requirement).

We chose these patterns taking inputs from rehabilitation
studies (Wang et al., 2013) and the physiotherapist in our team
to challenge participants’ coordination capabilities. The Straight
Line pattern was the easiest in terms of difficulty since it did
not require one to change his/her hand orientation between the
start and the end dots. The Triangular and Square patterns were
of higher difficulty since these required one to change hand
orientation between three to five times, respectively. Added to
the coordination skills, one often needs reaching capability while
performing activities of daily living. In fact, studies indicate that

forward flexion exercise of one’s arm (stretching of upper arm in
plane parallel to frontal plane of body) often comes as an integral
part of therapeutic regimen (Carr et al., 1985). To incorporate
this, we designed HCI tasks that would need one’s arm to be
flexed by varying amounts in a plane parallel to the frontal plane.
Thus, we segmented the HCI monitor into two parts namely
ZoneTOP, ZoneBOTTOM (ZoneTOP: ZoneBOTTOM = 2:1 ratio)
(Figure 2A). Here, we have considered only the ZoneTOP for
the GUI. Subsequently, this ZoneTOP was subdivided into four
sub-zones namely, ZoneNE (Top-Right), ZoneE (Middle-Right),
ZoneNW (Top-Left), and ZoneW (Middle-Left). The Sample
Pattern and Dotted Pattern were displayed in (i) ZoneE, (ii)
ZoneW, (iii) ZoneNE, and (iv) ZoneNW. The choice of the zone
for display of the Dotted Pattern was based on the left/right
hand used by the participant to interact with the HCI task. For
example, if a participant was asked to use the right hand for
sketching the trajectory, then the Dotted Patterns were displayed
in ZoneE and ZoneNE and the Sample Patterns were displayed in
ZoneW and ZoneNW. Vice-versa was the case for a participant
using the left hand for HCI task. Sketching patterns in ZoneE
and ZoneW needed one to flex his/her arm by 900 ± 200 and
for ZoneNE/ZoneNW, the requirement was 1200 ± 200 in a plane
parallel to the frontal plane.

The task difficulty of the HCI tasks depended on the
extent of arm flexion (specified in terms of ZoneE/ZoneW
and ZoneNE/ZoneNW) and the shape of the trajectories (i.e.,
Straight line, Triangular, and Square wave Patterns). The HCI
tasks belonged to six difficulty levels (DLI–DLVI). Sketching
of the Straight line, Triangular and Square wave Patterns
in ZoneE/ZoneW was considered to offer DLI, DLII, and
DLIII tasks, respectively. Again, sketching of the Straight line,
Triangular, and Square wave Patterns for ZoneNE/ZoneNW were
considered to offer DLIV, DLV, and DLVI tasks. One’s hand
position in the physical space was tracked by a Kinect sensor
facing the individual and communicated to the Task computer
by using HCI-Kinect Handshake Module (section HCI-Kinect
Handshake Module). The sensed hand position corresponded to
an avatar in the HCI environment. When the avatar collided
with the dots of the Dotted Pattern displayed on the HCI
monitor, the color of each dot changed from white to gray (with
an auditory feedback). Corresponding to one’s hand movement
in the physical space, our system connected the consecutive
dots with gray colored lines thereby sketching a pattern in
each task. After a participant finished one task, the HCI task
monitor displayed the performance score (section Computation
of Performance Score) in percentage at center-top position of the
monitor. Subsequently, based on the participant’s performance
score in a task, the Strategy Generator decided the difficulty level
of the next task.

HCI-Kinect Handshake Module
To execute theHCI tasks, the participant was asked to flex his arm
in a plane parallel to the frontal plane. The position of the flexed
arm in the physical space was captured using a Kinect xBOX
360 (from amazon.in/Microsoft-Kinect-Sensor-Xbox-360) that
can perform skeletal tracking. This tracking device consists of
one RGB camera, two depth sensing cameras, and one IR laser
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FIGURE 2 | (A) Expanded view of GUI with DLI for Participant playing in Right hand, (B) state machine representation of strategy generator. ST, Start; E, End; t, Task

execution duration; T, Maximum allowed duration; C1, Adequate Performance; C2, Inadequate Performance.

source. It generates images with 640× 480 resolution (Roy et al.,
2013). We used the Kinect mouse cursor application (Microsoft.
archive.codeplex.com)1 that comes with the Kinect Windows
SDK for designing the HCI-Kinect handshake module. We used
this application for tracking the position of one’s hand in physical
space and representing that in the virtual space. For visualization,
we integrated the participant’s hand position with a paint brush
(an avatar) in the HCI environment.

