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Abstract: The interruption of rehabilitation activities caused by the COVID-19 lockdown has signifi-
cant health negative consequences for the population with physical disabilities. Thus, measuring
the range of motion (ROM) using remotely taken photographs, which are then sent to specialists
for formal assessment, has been recommended. Currently, low-cost Kinect motion capture sensors
with a natural user interface are the most feasible implementations for upper limb motion analysis.
An active range of motion (AROM) measuring system based on a Kinect v2 sensor for upper limb
motion analysis using Fugl-Meyer Assessment (FMA) scoring is described in this paper. Two test
groups of children, each having eighteen participants, were analyzed in the experimental stage, where
upper limbs’ AROM and motor performance were assessed using FMA. Participants in the control
group (mean age of 7.83 ± 2.54 years) had no cognitive impairment or upper limb musculoskeletal
problems. The study test group comprised children aged 8.28 ± 2.32 years with spastic hemiparesis.
A total of 30 samples of elbow flexion and 30 samples of shoulder abduction of both limbs for each
participant were analyzed using the Kinect v2 sensor at 30 Hz. In both upper limbs, no significant
differences (p < 0.05) in the measured angles and FMA assessments were observed between those
obtained using the described Kinect v2-based system and those obtained directly using a universal
goniometer. The measurement error achieved by the proposed system was less than ±1◦ compared
to the specialist’s measurements. According to the obtained results, the developed measuring system
is a good alternative and an effective tool for FMA assessment of AROM and motor performance
of upper limbs, while avoiding direct contact in both healthy children and children with spastic
hemiparesis.

Keywords: Kinect v2; Fugl-Meyer; upper limb; measurement; COVID-19

1. Introduction

Effective public health and social measures are fundamental strategies to combat Coro-
navirus (COVID-19). Avoiding crowds and maintaining a physical distance from others is
essential to reduce the rate of infection [1]. The negative consequences of the interruption of
rehabilitation activities are significant for the population with physical disabilities [2]. The
World Health Organization reported that more than 15% of the world’s population has a
physical limitation, such as cerebral palsy (CP) [3]. The Gross Motor Function Classification
System (GMFCS) scale is essential for determining physical movement skills in patients
with CP, e.g., the ability to sit up [4]. Similarly, the Manual Ability Classification System
(MACS) scale determines fine motor skills, specifically of the hand, e.g., activities that
the patient can perform daily, from combing hair to tying shoelaces [5]. Motor treatment
is essential, and the effectiveness of cerebral palsy treatment depends on many factors,
including optimal and systematic monitoring of patients’ progress [6]. Home therapy
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with active video game technologies and low-cost virtual reality is a favorable solution to
minimize the impact of rehabilitation interruptions [2].

Recently, telemedicine has increased exponentially due to the COVID-19 pandemic.
The authors Ben-Pazi et al. [7], in their various recommendations, mention the possibility
of a range of motion (ROM) measurement based on photographs of the patient that are
remotely taken and sent to specialists. Clinical ROM measurements are essential metrics
for monitoring motor rehabilitation progress. In general terms, this provides objective and
reliable information in the diagnosis and clinical monitoring of the physical condition evo-
lution [8]. The goniometer is one of the most common instruments for measuring ROM [9].
Sophisticated instruments are also used such as: electro-goniometers [10], laser goniome-
ters [11], optoelectronic devices [12], wearable sensors [13,14], smartphone applications [15],
Kinect sensors [16], and Xsens systems [17].

In this context, the Kinect v2 sensor (Microsoft, Redmond, WA, USA) has a color
camera and a depth measurement system based on active illumination (infrared camera
and an infrared projector) [18,19]. Hence, color, depth, and infrared image detection are
possible, which turns the Kinect into a low-cost three-dimensional RGB-D camera [20].
Time-of-Flight depth-sensing technology allows object distance measurements for each
image pixel according to the output data. Depth maps correspond to 16-bit encoded 2D
images, containing the measurement information stored in a pixel array; from this 2D data,
it is possible to infer 3D coordinates (X, Y, Z) [18]. The natural user interface (NUI) presents
a markerless human pose estimation algorithm; its main objective is interpreting human
positions and gestures by processing vector data.