Strategy Generator
The Kinect-assisted HCI system was programmed to
autonomously offer tasks of six difficulty levels (DLI-DLVI)
with the task difficulty being decided by a rule-based Strategy
Generator. The Strategy generator offered tasks based on one’s
individualized task performance (section Computation of
Performance Score) labeled as “Adequate” or “Inadequate”. The
tasks of varying difficulty were offered using a state machine
representation (Figure 2B). One’s performance was labeled
as “Adequate” (Condition C1) if the performance score was
≥70%, else, it was labeled as “Inadequate” (Condition C2).
Here, the threshold for the performance score was taken as 70%
as an initial approximation (can be changed) since literature
indicates 70% as the average initial exercise performance for
outpatient clinics (Jack et al., 2010). This threshold has been
used in technology-assisted studies (Metzger et al., 2014; Young
et al., 2014). In the study by Young et al. (2014), researchers have
used the threshold of 70% for tuning the difficulty level of tasks
offered by computer-assisted skill learning platform for post-
stroke patients with upper extremity movement disorder. Unlike
our present study in which the task difficulty was modulated
based on one’s performance, Young et al. displayed the task
on a Brain Computer Interface and their system modulated

1Microsoft. Kinect Mouse Cursor – CodePlex Archive. Available online at: https://

archive.codeplex.com/?p=kinectmouse

the tasks based on patient’s physiological data. In the study
by Metzger et al. (2014), 70% criteria was used while offering
upper limb rehabilitation on grasping skills to post-stroke
patients using a robot with two degrees of freedom. Unlike
our study in which post-stroke patients were asked to carry
out a computer-based task that needed them to lift their hands
against gravity, here (Metzger et al., 2014) the robot was planar
type without any consideration of the effect of gravity. If a
participant’s performance score in an HCI task was “Adequate,”
then the Strategy Generator selected “increase difficulty” mode
that offered a task of higher difficulty level. In contrast, if
the performance score was “Inadequate,” then the Strategy
Generator selected “same difficulty” mode that offered a task of
same difficulty level as the previous task. While our system kept
a record of the task performance, for “Inadequate” performance,
instead of reducing the task difficulty level, our system chose
the “same difficulty” mode with an aim to impart skill training
of the participant. Upon practice, once the participant acquired
improved skill (performance score ≥70%, i.e., “Adequate”),
then the participant was challenged by a task of increased
difficulty. The HCI tasks continued till the end of a pre-defined
task duration or once a participant had achieved “Adequate”
performance in a task belonging to DLVI.

Computation of Performance Score
Our system was designed to be performance-sensitive. While our
participants interacted with tasks of varying difficulty levels, we
computed two measures of task performance namely, PerfSCORE
(for each difficulty level) and weighted normalized performance
score (PerfNORM). The PerfNORM was computed (for comparative
assessment) to account for a varying number of tasks belonging
to each difficulty level being executed by different participants.

One’s task performance score depended on (i) Metric1: the
number of dots (Dotted Pattern) touched by the avatar (by
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participant’s hand movement) (DotNO) on the GUI (HCI screen)
and (ii) Metric 2: the length of the trajectory sketched by
the participant’s hand (TrajLENGTH). As far as Metric 1 was
concerned, we computed the ratio (DotR) of the DOTNO to the
total number of dots in a Pattern (DotTOTAL) using Equation
(1). As far as Metric 2 was concerned, we found that the total
length of the trajectory sketched by even healthy participants i.e.,
Optimal Trajectory Length (TrajLENGTH_OPT) (measured using
a pilot study incorporating age-matched groups) was mostly
greater than the actual length of the Pattern formed by joining
the dots with straight line segments. Subsequently, we computed
the ratio (TrajRi) of the TrajLENGTHi to TrajLENGTH_OPTi for task
of each difficulty level (i) using Equation (2).

DOTR =
DOTNO

DOTTOTAL
(1)

TrajRi =
TrajLENGTHi

TrajLENGTH_OPTi
; i = 1, 2, 3, 4, 5, 6 (2)

Again, based on the pilot study, we found the Minimum
(TrajRi_MIN) and Maximum (TrajRi_MAX) values of TrajRi
corresponding to the task of each difficulty level (i). If
a participant’s TrajLENGTHi corresponding to a TrajRi value
was within the limits (TrajRi_MIN and TrajRi_MAX), the
contribution of Metric 2 to the estimation of performance
score was not penalized (Case 1). Else, depending on the
extent of overshoot/undershoot of TrajLENGTHi beyond the
TrajLENGTHi_OPTi, a penalty was imposed (Cases 2 and 3) as
seen from Equation (3). The extent of allowable (with limited
penalty) overshoot/undershoot was chosen to be 20% as a typical
case and this can be varied based on task design. Finally, our
HCI system evaluated the overall Performance Score (PerfSCORE)
while considering both the Metric 1 and Metric 2 i.e., DotR and
TrajRi with equal weightage (=0.5) for each task (Equation 4).

Case1 : if TrajRiMIN < TrajRi < TrajRiMAX ,

then the case− specific TrajRi = 1. (3)

Case2 : if 0.8 TrajRiMIN < TrajRi < 1.2TrajRiMAX ,

then the case− specific TrajRi = 0.5.

Case3 : case− specific TrajRi = 0 (otherwise).

PerfSCOREi = 100∗
(

(0.5∗DotR) +
(

0.5∗TrajRi
))

; i = 1, 2, 3, 4, 5, 6

(4)

Additionally, we computed the PerfNORM while considering
the task performance in different tasks belonging to varying
difficulty levels.

PerfNORM =

∑6
i=1 wi × PerfSCOREi

∑6
i=1 wi

,w1 = 1,w2 = 2, . . . w6 = 6.

(5)

Here, wi is the weight assigned to a task belonging to a particular
difficulty level and i represents the difficulty level.

Physiological Data Acquisition Module
We acquired Electrodermal Activity (EDA) signal of post-stroke
participants during Stage 2 of the study using Biopac MP150
(Biopac Systems Inc.). The EDA signal was acquired in the
wireless mode in a Data Logger Computer interfaced with
the HCI Task computer during baseline and HCI tasks. The
signals were acquired at a sampling rate of 1,000Hz. The EDA
signal representing one’s skin conductivity, was acquired by
using sticky use-and-throw electrodes with Ag/AgCl gel from
the distal phalange of the index and ring fingers of one’s hand.
We chose to study the EDA signal, since EDA can be used as
an objective measure of effort put in by an individual during
the execution of a task (MacIntosh et al., 2008; Clarkson et al.,
2010). The EDA signal was processed to extract the Tonic
Mean (TonicMEAN). Literature review indicates that the tonic
component can be related to a task being executed and the
perceived challenge by the post-stroke patient (Chatterjee et al.,
2018) with a reduction in tonic activity indicative of functional
recovery (Clarkson et al., 2010).

In order to nullify the effect of baseline recording, we extracted
the tonic mean both during baseline (TonicMEAN_Baseline)
and each task (TonicMEAN) in a time-synched manner. For
triggering markers to specify start and end of the HCI tasks,
we used an Arduino DUE-based setup (www. arduino.cc/
en/Guide/ArduinoDue) that interfaced the HCI Task computer
to the Data Logger Computer through a Tx/Rx pair of the
Arduino DUE. Since the post-stroke participants were offered
multiple exposures to our HCI task platform on different days
during Stage 2 of the study, we computed the change in Tonic
Mean with respect to the Baseline (1TonicMEAN) in order to
nullify the effect of day variability using Equation (6).

1TonicMEAN = 1TonicMEAN − 1TonicMEAN_Baseline (6)

EXPERIMENTAL SETUP AND PROCEDURE

Participants
Fifteen healthy participants [H1–H15; mean (SD) = 43 (14)
years] volunteered from our institute and the neighborhood
during Stage 1 of our study. We first conducted our study
with these healthy participants to ensure that our system was
working as desired and to understand the usability of our
system. This was followed by Stage 2 in which seven post-
stroke [S1–S7; mean (SD) = 53 (14) years] participants took
part. The idea was to understand the potential of our system to
contribute to upper limb rehabilitation. The stroke participants,
undergoing treatment in a local hospital enrolled through
physiotherapist’s referral. For each post-stroke participant, Fugl-
Meyer2 Assessment of Sensorimotor Recovery after Stroke
(FMA) (https://neurophys.gu.se) was carried out by a clinician.
The inclusion criteria were (1) post-stroke period >6 months
(2) ability to follow instructions (3) ability to see the HCI
monitor from a distance of ∼1.5m, and (4) FMA score for

2Fugl-Meyer Assessment Upper Extremity (FMA-UE) Assessment of Sensorimotor

Function. Available online at: https://neurophys.gu.se/digitalAssets/1520/

1520773_fma-ue-protocol-english-updated-20150315.pdf
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TABLE 1 | Participants’ characteristics.

ID Age(y) Paretic side PSP(y) Number of session FMS

P1 26–30 NA NA 1 NA

P2 50–55 NA NA 1 NA

P3 50–55 NA NA 1 NA

P4 66–70 NA NA 1 NA

P5 36–40 NA NA 1 NA

P6 50–55 NA NA 1 NA

P7 30–35 NA NA 1 NA

P8 26–30 NA NA 1 NA

P9 20–25 NA NA 1 NA

P10 26–30 NA NA 1 NA

P11 60–65 NA NA 1 NA

P12 60–65 NA NA 1 NA

P13 40–45 NA NA 1 NA

P14 46–50 NA NA 1 NA

P15 26–30 NA NA 1 NA

S1 56–60 R 0.7 3 45

S2 56–60 L 6 3 49

S3 26–30 L 3 3 35

S4 70–75 R 5 2 32

S5 50–55 R – 3 –

S6 46–50 L 4 3 39

S7 56–60 R 11 2 43

M, Male; F, Female; PSP, Post Stroke Period; FMS, Fugl Mayer Score; L, Left side; R,

Right Side; P1-P15, Healthy Participant; S1–S7, Stroke Participant; NA, Not Available; y,

years.

Upper Extremity >31 (since our tasks required participants to
do elevated hand posture by lifting the hand against gravity)
that was measured by a physiotherapist in our team. Patients
with recent surgery (<5 months) and having pace makers were
excluded from the study. Our study followed institute ethics. The
participant characteristics are shown in Table 1. As far as the
Post-stroke patients were concerned, from the FMA scores, we
can say that S1, S3, S4, S6, and S7 can be considered to have
“limited capacity” in the upper extremity (with S1 and S7 being
in the upper side of the spectrum toward the “notable capacity”
range) and participant S2 had “notable capacity” in the upper
extremity (Singer and Garcia-Vega, 2017).