Several researchers have evaluated the reliability of the Kinect v2 system in the anal-
ysis of upper limb functionality and found significant measurement accuracy [16,21–27].
The authors Cai et al. [21] found that the mean square error of the shoulder joint angle
(adduction and abduction) was less than six degrees between the Kinect v2 (Microsoft,
Redmond, WA, USA) and Vicon (Oxford Metrics Group, Vicon Motion Systems Ltd.,
Oxford, UK). After a stroke, the FMA scale is used to assess the motor performance of
the upper limb. This scale is composed of an assessment of motor and sensory abilities,
balance, joint range of motion, and joint pain [28]. For example, the Kinect sensor has been
used in FMA tests, mainly because it allows the measurement of ROM [29–32]. The authors
Kim et al. [30] found a significant correlation between FMA scores and scores using the
Kinect v1 sensor (Microsoft, Redmond, WA, USA). They claim that the use of FMA with
Kinect v1 is a reliable way to assess upper limb motor performance. Recently, Lee et al. [33]
proposed an FMA scoring algorithm with fuzzy logic and Kinect v2; the authors argue that
this method presents a high correlation with the scores given by a specialist.

A comparison of upper limbs’ angular measurements using a Kinect v2 sensor (Mi-
crosoft, Redmond, WA, USA) and a universal goniometer (Richardson Products Inc, Gulf-
stream Rd, Frankfort, KY, USA) was undertaken in the study described in this paper.
In addition, a semi-automated FMA clinical scoring algorithm was implemented. The
main study goal was to assess upper limbs’ motor performance using the proposed semi-
automated method assisted by the Kinect v2 sensor, from which the results were contrasted
with specialist’s measurements.

2. Materials and Methods

An experimental study using a low-cost natural user interface (NUI) system to quanti-
tatively measure AROM and clinically FMA assess the upper limb motor skills in children
was conducted. Firstly, the measuring system were implemented using the selected compo-
nents. Then the designed graphical user interface was programmed and finally validated
in the experimental stage.

2.1. Participants

Two test groups, each having eighteen participant children, were analyzed in the
experimental stage, where upper limbs’ AROM was measured and motor performance was
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assessed using FMA. In the control group, participants (mean age of 7.83 ± 2.54 years) had
no cognitive impairment or upper limb musculoskeletal problems. The study test group
comprised children aged 8.28 ± 2.32 years with spastic hemiparesis. A total of 30 samples
of elbow flexion and 30 samples of shoulder abduction of both limbs for each participant
were analyzed using the Kinect v2 sensor. In addition, 30 FMA assessments tests were
performed [28]. All participants gave informed consent. The inclusion and rejection criteria
for both groups are presented in Table 1.

Table 1. Selection criteria.

Control group Inclusion criteria

Children Healthy
Age 4–12 years

Cognitive profile Acceptable (Bender Koppitz Test)
Informed consent Authorized

Study group Inclusion criteria

Children Diagnosis of spastic hemiparesis due to CP
Age 4–12 years

Cognitive profile Acceptable (Bender Koppitz Test)
GMFCS Level I–II
MACS Level I–II

Botulinum toxin Without or more than six months after application

Both groups
Exclusion criteria Participants with visual, hearing, and severe cognitive impairment.

Rejection criteria Unauthorized informed consent. Participants with general ailments; undergoing
pharmacological, medical treatment, and musculoskeletal injuries.

GMFCS: Gross Motor Function Classification System; MACS: Manual Ability Classification System; CP:
cerebral palsy.

Measurement Protocol

The participant remained seated and performed a voluntary movement within the
flexor synergies according to the FMA scoring; Fugl-Meyer (1975) [28]. The measurement
conditions were the same as those of the preliminary test (Section 2.3).

A physiotherapist performed upper limbs’ AROM measurement with a goniometer
and motor performance assessment using FMA scoring. The cognitive characteristics for
each participant were assessed by a psychologist using the Bender Koppitz test [34]. It
is relevant to mention that, of the sample of 27 candidates initially participating in the
study group, nine were excluded: three who did not want to participate in the evaluations,
and six due to severe mental age lags detected by the Bender Koppitz test [34]. However,
following the psychologist’s suggestion, participants with mental age deficits capable of
following directions were accepted as participants in the study because, in most cases,
the chronological mismatch was due to hand manipulation problems in performing the
activities required by the test (Table 2).

Table 2. Characteristics of the study population.