Experimental Setup
This study was conducted in two stages (Stages 1 and 2) with
each stage having two steps namely Step 1 and Step 2. Step
1 being a calibration step, consisted of an HCI task computer
[PC1; Intel(R) core(TM) i7-4770 CPU with 23” monitor having
resolution of 1600 × 900 pixels), android phone (Redme Note
5 Pro), Velcro belts, a chair and Kinect (Figure 3a). As can be
seen from this Figure 3a, the android phone (with orientation
sensor application program adopted from “Physics Toolbox
Sensor Suite” (Vieyra and Vieyra, 2018) was mounted on one’s
upper arm with the help of a Velcro belt and the azimuth
angle recorded by the phone was used to find the range of
horizontal abduction and adduction of arm corresponding to
the CentralHold and PeripheryHold (Figure 3b) positions in an

individualized manner. The range of horizontal abduction and
adduction of the arm was mapped to the horizontal span of∼700
pixels of the HCI task monitor. The Step 2 used for interaction
with the HCI task consisted of the HCI Task monitor, Kinect,
a chair and a velcro belt in Stage 1 along with a physiological
data acquisition module in Stage 2 of the study (Figure 3A).
Additionally, in Stage 2, the experimental setup had a Data
Logger Computer to record the physiological data acquired
using the physiological data collection module. Since we were
interested to study the implication of exposure to our system
on the tonic mean of post-stroke patients, we took care of
confounding factors such as variation in room temperature that
can contribute to one’s thermoregulatory sweating. For this, the
room (data collection room) temperature was kept constant. The
chair (for the participant) was positioned at a distance of 1.5m
from the Kinect and the Kinect itself was mounted on a table
∼1.3m above the ground, similar to other studies (Tao et al.,
2013). The study room was uniformly lit.

Procedure
The study required nearly 40min per session from each
volunteer. When the participant came in to the study room,
he/she was offered to sit on a chair and asked to relax for about
5min during each session. During this time, the experimenter
explained what the participant was expected to do in the
study and showed the experimental setup along with the GUI
displaying the Sample and Dotted Patterns. The experimenter
used a visual schedule to explain theHCI tasks to the participants.
Also, the experimenter confirmed that the participant could see
the GUI clearly from a distance of 1.5m. The experimenter
told participants that were free to quit from the study at any
point if they felt strained and uncomfortable in interacting
with the system. Again, since we were interested to study one’s
physiological manifestation in terms of electrodermal activation
that can be susceptible to variations with physical strain (Boettger
et al., 2010) during task execution, we tried to minimize such an
effect by telling the patients to do the HCI tasks while sitting on
a chair and taking rest between the tasks. The Stage 1 was meant
for healthy participants and this was carried out at the research
lab situated within our institute premises. For Stage 1 of our
study, the experimenter determined the hand dominance of the
participant using Edinburgh Handedness Inventory (Oldfield,
1971). Again, for Stage 1, we offered an exposure for one session.
The Stage 2 was meant for post-stroke participants and this was
carried out within a clinical setting inside the hospital where
the patients were undergoing therapy. For Stage 2 of our study,
the clinician in our team assessed the participant’s FMA score
and also checked the medical records to match the inclusion
criteria. For Stage 2, each participant was offered exposure to
our system over multiple sessions distributed over multiple days.
Then the experimenter told the participant that he/she will be
asked to use one arm at a time to interact with the HCI task
platform. For Stage 2, the experimenter told the participants that
after the first session, they would be asked to use only their
paretic hand to interact with the HCI task platform. Once the
participant understood the task, the experimenter administered
the signing of the consent form. For Stage 2, the experimenter
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FIGURE 3 | Experimental Setup (a) Participant having hand posture CentralHOLD, (b) participant having hand posture PeripheryHOLD during calibration. Written and

informed consent is taken from the participant toward publication of the image.

attached the light-weight EDA sensors on the index and ring
fingers of the non-paretic hand of the participant. Upon getting a
confirmation from the participant regarding his/her participation
in the study, the experimenter asked the participant to sit straight
on the chair and keep his back resting to the back-rest of the
chair while facing the Kinect sensor. Also, the participant was
told that he/she would be asked to continue to maintain the
same sitting posture throughout the task. For Stage 1 of the
study, Step 1 was carried out first and this was followed by
Step 2 that lasted for ∼20min. During Step 1, the participant
was told that he/she would see a “+” sign on the HCI Task
monitor indicating that his hand has been captured by the Kinect
sensor. During the Step 1, the participant was asked to stretch
his/her arm (∼900 forward Flexion as measured by the android-
based application; Figure 3a) when the “+” sign appeared at
the CentralHold position of the Task monitor. Then, he/she was
asked to perform horizontal adduction of the arm as much as
possible (staying inside the Field of View of the Kinect) while
this was registered by the “+” sign displaced horizontally by a
distance of x pixels from the CentralHold position (either to the
left or right of the CentralHold position depending on the hand
used). The distance x being a function of the hand length and the
amount of adduction angle at the shoulder joint was mapped to
∼700 pixels to achieve the PeripheryHold position therebymaking
the calibration individualized. The adduction angle was recorded
by the experimenter using the android phone-based orientation
sensor application program. After Step 1, the experimenter asked
the participant whether he/she was ready to start interacting
with the HCI tasks (Step 2). During Stage 2 of the study, the
experimenter followed Step 1 and Step 2 similar to that in Stage
1. However, since the participants in Stage 2 were post-stroke
patients, mostly the experimenter helped the participants during
Step 1 (of Stage 2). Again, before starting Step 2 (of Stage 2), the
experimenter checked to see whether the physiological signals
were acquired properly in the Data Logger Computer. Step 2
started with a baseline recording of the EDA signal for 3min with
the participant relaxing while sitting on the chair. Post baseline
recording, the participant was asked to interact with the HCI task

platform (Step 2). During Step 2 of Stage 2 of each session, each
participant was asked to interact with the HCI tasks using three
trials. While the first two trials were considered as practice trials,
the data was recorded during the last trial for each task. While
presenting our findings, we would use the data of the last trial of
session 1 (Exp1 henceforth) and that for the last trial of the last
session (ExpL henceforth) for each post-stroke participant.

Statistical Analysis
Given the limited sample size, we carried out normality test,
namely Shapiro-Wilkes test of normality (Gaddis and Gaddis,
1990) and the data were found not to be normally distributed.
Thus, we carried out a non-parametric statistical test such as
the Friedman Test (Gaddis and Gaddis, 1990), Wilcoxon rank-
sum test (Gaddis and Gaddis, 1990) and Wilcoxon Signed Rank
test (Gaddis and Gaddis, 1990) (p ≤ 0.05). For statistical tests
on the performance score of healthy participants across varying
difficulty levels, we carried out a dependent sample Friedman
Test for multiple groups of data (i.e., difficulty levels). While the
healthy and post-stroke participants interacted with a varying
number of tasks belonging to each difficulty level, we wanted
to understand whether their functional abilities in terms of
weighted normalized performance (PerfNORM) were statistically
different. For this, we carried out independent sample Wilcoxon
rank-sum test on the normalized performance of the healthy and
post-stroke group while considering the data for Exp1. Also, we
wanted to understand whether the improvement in the PerfNORM
score of the post-stroke participants interacting with our system
from Exp1 to that in ExpL was statistically significant. For this
we carried out dependent sample Wilcoxon Signed Rank test
on their PerfNORM score. Similar was the case for the statistical
analysis on the mean tonic activity of the post-stroke patients
during Exp1 and ExpL.

Post-study Survey Questionnaire
To understand the usability of a task platform, it is necessary
to measure the user’s experience. After the participants
finished interacting with our Kinect-assisted HCI task
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platform, we wanted to measure their experience in terms
of understandability, efficacy of feedback and interestingness
(Liu et al., 2017). For this, we framed survey questionnaires
taking idea from the User Suitability Evaluation Questionnaires
proposed by Gil-Gómez et al. (2017). We framed six questions
(Q1–Q6) and used a 5-point scale ranging from 1 (Strongly
Disagree) to 5 (Strongly Agree). The questions were “Did you
face any difficulty in understanding the tasks?” (Q1), “Did you
find the task interesting?” (Q2), “Was the feedback such as
Performance Score, Audio-visual display of the tasks useful to
you?” (Q3), “Do you want to refer any of your acquaintances
to this study?” (Q4), “Do you want to participate again in this
study?” (Q5) and “Do you think that you can benefit by using
such a system in future?” (Q6). The questions Q1–Q3 andQ1–Q6
were asked during Stage 1 and Stage 2 of the study, respectively.

RESULT

In our study, the task was to sketch patterns on an HCI monitor
while connecting dots of a Dotted Pattern displayed on the
monitor. Our study comprised of two stages namely Stage 1
(healthy participants) and Stage 2 (post-stroke participants) with
each stage consisting of Step 1 and Step 2. The Step 1 was for
calibration (section Experimental Setup) and Step 2 was for task
execution. Here we present our findings while following Step 2
of both the Stages 1 and 2 along with post-study survey to obtain
participants’ feedback in both the stages.

Post-study Feedback of Stage 1 of
the Study
After the healthy participants finished interacting with the
Kinect-assisted HCI task platform, a post-study survey [Q1–Q3
(section Post-study Survey Questionnaire) and 5-point scale] was
administered by the experimenter and the survey results in form
of average score for each question (standard errors) are shown in
Figure 4. It can be seen from Figure 4, the healthy group did not
face any difficulty in understanding the tasks and most of them
“Strongly Agreed” on the HCI tasks being interesting. When
asked about the Reference Patterns, all of them said that it helped
them understand the pattern that they need to sketch. As regards
to the sketched pattern (Dotted-Pattern), all of them said that the
audio-visual feedback by the task platform while the paintbrush
touched a dot in the Dotted Pattern (sectionDesign of HCI Tasks)
corresponding to their hand movement offered an immersive
feel to them. As far as the feedback on the Performance Score
was concerned, most of them mentioned that the score helped
them to understand how they were performing in each task and
motivated them to try out the next task.

Group Average Performance of Healthy
Participants for Stage 1 of the Study
We wanted to test our Kinect-assisted HCI task platform with
healthy participants. Our results indicate that all the healthy
participants scored “Adequately” in the first task in each difficulty
level. Figure 5 shows the % average performance (Standard
Error) of healthy participants in all difficulty levels. From

FIGURE 4 | Average feedback score for healthy participant (1–5 scale). Error

bars represent standard error. 1, Strongly Disagree; 2, Disagree; 3, Neutral; 4,

Agree; 5, Strongly Agree.

FIGURE 5 | Group average performance of healthy participant. error bars

represent standard error.

Figure 5, we can see a nearly ceiling effect in the performance
score of the healthy participants irrespective of the task difficulty
level, as expected. To test the data for statistical significance, we
used dependent sample Friedman test on the performance scores
of the healthy participants across varying difficulty levels (DLI to
DLVI). The results were not statistically different, showing that
there exists no significant difference between the performance of
the healthy subjects over varying difficulty levels.