CG

P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
FMA 65 64 65 66 66 65 64 66 66 66 63 63 63 63 66 66 66 66
CA 4 4 5 5 5 6 7 8 8 8 9 9 9 9 11 11 11 12
MA 4 4 5 5 5 6 7 8 8 8 9 9 9 9 11 11 11 12

SG

FMA 57 60 54 50 63 65 39 64 52 53 57 42 65 65 62 66 31 58
CA 4 5 5 6 6 8 8 8 9 9 9 9 9 9 10 11 12 12
MA - 4 4 4 6 6 5 7 5 - 7 5 8 4 5 7 8 9

MACS I II I II I I II II II I I II I I I I II II
GMFCS II II II II I I II I II II II II I I I II I I

CG: control group; SG: study control; P: participants; CA: chronological age; MA: mental age—able to follow
instructions.

2.2. Graphical User Interface and Programming

A Kinect v2 sensor and an HP Intel® Core™ i7-9750H 9750H 2.60 GHz laptop with
NVIDIA GeForce GTX 1650 graphics card was used to integrate the AROM measurement
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and FMA assessment system. The Kinect v2 sensor (Microsoft, Redmond, WA, USA) was
employed to assess children’s limb movements based on angles formed by the limb joints.

The general participant data, such as name, age, weight, height, shoulder/elbow
AROM, and performance level, are registered in the frontal panel of the graphical user
interface panel (Figure 1). Thirty control parameters related to upper limb activity covering
items I, III, IV, V of section A, B, C, and D of the FMA scoring are also available in this
panel; Fugl-Meyer (1975) [28]. These parameters were manually selected by the therapist
according to the movements of rotation, pronation, supination, and retraction of the arm,
which cannot be acquired by the Kinect v2 sensor, and for activities observed during
the test, such as the grip type and hand sensitivity. Section A-II “Voluntary movement
within synergies without gravitational assistance”, corresponds to the automatized part of
the programming as the shoulder angles in abduction, adduction, flexion, and extension
movements of the elbow are acquired through the Kinect v2 sensor. The upper limbs motor
performance is shown in the “Total A-D” label. The highest FMA score corresponds to
the best motor functioning state of the patient’s limb. An FMA score ranging from 0 to 22
represents no upper limb motor capacity; scores of 23 to 31 represent low capacity; scores
of 32 to 47 represent limited capacity; finally, scores from 53 to 66 represent total upper
limb capacity [35]. The interface allows visualization of the measurement environment.

Figure 1. Graphical user interface.

The graphical user interface was developed using LabVIEW software (14.0, NI, Austin,
TX, USA). The Kinect for Windows SDK 2.0 software development kit was used, and
MakerHub Interface for Microsoft Kinect One was employed to acquire color, depth,
infrared, and sensor skeleton tracking data. The measurement system programming
process is shown as a block diagram in Figure 2. In the programming, the motor evaluation
is performed by following Fugl-Meyer scale algorithm, where the left and right shoulder
and elbow angles are the input data; these vector points are acquired by the Kinect sensor.
The process involves the AROM measurement, and the evaluation results are stored in a
Microsoft Access database (Microsoft, Redmond, WA, USA).

The AROM calculation of the forward shoulder abduction/adduction in the frontal
plane and elbow flexion/extension in the sagittal plane are based on the angle formula
between two vectors given by Equation (1) [36]:

Cos θ =
Vd·Vp

|Vd|
∣∣Vp

∣∣ (1)

where θ is the shoulder/elbow angle, Vd is a distal longitudinal vector, and Vp is a proximal
segment vector.

The segments used for the shoulder angle calculation are summarized in Table 3,
selected from the 25 joint points provided by the Kinect v2 sensor [19]. The recommenda-
tions established by the International Society of Biomechanics (ISB) were followed [37],
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but applied only to forearm movements (elbow angle) because of the location of the joint
points provided by the sensor.

Figure 2. Programming process block diagram.

Table 3. Joints for AROM calculation.

Joint Movement Segments

Shoulder
Abduction Hip, Shoulder, Elbow
Adduction Hand, Shoulder, Hip

Elbow
Flexion Shoulder, Elbow, Hand

Extension Hand, Elbow y Shoulder

2.3. Experimental Setup

The Kinect v2 sensor (Microsoft, Redmond, WA, USA) was placed on a uniform
base at a height of 80 cm and at a distance of 2 m from the participant according to
the recommendation of [21]. The Kinect v2 sensor was turned on and run for 25 min
before starting the assessments as recommended in [38]. Measurements were carried
out in a 3 × 3 m space considering the operational measurement range [19,23,39] with an
illumination intensity of 73 Lux (lx).