Post-study Feedback of Stage 2 of
the Study
Once the post-stroke participants finished interacting with the
HCI task platform at the end of the last session, the experimenter
administered a post-study survey [Q1–Q6 (section Post-study
Survey Questionnaire)] shown in Figure 6. Figure 6 shows the
average score for each question with standard errors bars. It
can be seen from the Figure 6 that the post-stroke group did
not face any difficulty in understanding the tasks, similar to the
healthy group. Also, all of them reported “Strongly Agree” on the
other five questions. With regard to the interestingness and the
usefulness of the feedback, the response of the post-stroke group
is same as the healthy group. All the post-stroke participants
expressed their interest in participating again and asked about the
future possibilities. Though the number of sessions were limited
(based on patients’ availability), yet, all the participants expressed
that they think that they would benefit by using our system.
When asked to elaborate the reason behind their thought, most
of them said that even with limited exposure to our task platform,
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FIGURE 6 | Average feedback score for post-stroke participant (1–5 scale).

Error bars represent standard error. 1, Strongly Disagree; 2, Disagree; 3,

Neutral; 4, Agree; 5, Strongly Agree.

they are hopeful that exercising with our system can improve the
coordination, and reaching skills in their upper limbs.

Comparative Analysis of Average
Performance of Post-stroke Participants in
Tasks of Varying Difficulty Levels During
Exp1 and ExpL of Stage 2 of the Study
During Stage 2 of the study, we wanted to understand
the implications of interaction with the Kinect-assisted HCI
task platform on the upper limb-related coordination skill
of post-stroke participants. The participants were offered the
performance-sensitive HCI tasks of varying challenges based on
their ability to make coordinated movement. Once a participant
acquired “Adequate” performance score in a task belonging to
a difficulty level, our system offered a task of higher difficulty.
To understand the implication of multiple exposures (to our
system) on one’s performance (PerfSCORE; section Computation
of Performance Score), we carried out a comparative analysis
of PerfSCORE in tasks (Figure 7) belonging to each difficulty
level during Exp1 and ExpL. Figure 7 shows average PerfSCORE
and standard errors for each difficulty level. From Figure 7, we
find that all the participants performed better during ExpL as
compared to Exp1 in terms of (i) improved % average PerfSCORE
in tasks of a difficulty level and (ii) ability to reach to tasks
of higher difficulty level. Such an increase in performance for
all participants (except S5) in tasks of DLI can be possibly
attributed to improvement in coordination ability (in following
the trajectory of the Dotted Pattern). In the case of S5, we
see a small decrease (1 = ∼9%) in the % performance in the
task of DLI during ExpL compared to Exp1. We performed a
deeper investigation which found that during Exp1, S5 could
achieve “Adequate” performance in the second task while he
could achieve “Adequate” performance in the sixth task during
ExpL. The experimenter reported that though S5 needed to
interact with five tasks for each DLI before getting an “Adequate”
performance score during ExpL, yet his score even in the first
of the five tasks (for DLI) was higher compared to his score
in the first task belonging to DLI during Exp1. When the
experimenter asked him for the reason behind such a change
in his performance during ExpL, he told that he was feeling
tired and could not hold his hand against gravity during the

intermediate three tasks. Again, in contrast to Exp1, we find from
Figure 7 that four of the seven post-stroke participants could
reach DLIV during ExpL and the rest could reach DLIII during
ExpL. However, improvement in one’s performance capability not
only depends on his/her ability to interact with tasks of increased
challenge, but also depends on how fast (i.e., within fewer tasks)
one was able to achieve “Adequate” performance in a task of a
particular challenge level before going to a task of higher difficulty
level i.e., the trajectory of task progress.

Comparative Analysis of Task Progression
Pattern of Post-stroke Participants in
Tasks of Varying Difficulty Levels During
Exp1 and ExpL of Stage 2 of the Study
We wanted to understand whether our HCI task platform had
any implication on task progression pattern of the participant
from one difficulty level to another. Figure 8 shows the task
progression pattern of each post-stroke participant during Exp1
and ExpL. From Figure 8 we could see [in all the participants
(except S2 and S5)] a comparatively smoother transition from
lower to higher difficulty levels with the number of tasks
needed before achieving “Adequate” performance in a particular
difficulty level for ExpL compared to Exp1. Participant S2 needed
two tasks in DLI before moving to DLII during ExpL compared
to only one task in DLI during Exp1. However, a deeper analysis
revealed that unlike Exp1, during ExpL, S2 was able to reach
the DLIV task, and also achieved “Adequate” performance in
the last task belonging to DLIV and had to quit the HCI task
since the allotted duration was over. Again, for S5, we see
that unlike Exp1, during ExpL, S5 needed five tasks to achieve
“Adequate” performance in DLI. When he was asked the reason
for such a performance at the end of his interaction with our
task platform after ExpL, he expressed that he was tired and
discontinued in between tasks (section Comparative Analysis
of Average Performance of Post-stroke Participants in tasks of
varying Difficulty Levels during Exp1 and ExpL of Stage 2 of
the study). However, he could reach to DLIII during ExpL unlike
that during Exp1. Please note that S3, S4, and S6 could perform
mostly in DLI during Exp1 that can be possibly attributed to
their “limited capacity” of upper extremity as specified by the
FMA scores (section Participants). However, multiple sessions
with our performance-sensitive HCI task platform could elicit
improved performance even in these participants as can be seen
from Figure 8. Given a small sample size, we do not intend to
generalize our observations.