In order to verify the distance and illumination, 30 angle measurements of the arm
at 90 degrees located at a distance of 1 m, 2 m, and 3 m were made. The illumination was
measured using a Ut382 Digital luxmeter (UNI-T, Hong Kong, China ). Two illumination
values were defined by the minimum (7 lx) and maximum (73 lx) values provided by
Salenec (Sentul, Ciudad de México, Mexico) power fixed LED lamp, which by a slide
dimmer (Leviton México, Ciudad de México, Mexico) power fixed LED dimmable lamp.
The obtained measured angles are shown in Table 4, where optimum performance is
observed at 2 m for both 7 and 73 lx, with low variability and an angle difference of
about ±3◦.

Table 4. Variability in distance and illumination.

Illumination 7 lx

Meters 1 m 2 m 3 m

Mean ± SD 94.19 ± 5.64 89.74 ± 2.94 89.33 ± 4.77

Illumination 73 lx

Mean ± SD 111.32 ± 4.01 91.65 ± 2.06 95.96 ± 1.96
SD: standard deviation.

Fixed angles were marked on a paper background using a universal goniometer
(Richardson Products Inc, Gulfstream Rd, Frankfort, KY, USA) as shown in Figure 3.
AROM angles were obtained by the Kinect v2 based measurement system. A set of 30
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measurements was taken at different angles (30◦, 60◦, 90◦, and 120◦) of the left and right
shoulder of one participant; also, a set of 30 measurements was taken (45◦, 90◦, 135◦, and
180◦) of the elbow of the left and right side, and the standard deviation of the measured
angles was ±0.2◦ on both sides (Table 5).

Figure 3. Angle setting.

Table 5. Results of the averages for the right and left limbs.

Assessment Variable Degrees ◦ Mean Absolute Error Relative Error (%)

Right

Shoulder
(Abduction)

30 30.549 0.549 1.83
60 59.994 0.005 0.00
90 90.425 0.425 0.47

120 120.546 0.546 0.45

45 45.664 0.664 1.47
Elbow (Flexion) 90 90.624 0.624 0.69

135 135.449 0.449 0.33
180 180.548 0.548 0.30

Left

Shoulder
(Abduction)

30 30.257 0.257 0.85
60 60.590 0.590 0.98
90 90.514 0.514 0.57

120 120.876 0.876 0.73

Elbow (Flexion)

45 45.540 0.540 1.20
90 90.504 0.504 0.56

135 135.511 0.511 0.37
180 180.603 0.603 0.33

2.4. Statistical Analysis

In order to verify the joint angle differences between those obtained by the Kinect-
based measurement system and those obtained by the goniometer, a Wilcoxon rank-sum
test equivalent to the Mann–Whitney U-test was carried out for the data resulting from the
control and study groups. The statistical analysis was undertaken using MATLAB (R2017b,
MathWorks, Natick, MA, USA). The significance level used was α = 0.05.

3. Results

Table 5 shows the results obtained from the 30 samples using the Kinect at different
angles and compared with those using the universal goniometer. The standard deviation
of the measured angles was ±0.2◦ on both sides. The errors obtained are minimal, with
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an average difference of ±1◦ between the actual value and the value estimated by the
Kinect-based measurement system.

The measurements of elbow flexion and shoulder abduction movement are presented
in Table 6. The difference between the angles obtained by both groups was not significant
(p < 0.05). Similarly, there was no significant difference between the manual FMA measure-
ment and FMA with NUI (p < 0.05). The error of the measurement system with NUI is less
than ±1◦.

Table 6. Comparison of joint angles of the upper limb.

Group Variable ROM System Mean ± SD H0 p-Value

Control

Shoulder
abduction

Right AROM NUI 108.51 ± 19.67
0 1Right PROM Goniometer 108.50 ± 19.62

Left AROM NUI 104.01 ± 23.44 0
0.98Left PROM Goniometer 104.05 ± 23.44

Elbow
flexion

Right AROM NUI 100.85 ± 37.88
0 0.98Right PROM Goniometer 100.77 ± 37.88

Left AROM NUI 94.25 ± 34.73
0 0.96Left PROM Goniometer 94.27 ± 34.70

FMA
NUI 65 ± 1

0 0.12Goniometer 65 ± 2

Study

Shoulder
abduction

AROM NUI 81.60 ± 26.94
0 0.21PROM Goniometer 81 ± 27.57

Elbow
flexion

AROM NUI 116.15 ± 44.09
0 0.19PROM Goniometer 115.50± 43.88

FMA
NUI 56 ± 10

0 0.78Goniometer 56 ± 9

AROM: active range of motion; PROM: passive range of motion; NUI: natural user interface; H0 = 0: There are no
differences between the measurements of the two instruments.

The box plot in Figure 4 shows minimal differences between the angular means of the
measurements recorded with the Kinect v2 and the goniometer for the right and left limb.
As can be observed, the variability between the two devices is not significant. The literal
“R” represents the assessment of the right side, and “L” represents the measurements of the
left side.

Figure 4. Variability in abduction movement.

The shoulder abduction and elbow flexion movement measurements for the control
and study groups obtained with the NUI system are summarized in Table 7. The differ-
ence between the elbow angles obtained in the two groups was not significant (p < 0.05).
Similarly, there were considerable differences between the FMA and shoulder abduction
measurements between the two groups (p < 0.05).
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Table 7. Control group vs. study group measurements.

Variable Group Mean ± SD H0 p-Value

Shoulder
abduction

Control 108.51 ± 19.67
1 0.0043Study 81.60 ± 26.94

Elbow
flexion

Control 100.85 ± 37.88
0 0.2145Study 116.15 ± 44.09

FMA
Control 65 ± 1

1 0.0004Study 56 ± 9

The box plot in Figure 5 shows significant differences between the angular means
of the abduction movement recorded with the Kinect v2 between the control group and
the study group; the study group presents difficulties in reaching a complete AROM in
the abduction movement. As can be seen, in the elbow flexion movement, the variability
between the two groups is not representative; both groups can flex the elbow. The literal
“Abd_Ctrl” represents the abduction movement for the control group, “Abd_St” is the
abduction movement in the study group. Similarly, the label “Flx_Ctrl” represents the
flexion movement in the control group, and “Flx_St” is the flexion movement in the study
group.

Figure 5. AROM measurements.

Similarly, as shown in Figure 6, according to the FMA scale, the motor performance,
of the control group and the study group shows significant variability. The literal “FMA-
C” represents the FMA score of the control group, and “FMA-S” is the score of the
study group.



Sensors 2022, 22, 2258 9 of 13

Figure 6. FMA measurements.

4. Discussion

The present study enabled angular measurements of the upper limb using the NUI of
the Kinect v2 sensor. Data from a universal goniometer were used as a reference to compare
upper limb movement analysis measurements.

Concerning the measurements, it is observed in Table 4 that, at one meter, there was a
higher variation. The sensor was very close to the participant, and the camera’s field of view
did not capture the whole scene, generating flying pixels. Similarly, in the measurement of
3 m, flying pixels were also present. However, the viewing range was higher. Optimum
performance was at 2 m at both 7 and 73 lx, showing a minor variability with a difference
of ±3◦. Our results for distance and height coincide with the work of Cai et al. [21], where
they recommend a height of 0.80 cm and a distance of 2 m from the sensor to the participant.
However, we added lighting parameters where, according to the characteristics of the
infrared camera, RGB camera, and the experiment performed, the proposed system can
operate from 7 to 73 lx.

Several studies have shown that upper limb angle measurements based on the Kinect
sensor and other reference instruments, such as goniometers or wearable sensors, have
a high degree of validity [16,22,40]. The authors Beshara et al. [22] also compared mea-
surements with a goniometer and claimed that the use of wearable inertial sensors in
conjunction with Kinect v2 is a reliable and valid way to assess active shoulder flexion and
abduction, with minimal measurement errors (2–4◦), which represents high reliability. The
results of this study show a significant validity of the measurements with the Kinect v2
sensor with an error of ±1◦ compared to the specialist’s measurements. Our results match
the authors’ claims [16] about the reliability of measures with the Kinect sensor, where their
study demonstrated an accuracy of ±5◦.

Concerning the validity of the measurement system, no significant differences were
found (Table 6, p > 0.005) between flexion and abduction movements of both shoulder and
elbow. Therefore, the AROM measurements of the elbow and shoulder are reliable. Overall,
these results indicate that the algorithm programmed with the FMA scale is an effective
and alternative tool for determining upper limb motor performance.