Comparative Analysis of Weighted
Normalized Performance Score (PerfNORM)
While the healthy and post-stroke participants interacted with
a varying number of tasks belonging to each difficulty level,
we wanted to carry out a comparative analysis between their
performances. For the sake of comparison, we computed the
PerfNORM (section Computation of Performance Score) of
the healthy and post-stroke participants. Since, the healthy
participants had only Exp1 in which they achieved Adequate
performance in the first task, we carried out a comparative
analysis of the PerfNORM of healthy and post-stroke participants
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FIGURE 7 | Comparative analysis of average performance of stroke participants. Error bars represent standard error. Exp1, First Exposure; ExpL, Last Exposure.

for Exp1. Figure 9A indicate the average PerfNORM (Standard
Error bars) of healthy group and post-stroke group. This shows
the average PerfNORM for healthy group is higher than the post-
stroke group.

Again, we carried out comparative analysis of PerfNORM
of post-stroke participants during Exp1 and ExpL as shown
in Figure 9B [average PerfNORM (Standard Error bars)]. From
Figure 9B, we find that multiple exposures to our system has
contributed to the overall improvement in functional ability
of the post-stroke patients as manifested through the increase
in PerfNORM .

Subsequently, we carried out independent sample Wilcoxon
rank-sum test on the PerfNORM of the healthy and post-stroke
groups while considering the Exp1. Results indicate that these
were statistically different (p-value <0.01). Again, we carried out
a dependent sample Wilcoxon rank sum test on the PerfNORM
for Exp1 and ExpL. Results indicate statistical (p-value <0.05)
difference in the PerfNORM between Exp1 and ExpL.

Comparative Group Analysis of the
TonicMEAN of Post-stroke Participants
During Exp1 and ExpL of Stage 2 of
the Study
While the post-stroke participants interacted with our
performance-sensitive Kinect-assisted HCI task platform, we

acquired their event-marked EDA signal (section Physiological
Data Acquisition Module) that was processed to extract their
TonicMEAN corresponding to each task. We wanted to study
the implication of Exp1 and ExpL on their Tonic activity. For
this, we carried out comparative group analysis of the change in
Tonic mean from their respective baseline value (1TonicMEAN)
(Equation 6) corresponding to tasks of varying difficulty levels
between Exp1 and ExpL. Literature review indicates that the

tonic component of the EDA can be associated with a task
being executed and the perceived challenge by the post-stroke

patient (Chatterjee et al., 2018) with a reduction in tonic activity

indicative of one’s functional recovery (Clarkson et al., 2010).
Figure 10 shows the average 1TonicMEAN (Standard Errors)

of post-stroke participants for difficulty levels (DLI to DLIII)
over Exp1 and ExpL. Here, we chose DLI-DLIII for comparative
analysis of tonic activation, since none of the post-stroke patients

were able to reach DLIV-DLVI tasks during Exp1. During the

ExpL, 100% of the post-stroke participants interacted with tasks
in each of DLI, DLII, and DLIII. As can be seen from Figure 10,
for each of DLI-DLIII, we see a reduction in the 1TonicMEAN

during the ExpL from that during Exp1. Such a reduction in

their 1TonicMEAN along with their ability to execute tasks with

increased challenge with improvement in their task performance
score (section Comparative Analysis of Average Performance
of Post-stroke Participants in tasks of varying Difficulty Levels
during Exp1 and ExpL of Stage 2 of the study) might be
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FIGURE 8 | Comparative analysis of task progression pattern of post-stroke participants. Exp1, First Exposure; ExpL, Last Exposure.

FIGURE 9 | Comparative analysis of normalized performance score (A) Healthy (H) vs. Post-stroke (S) Participants, (B) Exp1 vs. ExpL of Post-stroke Participants.

Error bars represent standard error. Exp1, First Exposure; ExpL, Last Exposure.

indicative of functional recovery (Clarkson et al., 2010) upon
repeated exposures.

Subsequently, we carried dependent sample non-parametric
Wilcoxon signed rank test on the average1TonicMEAN over Exp1
and ExpL (DLI-DLIII). With the limited number of exposures of
the post-stroke participants to our system, the variation in the
1TonicMEAN from Exp1 to that during ExpL was not statistically
different for the various difficulty levels.

DISCUSSION

In this work, we have designed a Performance-sensitive Kinect-
Assisted HCI task platform for upper limb exercise. The tasks
required a participant to stretch out and maneuver his/her hand
in physical space while performing a coordinated movement
of the upper limb to follow a pattern displayed on the screen
of the Task computer. This was accompanied with real-time
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FIGURE 10 | Comparative group analysis of 1TonicMEAN of stroke

participants. Error bars represent standard error.

audio-visual feedback. Subsequently, our system evaluated the
task performance that in turn was used to adaptively offer
tasks of increasing difficulty in an individualized manner.
Also, our system recorded one’s physiological signals in a time
synchronized manner along with task progression. The overall
aim was to understand whether exercising with such a system
overmultiple exposures can improve functional measures such as
reaching and coordination ability in the upper limb of post-stroke
survivors in terms of task performance. Additionally, we wanted
to understand the implications of exposures on the implicit
measures such as physiology of post-stroke patients.