By comparison, as shown in Table 7, significant differences were found (p > 0.005)
between the control group and the study group. The study group, representing a particular
case of hemiparesis in the upper extremity, presented a lower motor performance than the
control group. A share of 78% showed a total performance, according to the FMA scoring
(52–66), 11% a notable capacity (47–52), and 11% a limited capacity (31–47). However, 83%
of the cases presented difficulties in performing the activities during the test, mainly in the
hand, wrist, and type of grip. Finally, 11% did not achieve a maximum score due to a lack of
coordination and speed. This system has the advantage of obtaining angular measurements
at 2 m, i.e., without direct contact with the participant. It also semi-automatically measures
a level of upper limb motor skills. Unfortunately, in 2017, Kinect v2 sensors (Microsoft,
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Redmond, WA, USA) were discontinued. However, a viable replacement may be the Azure
Kinect (Microsoft, Redmond, WA, USA) [17].

It should be noted that this study was carried out with a small sample size. However,
this population was appropriate, particularly when eliminating cognitive and functional
deficits that can intervene in the evaluation. The developed assessment system is semi-
automatic because it only acquires real-time angles involved in the FMA assessment; the
other parameters, such as sensitivity or pain, are entered into the system manually by the
specialist. The assessment of motor performance with the FMA scale manually requires
approximately 30 min per patient; however, with the semi-automatic method, the time is
considerably reduced, to around 5–10 min, depending on the GMFCS and MACS level,
and the cognitive level of the patient. For this reason, it is essential to consider these
visuomotor factors; otherwise, it can complicate the assessment, as not all patients can
follow instructions and perform active movements. Nevertheless, one of the benefits for
specialists using the semi-automatic method is quantitative and distance measurement,
with less angular measurement error than using a goniometer, as the accuracy of this
instrument depends on the experience of use between each evaluator. The implementation
of this measurement system is relatively simple, first requiring an exclusive area of 3 × 3 m,
with illumination of 7–73 lx, and the relevant equipment; at the time of the evaluation, a
distance of 2 m between the sensor and the patient must be considered. Regarding the
large-scale implementation of the system, training for technicians is required. For the
correct use of the evaluation system, it is also necessary to provide the relevant indications
to the specialist or person in charge of the rehabilitation area. This training is left as future
work, considering a video tutorial, and providing a system manual for the end-user. It is
worth mentioning that the assessment instructions are available at the top of the graphical
interface. Similarly, the controls of the latest developed system version indicate the labels of
the scale, which a specialist will be familiar with due to familiarity with this type of clinical
scale for evaluation of motor performance, i.e., in this case, FMA. Future work will also
include Constraint-Induced Movement Therapy (CIMT) in the study group. The results
obtained will be used as a basis for comparing measurements before and after the CIMT
rehabilitation process to effectively and quantitatively assess progress.

5. Conclusions

In both groups, this study showed a significant agreement between the measurements
of the angles (abduction and flexion) of the upper limbs (shoulder and elbow) performed
with the Kinect v2 sensor and those made manually with a universal goniometer. Our
system differed by ±1◦ compared to the measurements made by the specialist, which
represents a small difference. However, the proposed system provides greater accuracy and
a more reliable FMA score, allowing the specialist to focus on specific parts of the upper
limb for effective rehabilitation.

The proposed system is an effective alternative clinical measurement tool for the
analysis of upper limb motor performance. It allows the therapist to analyze the AROM and,
at the same time, determine the upper limb motor performance level of the FMA patient.
We recommend conducting the evaluations in a controlled area of 3 × 3 m, considering
the illumination factor of 73 lx, a distance between the sensor and the participant of 2 m, a
sensor height of 0.80 m, and pre-warming of the Kinect, as mentioned above. However, we
suggest implementing this evaluation methodology with the available Kinect sensors or
with the new versions of Kinect (Azure Kinect (Microsoft, Redmond, WA, USA)).

Finally, the novelty of this system lies in the assessment of AROM and motor perfor-
mance in children with spastic hemiparesis assisted with the NUI of the Kinect v2 sensor.
Tests were conducted with a universal goniometer and supported by clinical scales, such
as MACS, GFMCS, FMA, and the Bender Koppitz test. The system also allows distancing
strategies to be implemented, i.e., the motor assessment is carried out without direct contact
with the patient, thus reducing the probability of infection with the COVID-19 virus.
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