Both healthy and post-stroke participants were exposed to
our system. A post-study survey indicated that the tasks by our
system were easily understood by both the healthy and post-
stroke groups and both the groups appreciated the real-time
audio-visual feedback offered by our system. Also, the post-
stroke patients expressed their hope that repeated exposure to
our system could be beneficial to them toward rehabilitation
and mentioned their desire to interact with our system again.
While post-stroke patients were offeredmultiple exposures to our
system, we could observe statistically significant improvement in
normalized performance score (PerfNORM) from Exp1 to ExpL.
This improved task performance is indicative of an increase
in the reaching and coordination ability in their upper limbs.
The results of a comparative analysis on their task performance
during Exp1 and ExpL indicated an improvement in their
performance score both within and across difficulty levels. Such
an improvement in their task performance score (executing more
difficult tasks) coupled with a reduction in 1TonicMEAN might
be indicative of their functional recovery (Clarkson et al., 2010)
possibly attributed to multiple exposures to our system.

Our present system can serve as a complementary tool in
the hands of the therapists involved in stroke rehabilitation. For
example, based on the individualized (patient’s) capability, the
performance-related thresholds used for the switching of tasks
can be modulated using a therapist’s inputs. Subsequently, the
system can be deployed for the patient followed by continuous
monitoring of the patient’s progress using performance data
(stored in backend). In turn, one therapist can cater to the
individualized needs of many patients at the same time thereby
helping to address the issues of high patient to doctor ratio (in
developing countries). Ease of accessibility to such technology-
assisted systems can be ensured not only by the availability

of such systems at the healthcare centers but also by the cost
associated with availing such systems. Our Performance-sensitive
Kinect-Assisted HCI task platform can offer a cost-effective
solution since it has easy set-up that does not need technical
expertise to operate it thereby bringing down the cost of its
maintenance. Also, the set-up time required by our system is
comparatively less.

Though the results are promising, there are some limitations
in terms of participation, device used, assessment approaches,
study settings, and follow-up studies that can be addressed in
future. The primary limitation is the small sample size of post-
stroke participants. In the future, we plan to extend our study
incorporating a bigger participant pool. With regard to the
device utilized in our study, we have used the Kinect Xbox 360
that was available to us. This has limitations in measurement
accuracy that can be attributed to reduced sampling frequency,
resolution, etc. (Pfister et al., 2014) compared to the expensive
state of the art marker-based techniques (Hingtgen et al., 2006;
Perez-Marcos et al., 2017). Again, Kinect Xbox 360 suffers from
limitations like relatively poor quality of skeletal tracking (Zhang,
2012) and depth resolution (Pagliari and Livio, 2015) compared
to the advanced version such as Kinect 2. However, with the
Kinect device being unavailable in the market, we plan to explore
the use of other alternatives such as Gesture Xtreme, webcam-
based motion capture system, etc. in the future (Knippenberg
et al., 2017). Since the execution of tasks offered by our system
needed one to stretch his/her hand and make coordinated hand
movement by raising the hand against gravity, we expected our
post-stroke participants to have at least some limited capacity
in their upper extremity. Although we used clinical measure
such as FMA scores as one of the inclusion criteria, yet, we
did not apply any biomechanical assessment. In the future,
we plan to use biomechanical assessment along with clinical
measures. For this, we plan to extend our usability study in
which we will acquire electromyogram signals from one’s upper
extremity during execution of such tasks. Thus, added to our
preliminary calibration of one’s individualized range of motion
with the horizontal span of the HCI Task monitor, we plan to
perform biomechanical evaluation of the patients similar to that
in other studies (Kim et al., 2016; Bakhti et al., 2018; Scano
et al., 2018) to tune individualized thresholds. Again, with regard
to study settings, our present study offered a limited number
of exposures to the post-stroke participants. Also, presently, we
have collected data from patients using hospital settings and
have not done home-based studies. With respect to the number
of exposures, in the future, we plan to design extended studies
in which each participant will interact with our system over
repeated sessions. Since our system has portability with easy
setup options and can easily be deployed in home-based settings,
we plan to extend our study to home-based settings in the
future. Again, we did not carry out any follow-up study this
time. However, we plan to carry out a longitudinal study with
subsequent follow-up to investigate whether the patients have
been able to translate the skills learnt from the simulated world
to real-life settings. The extent of the translation of skills can
be quantified in terms of both clinical and functional (ability to
execute ADL) measures.
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CONCLUSION

In this article, we have designed a Performance-sensitive
Kinect-Assisted HCI task platform for upper limb exercise
and tested its usability with 15 healthy and seven post-stroke
participants. The system was reviewed by both healthy and
post-stroke participants and the results have indicated the
potential of such a system toward upper limb rehabilitation.
Additionally, this system can offer a portable, cost-effective,
controlled exercise environment for rehabilitation of post-
stroke patients. However, open questions still remain on the
transferability of the skills learnt from the controlled setting to
the real world for quality community living. Nevertheless, our
present system can offer a step toward developing a full-fledged
exercise platform for individuals suffering from upper limb
movement dysfunction.
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